WO2022242201A1 - 一种无线通信方法、通信装置及通信系统 - Google Patents

一种无线通信方法、通信装置及通信系统 Download PDF

Info

Publication number
WO2022242201A1
WO2022242201A1 PCT/CN2022/070738 CN2022070738W WO2022242201A1 WO 2022242201 A1 WO2022242201 A1 WO 2022242201A1 CN 2022070738 W CN2022070738 W CN 2022070738W WO 2022242201 A1 WO2022242201 A1 WO 2022242201A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
application
network element
data flow
access network
Prior art date
Application number
PCT/CN2022/070738
Other languages
English (en)
French (fr)
Inventor
周汉
李汉成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22803539.0A priority Critical patent/EP4325929A4/en
Publication of WO2022242201A1 publication Critical patent/WO2022242201A1/zh
Priority to US18/506,773 priority patent/US20240080716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0908Management thereof based on time, e.g. for a critical period only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a wireless communication method, communication device and communication system.
  • TSN time sensitive network
  • the communication system can transmit data streams of multiple applications at the same time. In this scenario, how to efficiently transmit the data streams of multiple applications needs to be solved at present.
  • Embodiments of the present application provide a wireless communication method, a communication device, and a communication system, which are used to implement efficient transmission of data streams of multiple applications by the communication system.
  • an embodiment of the present application provides a wireless communication method, and the method may be executed by a radio access network device or a module applied to the radio access network device.
  • the method includes: obtaining a first time when the downlink data flow of the first application arrives at the wireless access network device, and a second time when the downlink data flow of the second application arrives at the wireless access network device; If the second time satisfies the first condition, then according to the load capacity of the wireless access network device, determine the third time when the downlink data flow of the first application arrives at the wireless access network device, and the third time is the first The adjusted time at which the downlink data flow of the application arrives at the radio access network device.
  • the radio access network device when the downlink data streams of multiple applications arrive at the radio access network device at the same or similar time, but the radio access network device does not have enough resources to schedule multiple downlink data streams at the same time, the radio access network device can Load capacity, re-determine the time when the downlink data flow of the application reaches the wireless access network device, so that the downlink data flow of different applications does not reach the wireless access network device within a centralized time range, thereby reducing the load pressure on the wireless access network device , to prevent the radio access network equipment from being unable to send service data streams normally. Therefore, it can be realized that the communication system efficiently transmits downlink data streams of multiple applications.
  • the interval between the first time and the second time is less than a first threshold, according to the load capacity of the radio access network device, it is determined that the downlink data flow of the first application arrives The third time of the radio access network device; wherein, the interval between the third time and the second time is greater than or equal to the first threshold.
  • the third time is sent to the session management network element.
  • the load capacity includes one or more of central processing unit capacity, air interface spectrum resources, air interface bandwidth resources, and memory size.
  • the embodiment of the present application provides a wireless communication method, and the method may be executed by a first network element or a module applied to the first network element.
  • the method includes: receiving from the wireless access network device a third time when the downlink data flow of the first application arrives at the wireless access network device; according to the third time, determining the time of the downlink data flow of the first application on the communication system
  • the sending time window of the outgoing port, the incoming port of the communication system corresponds to the terminal, and the outgoing port corresponds to the terminal.
  • the sending time windows of the downlink data streams of different applications on the egress port of the communication system overlap, the sending time windows of the downlink data streams of one or more applications on the outbound port can be adjusted so that the different applications The sending time windows of the downlink data streams on the egress port do not overlap, thereby avoiding scheduling conflicts of the downlink data streams of different applications on the egress port. Therefore, it can be realized that the communication system efficiently transmits downlink data streams of multiple applications.
  • the first network element is a session management network element; and sends the sending time window to a policy control network element or a network opening network element.
  • the first network element is a session management network element, a network opening network element or a policy control network element; according to the sending time window and the internal processing delay of the communication system, determine the first application The time when the downlink data flow of the first application arrives at the ingress port on the communication system; the time when the downlink data flow of the first application is sent to the application function network element arrives at the ingress port on the communication system.
  • the first network element is a network open network element or a policy control network element; and sends the time when the downlink data flow of the first application arrives at the ingress port on the communication system to the session management network element.
  • the sending time window is sent to the egress port.
  • the embodiment of the present application provides a wireless communication method, and the method may be executed by a radio access network device or a module applied to the radio access network device.
  • the method includes: acquiring the first time when the terminal sends the uplink data flow of the first application to the wireless access network device, and the second time when the terminal sends the uplink data flow of the second application to the wireless access network device; The first time and the second time satisfy the first condition, then according to the load capacity of the radio access network device, determine a third time for the terminal to send the uplink data flow of the first application to the radio access network device, The third time is the adjusted time when the uplink data flow of the first application arrives at the radio access network device.
  • the radio access network device can re-determine the time of the application's uplink data stream sent by the terminal to the radio access network device according to the load capacity, so that different applications
  • the uplink data flow does not arrive at the wireless access network device within a concentrated time range, thereby reducing the load pressure on the wireless access network device and preventing the wireless access network device from being unable to send service data flows normally. Therefore, the communication system can efficiently transmit the uplink data streams of multiple applications.
  • the terminal when the interval between the first time and the second time is smaller than the first threshold, according to the load capacity of the radio access network device, it is determined that the terminal sends the radio access network device A third time for sending the upstream data flow of the first application; wherein, the interval between the third time and the second time is greater than or equal to the first threshold.
  • the third time is sent to the session management network element.
  • the load capacity includes one or more of central processing unit capacity, air interface spectrum resources, air interface bandwidth resources, and memory size.
  • the embodiment of the present application provides a wireless communication method, and the method may be executed by a first network element or a module applied to the first network element.
  • the method includes: receiving from the wireless access network device a third time when the terminal sends the uplink data flow of the first application to the wireless access network device; according to the third time, determining that the uplink data flow of the first application is in the communication system
  • the sending time window of the outgoing port on the network, the incoming port of the communication system corresponds to the terminal, and the outgoing port corresponds to the user plane network element.
  • the sending time windows of the uplink data streams of different applications on the egress ports of the communication system overlap, the sending time windows of the uplink data streams of one or more applications on the outbound ports can be adjusted so that the different applications The sending time windows of the uplink data streams on the egress port do not overlap, thereby avoiding scheduling conflicts of the uplink data streams of different applications on the egress port. Therefore, the communication system can efficiently transmit the uplink data streams of multiple applications.
  • the first network element is a session management network element; and sends the sending time window to a policy control network element or a network opening network element.
  • the first network element is a session management network element, a network opening network element or a policy control network element; according to the sending time window and the internal processing delay of the communication system, determine the first application The time when the uplink data flow of the first application arrives at the ingress port on the communication system; the time when the uplink data flow of the first application is sent to the application function network element arrives at the ingress port on the communication system.
  • the first network element is a session management network element; the session management network element sends a downlink A non-access stratum message, the downlink non-access stratum message includes the time when the uplink data flow of the first application arrives at the ingress port on the communication system.
  • the first network element is an open network element or a policy control network element; the network open network element or the policy control network element determines that the uplink data flow of the first application arrives at the communication system After the time at the ingress port of the communication system, the time at which the uplink data flow of the first application arrives at the ingress port on the communication system is sent to the session management network element.
  • the session management network element after receiving the time when the uplink data flow of the first application arrives at the ingress port on the communication system, the session management network element sends a downlink non-access stratum message to the terminal, and the downlink non-access stratum message includes The time when the upstream data flow of the first application arrives at the ingress port on the communication system.
  • the first network element is a network open network element or a policy control network element; and sends the sending time window to the egress port.
  • the embodiment of the present application provides a wireless communication method, and the method may be executed by a first network element or a module applied to the first network element.
  • the method includes: receiving from the wireless access network device a third time when the downlink data flow of the first application arrives at the wireless access network device; according to the third time, determining when the downlink data flow of the first application arrives on the communication system
  • the time of the ingress port, the ingress port corresponds to the user plane network element, and the egress port of the communication system corresponds to the terminal.
  • the first network element is a session management network element; sending the time when the downlink data flow of the first application arrives at an ingress port on the communication system to a policy control network element or a network opening network element.
  • the first network element is an open network element or a policy control network element; the downlink data flow of the first application is sent to the application function network element and/or the session management network element to reach the communication system The ingress time of the port.
  • the embodiment of the present application provides a wireless communication method, and the method may be executed by a first network element or a module applied to the first network element.
  • the method includes: receiving from the radio access network device a third time when the terminal sends the uplink data stream of the first application to the radio access network device; according to the third time, determining that the uplink data stream of the first application arrives at the communication system The time of the ingress port on the network, the ingress port corresponds to the terminal, and the egress port of the communication system corresponds to the user plane network element.
  • the first network element is a session management network element, a network opening network element, or a policy control network element; port time.
  • the first network element is a session management network element; after the session management network element determines the time when the uplink data flow of the first application arrives at the ingress port on the communication system, it sends a downlink The access layer message, the downlink non-access layer message includes the time when the uplink data flow of the first application arrives at the ingress port on the communication system.
  • the first network element is an open network element or a policy control network element; the input of the network open network element or policy control network element in determining the arrival of the uplink data flow of the first application on the communication system
  • the session management network element After the time of the port, send the time when the uplink data flow of the first application arrives at the ingress port on the communication system to the session management network element.
  • the session management network element after receiving the time when the uplink data flow of the first application arrives at the ingress port on the communication system, the session management network element sends a downlink non-access stratum message to the terminal, and the downlink non-access stratum message includes The time when the upstream data flow of the first application arrives at the ingress port on the communication system.
  • the embodiment of the present application provides a wireless communication method, which can be executed by a policy control network element, a network open network element, a module applied to a policy control network element, or a module applied to a network open network element .
  • the method includes: determining a first sending time window of a data flow of a first application on an outgoing port of the communication system and a second sending time window of a data flow of a second application on the outgoing port, and the outgoing port corresponds to a terminal or a user plane A network element; when the first sending time window overlaps with the second sending time window, determine a third sending time window of the data flow of the first application on the egress port, and the third sending time window is the first sending time window for the first application The adjusted sending time window of the data stream at the egress port; wherein, the third sending time window does not overlap with the second sending time window.
  • the sending time windows of different applications on the egress port of the communication system overlap, the sending time windows of one or more applications can be re-determined so that there is no overlap between the sending time windows of different applications, thereby avoiding different
  • the data flow of the application generates a scheduling conflict on the terminal or user plane network element. Therefore, the communication system can efficiently transmit the data streams of multiple applications.
  • the third sending time window is sent to the application function network element.
  • the third sending time window and the internal processing delay of the communication system determine the time when the data flow of the first application arrives at the ingress port on the communication system; The time when the data flow sent by the first application arrives at an ingress port on the communication system; wherein, the egress port corresponds to a terminal, and the ingress port corresponds to a user plane network element; or the egress port corresponds to a user plane network element, and the ingress port corresponds to terminal.
  • a first parameter from the application function network element is received, and the first parameter carries the time when the data stream of the first application arrives at an ingress port on the communication system.
  • the third sending time window is sent to the egress port.
  • the embodiment of the present application provides a communication device, and the device may be a radio access network device, or may be a chip used for the radio access network device.
  • the device has the function of realizing any realization method of the first aspect or the third aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the embodiment of the present application provides a communication device, and the device may be a first network element, or may be a chip for the first network element.
  • the device has the function of realizing any realization method of the second aspect, the fourth aspect, the fifth aspect or the sixth aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the embodiment of the present application provides a communication device.
  • the device may be a policy control network element or a network open network element, and may also be a chip for a policy control network element or a network open network element.
  • the device has the function of implementing any implementation method of the seventh aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the embodiment of the present application provides a communication device, including a processor and a memory; the memory is used to store computer instructions, and when the device is running, the processor executes the computer instructions stored in the memory, so that the device Execute any implementation method in the first aspect to the seventh aspect above.
  • the embodiment of the present application provides a communication device, including a unit or means (means) for performing each step of any implementation method in the first aspect to the seventh aspect.
  • the embodiment of the present application provides a communication device, including a processor and an interface circuit, the processor is used to communicate with other devices through the interface circuit, and execute any implementation method in the first aspect to the seventh aspect above .
  • the processor includes one or more.
  • the embodiment of the present application provides a communication device, including a processor coupled to a memory, and the processor is used to call a program stored in the memory to execute any implementation in the first aspect to the seventh aspect above method.
  • the memory may be located within the device or external to the device. And there may be one or more processors.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a communication device, the above-mentioned first to seventh aspects Any implementation method of is executed.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer programs or instructions, when the computer program or instructions are run by the communication device, any of the above first to seventh aspects The implementation method is executed.
  • the embodiment of the present application further provides a chip system, including: a processor, configured to execute any implementation method in the first aspect to the seventh aspect above.
  • the embodiment of the present application further provides a communication system, the communication system includes a wireless access network device for performing any implementation method of the above-mentioned first aspect and any implementation method for performing the above-mentioned second aspect the first network element.
  • the embodiment of the present application further provides a communication system, the communication system includes a radio access network device for performing any implementation method of the third aspect above and any implementation method for the fourth aspect above the first network element.
  • the embodiment of the present application further provides a communication system, the communication system includes a wireless access network device for performing any implementation method of the above-mentioned first aspect and any implementation method for performing the above-mentioned fifth aspect the first network element.
  • the embodiment of the present application further provides a communication system, the communication system includes a wireless access network device for performing any implementation method of the third aspect above and any implementation method for the sixth aspect above The first network element of the method.
  • Figure 1(a) is a schematic diagram of a 5G network architecture based on a service architecture
  • Figure 1(b) is a schematic diagram of a 5G network architecture based on a point-to-point interface
  • FIG. 2 is a schematic diagram of a fully centralized TSN system architecture
  • Figure 3 is a schematic diagram of the architecture of the 5G system and the TSN interworking system
  • Figure 4 is a simplified schematic diagram of the architecture of the interworking system between the 5G system and the TSN;
  • FIG. 5 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 6(a) is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 6(b) is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 1(a) is a schematic diagram of a 5G network architecture based on a service-based architecture.
  • the 5G network architecture shown in Figure 1(a) can include three parts, namely terminals, data network (data network, DN) and operator network.
  • the functions of some of the network elements are briefly introduced and described below.
  • the operator network may include one or more of the following network elements: authentication server function (Authentication Server Function, AUSF) network element, network exposure function (network exposure function, NEF) network element, policy control function (policy control function, PCF) network element, unified data management (unified data management, UDM) network element, unified database (Unified Data Repository, UDR), network storage function (Network Repository Function, NRF) network element, application function (application function, AF) ) network elements, access and mobility management function (access and mobility management function, AMF) network elements, session management function (session management function, SMF) network elements, radio access network (radio access network, RAN) equipment and users Plane function (user plane function, UPF) network element, network slice selection function (Network Slice Selection Function, NSSF) network element (not shown in the figure), etc.
  • authentication server function Authentication Server Function, AUSF
  • NEF network exposure function
  • policy control function policy control function
  • PCF policy control function
  • UDM unified data management
  • UDM
  • network elements or devices other than radio access network devices may be referred to as core network elements or core network devices.
  • core network elements or core network devices may be referred to as core network elements or core network devices.
  • AF is divided into two types, one type belongs to core network elements, and the other type belongs to third-party application servers.
  • the wireless access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and a next generation base station (next generation NodeB, gNB) in a 5G mobile communication system , a next-generation base station in a 6G mobile communication system, a base station in a future mobile communication system, or an access node in a wireless fidelity (Wireless Fidelity, WiFi) system, etc.; it can also be a module or unit that completes some functions of the base station, for example, It can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the AMF network element performs functions such as mobility management and access authentication/authorization. In addition, it is also responsible for transferring user policies between the terminal and the PCF.
  • the SMF network element performs functions such as session management, execution of control policies issued by the PCF, selection of UPF, and allocation of Internet Protocol (IP) addresses for terminals.
  • functions such as session management, execution of control policies issued by the PCF, selection of UPF, and allocation of Internet Protocol (IP) addresses for terminals.
  • IP Internet Protocol
  • the UPF network element as the interface UPF with the data network, completes functions such as user plane data forwarding, session/flow-based charging statistics, and bandwidth limitation.
  • the UDM network element performs functions such as managing subscription data and user access authorization.
  • UDR implements the access function of contract data, policy data, application data and other types of data.
  • NEF network elements are used to support the opening of capabilities and events.
  • the AF network element transmits the requirements from the application side to the network side, such as Quality of Service (QoS) requirements or user status event subscriptions.
  • QoS Quality of Service
  • the AF may be a third-party functional entity, or an application service deployed by an operator, such as an IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) voice call service.
  • IP Multimedia Subsystem IP Multimedia Subsystem, IMS
  • the PCF network element is responsible for policy control functions such as charging for sessions and service flow levels, QoS bandwidth guarantee, mobility management, and terminal policy decision-making.
  • the NRF network element can be used to provide a network element discovery function, and provide network element information corresponding to the network element type based on the request of other network elements.
  • NRF also provides network element management services, such as network element registration, update, de-registration, network element status subscription and push, etc.
  • the AUSF network element is responsible for authenticating users to determine whether users or devices are allowed to access the network.
  • the NSSF network element is used to select a network slice and count users in the network slice.
  • DN is a network outside the operator's network.
  • the operator's network can access multiple DNs, and various services can be deployed on the DN, which can provide data and/or voice services for terminals.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminals, and the control server of the sensors is deployed in the DN, and the control server can provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is a company's internal office network.
  • the mobile phone or computer of the company's employees can be a terminal, and the employee's mobile phone or computer can access information and data resources on the company's internal office network.
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, and Nsmf are the service interfaces provided by the above-mentioned AUSF, NEF, PCF, UDM, AF, AMF, and SMF, respectively, and are used to call corresponding service operations.
  • N1, N2, N3, N4, and N6 are interface serial numbers. The meanings of these interface serial numbers may refer to the meanings defined in the third generation partnership project (3rd generation partnership project, 3GPP) standard agreement, and no limitation is made here.
  • Figure 1(b) is a schematic diagram of a 5G network architecture based on a point-to-point interface.
  • the introduction of the functions of the network elements can refer to the introduction of the functions of the corresponding network elements in Figure 1(a), and will not be repeated here.
  • the main difference between Figure 1(b) and Figure 1(a) is that the interface between each control plane network element in Figure 1(a) is a service interface, and each control plane network element in Figure 1(b) The interface between them is a point-to-point interface.
  • N1 the interface between the AMF and the terminal, which can be used to transmit QoS control rules and the like to the terminal.
  • N2 the interface between the AMF and the RAN, which can be used to transfer radio bearer control information from the core network side to the RAN.
  • N3 the interface between the RAN and the UPF, mainly used to transfer the uplink and downlink user plane data between the RAN and the UPF.
  • N4 The interface between SMF and UPF, which can be used to transfer information between the control plane and the user plane, including controlling the distribution of forwarding rules, QoS control rules, traffic statistics rules, etc. Information reporting.
  • N5 the interface between the AF and the PCF, which can be used for sending application service requests and reporting network events.
  • N6 the interface between UPF and DN, used to transfer the uplink and downlink user data flow between UPF and DN.
  • N7 the interface between PCF and SMF, which can be used to deliver protocol data unit (protocol data unit, PDU) session granularity and service data flow granularity control policy.
  • protocol data unit protocol data unit
  • PDU protocol data unit
  • N8 The interface between AMF and UDM, which can be used for AMF to obtain subscription data and authentication data related to access and mobility management from UDM, and for AMF to register terminal current mobility management related information with UDM.
  • N9 a user plane interface between UPF and UPF, used to transmit uplink and downlink user data flows between UPFs.
  • N10 the interface between SMF and UDM, which can be used for SMF to obtain session management-related subscription data from UDM, and for SMF to register terminal current session-related information with UDM.
  • N11 the interface between SMF and AMF, which can be used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to terminals, transfer radio resource control information sent to RAN, etc.
  • N12 the interface between AMF and AUSF, which can be used for AMF to initiate an authentication process to AUSF, which can carry SUCI as a subscription identifier;
  • N13 the interface between UDM and AUSF, which can be used for AUSF to obtain user authentication vector from UDM to execute the authentication process.
  • N15 the interface between the PCF and the AMF, which can be used to issue terminal policies and access control-related policies.
  • N35 the interface between UDM and UDR, which can be used for UDM to obtain user subscription data information from UDR.
  • N36 the interface between the PCF and the UDR, which can be used for the PCF to obtain policy-related subscription data and application data-related information from the UDR.
  • the above-mentioned network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • IEEE 802.1QCC defines a fully centralized TSN system architecture for TSN.
  • FIG 2 it is a schematic diagram of the fully centralized TSN system architecture, including TSN End Station (TSN End Station), TSN Switch (TSN Bridge), Centralized User Configuration (Centralized User Configuration, CUC) network elements and centralized network configuration (Centralized Network Configuration, CNC) network element.
  • CUC Centralized User Configuration
  • CNC Centralized Network Configuration
  • the TSN terminal can be used as the sender or receiver of the data stream
  • the TSN switch reserves resources for the data flow according to the definition of TSN, and schedules and forwards the data flow;
  • the CNC manages the topology of the TSN user plane and the capability information of the TSN switch (such as the transmission delay of the TSN switch and the internal processing delay between ports of the TSN switch).
  • the transmission delay of the TSN switch refers to the time between the TSN flow sent by the egress port of the TSN switch and the ingress port of the next-hop switching node.
  • the internal processing delay between ports of a TSN switch refers to the time between the entry of a TSN stream from an ingress port of the current TSN switch to the outflow from the egress port of the TSN switch.
  • the CNC creates a TSN flow forwarding rule to generate the forwarding path of the data flow, and generates a scheduling policy on the TSN terminal and each TSN switch.
  • the scheduling strategy includes the port (including the ingress port and the egress port) of the message of the TSN stream (or the TSN service class (traffic class) aggregated by multiple TSN streams) for sending and receiving, and the receiving time window at the ingress port (which can be option), the sending time window at the outgoing port, the sending cycle, etc.
  • the CNC delivers the generated scheduling policy to the corresponding TSN switch.
  • the scheduling policy on each TSN switch is determined by the CNC according to network topology information and capability information reported by each TSN switch.
  • the CNC After the CNC creates the TSN flow forwarding rule, it can determine the flow forwarding path on the TSN switch by sending the static table (Static filtering entries) to the TSN switch.
  • the information in the static table includes the destination medium access control (medium access control, MAC) address of the TSN flow, the identifier of the receiving port and the identifier of the sending port of the TSN switch on the TSN switch.
  • the information in the static table also includes Virtual local area network (Virtual Local Area Network, VLAN) identification (ID).
  • VLAN Virtual Local Area Network
  • the above-mentioned expression form of the scheduling policy sent by the CNC to the TSN switch depends on the scheduling algorithm defined by the TSN system. Taking the scheduling algorithm defined by IEEE802.1Qbv as an example, the CNC sends the scheduling parameters defined by IEEE802.1Qbv to the TSN switch, including the gating information of the port of the TSN switch. Time (ie AdminBaseTime in IEEE802.1Qbv), gate state of the queue (ie GateStateValue in IEEE802.1Qbv) and duration of the gate state (ie TimeIntervalValue in IEEE802.1Qbv).
  • the TSN switch determines the sending time window and the sending period of the egress port of the TSN switch according to the scheduling parameters, and optionally, the receiving time window of the ingress port can also be determined.
  • CUC is used to collect flow creation requests of TSN terminals, such as receiving TSN sending terminal (Talker) and TSN receiving terminal (Listener) registration, receiving flow information (such as source address, destination address, VLAN ID, etc.), exchange configuration Parameters, etc., after matching the flow creation requests of the TSN sending terminal and the TSN receiving terminal, request the CNC to create a data flow, and confirm the scheduling policy generated by the CNC.
  • TSN terminals such as receiving TSN sending terminal (Talker) and TSN receiving terminal (Listener) registration, receiving flow information (such as source address, destination address, VLAN ID, etc.), exchange configuration Parameters, etc.
  • FIG. 3 it is a schematic diagram of the architecture of the 5G system and the TSN interworking system.
  • the 5G architecture shown in Figure 1(a) or Figure 1(b) is combined with the TSN architecture shown in Figure 2, and the 5G system and TSN Translator (TSN Translator) are integrated into a logical TSN switch (called 5G system or 5G system switch), to realize the function of the TSN switch in the TSN.
  • the TSN converter refers to converting and adapting the characteristics and information of the 5G network into the information required by the TSN and providing it to the TSN system, or converting the information required by the TSN system into characteristics or information specific to the 5G network and providing it to the 5G system.
  • Fig. 3 only shows some network elements (namely AMF, SMF, PCF, RAN, UE, AF, UPF) in the 5G architecture.
  • the 5G system exchanges information with nodes in the TSN system through AF on the control plane.
  • the information exchanged includes: 5G system capability information, TSN configuration information (including time scheduling information of ingress and egress ports) )Wait.
  • the AF provides the capability information of the 5G system to the CNC in the TSN system, and the CNC determines the TSN configuration information of the 5G system for the TSN service according to the capability information of the 5G system and the capability information of other TSN switches.
  • the AF provides the TSN configuration information for the 5G system determined by the CNC to the 5G system.
  • the capability information of the 5G system includes the internal processing delay of the 5G system, the transmission delay on the UE side of the 5G system, and the transmission delay on the UPF side of the 5G system.
  • the internal processing delay of the 5G system includes the residence time of the UE side (that is, the processing residence time of the TSN message in the UE and the TSN converter on the UE side), and the residence time of the UPF side (that is, the residence time of the TSN message in the UPF and the UPF side). processing dwell time inside the TSN converter), and the transmission delay between UE and UPF.
  • the transmission delay between the UE and the UPF is specifically expressed as a packet delay budget (packet delay budget, PDB) of the TSN message between the UE and the UPF.
  • PDB packet delay budget
  • the UPF of the 5G system receives the downlink TSN flow of the TSN system through the TSN converter, or sends the uplink TSN flow to the TSN system, wherein the TSN converter can be integrated in the UPF or deployed independently with the UPF.
  • the TSN translator on the UPF side may also be called a network side TSN translator (network side TSN Translator, NW-TT).
  • the UE of the 5G system receives the uplink TSN stream of the TSN system through the TSN converter, or sends the downlink TSN stream to the TSN system, wherein the TSN converter can be integrated in the UE or deployed independently from the UE.
  • the TSN translator on the UE side may also be called a device side TSN translator (device side TSN Translator, DS-TT).
  • FIG. 4 it is a simplified schematic diagram of a system architecture for interworking between a 5G system and a TSN.
  • the data flow is received from the ingress port of the 5G system, and is sent from the egress port of the 5G system after internal processing of the 5G system.
  • the ingress port is DS-TT or a port on DS-TT; when DS-TT is integrated in UE, the ingress port is UE or DS-TT on UE.
  • NW-TT and UPF are deployed independently, the outbound port is the port on NW-TT or NW-TT; when NW-TT is integrated in UPF, the outbound port is UPF or NW-TT on UPF.
  • the user plane network element in this application may be a network element with the UPF function shown in Figure 3, and the user plane network element may be integrated with a TSN converter, or the TSN converter is independent of the user Deployment of plane network elements.
  • this application takes the integration of TSN converters in user plane network elements as an example for description.
  • the user plane network element is referred to as UPF in the subsequent description of this application. It should be noted that, in future communications, the user plane network element may still be called UPF, or may have other names, which are not limited in this application.
  • the UPF that appears later in this application can be replaced by a user plane network element.
  • the session management network element in this application may be a network element having the function of the SMF shown in FIG. 3 , FIG. 1( a ) or FIG. 1( b ).
  • the session management network element is referred to as SMF in the subsequent description of this application.
  • the session management network element may still be called SMF, or may have other names, which are not limited in this application.
  • the SMF appearing later in this application can be replaced by a session management network element.
  • the policy control network element in this application refers to a network element having the PCF function shown in FIG. 3 , FIG. 1( a ) or FIG. 1( b ).
  • the policy control network element is referred to as PCF in the subsequent description of this application.
  • the policy control network element may still be called a PCF network element, or may have other names, which are not limited in this application.
  • the PCF that appears later in this application can be replaced by a policy control network element.
  • the application function network element in this application may be a network element having the AF function shown in FIG. 3 , FIG. 1( a ) or FIG. 1( b ).
  • the application function network element is referred to as AF in the subsequent description of this application.
  • the application function network element may still be called AF, or may have other names, which are not limited in this application.
  • the AF appearing later in this application can be replaced by an application function network element.
  • the network capability opening network element in this application may be a network element having the function of the NEF shown in FIG. 3 , FIG. 1( a ) or FIG. 1( b ).
  • the network capability opening network element is referred to as NEF in the subsequent description of this application.
  • the network element for opening network capabilities may still be called NEF, or may have other names, which are not limited in this application.
  • the NEF appearing later in this application can be replaced by a network capability opening network element.
  • the terminal in this application may be a device with the UE functions shown in Figure 3, and a TSN converter may be integrated in the terminal, or the TSN converter may be deployed independently of the terminal.
  • a TSN converter may be integrated in the terminal, or the TSN converter may be deployed independently of the terminal.
  • this The application takes the TSN converter integrated in the terminal as an example for illustration.
  • the terminal is referred to as UE in the subsequent description of this application.
  • the AF sends the time-sensitive communication (timesensitive communication, TSC) parameters to the SMF through the NEF.
  • TSC time-sensitive communication
  • the TSC parameter is used to describe the data flow characteristics of the TSN service
  • the TSC parameter can include at least one of the following: 5G system delay (5GS delay), jitter (jitter), the time when the burst traffic reaches the UE and/or UPF (burst arrival time at UE and/or UPF), burst size (burst size), burst period (burst periodicity), etc.
  • the 5G system delay refers to the delay between when a data packet arrives at the ingress port of the 5G system and when the data packet is sent out from the egress port of the 5G system.
  • 5G system delay can also be referred to as 5G system internal processing time or 5G system internal processing delay.
  • the 5G system delay includes the UE's internal processing delay, the air interface delay between the UE and the base station, the base station's internal processing delay, the transmission delay between the base station and the UPF, and the UPF's internal processing delay.
  • Jitter refers to the error range of the 5G system delay, that is, the 5G system delay may fluctuate within a range due to noise, link quality, load and other reasons.
  • the time when the burst traffic arrives at the UE or the UPF refers to the time when the data flow of the TSN service arrives at the UE or the UPF.
  • the burst size refers to the size of the data flow arriving at the UE or UPF.
  • the burst period refers to the fact that the data flow of the TSN service arrives at the UE or UPF according to a certain period.
  • the NEF calculates the sending time window of the data flow at the UE and the UPF according to the TSC parameter.
  • the sending time window of the data flow in the UE can be understood as the sending time window of the data flow in the DS-TT
  • the sending window of the data flow in the UPF can be regarded as the sending time window of the data flow in the NW-TT.
  • NEF calculates one or more sending time windows of the uplink data flow on the UPF according to the time when the burst traffic arrives at the UE, 5G system delay, jitter, and burst period.
  • the 5G system After receiving the uplink data flow, the 5G system sends it to the UPF, and the UPF buffers the uplink data flow, and then sends the uplink data flow externally within the sending time window corresponding to the uplink data flow.
  • NEF calculates one or more sending time windows of the downlink data flow on the UE according to the time when the burst traffic arrives at the UPF, the 5G system delay, jitter, and burst period.
  • the UE sends the downlink data stream to the UE, and the UE buffers the downlink data stream, and then sends the downlink data stream to the outside within the sending time window corresponding to the downlink data stream.
  • the SMF After the SMF receives the TSC parameters, for the uplink data flow, it can calculate the time for the UE to send the uplink data flow to the base station according to the time when the burst traffic arrives at the UE and the internal processing delay of the UE; The time when the traffic arrives at the UPF, the internal processing delay of the UPF, and the transmission delay between the base station and the UPF are calculated to obtain the time when the downlink data flow arrives at the base station. Then, the SMF can send the time when the UE sends the uplink data stream to the base station or the time when the downlink data stream arrives at the base station to the base station, so as to assist the base station in scheduling.
  • the SMF sends a timesensitive communication assistant information (TSCAI) parameter to the base station
  • TSCAI parameter carries the time when the UE sends the uplink data stream to the base station and/or the time when the downlink data stream arrives at the base station.
  • TSCAI timesensitive communication assistant information
  • the first question is that when there are multiple applications, the AFs corresponding to the multiple applications provide TSC parameters to the 5G system, and then the 5G system calculates the sending time window for the data streams of each application. However, the sending time windows of the data streams of different applications may overlap, resulting in scheduling conflicts of the data streams of multiple applications on the UE or UPF.
  • the second problem is that when multiple data streams arrive at the base station at the same or similar time, and the base station does not have enough resources to simultaneously schedule multiple data streams, the base station will not be able to send service data streams normally.
  • FIG. 5 is a wireless communication method provided by an embodiment of the present application, which can be used to solve the first problem above.
  • the sending time windows of the data streams of different applications on the UE or UPF can be adjusted so that the sending time windows of the data streams of different applications on the UE or UPF will not overlap, thereby avoiding data transmission of multiple applications
  • the flow generates a scheduling conflict on the UE or UPF.
  • this method can also be used to solve the second problem above.
  • the method when the method is used to adjust the sending time windows of the data streams of different applications on the UE or UPF, so that the data streams of different applications are sent on the UE or UPF While the transmission time windows above will not overlap, to a certain extent, it will also cause a certain time interval for the data streams of different applications to arrive at the base station, so as to prevent the base station from not having enough resources to schedule multiple data streams at the same time.
  • the method can be executed by a control plane network element of the 5G system, such as PCF, NEF, etc., or by a chip used for the control plane network element, such as a PCF chip or a NEF chip.
  • a control plane network element of the 5G system such as PCF, NEF, etc.
  • a chip used for the control plane network element such as a PCF chip or a NEF chip.
  • the method includes the following steps:
  • Step 501 determine a first sending time window of a data flow of a first application on an egress port of a communication system and a second sending time window of a data flow of a second application on the egress port, and the egress port corresponds to a UE or a UPF.
  • the communication system may be the 5G system described in FIG. 3 or FIG. 4 , or it may be a communication system with a TSN interactive machine function in future communication, such as a sixth generation (6th generation, 6G) system.
  • 6G sixth generation
  • the communication system is a 5G system as an example for description below.
  • the first application and the second application are different applications.
  • the first sending time window of the data stream of the first application on the egress port of the 5G system refers to the sending of the data stream of the first application on UPF, the egress port of UPF, NW-TT or the egress port of NW-TT Time Window.
  • the first sending time window may be calculated according to the 5G system delay, jitter and the time when the burst traffic of the first application arrives at the UE.
  • the second transmission time window of the data stream of the second application on the egress port of the 5G system refers to the transmission of the data stream of the second application on UPF, the egress port of UPF, NW-TT or the egress port of NW-TT Time Window.
  • the second sending time window may be calculated according to the 5G system delay, jitter, and the time when the burst traffic of the second application arrives at the UE.
  • the first sending time window of the data stream of the first application on the egress port of the 5G system refers to the sending of the data stream of the first application on the UE, the egress port of the UE, DS-TT or the egress port of DS-TT Time Window.
  • the first sending time window may be calculated according to the 5G system delay, jitter, and the time when the burst traffic of the first application reaches the UPF.
  • the second sending time window of the data stream of the second application on the egress port of the 5G system refers to the sending of the data stream of the second application on the UE, the egress port of the UE, DS-TT or the egress port of DS-TT Time Window.
  • the second sending time window may be calculated according to the 5G system delay, jitter, and the time when the burst traffic of the second application reaches the UPF.
  • Step 502 When the first sending time window overlaps with the second sending time window, determine the third sending time window of the data flow of the first application on the output port, and the third sending time window is the first sending time window of the first application.
  • the fourth sending time window of the data flow of the second application at the output port is the adjusted sending time window of the data flow of the second application at the output port; wherein, the fourth sending time window is the same as the There is no overlap in the first sending time windows.
  • the sending time windows of different applications on the egress port of the communication system overlap, the sending time windows of one or more applications can be re-determined so that there is no overlap between the sending time windows of different applications, thereby avoiding different
  • the data flow of the application generates a scheduling conflict on the UE or the UPF. Therefore, the 5G system can efficiently transmit data streams of multiple applications.
  • the third sending time window can also be sent to the AF, and then the AF recalculates the data of the first application according to the third sending time window and the internal processing delay of the 5G system
  • the time when the flow arrives at the ingress port on the 5G system that is, the time when the burst traffic arrives at the UE or UPF is recalculated.
  • the AF may resend the TSC parameter to the 5G system, where the TSC parameter includes the recalculated arrival time of the data flow of the first application at the ingress port on the 5G system.
  • the AF may resend the TSC parameter to the 5G system, where the TSC parameter includes the recalculated arrival time of the data flow of the first application at the ingress port on the 5G system.
  • the TSC parameter may also be referred to as a first parameter.
  • the third sending time window can also be sent to the egress port of the 5G system, so that the egress port can send the data stream of the first application according to the third sending time window, so as to achieve the first The adjustment of the sending time window of the data flow of the application on the egress port, so as to avoid the scheduling conflict of the data flow of different applications on the egress port.
  • Fig. 6(a) is a wireless communication method provided by the embodiment of the present application, which can be used to solve the second problem above.
  • This method is for downstream data flow.
  • this method can also be used to solve the first problem above.
  • the base station adjusts the arrival time of the downlink data streams of different applications to the base station according to the load capacity, so that the downlink data streams of different applications do not arrive within a centralized time range
  • the base station can also avoid overlapping sending time windows of the downlink data streams of different applications on the UE to a certain extent, thereby avoiding scheduling conflicts on the UE of the downlink data streams of multiple applications.
  • the method includes the following steps:
  • Step 601a the base station obtains the first time when the downlink data stream of the first application arrives at the base station, and the second time when the downlink data stream of the second application arrives at the base station.
  • the SMF may send a TSCAI parameter to the base station, where the TSCAI parameter carries the first time when the downlink data stream of the first application arrives at the base station.
  • the base station can obtain the second time when the downlink data flow of the second application arrives at the base station.
  • Step 602a when the first time and the second time meet the first condition, the base station determines a third time when the downlink data flow of the first application arrives at the base station according to the load capacity of the base station, and the third time is the downlink data flow of the first application The adjusted time of arrival at the base station.
  • the load capacity includes, but is not limited to, one or more of central processing unit capacity, air interface spectrum resources, air interface bandwidth resources, and memory size.
  • the first condition may be: an interval between a first time when the downlink data stream of the first application arrives at the base station and a second time when the downlink data stream of the second application arrives at the base station is smaller than a first threshold.
  • the base station determines the second time according to the load capacity of the base station.
  • the first threshold is a preset value, which may be a relatively small value.
  • the base station determines the second time according to the load capacity of the base station.
  • the fourth time when the downlink data flow of the second application arrives at the base station, and the fourth time is the adjusted time when the downlink data flow of the second application arrives at the base station; wherein, the interval between the fourth time and the first time is greater than or equal to the first threshold .
  • the base station when multiple downlink data streams arrive at the base station at the same or similar time, but the base station does not have enough resources to schedule multiple downlink data streams at the same time, the base station can re-determine the arrival time of the application's downlink data streams at the base station according to the load capacity, The downlink data streams of different applications do not arrive at the base station within a centralized time range, thereby reducing the load pressure on the base station and preventing the base station from being unable to send business data streams normally. Therefore, the 5G system can efficiently transmit downlink data streams of multiple applications.
  • step 602a the following steps 603a to 604a may also be performed.
  • Step 603a the base station sends to the first network element a third time when the downlink data flow of the first application arrives at the base station.
  • the first network element receives the third time when the downlink data flow of the first application arrives at the base station.
  • the first network element here may be SMF or PCF.
  • Step 604a the first network element determines the sending time window of the outbound port of the downlink data flow of the first application on the communication system according to the third time when the downlink data flow of the first application arrives at the base station.
  • the communication system may be the 5G system described in Fig. 3 or Fig. 4, or it may be a communication system with a TSN interactive machine function in future communication, such as a 6G system.
  • the communication system is a 5G system as an example for description below.
  • the first network element determines, according to the third time when the downlink data stream of the first application arrives at the base station, and the transmission delay between the base station and the UE, the sending time window of the outbound port of the downlink data stream of the first application on the 5G system, That is, determine the sending time window of the downlink data stream of the first application on the UE, the outbound port of the UE, or the DS-TT.
  • the first network element may also send the sending time window of the outgoing port of the downlink data stream of the first application on the 5G system to the outgoing port, so that the outgoing port sends data according to the sending time window.
  • the base station can re-determine the time when the downlink data stream of the first application arrives at the base station, and then send the adjusted time to the first network element, so that the first network element can recalculate the time of the first application according to the adjusted time
  • the sending time window of the outbound port of the downlink data stream on the 5G system In this way, the downlink data streams of different applications do not arrive at the base station within a centralized time range, thereby reducing the load pressure on the base station and preventing the base station from being unable to send service data streams normally. Therefore, it can be realized that the communication system efficiently transmits downlink data streams of multiple applications.
  • the above-mentioned first network element is an SMF
  • the SMF calculates the sending time window of the outbound port of the downlink data flow of the first application on the 5G system in the above step 602a, it can send the sending time window to the PCF or NEF, so that the PCF or NEF can send the sending time window according to the sending time window and and the internal processing delay of the 5G system to determine the time when the downlink data flow of the first application arrives at the ingress port on the 5G system.
  • the SMF calculates the sending time window of the outbound port of the downlink data flow of the first application on the 5G system in the above step 602a, it can further determine the second time window based on the sending time window and the internal processing delay of the 5G system. The time when the downlink data flow of an application arrives at the ingress port on the 5G system, and then the SMF sends the time when the downlink data flow of the first application arrives at the ingress port on the 5G system to the PCF or NEF.
  • the SMF directly determines the time when the downlink data flow of the first application arrives at the ingress port on the 5G system according to the third time when the downlink data flow of the first application arrives at the base station. Then the SMF sends the time when the downlink data flow of the first application arrives at the ingress port on the 5G system to the PCF or the NEF.
  • the PCF or NEF may reconfigure the time when the downlink data stream of the first application arrives at the ingress port on the 5G system to the 5G system.
  • the PCF or the NEF sends the TSC parameter to the SMF, and the TSC parameter includes the time when the downlink data stream of the first application arrives at the ingress port on the 5G system.
  • the time after the downlink data flow of the first application arrives at the ingress port on the 5G system is the adjusted time.
  • the above-mentioned first network element is NEF or PCF
  • the NEF or PCF calculates in the above step 602a the sending time window of the outbound port of the downlink data flow of the first application on the 5G system, it can determine the first application according to the sending time window and the internal processing delay of the 5G system The time when the downlink data flow arrives at the ingress port on the 5G system.
  • the NEF or the PCF directly determines the time when the downlink data flow of the first application arrives at the ingress port on the 5G system according to the third time when the downlink data flow of the first application arrives at the base station.
  • the NEF or PCF can send the time when the downlink data flow of the first application arrives at the ingress port on the 5G system to the AF, so that the AF can resend the TSC parameter to the PCF or NEF, and the TSC parameter includes the downlink data of the first application The time the flow arrives at the ingress port on the 5G system. That is, the TSC parameter includes the adjusted time when the downlink data flow of the first application arrives at the ingress port on the 5G system.
  • Fig. 6(b) is a wireless communication method provided by the embodiment of the present application, which can be used to solve the second problem above.
  • This method is for upstream data flow.
  • this method can also be used to solve the first problem above.
  • the base station adjusts the arrival time of the uplink data streams of different applications to the base station according to the load capacity, so that the uplink data streams of different applications do not arrive within a centralized time range
  • the base station can also avoid overlapping sending time windows of uplink data streams of different applications on the UPF to a certain extent, thereby avoiding scheduling conflicts of uplink data streams of multiple applications on the UPF.
  • the method includes the following steps:
  • Step 601b the base station obtains the first time when the UE sends the uplink data flow of the first application to the base station, and the second time when the UE sends the uplink data flow of the second application to the base station.
  • the SMF may send the TSCAI parameter to the base station, where the TSCAI parameter carries the first time when the UE sends the uplink data flow of the first application to the base station.
  • the base station can obtain the second time when the UE sends the uplink data flow of the second application to the base station.
  • the first time when the UE sends the uplink data stream of the first application to the base station may also be described as: the time when the uplink data stream of the first application arrives at the egress port of the UE, or as: the uplink data stream of the first application arrives at the outbound port of the UE The time sent by the UE's egress port.
  • the second time when the UE sends the uplink data flow of the second application to the base station can also be described as: the time when the uplink data flow of the second application arrives at the egress port of the UE, or as: the uplink data flow of the second application The time sent from the egress port of the UE.
  • Step 602b when the first time and the second time meet the first condition, the base station determines the third time when the UE sends the uplink data flow of the first application to the base station according to the load capacity of the base station, and the third time is the uplink data stream of the first application The adjusted time for the data stream to arrive at the base station.
  • the load capacity includes, but is not limited to, one or more of central processing unit capacity, air interface spectrum resources, air interface bandwidth resources, and memory size.
  • the first condition may be: the interval between the first time when the UE sends the uplink data flow of the first application to the base station and the second time when the UE sends the uplink data flow of the second application to the base station is smaller than the first threshold .
  • the base station when the interval between the first time when the UE sends the uplink data flow of the first application to the base station and the second time when the UE sends the uplink data flow of the second application to the base station is smaller than the first threshold, the base station will The capability is to determine a third time at which the UE sends the uplink data stream of the first application to the base station; where the interval between the third time and the second time is greater than or equal to the first threshold.
  • the first threshold is a preset value, which may be a relatively small value.
  • the base station determines the The capability is to determine a fourth time at which the UE sends the uplink data stream of the second application to the base station; where the interval between the fourth time and the first time is greater than or equal to the first threshold.
  • the uplink data streams of the multiple applications arrive at the base station at the same or similar time.
  • the base station does not have enough resources to simultaneously schedule multiple If there are two uplink data streams, the base station can re-determine the time for the UE to send the uplink data stream of the application to the base station according to the load capacity, so that the uplink data streams of multiple applications do not arrive at the base station at the same or similar time, thereby reducing the load pressure on the base station. , to prevent the base station from being unable to send service data streams normally. Therefore, the 5G system can efficiently transmit uplink data streams of multiple applications.
  • step 602b the following steps 603b to 604b may also be performed.
  • Step 603b the base station sends to the first network element the third time when the UE sends the uplink data flow of the first application to the base station.
  • the first network element receives the third time.
  • the first network element here may be SMF or PCF.
  • Step 604b the first network element determines the sending time window of the outbound port of the uplink data flow of the first application on the communication system according to the third time when the UE sends the uplink data flow of the first application to the base station.
  • the communication system may be the 5G system described in Fig. 3 or Fig. 4, or it may be a communication system with a TSN interactive machine function in future communication, such as a 6G system.
  • the communication system is a 5G system as an example for description below.
  • the first network element determines the output of the uplink data stream of the first application on the 5G system according to the third time when the UE sends the uplink data stream of the first application to the base station, the internal processing delay of the UE, and the internal processing delay of the 5G system.
  • the sending time window of the port is to determine the sending time window of the uplink data flow of the first application on the UPF, the outgoing port of the UPF, or the NW-TT.
  • the first network element may also send the sending time window of the outgoing port of the uplink data flow of the first application on the 5G system to the outgoing port, so that the outgoing port sends data according to the sending time window.
  • the base station can re-determine the time when the UE sends the uplink data flow of the first application to the base station, and then send the adjusted time to the first network element, so that the first network element can recalculate the first application based on the adjusted time.
  • the sending time window of the outbound port of the uplink data flow of the application on the 5G system In this way, the uplink data streams of different applications do not arrive at the base station within a centralized time range, thereby reducing the load pressure on the base station and preventing the base station from being unable to send service data streams normally. Therefore, the communication system can efficiently transmit the uplink data streams of multiple applications.
  • the above-mentioned first network element is an SMF
  • the SMF calculates the sending time window of the outbound port of the uplink data flow of the first application on the 5G system in the above step 602b, it can send the sending time window to the PCF or NEF, so that the PCF or NEF can send the sending time window according to the sending time window and and the internal processing delay of the 5G system to determine the time when the uplink data flow of the first application arrives at the ingress port on the 5G system.
  • the SMF calculates the sending time window of the outbound port of the uplink data flow of the first application on the 5G system in the above step 602b, it can further determine the second time window based on the sending time window and the internal processing delay of the 5G system. The time when the uplink data flow of an application arrives at the ingress port on the 5G system, and then the SMF sends the time when the uplink data flow of the first application arrives at the ingress port on the 5G system to the PCF or NEF.
  • the SMF directly determines the time when the uplink data flow of the first application arrives at the ingress port on the 5G system according to the third time when the UE sends the uplink data flow of the first application to the base station. Then the SMF sends to the PCF or the NEF the time when the uplink data flow of the first application arrives at the ingress port on the 5G system.
  • the PCF or NEF may reconfigure the time when the uplink data flow of the first application arrives at the ingress port on the 5G system to the 5G system.
  • the PCF or the NEF sends the TSC parameter to the SMF, and the TSC parameter includes the time when the uplink data flow of the first application arrives at the ingress port on the 5G system.
  • the time when the uplink data flow of the first application arrives at the ingress port on the 5G system is the adjusted time.
  • the above-mentioned first network element is NEF or PCF
  • the NEF or PCF calculates the sending time window of the uplink data flow of the first application on the egress port on the 5G system in the above step 602b, it can determine the first application according to the sending time window and the internal processing delay of the 5G system The time when the uplink data flow arrives at the ingress port on the 5G system.
  • the NEF or the PCF directly determines the time when the uplink data flow of the first application arrives at the ingress port on the 5G system according to the third time when the UE sends the uplink data flow of the first application to the base station.
  • the NEF or PCF can send the time when the uplink data flow of the first application arrives at the ingress port on the 5G system to the AF, so that the AF can resend the TSC parameter to the PCF or NEF, and the TSC parameter contains the uplink data of the first application
  • the TSC parameter includes the adjusted time when the uplink data flow of the first application arrives at the ingress port on the 5G system.
  • FIG. 5 and the embodiment of FIG. 6(a) or FIG. 6(b) can be implemented separately, or the embodiment of FIG. 5 and the embodiment of FIG. , or the embodiment of FIG. 5 may also be implemented in combination with the embodiment of FIG. 6(b), which is not limited in this application.
  • the first network element and the base station include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or by computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application. These communication devices can be used to implement the functions of the session management network element, the policy control network element, the network open network element or the radio access network device in the above method embodiments, and thus can also realize the beneficial effects of the above method embodiments.
  • the communication device may be a session management network element or a module (such as a chip) for a session management network element, or a policy control network element or a module (such as a chip) for a policy control network element , or an open network element or a module (such as a chip) for an open network element, or a radio access network device or a module (such as a chip) for a radio access network device.
  • a communication device 700 includes a processing unit 710 and a transceiver unit 720 .
  • the communication device 700 is configured to implement the steps in the method embodiment shown in FIG. 5 , FIG. 6( a ) or FIG. 6( b ).
  • the processing unit 710 is configured to determine the first sending time of the data flow of the first application on the egress port of the communication system
  • the data flow of the window and the second application is in the second sending time window of the egress port, and the egress port corresponds to a terminal or a user plane network element; when the first sending time window overlaps with the second sending time window , determining a third sending time window of the data stream of the first application on the egress port, the third sending time window being the adjusted sending time window of the data stream of the first application on the egress port ; Wherein, the third sending time window does not overlap with the second sending time window.
  • the transceiving unit 720 is further configured to send the third sending time window to the application function network element.
  • the processing unit 710 is further configured to determine that the data stream of the first application arrives at the communication system according to the third sending time window and the internal processing delay of the communication system The time of the ingress port of the communication system; the transceiver unit 720 is further configured to send the time when the data flow of the first application arrives at the ingress port of the communication system to the application function network element; wherein, the egress port corresponds to a terminal, and the The ingress port corresponds to a user plane network element; or the egress port corresponds to a user plane network element, and the ingress port corresponds to a terminal.
  • the transceiver unit 720 is further configured to receive a first parameter from the application function network element, where the first parameter carries the data flow of the first application to the communication system time to enter the port.
  • the transceiver unit 720 is further configured to send the third sending time window to the egress port.
  • the transceiver unit 720 is used to acquire the first application The first time when the downlink data stream of the second application arrives at the radio access network device, and the second time when the downlink data stream of the second application arrives at the radio access network device; the processing unit 710 is configured to, when the first time and the second application If the first condition is met at the second time, then according to the load capacity of the wireless access network device, determine the third time when the downlink data flow of the first application arrives at the wireless access network device, and the third time is the first application's The adjusted time at which the downlink data stream arrives at the radio access network device.
  • the processing unit 710 is specifically configured to, when the interval between the first time and the second time is less than a first threshold, determine the second time according to the load capacity of the wireless access network device. A third time when the downlink data flow of an application arrives at the wireless access network device; wherein, the interval between the third time and the second time is greater than or equal to the first threshold.
  • the transceiving unit 720 is further configured to send the third time to the session management network element.
  • the load capacity includes one or more of central processing unit capacity, air interface spectrum resources, air interface bandwidth resources, and memory size.
  • the transceiver unit 720 receives the A third time when the downlink data stream arrives at the radio access network device; the processing unit 710 is configured to determine, according to the third time, the sending time window of the outbound port of the downlink data stream of the first application on the communication system, the communication The ingress port of the system corresponds to the user plane network element, and the egress port corresponds to the terminal.
  • the first network element is a session management network element; the transceiver unit 720 is further configured to send the sending time window to a policy control network element or a network opening network element.
  • the first network element is a session management network element, a network opening network element or a policy control network element; the processing unit 710 is configured to , determine the time when the downlink data flow of the first application arrives at the ingress port on the communication system; the transceiver unit 720 is further configured to send the downlink data flow of the first application to the application function network element and arrive at the ingress port on the communication system time.
  • the first network element is an open network element or a policy control network element; the transceiver unit 720 is also configured to send the downlink data flow of the first application to the session management network element to reach the communication system The time of the ingress port on the
  • the transceiver unit 720 is further configured to send the sending time window to the egress port.
  • the transceiver unit 720 is used to obtain the The first time when the radio access network device sends the uplink data stream of the first application, and the second time when the terminal sends the uplink data stream of the second application to the radio access network device;
  • the processing unit 710 is configured to, when the first application When the first time and the second time meet the first condition, then according to the load capacity of the radio access network device, determine a third time for the terminal to send the uplink data flow of the first application to the radio access network device, the first The third time is the adjusted time when the uplink data stream of the first application arrives at the radio access network device.
  • the processing unit 710 is configured to, when the interval between the first time and the second time is less than a first threshold, determine that the terminal is to A third time at which the radio access network device sends the uplink data flow of the first application; wherein, the interval between the third time and the second time is greater than or equal to the first threshold.
  • the transceiving unit 720 is configured to send the third time to the session management network element.
  • the load capacity includes one or more of central processing unit capacity, air interface spectrum resources, air interface bandwidth resources, and memory size.
  • the processing unit 710 is configured to determine the sending time of the uplink data flow of the first application on the egress port of the communication system according to the third time window, the ingress port of the communication system corresponds to the terminal, and the egress port corresponds to the user plane network element.
  • the first network element is a session management network element; the transceiver unit 720 is configured to send the sending time window to a policy control network element or a network opening network element.
  • the first network element is a session management network element, a network opening network element or a policy control network element; the processing unit 710 is configured to , determine the time when the uplink data flow of the first application arrives at the ingress port on the communication system; the transceiver unit 720 is configured to send the time when the uplink data flow of the first application arrives at the ingress port on the communication system to the application function network element time.
  • the first network element is an open network element or a policy control network element; the transceiver unit 720 is configured to send the uplink data flow of the first application to the session management network element to reach the communication system The ingress time of the port.
  • the transceiver unit 720 is configured to send the sending time window to the egress port.
  • the transceiver unit 720 is used to receive the first A third time when the downlink data stream of the application arrives at the wireless access network device; the processing unit 710 is configured to determine the time when the downlink data stream of the first application arrives at an ingress port on the communication system according to the third time, the ingress The port corresponds to the user plane network element, and the outgoing port corresponds to the terminal.
  • the first network element is a session management network element; the transceiver unit 720 sends the downlink data flow of the first application to an ingress port on the communication system to a policy control network element or a network opening network element time.
  • the first network element is an open network element or a policy control network element; the transceiver unit 720 sends the downlink data flow of the first application to the application function network element and/or the session management network element The time of arrival at an ingress port on a communication system.
  • the processing unit 710 is configured to determine the time when the uplink data flow of the first application arrives at an ingress port on the communication system according to the third time,
  • the inbound port corresponds to a terminal, and the outbound port corresponds to a user plane network element.
  • the first network element is a session management network element; the transceiver unit 720 sends the upstream data flow of the first application to an ingress port on the communication system to a policy control network element or a network opening network element time.
  • the first network element is an open network element or a policy control network element; the transceiver unit 720 is configured to send the uplink data flow of the first application to an application function network element and/or a session management network element The time of arrival at an ingress port on a communication system.
  • processing unit 710 and the transceiver unit 720 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 5 , FIG. 6( a ) or FIG. 6( b ), and will not be repeated here.
  • the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute the instructions or storing data generated after the processor 810 executes the instructions.
  • the processor 810 is used to implement the functions of the above-mentioned processing unit 710, and the interface circuit 820 is used to implement the above-mentioned transceiver Function of unit 720 .
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, registers, hard disk, removable hard disk, compact disc read-only memory (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a base station, user equipment or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线通信方法、通信装置及通信系统。该方法包括:当多个应用的下行数据流到达无线接入网设备的时间相同或相近,而无线接入网设备没有足够的资源同时调度多个下行数据流,则无线接入网设备可以根据负载能力,重新确定应用的下行数据流到达无线接入网设备的时间,使得不同应用的下行数据流不在一个集中的时间范围内到达无线接入网设备,从而减轻无线接入网设备的负载压力,避免无线接入网设备无法正常发送业务数据流。因而可以实现该通信系统对多个应用的下行数据流进行高效地传输。

Description

一种无线通信方法、通信装置及通信系统
相关申请的交叉引用
本申请要求在2021年05月18日提交中国专利局、申请号为202110540884.X、申请名称为“一种无线通信方法、通信装置及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种无线通信方法、通信装置及通信系统。
背景技术
在通信系统比如第五代(the 5th generation,5G)系统,与时延敏感网络(time sensitive network,TSN)互通的网络架构中,将通信系统和TSN转换器(TSN Translator)整体作为一个逻辑上的TSN交换节点。
该通信系统可以同时传输多个应用的数据流,该场景下,如何对多个应用的数据流进行高效地传输,是目前需要解决的。
发明内容
本申请实施例提供一种无线通信方法、通信装置及通信系统,用于实现通信系统对多个应用的数据流进行高效地传输。
第一方面,本申请实施例提供一种无线通信方法,该方法可以由无线接入网设备或应用于无线接入网设备中的模块来执行。该方法包括:获取第一应用的下行数据流到达该无线接入网设备的第一时间,以及第二应用的下行数据流到达该无线接入网设备的第二时间;当该第一时间与该第二时间满足第一条件,则根据该无线接入网设备的负载能力,确定该第一应用的下行数据流到达该无线接入网设备的第三时间,该第三时间为该第一应用的下行数据流到达该无线接入网设备的调整后的时间。
根据上述方案,当多个应用的下行数据流到达无线接入网设备的时间相同或相近,而无线接入网设备没有足够的资源同时调度多个下行数据流,则无线接入网设备可以根据负载能力,重新确定应用的下行数据流到达无线接入网设备的时间,使得不同应用的下行数据流不在一个集中的时间范围内到达无线接入网设备,从而减轻无线接入网设备的负载压力,避免无线接入网设备无法正常发送业务数据流。因而可以实现该通信系统对多个应用的下行数据流进行高效地传输。
在一种可能的实现方法中,当该第一时间与该第二时间之间的间隔小于第一阈值,则根据该无线接入网设备的负载能力,确定该第一应用的下行数据流到达该无线接入网设备的第三时间;其中,该第三时间与该第二时间的间隔大于或等于该第一阈值。
在一种可能的实现方法中,向会话管理网元发送该第三时间。
在一种可能的实现方法中,该负载能力包括中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
第二方面,本申请实施例提供一种无线通信方法,该方法可以由第一网元或应用于第一网元中的模块来执行。该方法包括:从无线接入网设备接收第一应用的下行数据流到达该无线接入网设备的第三时间;根据该第三时间,确定该第一应用的下行数据流在通信系统上的出端口的发送时间窗,该通信系统的入端口对应终端,该出端口对应终端。
根据上述方案,当不同的应用的下行数据流在通信系统的出端口的发送时间窗出现重叠,可以调整其中的一个或多个应用的下行数据流在出端口的发送时间窗,使得不同应用的下行数据流在出端口的发送时间窗不存在重叠,从而避免不同应用的下行数据流在出端口上产生调度冲突。因而可以实现该通信系统对多个应用的下行数据流进行高效地传输。
在一种可能的实现方法中,该第一网元是会话管理网元;向策略控制网元或网络开放网元发送该发送时间窗。
在一种可能的实现方法中,该第一网元是会话管理网元、网络开放网元或策略控制网元;根据该发送时间窗和该通信系统的内部处理时延,确定该第一应用的下行数据流到达该通信系统上的入端口的时间;向应用功能网元发送该第一应用的下行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;向会话管理网元发送该第一应用的下行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,向该出端口发送该发送时间窗。
第三方面,本申请实施例提供一种无线通信方法,该方法可以由无线接入网设备或应用于无线接入网设备中的模块来执行。该方法包括:获取终端向该无线接入网设备发送第一应用的上行数据流的第一时间,以及该终端向该无线接入网设备发送第二应用的上行数据流的第二时间;当该第一时间与该第二时间满足第一条件,则根据该无线接入网设备的负载能力,确定该终端向该无线接入网设备发送该第一应用的上行数据流的第三时间,该第三时间为该第一应用的上行数据流到达该无线接入网设备的调整后的时间。
根据上述方案,当终端向无线接入网设备发送的多个应用的数据流的时间相同或相近,将导致该多个应用的上行数据流到达无线接入网设备的时间相同或相近,而无线接入网设备没有足够的资源同时调度多个上行数据流,则无线接入网设备可以根据负载能力,重新确定终端向无线接入网设备发送的应用的上行数据流的时间,使得不同应用的上行数据流不在一个集中的时间范围内到达无线接入网设备,从而减轻无线接入网设备的负载压力,避免无线接入网设备无法正常发送业务数据流。因而可以实现该通信系统对多个应用的上行数据流进行高效地传输。
在一种可能的实现方法中,当该第一时间与该第二时间之间的间隔小于第一阈值,则根据该无线接入网设备的负载能力,确定该终端向该无线接入网设备发送该第一应用的上行数据流的第三时间;其中,该第三时间与该第二时间的间隔大于或等于该第一阈值。
在一种可能的实现方法中,向会话管理网元发送该第三时间。
在一种可能的实现方法中,该负载能力包括中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
第四方面,本申请实施例提供一种无线通信方法,该方法可以由第一网元或应用于第一网元中的模块来执行。该方法包括:从无线接入网设备接收终端向该无线接入网设备发送第一应用的上行数据流的第三时间;根据该第三时间,确定该第一应用的上行数据流在通信系统上的出端口的发送时间窗,该通信系统的入端口对应终端,该出端口对应用户面 网元。
根据上述方案,当不同的应用的上行数据流在通信系统的出端口的发送时间窗出现重叠,可以调整其中的一个或多个应用的上行数据流在出端口的发送时间窗,使得不同应用的上行数据流在出端口的发送时间窗不存在重叠,从而避免不同应用的上行数据流在出端口上产生调度冲突。因而可以实现该通信系统对多个应用的上行数据流进行高效地传输。
在一种可能的实现方法中,该第一网元是会话管理网元;向策略控制网元或网络开放网元发送该发送时间窗。
在一种可能的实现方法中,该第一网元是会话管理网元、网络开放网元或策略控制网元;根据该发送时间窗和该通信系统的内部处理时延,确定该第一应用的上行数据流到达该通信系统上的入端口的时间;向应用功能网元发送该第一应用的上行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是会话管理网元;会话管理网元在确定该第一应用的上行数据流到达该通信系统上的入端口的时间之后,向终端发送下行非接入层消息,该下行非接入层消息中包含该第一应用的上行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;网络开放网元或策略控制网元在确定该第一应用的上行数据流到达该通信系统上的入端口的时间之后,向会话管理网元发送该第一应用的上行数据流到达该通信系统上的入端口的时间。可选的,会话管理网元在收到该第一应用的上行数据流到达该通信系统上的入端口的时间之后,向终端发送下行非接入层消息,该下行非接入层消息中包含该第一应用的上行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;向该出端口发送该发送时间窗。
第五方面,本申请实施例提供一种无线通信方法,该方法可以由第一网元或应用于第一网元中的模块来执行。该方法包括:从无线接入网设备接收第一应用的下行数据流到达该无线接入网设备的第三时间;根据该第三时间,确定该第一应用的下行数据流到达通信系统上的入端口的时间,该入端口对应用户面网元,该通信系统的出端口对应终端。
在一种可能的实现方法中,该第一网元是会话管理网元;向策略控制网元或网络开放网元发送该第一应用的下行数据流到达通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;向应用功能网元和/或会话管理网元发送该第一应用的下行数据流到达通信系统上的入端口的时间。
第六方面,本申请实施例提供一种无线通信方法,该方法可以由第一网元或应用于第一网元中的模块来执行。该方法包括:从无线接入网设备接收终端向该无线接入网设备发送第一应用的上行数据流的第三时间;根据该第三时间,确定该第一应用的上行数据流到达通信系统上的入端口的时间,该入端口对应终端,该通信系统的出端口对应用户面网元。
在一种可能的实现方法中,该第一网元是会话管理网元、网络开放网元或策略控制网元;向应用功能网元发送该第一应用的上行数据流到达通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是会话管理网元;会话管理网元在确定该第一应用的上行数据流到达通信系统上的入端口的时间之后,向终端发送下行非接入层消息,该下行非接入层消息中包含该第一应用的上行数据流到达通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;网络开放网 元或策略控制网元在确定该第一应用的上行数据流到达通信系统上的入端口的时间之后,向会话管理网元发送该第一应用的上行数据流到达通信系统上的入端口的时间。可选的,会话管理网元在收到该第一应用的上行数据流到达该通信系统上的入端口的时间之后,向终端发送下行非接入层消息,该下行非接入层消息中包含该第一应用的上行数据流到达该通信系统上的入端口的时间。
第七方面,本申请实施例提供一种无线通信方法,该方法可以由策略控制网元、网络开放网元、应用于策略控制网元中的模块或应用于网络开放网元中的模块来执行。该方法包括:确定第一应用的数据流在通信系统上的出端口的第一发送时间窗和第二应用的数据流在该出端口的第二发送时间窗,该出端口对应终端或用户面网元;当该第一发送时间窗与该第二发送时间窗存在重叠,确定该第一应用的数据流在该出端口的第三发送时间窗,该第三发送时间窗为该第一应用的数据流在该出端口的调整后的发送时间窗;其中,该第三发送时间窗与该第二发送时间窗不存在重叠。
根据上述方案,当不同的应用在通信系统的出端口的发送时间窗出现重叠,可以重新确定其中的一个或多个应用的发送时间窗,使得不同应用在发送时间窗不存在重叠,从而避免不同应用的数据流在终端或用户面网元上产生调度冲突。因而可以实现该通信系统对多个应用的数据流进行高效地传输。
在一种可能的实现方法中,向应用功能网元发送该第三发送时间窗。
在一种可能的实现方法中,根据该第三发送时间窗和该通信系统的内部处理时延,确定该第一应用的数据流到达该通信系统上的入端口的时间;向应用功能网元发送该第一应用的数据流到达该通信系统上的入端口的时间;其中,该出端口对应终端,该入端口对应用户面网元;或者该出端口对应用户面网元,该入端口对应终端。
在一种可能的实现方法中,接收来自该应用功能网元的第一参数,该第一参数携带该第一应用的数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,向该出端口发送该第三发送时间窗。
第八方面,本申请实施例提供一种通信装置,该装置可以是无线接入网设备,还可以是用于无线接入网设备的芯片。该装置具有实现上述第一方面或第三方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,本申请实施例提供一种通信装置,该装置可以是第一网元,还可以是用于第一网元的芯片。该装置具有实现上述第二方面、第四方面、第五方面或第六方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十方面,本申请实施例提供一种通信装置,该装置可以是策略控制网元或网络开放网元,还可以是用于策略控制网元或网络开放网元的芯片。该装置具有实现上述第七方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十一方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机指令,当该装置运行时,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面至第七方面中的任意实现方法。
第十二方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面至第七方 面中的任意实现方法的各个步骤的单元或手段(means)。
第十三方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面至第七方面中的任意实现方法。该处理器包括一个或多个。
第十四方面,本申请实施例提供一种通信装置,包括与存储器耦合的处理器,该处理器用于调用所述存储器中存储的程序,以执行上述第一方面至第七方面中的任意实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第十五方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述第一方面至第七方面中的任意实现方法被执行。
第十六方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被通信装置运行时,使得上述第一方面至第七方面中的任意实现方法被执行。
第十七方面,本申请实施例还提供一种芯片系统,包括:处理器,用于执行上述第一方面至第七方面中的任意实现方法。
第十八方面,本申请实施例还提供了一种通信系统,该通信系统包括用于执行上述第一方面的任意实现方法的无线接入网设备和用于执行上述第二方面的任意实现方法的第一网元。
第十九方面,本申请实施例还提供了一种通信系统,该通信系统包括用于执行上述第三方面的任意实现方法的无线接入网设备和用于执行上述第四方面的任意实现方法的第一网元。
第二十方面,本申请实施例还提供了一种通信系统,该通信系统包括用于执行上述第一方面的任意实现方法的无线接入网设备和用于执行上述第五方面的任意实现方法的第一网元。
第二十一方面,本申请实施例还提供了一种通信系统,该通信系统包括用于执行上述第三方面的任意实现方法的无线接入网设备和用于执行上述第六方面的任意实现方法的第一网元。
附图说明
图1(a)为基于服务化架构的5G网络架构示意图;
图1(b)为基于点对点接口的5G网络架构示意图;
图2为全集中式TSN系统架构示意图;
图3为5G系统与TSN互通系统架构示意图;
图4为5G系统与TSN互通系统架构的简化示意图;
图5为本申请实施例提供的一种无线通信方法示意图;
图6(a)为本申请实施例提供的一种无线通信方法示意图;
图6(b)为本申请实施例提供的一种无线通信方法示意图;
图7为本申请实施例提供的一种通信装置示意图;
图8为本申请实施例提供的一种通信装置示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
图1(a)为基于服务化架构的5G网络架构示意图。图1(a)所示的5G网络架构中可包括三部分,分别是终端、数据网络(data network,DN)和运营商网络。下面对其中的部分网元的功能进行简单介绍说明。
其中,运营商网络可包括以下网元中的一个或多个:鉴权服务器功能(Authentication Server Function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、统一数据库(Unified Data Repository,UDR)、网络存储功能(Network Repository Function,NRF)网元、应用功能(application function,AF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、无线接入网(radio access network,RAN)设备以及用户面功能(user plane function,UPF)网元、网络切片选择功能(Network Slice Selection Function,NSSF)网元(图中未示出)等。上述运营商网络中,除无线接入网设备之外的网元或设备可以称为核心网网元或核心网设备。需要说明的是,在实际应用中,AF分为两类,一类属于核心网网元,另一类属于第三方应用服务器。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、6G移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请的实施例中,以基站作为无线接入网设备的一个举例进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
AMF网元,执行移动性管理、接入鉴权/授权等功能。此外,还负责在终端与PCF间传递用户策略。
SMF网元,执行会话管理、PCF下发控制策略的执行、UPF的选择、终端的互联网协议(internet protocol,IP)地址分配等功能。
UPF网元,作为和数据网络的接口UPF,完成用户面数据转发、基于会话/流级的计费 统计,带宽限制等功能。
UDM网元,执行管理签约数据、用户接入授权等功能。
UDR,执行签约数据、策略数据、应用数据等类型数据的存取功能。
NEF网元,用于支持能力和事件的开放。
AF网元,传递应用侧对网络侧的需求,例如,服务质量(Quality of Service,QoS)需求或用户状态事件订阅等。AF可以是第三方功能实体,也可以是运营商部署的应用服务,如IP多媒体子系统(IP Multimedia Subsystem,IMS)语音呼叫业务。
PCF网元,负责针对会话、业务流级别进行计费、QoS带宽保障及移动性管理、终端策略决策等策略控制功能。
NRF网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。
AUSF网元,负责对用户进行鉴权,以确定是否允许用户或设备接入网络。
NSSF网元,用于选择网络切片,对网络切片内的用户进行计数等。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1(a)中Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf分别为上述AUSF、NEF、PCF、UDM、AF、AMF和SMF提供的服务化接口,用于调用相应的服务化操作。N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见第三代合作伙伴计划(3rd generation partnership project,3GPP)标准协议中定义的含义,在此不做限制。
图1(b)为基于点对点接口的5G网络架构示意图,其中的网元的功能的介绍可以参考图1(a)中对应的网元的功能的介绍,不再赘述。图1(b)与图1(a)的主要区别在于:图1(a)中的各个控制面网元之间的接口是服务化的接口,图1(b)中的各个控制面网元之间的接口是点对点的接口。
在图1(b)所示的架构中,各个网元之间的接口名称及功能如下:
1)、N1:AMF与终端之间的接口,可以用于向终端传递QoS控制规则等。
2)、N2:AMF与RAN之间的接口,可以用于传递核心网侧至RAN的无线承载控制信息等。
3)、N3:RAN与UPF之间的接口,主要用于传递RAN与UPF间的上下行用户面数据。
4)、N4:SMF与UPF之间的接口,可以用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)、N5:AF与PCF之间的接口,可以用于应用业务请求下发以及网络事件上报。
6)、N6:UPF与DN的接口,用于传递UPF与DN之间的上下行用户数据流。
7)、N7:PCF与SMF之间的接口,可以用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
8)、N8:AMF与UDM间的接口,可以用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册终端当前移动性管理相关信息等。
9)、N9:UPF和UPF之间的用户面接口,用于传递UPF间的上下行用户数据流。
10)、N10:SMF与UDM间的接口,可以用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM注册终端当前会话相关信息等。
11)、N11:SMF与AMF之间的接口,可以用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给终端的控制消息、传递发送给RAN的无线资源控制信息等。
12)、N12:AMF和AUSF间的接口,可以用于AMF向AUSF发起鉴权流程,其中可携带SUCI作为签约标识;
13)、N13:UDM与AUSF间的接口,可以用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
14)、N15:PCF与AMF之间的接口,可以用于下发终端策略及接入控制相关策略。
15)、N35:UDM与UDR间的接口,可以用于UDM从UDR中获取用户签约数据信息。
16)、N36:PCF与UDR间的接口,可以用于PCF从UDR中获取策略相关签约数据以及应用数据相关信息。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
传统的以太网络的转发过程中,当大量的数据包在一瞬间抵达转发端口,会造成转发时延大或者丢包的问题,因此传统以太网不能提供高可靠性以及传输时延有保障的服务,无法满足汽车控制、工业互联网等领域的需求。电气电子工程师学会(institute of electrical and electronic,IEEE)针对可靠时延传输的需求,定义了相关的TSN标准,该标准基于二层交换来提供可靠时延传输服务,保障时延敏感业务数据传输的可靠性,以及可预测的端到端传输时延。
IEEE 802.1QCC中为TSN定义全集中式TSN系统架构。如图2所示,为全集中式TSN系统架构示意图,包括TSN终端(TSN End Station)、TSN交换机(TSN Bridge)、集中式用户配置(Centralized User Configuration,CUC)网元和集中式网络配置(Centralized Network Configuration,CNC)网元。以下将CUC网元和CNC网元分别简称为CUC和CNC。CUC和CNC均属于控制面的网元。其中:
1)TSN终端,可以作为数据流的发送端或接收端;
2)TSN交换机按照TSN的定义为数据流预留资源,并对数据流进行调度和转发;
3)CNC管理TSN用户面的拓扑以及TSN交换机的能力信息(例如TSN交换机的发送时延、TSN交换机的端口间的内部处理时延)。其中,TSN交换机的发送时延,指的是TSN交换机的出端口发送的TSN流到达下一跳交换节点的入端口之间的时间。TSN交换机的端口间的内部处理时延,指的是TSN流从当前TSN交换机的入端口进入,到从该TSN 交换机的出端口发出之间的时间。
4)CNC根据CUC提供的流创建请求,创建TSN流转发规则以便生成数据流的转发路径,以及生成TSN终端和各TSN交换机上的调度策略。其中,调度策略包括收发TSN流(或由多个TSN流聚合而成的TSN业务类别(traffic class))的报文的端口(包括入端口和出端口)、在入端口的接收时间窗(可选)、在出端口的发送时间窗、发送周期等。然后,CNC将生成的调度策略下发到对应的TSN交换机。其中,各TSN交换机上的调度策略是CNC根据网络拓扑信息以及各TSN交换机上报的能力信息确定的。
CNC在创建TSN流转发规则后,可通过向TSN交换机下发静态表(Static filtering entries)的方式确定TSN交换机上的流转发路径。静态表的信息包含TSN流的目的媒体接入控制(medium access control,MAC)地址、该TSN流在TSN交换机上的接收端口的标识和发送端口的标识,可选的,静态表的信息还包含虚拟本地区域网络(Virtual Local Area Network,VLAN)标识(ID)。
需要说明的是,上述提到的CNC发送给TSN交换机的调度策略的表现形式,取决于TSN系统定义的调度算法。以IEEE802.1Qbv定义的调度算法为例,CNC向TSN交换机发送IEEE802.1Qbv定义的调度参数,包括TSN交换机端口的门控信息,该门控信息可以包括所述端口的门控操作周期开始执行的时间(即IEEE802.1Qbv中的AdminBaseTime),队列的门控状态(即IEEE802.1Qbv中的GateStateValue)和门控状态的持续时间(即IEEE802.1Qbv中的TimeIntervalValue)。TSN交换机根据调度参数确定TSN交换机的出端口的发送时间窗,发送周期,可选的,还可以确定入端口的接收时间窗。
5)CUC用于收集TSN终端的流创建请求,如接收TSN发送终端(Talker)和TSN接收终端(Listener)的注册,接收流的信息(如源地址、目的地址、VLAN标识等),交换配置参数等,在匹配TSN发送终端和TSN接收终端的流创建请求后,向CNC请求创建数据流,并对CNC生成的调度策略进行确认。
如图3所示,为5G系统与TSN互通系统架构示意图。即将图1(a)或图1(b)所示的5G架构与图2所示的TSN架构相结合,将5G系统和TSN转换器(TSN Translator)整体作为一个逻辑上的TSN交换机(称为5G系统或5G系统交换机),实现TSN中的TSN交换机的功能。TSN转换器指的是将5G网络的特征和信息转换和适配成TSN要求的信息,提供给TSN系统,或将TSN系统要求的信息转换成针对5G网络的特征或信息,提供给5G系统。其中,图3中仅示出了5G架构中的部分网元(即AMF、SMF、PCF、RAN、UE、AF、UPF)。
1)、在控制面,5G系统通过控制面的AF,与TSN系统中的节点交换信息,所交换的信息包括:5G系统的能力信息、TSN配置信息(包括入端口和出端口的时间调度信息)等。
其中,AF将5G系统的能力信息提供给TSN系统中的CNC,CNC根据5G系统的能力信息,以及其它TSN交换机的能力信息,为TSN业务确定5G系统的TSN配置信息。AF将CNC确定的针对5G系统的TSN配置信息提供给5G系统。
5G系统的能力信息,包括5G系统内部处理时延,5G系统的UE侧传输时延以及5G系统的UPF侧传输时延。其中,5G系统内部处理时延包括UE侧的驻留时间(即TSN报文在UE以及UE侧TSN转换器内部的处理停留时间),UPF侧驻留时间(即TSN报文在 UPF以及UPF侧TSN转换器内部的处理停留时间),以及UE和UPF之间的传输时延。UE和UPF之间的传输时延具体表现为TSN报文在UE和UPF之间的包时延预算值(packet delay budget,PDB)。
2)、在用户面,5G系统的UPF通过TSN转换器,接收TSN系统的下行TSN流,或向TSN系统发送上行TSN流,其中,TSN转换器可以是集成于UPF或与UPF独立部署。UPF侧的TSN转换器也可以称为网络侧TSN转换器(network side TSN Translator,NW-TT)。
3)、在用户面,5G系统的UE通过TSN转换器,接收TSN系统的上行TSN流,或向TSN系统发送下行TSN流,其中,TSN转换器可以是集成于UE或与UE独立部署。UE侧的TSN转换器也可以称为设备侧TSN转换器(device side TSN Translator,DS-TT)。
参考图4,为5G系统与TSN互通系统架构的简化示意图。其中,从5G系统的入端口接收数据流,经过5G系统内部处理后,从5G系统的出端口发送。其中,当DS-TT与UE独立部署,则该入端口是DS-TT或DS-TT上的端口;当DS-TT集成于UE,则该入端口是UE或UE上的DS-TT。当NW-TT与UPF独立部署,则该出端口是NW-TT或NW-TT上的端口;当NW-TT集成于UPF,则该出端口是UPF或UPF上的NW-TT。
作为一个示例,本申请中的用户面网元,可以是具有图3所示的UPF的功能的网元,该用户面网元中可以集成有TSN转换器,或者是该TSN转换器独立于用户面网元部署,为方便说明,本申请以TSN转换器集成于用户面网元为例进行说明。并且,本申请后续描述中将该用户面网元称为UPF。需要说明的是,在未来通信中,该用户面网元仍然可以称为UPF,或者还可以有其他的名称,本申请不限定。本申请后续出现的UPF可以替换为用户面网元。
作为一个示例,本申请中的会话管理网元,可以是具有图3、图1(a)或图1(b)所示的SMF的功能的网元。为方便说明,本申请后续描述中将该会话管理网元称为SMF。需要说明的是,在未来通信中,该会话管理网元仍然可以称为SMF,或者还可以有其他的名称,本申请不限定。本申请后续出现的SMF可以替换为会话管理网元。
作为一个示例,本申请中的策略控制网元,指的具有图3、图1(a)或图1(b)所示的PCF的功能的网元。为方便说明,本申请后续描述中将该策略控制网元称为PCF。需要说明的是,在未来通信中,该策略控制网元仍然可以称为PCF网元,或者还可以有其他的名称,本申请不限定。本申请后续出现的PCF可以替换为策略控制网元。
作为一个示例,本申请中的应用功能网元,可以是具有图3、图1(a)或图1(b)所示的AF的功能的网元。为方便说明,本申请后续描述中将该应用功能网元称为AF。需要说明的是,在未来通信中,该应用功能网元仍然可以称为AF,或者还可以有其他的名称,本申请不限定。本申请后续出现的AF可以替换为应用功能网元。
作为一个示例,本申请中的网络能力开放网元,可以是具有图3、图1(a)或图1(b)所示的NEF的功能的网元。为方便说明,本申请后续描述中将该网络能力开放网元称为NEF。需要说明的是,在未来通信中,该网络能力开放网元仍然可以称为NEF,或者还可以有其他的名称,本申请不限定。本申请后续出现的NEF可以替换为网络能力开放网元。
作为一个示例,本申请中的终端,可以是具有图3所示的UE的功能的设备,该终端中可以集成有TSN转换器,或者是该TSN转换器独立于终端部署,为方便说明,本申请以TSN转换器集成于终端为例进行说明。为方便说明,本申请后续描述中将该终端称为UE。
基于5G系统实现确定性传输的方案中,AF将时延敏感通信(timesensitive communication,TSC)参数通过NEF发送给SMF。其中,TSC参数用于描述TSN业务的数据流特征,TSC参数可以包含如下中的至少一项:5G系统时延(5GS delay),抖动(jitter),突发流量到达UE和/或UPF的时间(burst arrival time at UEand/or UPF),突发流量大小(burst size),突发周期(burst periodicity)等。其中,5G系统时延指的是数据包到达5G系统的入端口,与该数据包从5G系统的出端口发送出去之间的时延。5G系统时延也可以称为5G系统内部处理时间或5G系统内部处理时延。5G系统时延包括UE的内部处理时延、UE与基站之间的空口时延、基站的内部处理时延、基站与UPF之间的传输时延、UPF的内部处理时延等。抖动指的是5G系统时延的误差范围,也即5G系统时延可能因为噪音、链路质量、负载等原因导致在一个范围内波动。突发流量到达UE或UPF的时间指的是TSN业务的数据流到达UE或UPF的时间。突发流量大小指的是到达UE或UPF的数据流的大小。突发周期指的是TSN业务的数据流按照一定的周期到达UE或UPF。
NEF收到TSC参数后,根据TSC参数计算数据流在UE和UPF的发送时间窗。其中,数据流在UE的发送时间窗可以理解为是数据流在DS-TT的发送时间窗,数据流在UPF的发送窗口可以理解为是数据流在NW-TT的发送时间窗。
针对上行数据流,NEF根据突发流量到达UE的时间、5G系统时延、抖动以及突发周期,计算上行数据流在UPF上的一个或多个发送时间窗。5G系统在接收到该上行数据流后,发送到UPF,由UPF对该上行数据流进行缓存,然后在该上行数据流对应的发送时间窗内,对外发送该上行数据流。
针对下行数据流,NEF根据突发流量到达UPF的时间、5G系统时延、抖动以及突发周期,计算下行数据流在UE上的一个或多个发送时间窗,5G系统在接收到该下行数据流后,发送到UE,由UE对该下行数据流进行缓存,然后在该下行数据流对应的发送时间窗内,对外发送该下行数据流。
SMF收到TSC参数后,针对上行数据流,可以根据突发流量到达UE的时间和UE的内部处理时延,计算得到UE向基站发送上行数据流的时间;针对下行数据流,可以根据突发流量到达UPF的时间、UPF的内部处理时延以及基站与UPF之间的传输时延,计算得到下行数据流到达基站的时间。然后,SMF可以将UE向基站发送上行数据流的时间或下行数据流到达基站的时间发送给基站,从而辅助基站进行调度。比如,SMF向基站发送时延敏感通信辅助信息(timesensitive communication assistant information,TSCAI)参数,该TSCAI参数携带UE向基站发送上行数据流的时间和/或下行数据流到达基站的时间。
上述方案,存在如下问题:
第一个问题,当有多个应用时,该多个应用分别对应的AF均向5G系统提供TSC参数,然后5G系统分别为各个应用的数据流计算发送时间窗。然而,不同应用的数据流的发送时间窗可能出现重叠,导致多个应用的数据流在UE或UPF上产生调度冲突。
第二个问题,当多个数据流到达基站的时间相同或相近,而基站没有足够的资源同时调度多个数据流,将会导致基站无法正常发送业务数据流。
图5为本申请实施例提供的一种无线通信方法,该方法可用于解决上述第一个问题。通过该方法,可以对不同应用的数据流在UE或UPF上的发送时间窗进行调整,使得不同 应用的数据流在UE或UPF上的发送时间窗不会出现重叠,从而避免多个应用的数据流在UE或UPF上产生调度冲突。当然,该方法也可以用于解决上述第二个问题,具体的,当通过该方法对不同应用的数据流在UE或UPF上的发送时间窗进行调整,使得不同应用的数据流在UE或UPF上的发送时间窗不会出现重叠的同时,在一定程度上也会使得不同应用的数据流到达基站的时间产生一定的时间间隔,从而避免基站没有足够的资源同时调度多个数据流。
以下是使用该方法解决上述第一个问题为例,对该方法进行具体说明。
该方法可以由5G系统的控制面网元如PCF、NEF等来执行,或者由用于控制面网元的芯片,如PCF的芯片、NEF的芯片来执行。
该方法包括以下步骤:
步骤501,确定第一应用的数据流在通信系统上的出端口的第一发送时间窗和第二应用的数据流在该出端口的第二发送时间窗,该出端口对应UE或UPF。
本申请的实施例中,通信系统可以是图3或图4中描述的5G系统,也可以是未来通信中具备TSN交互机功能的通信系统,如第六代(6th generation,6G)系统。为便于说明,以下以通信系统是5G系统为例进行说明。
其中,第一应用与第二应用是不同的应用。
在上行方向,第一应用的数据流和第二应用的数据流都是上行数据流。第一应用的数据流在5G系统上的出端口的第一发送时间窗,指的是第一应用的数据流在UPF、UPF的出端口、NW-TT或NW-TT的出端口上的发送时间窗。第一发送时间窗可以是根据5G系统时延、抖动以及第一应用的突发流量到达UE的时间计算得到。第二应用的数据流在5G系统上的出端口的第二发送时间窗,指的是第二应用的数据流在UPF、UPF的出端口、NW-TT或NW-TT的出端口上的发送时间窗。第二发送时间窗可以是根据5G系统时延、抖动以及第二应用的突发流量到达UE的时间计算得到。
在下行方向,第一应用的数据流和第二应用的数据流都是下行数据流。第一应用的数据流在5G系统上的出端口的第一发送时间窗,指的是第一应用的数据流在UE、UE的出端口、DS-TT或DS-TT的出端口上的发送时间窗。第一发送时间窗可以是根据5G系统时延、抖动以及第一应用的突发流量到达UPF的时间计算得到。第二应用的数据流在5G系统上的出端口的第二发送时间窗,指的是第二应用的数据流在UE、UE的出端口、DS-TT或DS-TT的出端口上的发送时间窗。第二发送时间窗可以是根据5G系统时延、抖动以及第二应用的突发流量到达UPF的时间计算得到。
步骤502,当该第一发送时间窗与该第二发送时间窗存在重叠,确定第一应用的数据流在该出端口的第三发送时间窗,该第三发送时间窗为该第一应用的数据流在该出端口的调整后的发送时间窗;其中,该第三发送时间窗与该第二发送时间窗不存在重叠。
作为另一种实现方法,当该第一发送时间窗与该第二发送时间窗存在重叠,也可以重新确定第一应用的数据流在该出端口的发送时间窗,而是重新确定第二应用的数据流在该出端口的第四发送时间窗,该第四发送时间窗为该第二应用的数据流在该出端口的调整后的发送时间窗;其中,该第四发送时间窗与该第一发送时间窗不存在重叠。
当然,在实际应用中,也可以同时重新确定第一应用的数据流在该出端口的发送时间窗以及重新确定第二应用的数据流在该出端口的发送时间窗,使得第一应用的数据流在该出端口的调整后的发送时间窗与第二应用的数据流在该出端口的调整后的发送时间窗不 重叠。
根据上述方案,当不同的应用在通信系统的出端口的发送时间窗出现重叠,可以重新确定其中的一个或多个应用的发送时间窗,使得不同应用在发送时间窗不存在重叠,从而避免不同应用的数据流在UE或UPF上产生调度冲突。因而可以实现该5G系统对多个应用的数据流进行高效地传输。
作为一种实现方法,在上述步骤502之后,还可以向AF发送该第三发送时间窗,然后AF根据该第三发送时间窗和该5G系统的内部处理时延,重新计算第一应用的数据流到达5G系统上的入端口的时间,即重新计算突发流量到达UE或UPF的时间。接着,AF可以重新向5G系统发送TSC参数,该TSC参数中包含重新计算的第一应用的数据流到达5G系统上的入端口的时间。
作为另一种实现方法,在上述步骤502之后,可以根据该第三发送时间窗和该5G系统的内部处理时延,重新计算第一应用的数据流到达5G系统上的入端口的时间,即重新计算突发流量到达UE或UPF的时间。然后向AF发送重新计算的第一应用的数据流到达5G系统上的入端口的时间。接着,AF可以重新向5G系统发送TSC参数,该TSC参数中包含重新计算的第一应用的数据流到达5G系统上的入端口的时间。其中,该TSC参数也可以称为第一参数。
在一种可能的实现方法中,还可以向5G系统的出端口发送该第三发送时间窗,使得该出端口可以按照该第三发送时间窗发送第一应用的数据流,从而实现对第一应用的数据流在出端口的发送时间窗的调整,以避免不同应用的数据流在出端口上产生调度冲突。
图6(a)为本申请实施例提供的一种无线通信方法,该方法可用于解决上述第二个问题。该方法是针对下行数据流。当然,该方法也可以用于解决上述第一个问题,具体的,当基站根据负载能力调整不同应用的下行数据流到达基站的时间,使得不同应用的下行数据流不在一个集中的时间范围内到达基站的同时,在一定程度上也可以避免不同应用的下行数据流在UE上的发送时间窗出现重叠,从而避免多个应用的下行数据流在UE上产生调度冲突。
以下是使用该方法解决上述第二个问题为例,对该方法进行具体说明。
该方法包括以下步骤:
步骤601a,基站获取第一应用的下行数据流到达基站的第一时间,以及第二应用的下行数据流到达该基站的第二时间。
SMF可以向基站发送TSCAI参数,该TSCAI参数中携带第一应用的下行数据流到达基站的第一时间。按照同样的方法,基站可以得到第二应用的下行数据流到达基站的第二时间。
步骤602a,当第一时间与第二时间满足第一条件,基站根据基站的负载能力,确定第一应用的下行数据流到达基站的第三时间,该第三时间为第一应用的下行数据流到达基站的调整后的时间。
该负载能力包括但不限于中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
可选的,该第一条件可以是:第一应用的下行数据流到达基站的第一时间与第二应用的下行数据流到达基站的第二时间之间的间隔小于第一阈值。
比如,当第一应用的下行数据流到达基站的第一时间与第二应用的下行数据流到达基站的第二时间之间的间隔小于第一阈值,则基站根据该基站的负载能力,确定第一应用的下行数据流到达基站的第三时间;其中,第三时间与第二时间的间隔大于或等于第一阈值。其中,第一阈值是预设的值,可以是一个比较小的值。
或者,当第一应用的下行数据流到达基站的第一时间与第二应用的下行数据流到达基站的第二时间之间的间隔小于第一阈值,则基站根据该基站的负载能力,确定第二应用的下行数据流到达基站的第四时间,该第四时间为第二应用的下行数据流到达基站的调整后的时间;其中,第四时间与第一时间的间隔大于或等于第一阈值。
当然,也可以同时确定第一应用的下行数据流到达基站的调整后的时间,和确定第二应用的下行数据流到达基站的调整后的时间,使得第一应用的下行数据流到达基站的调整后的时间与第二应用的下行数据流到达基站的调整后的时间之间的时间间隔大于或等于第一阈值。根据上述方案,当多个下行数据流到达基站的时间相同或相近,而基站没有足够的资源同时调度多个下行数据流,则基站可以根据负载能力重新确定应用的下行数据流到达基站的时间,使得不同应用的下行数据流不在一个集中的时间范围内到达基站,从而减轻基站的负载压力,避免基站无法正常发送业务数据流。因而可以实现该5G系统对多个应用的下行数据流进行高效地传输。
进一步的,在上述步骤602a之后,还可以执行以下步骤603a至步骤604a。
步骤603a,基站向第一网元发送第一应用的下行数据流到达基站的第三时间。相应地,第一网元收到第一应用的下行数据流到达基站的第三时间。
这里的第一网元可以是SMF或PCF。
步骤604a,第一网元根据第一应用的下行数据流到达基站的第三时间,确定第一应用的下行数据流在通信系统上的出端口的发送时间窗。
该通信系统可以是图3或图4中描述的5G系统,也可以是未来通信中具备TSN交互机功能的通信系统,如6G系统。为便于说明,以下以通信系统是5G系统为例进行说明。
第一网元根据第一应用的下行数据流到达基站的第三时间,以及基站与UE之间的传输时延,确定第一应用的下行数据流在5G系统上的出端口的发送时间窗,也即确定第一应用的下行数据流在UE、UE的出端口或DS-TT的发送时间窗。
进一步的,第一网元还可以将第一应用的下行数据流在5G系统上的出端口的发送时间窗,发送给该出端口,从而该出端口根据该发送时间窗来发送数据。
根据上述方案,基站可以重新确定第一应用的下行数据流到达基站的时间,然后将调整后的时间发送给第一网元,从而第一网元可以根据调整后的时间重新计算第一应用的下行数据流在5G系统上的出端口的发送时间窗。如此可以使得不同应用的下行数据流不在一个集中的时间范围内到达基站,从而减轻基站的负载压力,避免基站无法正常发送业务数据流。因而可以实现该通信系统对多个应用的下行数据流进行高效地传输。
下面分情形继续说明。
情形一,上述第一网元是SMF
SMF在上述步骤602a中计算得到第一应用的下行数据流在5G系统上的出端口的发送时间窗之后,可以向PCF或NEF发送该发送时间窗,从而PCF或NEF可以根据该发送时间窗以及和5G系统的内部处理时延,确定第一应用的下行数据流到达5G系统上的入端口的时间。
或者是,SMF在上述步骤602a中计算得到第一应用的下行数据流在5G系统上的出端口的发送时间窗之后,可以进一步根据该发送时间窗以及和5G系统的内部处理时延,确定第一应用的下行数据流到达5G系统上的入端口的时间,然后SMF向PCF或NEF发送第一应用的下行数据流到达5G系统上的入端口的时间。
或者是,SMF直接根据第一应用的下行数据流到达基站的第三时间,确定第一应用的下行数据流到达5G系统上的入端口的时间。然后SMF向PCF或NEF发送第一应用的下行数据流到达5G系统上的入端口的时间。
在PCF或NEF得到第一应用的下行数据流到达5G系统上的入端口的时间之后,可以重新向5G系统配置第一应用的下行数据流到达5G系统上的入端口的时间。比如,PCF或NEF向SMF发送TSC参数,该TSC参数包含第一应用的下行数据流到达5G系统上的入端口的时间。该第一应用的下行数据流到达5G系统上的入端口的时间即为调整后的时间。
情形二,上述第一网元是NEF或PCF
NEF或PCF在上述步骤602a中计算得到第一应用的下行数据流在5G系统上的出端口的发送时间窗之后,可以根据该发送时间窗以及和5G系统的内部处理时延,确定第一应用的下行数据流到达5G系统上的入端口的时间。
或者是,NEF或PCF直接根据第一应用的下行数据流到达基站的第三时间,确定第一应用的下行数据流到达5G系统上的入端口的时间。
后续,NEF或PCF可以将第一应用的下行数据流到达5G系统上的入端口的时间发送给AF,从而AF可以重新向PCF或NEF发送TSC参数,该TSC参数中包含第一应用的下行数据流到达5G系统上的入端口的时间。也即该TSC参数中包含第一应用的下行数据流到达5G系统上的入端口的调整后的时间。
图6(b)为本申请实施例提供的一种无线通信方法,该方法可用于解决上述第二个问题。该方法是针对上行数据流。当然,该方法也可以用于解决上述第一个问题,具体的,当基站根据负载能力调整不同应用的上行数据流到达基站的时间,使得不同应用的上行数据流不在一个集中的时间范围内到达基站的同时,在一定程度上也可以避免不同应用的上行数据流在UPF上的发送时间窗出现重叠,从而避免多个应用的上行数据流在UPF上产生调度冲突。
以下是使用该方法解决上述第二个问题为例,对该方法进行具体说明。
该方法包括以下步骤:
步骤601b,基站获取UE向基站发送第一应用的上行数据流的第一时间,以及UE向基站发送第二应用的上行数据流的第二时间。
SMF可以向基站发送TSCAI参数,该TSCAI参数中携带UE向基站发送第一应用的上行数据流的第一时间。按照同样的方法,基站可以得到UE向基站发送第二应用的上行数据流的第二时间。
其中,UE向基站发送第一应用的上行数据流的第一时间,也可以描述为:第一应用的上行数据流到达UE的出端口的时间,或者描述为:第一应用的上行数据流从UE的出端口发出的时间。
同样的,UE向基站发送第二应用的上行数据流的第二时间,也可以描述为:第二应 用的上行数据流到达UE的出端口的时间,或者描述为:第二应用的上行数据流从UE的出端口发出的时间。
步骤602b,当第一时间与第二时间满足第一条件,基站根据基站的负载能力,确定UE向基站发送第一应用的上行数据流的第三时间,该第三时间为第一应用的上行数据流到达基站的调整后的时间。
该负载能力包括但不限于中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
可选的,该第一条件可以是:UE向基站发送第一应用的上行数据流的第一时间与UE向基站发送第二应用的上行数据流的第二时间之间的间隔小于第一阈值。
比如,当UE向基站发送第一应用的上行数据流的第一时间与UE向基站发送第二应用的上行数据流的第二时间之间的间隔小于第一阈值,则基站根据该基站的负载能力,确定UE向基站发送第一应用的上行数据流的第三时间;其中,第三时间与第二时间的间隔大于或等于第一阈值。其中,第一阈值是预设的值,可以是一个比较小的值。
或者,当UE向基站发送第一应用的上行数据流的第一时间与UE向基站发送第二应用的上行数据流的第二时间之间的间隔小于第一阈值,则基站根据该基站的负载能力,确定UE向基站发送第二应用的上行数据流的第四时间;其中,第四时间与第一时间的间隔大于或等于第一阈值。
当然,也可以同时确定第一应用的上行数据流到达基站的调整后的时间,和确定第二应用的上行数据流到达基站的调整后的时间,使得第一应用的上行数据流到达基站的调整后的时间与第二应用的上行数据流到达基站的调整后的时间之间的时间间隔大于或等于第一阈值。
通过该方法,当UE向基站发送多个应用的上行数据流的时间相同或相近,则将导致该多个应用的上行数据流到达基站的时间相同或相近,当基站没有足够的资源同时调度多个上行数据流,则基站可以根据负载能力,重新确定UE向基站发送应用的上行数据流的时间,使得多个应用的上行数据流不在相同或相近的时间内到达基站,从而减轻基站的负载压力,避免基站无法正常发送业务数据流。因而可以实现该5G系统对多个应用的上行数据流进行高效地传输。
进一步的,在上述步骤602b之后,还可以执行以下步骤603b至步骤604b。
步骤603b,基站向第一网元发送UE向基站发送第一应用的上行数据流的第三时间。相应地,第一网元收到该第三时间。
这里的第一网元可以是SMF或PCF。
步骤604b,第一网元根据UE向基站发送第一应用的上行数据流的第三时间,确定第一应用的上行数据流在通信系统上的出端口的发送时间窗。
该通信系统可以是图3或图4中描述的5G系统,也可以是未来通信中具备TSN交互机功能的通信系统,如6G系统。为便于说明,以下以通信系统是5G系统为例进行说明。
第一网元根据UE向基站发送第一应用的上行数据流的第三时间,UE的内部处理时延以及5G系统的内部处理时延,确定第一应用的上行数据流在5G系统上的出端口的发送时间窗,也即确定第一应用的上行数据流在UPF、UPF的出端口或NW-TT的发送时间窗。
进一步的,第一网元还可以将第一应用的上行数据流在5G系统上的出端口的发送时间窗,发送给该出端口,从而该出端口根据该发送时间窗来发送数据。
根据上述方案,基站可以重新确定UE向基站发送第一应用的上行数据流的时间,然后将调整后的时间发送给第一网元,从而第一网元可以根据调整后的时间重新计算第一应用的上行数据流在5G系统上的出端口的发送时间窗。如此可以使得不同应用的上行数据流不在一个集中的时间范围内到达基站,从而减轻基站的负载压力,避免基站无法正常发送业务数据流。因而可以实现该通信系统对多个应用的上行数据流进行高效地传输。
下面分情形继续说明。
情形一,上述第一网元是SMF
SMF在上述步骤602b中计算得到第一应用的上行数据流在5G系统上的出端口的发送时间窗之后,可以向PCF或NEF发送该发送时间窗,从而PCF或NEF可以根据该发送时间窗以及和5G系统的内部处理时延,确定第一应用的上行数据流到达5G系统上的入端口的时间。
或者是,SMF在上述步骤602b中计算得到第一应用的上行数据流在5G系统上的出端口的发送时间窗之后,可以进一步根据该发送时间窗以及和5G系统的内部处理时延,确定第一应用的上行数据流到达5G系统上的入端口的时间,然后SMF向PCF或NEF发送第一应用的上行数据流到达5G系统上的入端口的时间。
或者是,SMF直接根据UE向基站发送第一应用的上行数据流的第三时间,确定第一应用的上行数据流到达5G系统上的入端口的时间。然后SMF向PCF或NEF发送第一应用的上行数据流到达5G系统上的入端口的时间。
在PCF或NEF得到第一应用的上行数据流到达5G系统上的入端口的时间之后,可以重新向5G系统配置第一应用的上行数据流到达5G系统上的入端口的时间。比如,PCF或NEF向SMF发送TSC参数,该TSC参数包含第一应用的上行数据流到达5G系统上的入端口的时间。该第一应用的上行数据流到达5G系统上的入端口的时间即为调整后的时间。
情形二,上述第一网元是NEF或PCF
NEF或PCF在上述步骤602b中计算得到第一应用的上行数据流在5G系统上的出端口的发送时间窗之后,可以根据该发送时间窗以及和5G系统的内部处理时延,确定第一应用的上行数据流到达5G系统上的入端口的时间。
或者是,NEF或PCF直接根据UE向基站发送第一应用的上行数据流的第三时间,确定第一应用的上行数据流到达5G系统上的入端口的时间。
后续,NEF或PCF可以将第一应用的上行数据流到达5G系统上的入端口的时间发送给AF,从而AF可以重新向PCF或NEF发送TSC参数,该TSC参数中包含第一应用的上行数据流到达5G系统上的入端口的时间。也即该TSC参数中包含第一应用的上行数据流到达5G系统上的入端口的调整后的时间。
需要说明的是,上述图5的实施例与图6(a)或图6(b)的实施例可以单独实例,或者也可以图5的实施例与图6(a)的实施例相结合实施,或者也可以图5的实施例与图6(b)的实施例相结合实施,本申请对此不做限定。
可以理解的是,为了实现上述实施例中功能,第一网元和基站包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方 案的特定应用场景和设计约束条件。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中会话管理网元、策略控制网元、网络开放网元或无线接入网设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是会话管理网元或用于会话管理网元的模块(如芯片),或者是策略控制网元或用于策略控制网元的模块(如芯片),或者是网络开放网元或用于网络开放网元的模块(如芯片),或者是无线接入网设备或用于无线接入网设备的模块(如芯片)。
如图7所示,通信装置700包括处理单元710和收发单元720。通信装置700用于实现上述图5,图6(a)或图6(b)中所示的方法实施例中的步骤。
在第一个实施例中,当通信装置700用于实现图5所示的方法实施例时:处理单元710,用于确定第一应用的数据流在通信系统上的出端口的第一发送时间窗和第二应用的数据流在所述出端口的第二发送时间窗,所述出端口对应终端或用户面网元;当所述第一发送时间窗与所述第二发送时间窗存在重叠,确定所述第一应用的数据流在所述出端口的第三发送时间窗,所述第三发送时间窗为所述第一应用的数据流在所述出端口的调整后的发送时间窗;其中,所述第三发送时间窗与所述第二发送时间窗不存在重叠。
在一种可能的实现方法中,收发单元720,还用于向应用功能网元发送所述第三发送时间窗。
在一种可能的实现方法中,处理单元710,还用于根据所述第三发送时间窗和所述通信系统的内部处理时延,确定所述第一应用的数据流到达所述通信系统上的入端口的时间;收发单元720,还用于向应用功能网元发送所述第一应用的数据流到达所述通信系统上的入端口的时间;其中,所述出端口对应终端,所述入端口对应用户面网元;或者所述出端口对应用户面网元,所述入端口对应终端。
在一种可能的实现方法中,收发单元720,还用于接收来自所述应用功能网元的第一参数,所述第一参数携带所述第一应用的数据流到达所述通信系统上的入端口的时间。
在一种可能的实现方法中,收发单元720,还用于向所述出端口发送所述第三发送时间窗。
在第二个实施例中,当通信装置700用于实现图6(a)所示的方法实施例中基站(即无线接入网设备)的功能时:收发单元720,用于获取第一应用的下行数据流到达该无线接入网设备的第一时间,以及第二应用的下行数据流到达该无线接入网设备的第二时间;处理单元710,用于当该第一时间与该第二时间满足第一条件,则根据该无线接入网设备的负载能力,确定该第一应用的下行数据流到达该无线接入网设备的第三时间,该第三时间为该第一应用的下行数据流到达该无线接入网设备的调整后的时间。
在一种可能的实现方法中,处理单元710,具体用于当该第一时间与该第二时间之间的间隔小于第一阈值,则根据该无线接入网设备的负载能力,确定该第一应用的下行数据流到达该无线接入网设备的第三时间;其中,该第三时间与该第二时间的间隔大于或等于该第一阈值。
在一种可能的实现方法中,收发单元720,还用于向会话管理网元发送该第三时间。
在一种可能的实现方法中,该负载能力包括中央处理单元能力、空口频谱资源、空口 带宽资源、内存大小中的一个或多个。
在第三个实施例中,当通信装置700用于实现图6(a)所示的方法实施例中第一网元的功能时:收发单元720,从无线接入网设备接收第一应用的下行数据流到达该无线接入网设备的第三时间;处理单元710,用于根据该第三时间,确定该第一应用的下行数据流在通信系统上的出端口的发送时间窗,该通信系统的入端口对应用户面网元,该出端口对应终端。
在一种可能的实现方法中,该第一网元是会话管理网元;收发单元720,还用于向策略控制网元或网络开放网元发送该发送时间窗。
在一种可能的实现方法中,该第一网元是会话管理网元、网络开放网元或策略控制网元;处理单元710,用于根据该发送时间窗和该通信系统的内部处理时延,确定该第一应用的下行数据流到达该通信系统上的入端口的时间;收发单元720,还用于向应用功能网元发送该第一应用的下行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;收发单元720,还用于向会话管理网元发送该第一应用的下行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,收发单元720,还用于向该出端口发送该发送时间窗。
在第四个实施例中,当通信装置700用于实现图6(b)所示的方法实施例中基站(即无线接入网设备)的功能时:收发单元720,用于获取终端向该无线接入网设备发送第一应用的上行数据流的第一时间,以及该终端向该无线接入网设备发送第二应用的上行数据流的第二时间;处理单元710,用于当该第一时间与该第二时间满足第一条件,则根据该无线接入网设备的负载能力,确定该终端向该无线接入网设备发送该第一应用的上行数据流的第三时间,该第三时间为该第一应用的上行数据流到达该无线接入网设备的调整后的时间。
在一种可能的实现方法中,处理单元710,用于当该第一时间与该第二时间之间的间隔小于第一阈值,则根据该无线接入网设备的负载能力,确定该终端向该无线接入网设备发送该第一应用的上行数据流的第三时间;其中,该第三时间与该第二时间的间隔大于或等于该第一阈值。
在一种可能的实现方法中,收发单元720,用于向会话管理网元发送该第三时间。
在一种可能的实现方法中,该负载能力包括中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
在第五个实施例中,当通信装置700用于实现图6(b)所示的方法实施例中第一网元的功能时:收发单元720,用于从无线接入网设备接收终端向该无线接入网设备发送第一应用的上行数据流的第三时间;处理单元710,用于根据该第三时间,确定该第一应用的上行数据流在通信系统上的出端口的发送时间窗,该通信系统的入端口对应终端,该出端口对应用户面网元。
在一种可能的实现方法中,该第一网元是会话管理网元;收发单元720,用于向策略控制网元或网络开放网元发送该发送时间窗。
在一种可能的实现方法中,该第一网元是会话管理网元、网络开放网元或策略控制网 元;处理单元710,用于根据该发送时间窗和该通信系统的内部处理时延,确定该第一应用的上行数据流到达该通信系统上的入端口的时间;收发单元720,用于向应用功能网元发送该第一应用的上行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;收发单元720,用于向会话管理网元发送该第一应用的上行数据流到达该通信系统上的入端口的时间。
在一种可能的实现方法中,收发单元720,用于向该出端口发送该发送时间窗。
在第六个实施例中,当通信装置700用于实现图6(a)所示的方法实施例中第一网元的功能时:收发单元720,用于从无线接入网设备接收第一应用的下行数据流到达该无线接入网设备的第三时间;处理单元710,用于根据该第三时间,确定该第一应用的下行数据流到达通信系统上的入端口的时间,该入端口对应用户面网元,该出端口对应终端。
在一种可能的实现方法中,该第一网元是会话管理网元;收发单元720,向策略控制网元或网络开放网元发送该第一应用的下行数据流到达通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;收发单元720,向应用功能网元和/或会话管理网元发送该第一应用的下行数据流到达通信系统上的入端口的时间。
在第七个实施例中,当通信装置700用于实现图6(b)所示的方法实施例中第一网元的功能时:收发单元720,用于从无线接入网设备接收终端向该无线接入网设备发送第一应用的上行数据流的第三时间;处理单元710,用于根据该第三时间,确定该第一应用的上行数据流到达通信系统上的入端口的时间,该入端口对应终端,该出端口对应用户面网元。
在一种可能的实现方法中,该第一网元是会话管理网元;收发单元720,向策略控制网元或网络开放网元发送该第一应用的上行数据流到达通信系统上的入端口的时间。
在一种可能的实现方法中,该第一网元是网络开放网元或策略控制网元;收发单元720,向应用功能网元和/或会话管理网元发送该第一应用的上行数据流到达通信系统上的入端口的时间。
有关上述处理单元710和收发单元720更详细的描述,可以直接参考图5、图6(a)或图6(b)所示的方法实施例中相关描述直接得到,这里不加赘述。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图5、图6(a)或图6(b)所示的方法实施例时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、致密光盘只读存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (24)

  1. 一种无线通信方法,应用于无线接入网设备,其特征在于,包括:
    获取第一应用的下行数据流到达所述无线接入网设备的第一时间,以及第二应用的下行数据流到达所述无线接入网设备的第二时间;
    当所述第一时间与所述第二时间满足第一条件,则根据所述无线接入网设备的负载能力,确定所述第一应用的下行数据流到达所述无线接入网设备的第三时间,所述第三时间为所述第一应用的下行数据流到达所述无线接入网设备的调整后的时间。
  2. 如权利要求1所述的方法,其特征在于,所述当所述第一时间与所述第二时间满足第一条件,则根据所述无线接入网设备的负载能力,确定所述第一应用的下行数据流到达所述无线接入网设备的第三时间,包括:
    当所述第一时间与所述第二时间之间的间隔小于第一阈值,则根据所述无线接入网设备的负载能力,确定所述第一应用的下行数据流到达所述无线接入网设备的第三时间;其中,所述第三时间与所述第二时间的间隔大于或等于所述第一阈值。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    向会话管理网元发送所述第三时间。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述负载能力包括中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
  5. 一种无线通信方法,其特征在于,应用于第一网元,所述方法包括:
    从无线接入网设备接收第一应用的下行数据流到达所述无线接入网设备的第三时间;
    根据所述第三时间,确定所述第一应用的下行数据流在通信系统上的出端口的发送时间窗,所述通信系统的入端口对应用户面网元,所述出端口对应终端。
  6. 如权利要求5所述的方法,其特征在于,所述第一网元是会话管理网元;所述方法还包括:
    向策略控制网元或网络开放网元发送所述发送时间窗。
  7. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    根据所述发送时间窗和所述通信系统的内部处理时延,确定所述第一应用的下行数据流到达所述通信系统上的入端口的时间;
    向应用功能网元发送所述第一应用的下行数据流到达所述通信系统上的入端口的时间。
  8. 如权利要求7所述的方法,其特征在于,所述第一网元是策略控制网元或网络开放网元;所述方法还包括:
    向会话管理网元发送所述第一应用的下行数据流到达所述通信系统上的入端口的时间。
  9. 如权利要求5至8中任一项所述的方法,其特征在于,还包括:
    向所述出端口发送所述发送时间窗。
  10. 一种无线通信方法,应用于无线接入网设备,其特征在于,包括:
    获取终端向所述无线接入网设备发送第一应用的上行数据流的第一时间,以及所述终端向所述无线接入网设备发送第二应用的上行数据流的第二时间;
    当所述第一时间与所述第二时间满足第一条件,则根据所述无线接入网设备的负载能 力,确定所述终端向所述无线接入网设备发送所述第一应用的上行数据流的第三时间所述第三时间为所述第一应用的上行数据流到达所述无线接入网设备的调整后的时间。
  11. 如权利要求10所述的方法,其特征在于,所述当所述第一时间与所述第二时间满足第一条件,则根据所述无线接入网设备的负载能力,确定所述终端向所述无线接入网设备发送所述第一应用的上行数据流的第三时间,包括:
    当所述第一时间与所述第二时间之间的间隔小于第一阈值,则根据所述无线接入网设备的负载能力,确定所述终端向所述无线接入网设备发送所述第一应用的上行数据流的第三时间;其中,所述第三时间与所述第二时间的间隔大于或等于所述第一阈值。
  12. 如权利要求10或11所述的方法,其特征在于,还包括:
    向会话管理网元发送所述第三时间。
  13. 如权利要求10至12中任一项所述的方法,其特征在于,所述负载能力包括中央处理单元能力、空口频谱资源、空口带宽资源、内存大小中的一个或多个。
  14. 一种无线通信方法,其特征在于,应用于第一网元,所述方法包括:
    从无线接入网设备接收终端向所述无线接入网设备发送第一应用的上行数据流的第三时间;
    根据所述第三时间,确定所述第一应用的上行数据流在通信系统上的出端口的发送时间窗,所述通信系统的入端口对应终端,所述出端口对应用户面网元。
  15. 如权利要求14所述的方法,其特征在于,所述第一网元是会话管理网元;所述方法还包括:
    向策略控制网元或网络开放网元发送所述发送时间窗。
  16. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述发送时间窗和所述通信系统的内部处理时延,确定所述第一应用的上行数据流到达所述通信系统上的入端口的时间;
    向应用功能网元发送所述第一应用的上行数据流到达所述通信系统上的入端口的时间。
  17. 如权利要求16所述的方法,其特征在于,所述第一网元是策略控制网元或网络开放网元;所述方法还包括:
    向会话管理网元发送所述第一应用的上行数据流到达所述通信系统上的入端口的时间。
  18. 如权利要求14至17中任一项所述的方法,其特征在于,还包括:
    向所述出端口发送所述发送时间窗。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1至4中任一项所述方法的模块,或用于执行如权利要求5至9中任一项所述方法的模块,或用于执行如权利要求10至13中任一项所述方法的模块,或用于执行如权利要求14至18中任一项所述方法的模块。
  20. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至4中任一项所述的方法,或用于实现如权利要求5至9中任一项所述的方法,或用于实现如权利要求10至13中任一项所述的方法,或用于实现如权利要求 14至18中任一项所述的方法。
  21. 一种通信系统,其特征在于,包括用于执行如权利要求1至4中任一项所述方法的通信装置和用于执行如权利要求5至9中任一项所述方法的通信装置。
  22. 一种通信系统,其特征在于,包括用于执行如权利要求10至13中任一项所述方法的通信装置和用于执行如权利要求14至18中任一项所述方法的通信装置。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被处理器执行时,实现如权利要求1至18中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被通信装置执行时,实现如权利要求1至18中任一项所述的方法。
PCT/CN2022/070738 2021-05-18 2022-01-07 一种无线通信方法、通信装置及通信系统 WO2022242201A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22803539.0A EP4325929A4 (en) 2021-05-18 2022-01-07 WIRELESS COMMUNICATION METHOD, COMMUNICATION DEVICE AND COMMUNICATION SYSTEM
US18/506,773 US20240080716A1 (en) 2021-05-18 2023-11-10 Wireless communication method, communication apparatus, and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110540884.XA CN115379504A (zh) 2021-05-18 2021-05-18 一种无线通信方法、通信装置及通信系统
CN202110540884.X 2021-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/506,773 Continuation US20240080716A1 (en) 2021-05-18 2023-11-10 Wireless communication method, communication apparatus, and communication system

Publications (1)

Publication Number Publication Date
WO2022242201A1 true WO2022242201A1 (zh) 2022-11-24

Family

ID=84058472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070738 WO2022242201A1 (zh) 2021-05-18 2022-01-07 一种无线通信方法、通信装置及通信系统

Country Status (4)

Country Link
US (1) US20240080716A1 (zh)
EP (1) EP4325929A4 (zh)
CN (1) CN115379504A (zh)
WO (1) WO2022242201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024138443A1 (zh) * 2022-12-28 2024-07-04 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698787A (zh) * 2019-03-14 2020-09-22 华为技术有限公司 调度规则确定方法及其装置
CN112292837A (zh) * 2018-10-22 2021-01-29 Oppo广东移动通信有限公司 无线通信的方法和网络设备
US20210099341A1 (en) * 2019-09-30 2021-04-01 Samsung Electronics Co., Ltd. Apparatus and method for supporting tsc
CN112787838A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种通信方法、装置及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226360A1 (en) * 2019-05-03 2020-11-12 Samsung Electronics Co., Ltd. Apparatus and method for supporting burst arrival time reference clock based on time-sensitive communication assistance information in wireless communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292837A (zh) * 2018-10-22 2021-01-29 Oppo广东移动通信有限公司 无线通信的方法和网络设备
CN111698787A (zh) * 2019-03-14 2020-09-22 华为技术有限公司 调度规则确定方法及其装置
US20210099341A1 (en) * 2019-09-30 2021-04-01 Samsung Electronics Co., Ltd. Apparatus and method for supporting tsc
CN112787838A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种通信方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325929A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024138443A1 (zh) * 2022-12-28 2024-07-04 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP4325929A1 (en) 2024-02-21
EP4325929A4 (en) 2024-10-09
CN115379504A (zh) 2022-11-22
US20240080716A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US11950127B2 (en) 5G system support for virtual TSN bridge management, QoS mapping and TSN Qbv scheduling
WO2020220747A1 (zh) 一种tsn业务的处理方法、装置及系统
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
US12041481B2 (en) TSN-cellular communication system QoS mapping and RAN optimization based on TSN traffic pattern related information
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
JP7178502B2 (ja) 移動無線通信システム及び移動無線通信システム構成によって提供される時間依存ネットワーキングイーサネットブリッジによってイーサネットフレームを転送するための方法
WO2022016948A1 (zh) 一种通信方法及装置
WO2021089018A1 (zh) 一种通信方法、装置及系统
US20230254859A1 (en) Downlink Transmission Method and Communication Apparatus
US20240080716A1 (en) Wireless communication method, communication apparatus, and communication system
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
WO2022267652A1 (zh) 一种通信方法、通信装置及通信系统
WO2023284551A1 (zh) 通信方法、装置和系统
WO2022252651A1 (zh) 一种无线通信方法及装置
WO2022188568A1 (zh) 一种无线通信方法、通信装置及通信系统
CN114424498B (zh) 数据传输方法、装置、系统和存储介质
WO2021147105A1 (zh) 通信方法及装置
WO2021081915A1 (zh) 通信方法、装置及系统
CN115696462A (zh) 一种网络编码方法及装置
WO2023273745A1 (zh) 一种通信方法、通信装置及通信系统
WO2024012376A1 (zh) 一种通信方法、通信装置及通信系统
WO2023109581A1 (zh) 检测方法、通信装置及通信系统
WO2023016298A1 (zh) 一种业务感知方法、通信装置及通信系统
WO2024027633A1 (zh) 一种业务流属性配置方法、装置和系统
WO2022257629A1 (zh) 一种无线通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022803539

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022803539

Country of ref document: EP

Effective date: 20231115

NENP Non-entry into the national phase

Ref country code: DE