WO2024027355A1 - 一种多层反光复合材料及其制备方法 - Google Patents

一种多层反光复合材料及其制备方法 Download PDF

Info

Publication number
WO2024027355A1
WO2024027355A1 PCT/CN2023/100988 CN2023100988W WO2024027355A1 WO 2024027355 A1 WO2024027355 A1 WO 2024027355A1 CN 2023100988 W CN2023100988 W CN 2023100988W WO 2024027355 A1 WO2024027355 A1 WO 2024027355A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent
reflective
insulating layer
transparent insulating
Prior art date
Application number
PCT/CN2023/100988
Other languages
English (en)
French (fr)
Inventor
潘锐
吴来喜
王军林
Original Assignee
无锡荷雨新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210935565.3A external-priority patent/CN115216236A/zh
Priority claimed from CN202222042218.6U external-priority patent/CN218989143U/zh
Application filed by 无锡荷雨新能源科技有限公司 filed Critical 无锡荷雨新能源科技有限公司
Publication of WO2024027355A1 publication Critical patent/WO2024027355A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means

Definitions

  • the invention relates to a reflective material and a preparation method thereof, in particular to a multi-layer reflective composite material and a preparation method thereof.
  • the existing technology applies a metal-coated thin film material to the back glass of the cell or battery string gap to increase the power of the module.
  • this can easily cause the metal coating to directly contact the cell and conductive solder, resulting in a short circuit. , which reduces the power of the module; at the same time, the metal reflective layer is easily scratched and corroded during the application process, affecting its reflective effect.
  • the invention patent with patent number CN108010981A discloses a reflective film that improves photovoltaic conversion efficiency, including a base material layer and an adhesive layer disposed on the lower layer of the base material layer, a microstructure layer disposed on the upper layer of the base material layer, and The reflective layer on the microstructure layer is an aluminum-plated layer or a silver-plated layer.
  • the existing technology usually applies an insulating layer on the surface of the metal reflective layer.
  • the material of the insulating layer has low hardness and is difficult to withstand high temperatures. In actual use, the insulation effect cannot be achieved well.
  • the purpose of the invention is to provide a double-sided reflective, insulating, optically efficient multi-layer reflective composite material and a preparation method thereof.
  • the present invention proposes a multi-layer reflective composite material, which is characterized in that it includes a metal reflective layer that can reflect light on both sides.
  • the metal reflective layer is in the shape of a triangular corrugation.
  • the upper and lower sides are provided with transparent insulating layers.
  • the transparent insulating layer is One side is flat, the other side is triangular corrugated to fit the metal reflective layer, and the flat side of the transparent insulating layer is provided with a transparent hard anti-adhesive layer.
  • a transparent activation layer is provided on one side of the outer surface of the transparent hard anti-adhesive layer, which can enhance the adhesive force of the transparent hard anti-adhesive layer.
  • a transparent adhesive layer is also included to facilitate the installation of the reflective material for practical applications.
  • the surface of the metal reflective layer is plated with a metal oxide protective layer with a thickness of 10-20 nm, which can prevent wear and corrosion of the metal reflective layer.
  • the height of the metal reflective layer is between 5-20um, the thickness is between 50-150nm, and the vertex angle is 120° ⁇ 5°, the top angle has a circular chamfer, the diameter is 0.1-2um, the extension direction of the corrugation is not parallel to the length direction of the composite material; the height of the transparent insulating layer does not exceed 75um; the thickness of the transparent hard anti-adhesive layer is between 5 -50um.
  • the transparent hard anti-adhesive layer is only provided outside the upper transparent insulating layer or the lower transparent insulating layer, or is provided outside the transparent insulating layers on both sides at the same time to play the role of insulation and support.
  • the height of the transparent activation layer does not exceed 2um, which not only plays an activation role but also reduces the impact on light transmission.
  • the transparent adhesive layer is located on the outermost upper surface or the outermost lower surface of the composite material, and its thickness is no more than 100um. Different sticking positions are suitable for different usage methods.
  • the visible light reflectivity of the metal reflective layer is greater than 95%, and its optical density is greater than 2.0; the light transmittance of the transparent insulating layer and transparent hard anti-adhesive layer is greater than 89%, and the light refractive index is between 1.40-1.60 , the volume resistivity is greater than 1.0E+13 ⁇ CM, the softening point of the transparent hard anti-adhesive layer is greater than 90 degrees, and it has good insulation and weather resistance properties.
  • the preparation method of reflective composite materials according to the present invention includes the following steps:
  • Step 1 Set the top angle, bottom angle, and depth of the mold, and set the horizontal inclination angle of the mold, so that the transparent insulation layer material can be cooled and shaped on the preset reflective structure mold or excited and shaped by UV light to form a transparent insulation layer.
  • Step 2 Vacuum evaporate, sputter, or use plasma technology to achieve aluminum plating on the transparent insulating layer to form a double-sided reflective metal layer.
  • Step 3 Coat a transparent insulating layer material on the surface of the metal plating layer, allow it to fully infiltrate and then solidify to form a transparent insulating layer.
  • Step 4 Coat or composite the insulating material on the surface of the transparent insulating layer or the transparent insulating layer, fully wet it and then solidify and shape to form a transparent hard anti-stick layer, or use high-energy electron beams to surface the transparent insulating layer or the transparent insulating layer. Processed to form a transparent hard anti-adhesive layer.
  • step 4 also includes the following steps: coating an activation treatment material on the surface of the transparent hard anti-adhesive layer, and forming a transparent activation layer after drying.
  • step 4 also includes the following step: coating one side of the reflective composite material with a transparent weather-resistant hot melt adhesive to form a transparent adhesive layer.
  • step 2 also includes performing high-energy oxidation treatment or evaporation sputtering on the surface of the metal reflective layer to form or add a metal oxide protective layer.
  • the material of the transparent insulating layer in step 1 is polyethylene terephthalate PET, polymethyl methacrylate PMMA, copolyester PETG, acrylonitrile and styrene copolymer ASA, 4- Methylpentene, cyclic olefin copolymer COC, polycarbonate PC, polyester acrylate UV curing glue, polyurethane acrylate UV curing glue, epoxy acrylate UV curing glue or aliphatic polyurethane methyl One or more types of acrylic UV curable glue.
  • the material of the transparent insulating layer in step 3 is ethylene acrylate EAA, ethylene vinyl acetate EVA, polyolefin, polyester acrylate UV curing glue, polyurethane acrylate UV curing glue, epoxy acrylate One or more types of UV-curable glue or aliphatic polyurethane methacrylate UV-curable glue.
  • the material of the transparent hard anti-adhesive layer in step 4 is polyethylene terephthalate PET, polymethyl methacrylate PMMA, copolyester PETG, acrylonitrile and styrene copolymer ASA, Cyclic olefin copolymer COC, polycarbonate PC, cross-linked EVA, cross-linked EAA, cross-linked polyolefin, polyester acrylate UV curing glue, polyurethane acrylate UV curing glue, epoxy acrylic One or more types of ester UV curing glue or aliphatic polyurethane methacrylate UV curing glue.
  • the activation treatment material is obtained by coating and curing a copolymer of chlorotrifluoroethylene and vinyl ether alternately arranged and an isocyanate curing agent weighed at a solid ratio of 10:1 and then diluted to 20% solid content, or by fat It is obtained by curing aliphatic polyester materials and amino-based curing agents, or by curing aliphatic polyurethane materials and isocyanate, or by curing polyhydroxy acrylate-based UV curing.
  • the material composition of the transparent adhesive layer is a host resin with a mass fraction of 96%-98%, a peroxide cross-linking agent with a mass fraction of 0.1%-0.6%, and a mass fraction of 0.1%-0.5%.
  • the co-crosslinking agent is a silane coupling agent with a mass fraction of 0.2%-0.9% and a UV absorber with a mass fraction of not less than 1.5%.
  • the main resin is ethylene vinyl acetate copolymer, ethylene octene copolymer, ethylene acrylic copolymer, ethylene acrylate copolymer, polyester hot melt adhesive containing 18%-33% VA.
  • One or more types of polyamide hot melt adhesive or polyurethane hot melt adhesive are preferred.
  • the metal reflective layer has a certain angle to achieve directional reflection of sunlight.
  • the metal reflective layer It can effectively reflect the light from the illumination side and the backlight side to the surface of the double-sided battery module, thereby achieving the maximum output power of the module; at the same time, the insulating layer realizes the insulation between the metal reflective layer and the battery, solder ribbon or backplane, and is transparent and hard.
  • the anti-adhesive layer plays the role of reinforcing insulation and supporting and reinforcing the insulation layer.
  • the transparent adhesive layer fixes the reflective material on the solar module.
  • the metal oxide protective layer on the surface of the metal reflective layer prevents corrosion of the metal reflective layer.
  • the present invention has the following significant advantages: 1. It is provided with a triangular corrugated metal reflective layer with a fixed angle. The surface of the metal reflective layer has a metal oxide protective layer, which can effectively reflect visible light and increase the efficiency of photovoltaic components. Efficiency; 2. It is equipped with a transparent insulating layer that can completely cover the metal reflective layer. It is insulating, easy to process, saves materials, and at the same time protects the reflective layer. In the component packaging structure, it can avoid direct contact between the metal plating layer and the component packaging material. contact, thereby avoiding aging corrosion of various small molecule compounds in the packaging material formula and extending the service life of the reflective material; 3.
  • Reflective composite materials can be directly extruded and cooled on precision rollers, or can be formed by precision engraving and UV curing. The production process is simple, the production cost is low, and the production efficiency is high.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural diagram of Embodiment 2 of the present invention.
  • Figure 3 is a schematic structural diagram of Embodiment 3 of the present invention.
  • Figure 4 is a schematic structural diagram of the present invention with transparent hard anti-adhesive layers on both sides;
  • Figure 5 is a schematic structural diagram of a comparative experiment in Embodiment 3 of the present invention.
  • Figure 6 is a schematic structural diagram of Embodiment 4 of the present invention.
  • a reflective composite material which includes a metal reflective layer 3 and a transparent insulating layer covering both sides of the reflective layer and a transparent hard anti-adhesive layer 4 on the outer surface of the transparent insulating layer.
  • the preparation method of the composite material is as follows:
  • Step 1 Set the top angle of the high-precision mold to 60 degrees, the bottom angle to 120 degrees, the prism depth to 20 microns, and the mold to 78 degrees along the mechanical direction of the film; put the PET sliced particles into the extruder , set the extrusion temperature to 250 degrees; then cast it onto a mold with a preset reflective structure, cool and shape it to form a transparent insulating layer 1, with the overall thickness controlled at 40 microns.
  • Step 2 Perform vacuum evaporation on the transparent insulating layer 1 to achieve aluminum plating to form a metal reflective layer 3.
  • the process parameters during the aluminum plating process are controlled as follows: vacuum degree is 6 ⁇ 10-4mbar, unwinding tension is 180-200N, winding tension is 40-50N, and linear speed is 120 meters per minute.
  • the thickness of the aluminum layer is controlled to be 700-900 Angstroms, and the optical density is 4.0.
  • Step 3 Set the extruder temperature to 280 degrees, melt-coat EAA on the surface of the metal reflective layer 3, and control the thickness to 20 microns to form a transparent insulating layer 2.
  • Step 4 configure acrylic UV curing glue, use a smooth structure back roller to fully infiltrate the glue and then solidify, apply it on the surface of the transparent insulating layer 1, control the thickness to 25 microns, and the hardness to above 2H to form a transparent hard
  • the anti-adhesive layer 4 is used to obtain an insulating hard directional reflective film capable of transmitting light on both sides.
  • the transparent hard anti-adhesive layer 4 can also be provided only on the outer surface of the transparent insulating layer 2, or at the same time on both sides of the outer surfaces of the transparent insulating layers.
  • the transparent insulating layer 2 of the composite material in this embodiment can also be a double-layer co-extrusion layer.
  • EAA and 4-methylpentene can be distributed at 10 microns and 10 microns, and co-extruded onto the metal aluminum layer, in which ethylene The acrylic EAA layer is bonded to On the metallic aluminum layer.
  • the composite material includes a metal reflective layer, a transparent insulating layer covering both sides of the reflective layer, a transparent hard anti-adhesive layer 4 and a transparent activation layer 5.
  • the transparent hard anti-adhesive layer 4 is located on the transparent insulating layer.
  • the transparent activation layer 5 is provided on the surface of the transparent hard anti-adhesive layer 4.
  • Step 1 Set the top angle of the high-precision mold to 60 degrees, the bottom angle to 120 degrees, the prism depth to 15 microns, and the mold to 45 degrees along the mechanical direction of the film; unwind the 50-micron release film, with the release film
  • the molding force is about 50 grams/25mm, and then coated with acrylic UV curing glue, then transferred to a high-precision mold, and shaped by UV curing.
  • the coating thickness is controlled at 25 microns to form a transparent insulating layer 1.
  • Step 2 Perform vacuum evaporation on the transparent insulating layer 1 to achieve aluminum plating to form a metal reflective layer 3.
  • the process parameters during the aluminum plating process are controlled as follows: the vacuum degree is 6 ⁇ 10-4mbar, the unwinding tension is 180-200N, the winding tension is 40-50N, and the linear speed is 115 meters per minute.
  • the thickness of the aluminum layer is controlled to be 700-900 Angstroms, and the optical density is 4.0.
  • Step 3 Unwind the film containing the release backing again, apply acrylic UV curing glue on the aluminum surface, and use a smooth structure back roller to fully infiltrate the glue and then solidify. Control the thickness to 25 microns and the hardness to above 2H. A transparent insulating layer 2 is formed.
  • Step 4 Peel off the release film, put the PMMA into the extruder, set the extruder temperature to 260 degrees, and apply it on the outer surface of the transparent insulating layer 1 after hot melting to form a transparent hard anti-adhesive layer 4, with the thickness controlled at 15 Micron.
  • Step 5 Weigh the alternating copolymer of chlorotrifluoroethylene and vinyl ether and the isocyanate curing agent at a solid ratio of 10:1, dilute it to 20% solid content, and then apply it on the surface of the transparent hard anti-adhesive layer 4 , after drying, a transparent activation layer 5 is formed, and the thickness is controlled to 2 to 3 microns.
  • the transparent hard anti-adhesive layer 4 and the transparent activation layer 5 can also be provided only on the outer surface of the transparent insulating layer 2 , or they can be provided on the outer surfaces of the transparent insulating layers on both sides at the same time.
  • the transparent hard anti-adhesive layer 4 of the composite material in this embodiment can also be a double-layer co-extrusion layer.
  • the cross-linked EAA and PMMA can be distributed at 10 microns and 10 microns, and co-extruded to the outer surface of the transparent insulating layer.
  • a reflective composite material which includes a metal reflective layer, a transparent insulating layer covering both sides of the reflective layer, a transparent hard anti-adhesive layer 4 provided on the outer surface of the transparent insulating layer, and an outer transparent hard anti-adhesive layer 4 There is a transparent activation layer 5 and a transparent adhesive layer 6 on the surface.
  • Step 1 Set the top angle of the high-precision mold to 60 degrees, the bottom angle to 120 degrees, the prism depth to 15 microns, and the mold to 45 degrees along the mechanical direction of the film; unwind the 50-micron release film, with the release film Forming force 50g/25mm left and right, and then coated with acrylic UV curing glue, then transferred to a high-precision mold, and shaped by UV curing.
  • the coating thickness is controlled at 25 microns to form a transparent insulating layer 2.
  • the acrylic UV curing glue consists of the first acrylic monomer (hydroxypropyl acrylate, 80% mass fraction), the second acrylic monomer (dipropylene glycol diacrylate, 19.5% mass fraction) and the curing agent TPO (diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide, 0.5% mass fraction).
  • Step 2 Perform vacuum evaporation on the transparent insulating layer 2 to achieve aluminum plating to form a metal reflective layer 3.
  • the process parameters during the aluminum plating process are controlled as follows: the vacuum degree is 6 ⁇ 10-4mbar, the unwinding tension is 180-200N, the winding tension is 40-50N, and the linear speed is 115 meters per minute.
  • the thickness of the aluminum layer is controlled to be 700-900 Angstroms, and the optical density is 4.0.
  • Step 3 Unwind the film containing the release backing again, hot-melt-coat EVA hot-melt glue on the aluminum surface, fully squeeze and infiltrate the glue, and control the thickness to 25 microns to form a transparent insulating layer 1.
  • Step 4 A 15-micron-thick 4-methylpentene film is hot-pressed and bonded on the outer surface of the transparent insulating layer 1 to form a transparent hard anti-adhesive layer 4, and at the same time, electron beam irradiation is used to further improve the anti-stick layer. Layer bond strength and hardness.
  • Step 5 Weigh the polyhydroxyl polyester solution and amino curing agent at a solid ratio of 10:1, dilute it to 20% solid content, and then apply it on the surface of the transparent hard anti-adhesive layer 4. After drying, a transparent activation layer is formed. 5. Control the thickness to 2 to 3 microns.
  • Step 6 Remove the release backing, take 97.2% ethylene-octene copolymer POE by weight, 0.5% cross-linking agent TAEC by weight, and 0.5% co-crosslinking agent TMPTMA by weight. 0.3% silane coupling agent, 1.5% UV absorber UV531 by weight, premixed and dispersed at high speed; set the extruder temperature to 100 degrees, melt the premixed formula and apply it to the release backing that has just been removed On the surface of the transparent insulating layer 2, the thickness is controlled at 75 microns to form a transparent adhesive layer 6.
  • the transparent hard anti-adhesive layer 4 and the transparent activation layer 5 can also be provided only on the outer surface of the transparent insulating layer 2 , or they can be provided on both sides of the outer surfaces of the transparent insulating layers as shown in FIG. 4 .
  • the transparent adhesive layer 6 can also be provided on the outer surface of the transparent insulating layer 1 or the outer surface of the transparent activation layer 5 , that is, on the upper surface or lower surface of the reflective composite material.
  • the transparent hard anti-adhesive layer 4 of the composite material in this embodiment can also be a double-layer co-extrusion layer.
  • the cross-linked EVA and 4-methylpentene can be distributed at 10 microns and 10 microns, and co-extruded to a transparent state.
  • the outer surface of the insulation layer is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to a transparent film.
  • Embodiment 4 is a reflective composite material. Its structure is basically the same as that of the composite material in Embodiment 3. The difference is that a metal oxide protective layer 7 is provided on the surface of the metal reflective layer 3.
  • Step 1 Set the top angle of the high-precision mold to 60 degrees, the bottom angle to 120 degrees, the prism depth to 15 microns, and the mold to 45 degrees along the mechanical direction of the film; unwind the 38-micron transparent PET film and then coat Cover with acrylic UV curing glue, then transfer to a high-precision mold, and shape through UV curing.
  • the coating thickness is controlled at 25 micron to form a transparent insulating layer 1.
  • the proportion of acrylic cured glue consists of the first acrylic monomer (hydroxypropyl acrylate, 80% mass fraction), the second acrylic monomer (dipropylene glycol diacrylate, 19.5% mass fraction) and the curing agent TPO ( Diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide, 0.5% mass fraction) was obtained by mixing.
  • Step 2 Perform vacuum evaporation on the surface of the transparent insulating layer 1 to achieve aluminum plating to form a metal reflective layer 3.
  • the process parameters during the aluminum plating process are controlled as follows: the vacuum degree is 6 ⁇ 10-4mbar, the unwinding tension is 180-200N, the winding tension is 40-50N, and the linear speed is 115 meters per minute.
  • the thickness of the aluminum layer is controlled to be 700-900 Angstroms, and the optical density is 4.0.
  • Step 3 Perform high-energy surface treatment on the metal reflective layer 3 to form a metal aluminum oxide protective layer 7.
  • Step 4 Co-extrude EAA and HDPE onto the surface of the metal oxide protective layer, so that the EAA surface is attached to the metal oxide layer.
  • the total thickness is controlled to 20 microns, and the EAA and HDPE layers are each 10 microns to form a transparent insulating layer 2.
  • the melting point of HDPE is greater than 130 degrees, and 0.5% TAEC cross-linking agent is added.
  • the voltage is controlled at 100KV and the irradiation dose is 30kGy, so that the surface of the transparent insulating layer 2 reaches a cross-linking degree greater than 10%, thereby finally forming a transparent hard anti-stick layer 4.
  • Step 5 Weigh the polyhydroxyl polyester solution and amino curing agent at a solid ratio of 10:1, dilute it to 20% solid content, and then apply it on the surface of the transparent hard anti-adhesive layer 4. After drying, a transparent activation layer is formed. 5. Control the thickness to 2 to 3 microns.
  • Step 6 Take the ethylene octene copolymer POE with a weight fraction of 97.2%, the cross-linking agent TAEC with a weight fraction of 0.5%, the co-crosslinking agent TMPTMA with a weight fraction of 0.5%, and the silane coupling agent with a weight fraction of 0.3% , the ultraviolet absorber UV531 with a weight fraction of 1.5% is premixed and dispersed at high speed; set the extruder temperature to 100 degrees, melt the premixed formula and apply it to the surface of the transparent insulating layer 1, with the thickness controlled at 75 microns to form Transparent adhesive layer 6.
  • the transparent hard anti-adhesive layer 4 and the transparent activation layer 5 can also be provided only on the outer surface of the transparent insulating layer 1 , or simultaneously on the outer surfaces of the transparent insulating layers on both sides.
  • the transparent adhesive layer 6 can also be provided on the outer surface of the transparent insulating layer 2 or the outer surface of the transparent activation layer 5, that is, on the upper surface or lower surface of the reflective composite material.
  • the time span is 1 hour.
  • the experimental results are that the power of the solar module in the control group is 606.6W, and the efficiency increases by 1.1%; the power of the solar module in the experimental group is 608.4W, and the efficiency increases by 1.4%.
  • Experimental results show that the double-sided reflective composite material of the present invention can significantly increase the efficiency of solar modules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种多层反光复合材料及其制备方法,该反光复合材料包括双面反光的金属反光层,金属反光层上下两侧填充的透明绝缘层、透明硬质防粘层以及透明胶粘层;透明硬质防粘层可以设于上侧或者下侧绝缘层外,或同时设于两侧绝缘层外,起到加强绝缘或支撑的作用,其一侧设有透明活化层,可以增强透明硬质防粘层的粘结力;透明胶粘层可以设于复合材料的上表面最外侧或下表面最外侧,适用不同的使用方法;金属反光层外还设有金属氧化保护层,防止金属反光层腐蚀。本发明利用金属层实现反光效果,增强太阳能组件的效率,利用多层耐热绝缘的透光层实现金属层与电池或背板、焊带之间绝缘,制备方法简单,降低成本的同时实现增效、稳固。

Description

一种多层反光复合材料及其制备方法 技术领域
本发明涉及一种反光材料及其制备方法,尤其涉及一种多层反光复合材料及其制备方法。
背景技术
在太阳能组件中,电池片或者电池串之间存在着间隙,利用这些间隙将太阳光重新利用起来,可以增加太阳能组件的功率,从而实现光伏组件更高的能量密度。
现有的技术将一个金属镀层的薄膜材料贴敷在电池片或者电池串间隙的背面玻璃上来提高组件的功率,但这样容易出现金属镀层直接接触电池片及导电焊锡等材料的情况,导致短路发生,使组件功率下降;同时金属反光层在贴敷应用的过程中容易被剐蹭、被腐蚀,影响其反光效果。例如专利号为CN108010981A的发明专利,该专利公开了一种提高光伏转换效率的反光膜,包括基材层及设于基材层下层的胶黏层、设于基材层上层的微结构层和微结构层上层的反光层,该反光层为镀铝层或镀银层。
为了克服这一缺陷,现有技术通常在金属反光层表面施加绝缘层,但是绝缘层的材质多硬度较低,难耐高温,在实际使用的过程中不能很好地实现绝缘效果。
另外,现有技术中通常只利用金属镀层单面反光,在其背光面设有多层支撑或粘接结构,不保证该结构的透光性,难以发挥其背光面的反光效果,反光材料的反光性能仍有较大提升空间。
发明内容
发明目的:本发明的目的是提供一种双面反光的、绝缘的、光学高效的多层反光复合材料及其制备方法。
技术方案:本发明提出了一种多层反光复合材料,其特征在于,包括双面可反光的金属反光层,金属反光层为三角波纹形,上下两侧设有透明绝缘层,透明绝缘层一侧为平面,另一侧为契合金属反光层的三角波纹形,透明绝缘层平面一侧设有透明硬质防粘层。
优选地,所述透明硬质防粘层外表面一侧设有透明活化层,可以增强透明硬质防粘层的粘结力。
优选地,还包括透明胶粘层,便于反光材料的实际应用安装。
优选地,所述金属反光层表面镀有金属氧化保护层,其厚度为10-20nm,可以防止金属反光层磨损、腐蚀。
优选地,所述金属反光层高度介于5-20um,厚度介于50-150nm,顶角为120°± 5°,顶角具有圆形倒角,直径为0.1-2um,波纹延伸方向与复合材料长度方向非平行;所述透明绝缘层的高度不超过75um;透明硬质防粘层的厚度介于5-50um。
优选地,所述透明硬质防粘层仅设于上侧透明绝缘层或下侧透明绝缘层外,或者同时设于两侧透明绝缘层外,起到绝缘、支撑的作用。
优选地,所述透明活化层的高度不超过2um,起到活化作用的同时降低对透光的影响。
优选地,所述透明胶粘层设于复合材料的上表面最外侧或下表面最外侧,其厚度不大于100um,不同的粘贴位置适应不同的使用方法。
优选地,所述金属反光层对可见光反射率大于95%,其光密度大于2.0;所述透明绝缘层、透明硬质防粘层的透光率大于89%,光折射率介于1.40-1.60,体积电阻率大于1.0E+13Ω·CM,透明硬质防粘层的软化点大于90度,具有良好的绝缘、耐候性能。
本发明所述的一种反光复合材料的制备方法,包括如下步骤:
步骤1,设定模具顶角、底角、深度,设定模具水平倾斜角度,使透明绝缘层材料在预先设定好的反光结构模具上冷却定型或UV光激发定型,形成透明绝缘层。
步骤2,在透明绝缘层上进行真空蒸镀、溅射或者利用等离子工艺实现镀铝,形成双面反光的金属反光层。
步骤3,在金属镀层表面涂覆透明绝缘层材料,使其充分浸润后固化定型,形成透明绝缘层。
步骤4,在透明绝缘层或透明绝缘层表面涂覆或复合绝缘材料,使其充分浸润后固化定型,形成透明硬质防粘层,或者通过高能电子束对透明绝缘层或透明绝缘层进行表面处理,形成透明硬质防粘层。
优选地,步骤4后还包括如下步骤,在透明硬质防粘层表面涂覆活化处理材料,干燥后形成透明活化层。
优选地,步骤4后还包括如下步骤,在反光复合材料的一侧涂覆透明的耐候性热熔胶,形成透明胶粘层。
优选地,所述步骤2还包括对金属反光层表面进行高能氧化处理或蒸镀溅射,形成或增加金属氧化保护层。
优选地,所述步骤1中的透明绝缘层的材料是聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、共聚酯PETG、丙烯腈与苯乙烯共聚物ASA、4-甲基戊烯、环状烯烃共聚物COC、聚碳酸酯PC、聚酯类丙烯酸酯UV固化胶水、聚氨酯类丙烯酸酯类UV固化胶水、环氧类丙烯酸酯类UV固化胶水或者脂肪族聚氨酯甲基丙烯酸酯类UV固化胶水的一种或几种。
优选地,所述步骤3中透明绝缘层的材料是乙烯丙烯酸EAA、乙烯醋酸乙烯酯EVA、聚烯烃、聚酯类丙烯酸酯UV固化胶水、聚氨酯类丙烯酸酯类UV固化胶水、环氧类丙烯酸酯类UV固化胶水或者脂肪族聚氨酯甲基丙烯酸酯类UV固化胶水的一种或几种。
优选地,所述步骤4中透明硬质防粘层的材料是聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、共聚酯PETG、丙烯腈与苯乙烯共聚物ASA、环状烯烃共聚物COC、聚碳酸酯PC、交联的EVA、交联的EAA、交联的聚烯烃、聚酯类丙烯酸酯UV固化胶水、聚氨酯类丙烯酸酯类UV固化胶水、环氧类丙烯酸酯类UV固化胶水或者脂肪族聚氨酯甲基丙烯酸酯类UV固化胶水的一种或几种。
优选地,所述活化处理材料通过三氟氯乙烯和乙烯基醚交替排列的共聚物和异氰酸酯固化剂按10:1固体份数称取后稀释到20%固体含量涂覆固化获得,或者通过脂肪族聚酯材料与氨基类固化剂固化得到,或者通过脂肪族聚氨酯材料与异氰酸酯固化得到,或者通过多羟基型丙烯酸酯类UV固化得到。
优选地,所述透明胶粘层的材料组成是质量分数为96%-98%的主体树脂,质量分数为0.1%-0.6%的过氧化物类交联剂,质量分数为0.1%-0.5%的助交联剂,质量分数为0.2%-0.9%的硅烷偶联剂和质量分数不小于1.5%的紫外线吸收剂。
优选地,所述主体树脂是含18%-33%VA的乙烯醋酸乙烯酯共聚物、乙烯辛烯类共聚物、乙烯丙烯酸类共聚物、乙烯丙烯酸酯类共聚物、聚酯类热熔胶、聚酰胺类热熔胶或者聚氨酯类热熔胶的一种或者几种。
工作原理:反光复合材料设于太阳能组件电池片或电池串间隙,其金属反光层具备一定的角度,可实现太阳光的定向反射;金属反光层两侧设有透明材质的绝缘层,金属反光层可将来自光照面和背光面的光都有效地反射到双面电池组件表面,从而实现最大的组件输出功率;同时绝缘层实现金属反光层与电池、焊带或背板间的绝缘,透明硬质防粘层起到加强绝缘以及支撑加固绝缘层的作用,透明胶粘层实现反光材料在太阳能组件上的固定,金属反光层表面的金属氧化保护层起到防止金属反光层腐蚀的作用。
有益效果:本发明与现有技术相比,具有如下显著优点:1、设有三角波纹形角度固定的金属反光层,金属反光层表面有金属氧化保护层,能够有效反射可见光,增加光伏组件的效率;2、设有能够完全包覆金属反光层的透明绝缘层,绝缘且便于加工、节省材料,同时对反光层起到保护作用,在组件封装结构中能避免金属镀层与组件封装材料的直接接触,从而避免封装材料配方中各种小分子化合物的老化腐蚀,延长反光材料的使用寿命;3、设有软化点大于90度的透明硬质防粘层和透明活化层,可以加强反光材料的绝缘性能和稳固性,能够提高反光材料的挺度,对反光层和绝缘层起到一定的保护作用,透明硬质防粘层防止绝缘层受热发生粘结,同时透明活化层提升对封装材料的 粘结力,使反光材料具有更好的耐候性。4、反光复合材料可以采取直接在精密辊上挤压冷却成型的方法,也可以通过精密雕刻UV固化成型的方式,生产工艺简单、生产成本低,生产效率高。
附图说明
图1为本发明实施例1的结构示意图;
图2为本发明实施例2的结构示意图;
图3为本发明实施例3的结构示意图;
图4为本发明两侧设有透明硬质防粘层的结构示意图;
图5为本发明实施例3进行对比实验的结构示意图;
图6为本发明实施例4的结构示意图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
如图1所示,实施例1
一种反光复合材料,该复合材料包括金属反光层3以及包覆于反光层两侧的透明绝缘层和透明绝缘层外表面的透明硬质防粘层4。
该复合材料的制备方法如下:
步骤1,将高精度模具上顶角设置为60度,底角为120度,棱镜深度设定为20微米,模具沿薄膜机械方向78度设置;将对PET切片粒子,投入到挤出机内,设定挤出温度为250度;然后流延到预先设定好的反光结构的模具上冷却定型形成透明绝缘层1,整体厚度控制在40微米。
步骤2,在透明绝缘层1上进行真空蒸镀实现镀铝,形成金属反光层3。镀铝过程中工艺参数控制为:真空度在6×10-4mbar,放卷张力为180-200N,收卷张力为40-50N,线速度为120米/每分钟。铝层厚度控制为700~900埃,光密度为4.0。
步骤3,设定挤出机温度在280度,将EAA熔融涂覆在金属反光层3的表层,控制厚度为20微米,形成透明绝缘层2。
步骤4,再配置丙烯酸酯类UV固化胶水,使用平滑结构背辊,使胶水充分浸润后固化,涂敷在透明绝缘层1的表面,控制厚度在25微米,硬度达到2H以上,形成透明硬质防粘层4,得到能够双面透光的绝缘的硬质定向反光膜。
本实施例中,透明硬质防粘层4还可以仅设于透明绝缘层2外表面,或者同时设于两侧透明绝缘层外表面。
本实施例中复合材料的透明绝缘层2也可以为双层共挤出层,可将EAA与4-甲基戊烯按10微米和10微米分配,共挤出到金属铝层上,其中乙烯丙烯酸EAA层贴合到 金属铝层上。
如图2所示,实施例2
一种反光复合材料,该复合材料包括金属反光层以及包覆于反光层两侧的透明绝缘层、透明硬质防粘层4和透明活化层5,透明硬质防粘层4设于透明绝缘层外表面,透明活化层5设于透明硬质防粘层4表面。
其制备方法如下:
步骤1,将高精度模具上顶角设置为60度,底角为120度,棱镜深度设定为15微米,模具沿薄膜机械方向45度设置;将50微米的离型膜放卷,其中离型力50克/25mm左右,然后涂覆上丙烯酸酯UV固化胶水,然后转移至高精度模具上,通过UV固化定型,涂层厚度控制在25微米,形成透明绝缘层1。
步骤2,在透明绝缘层1上进行真空蒸镀实现镀铝,形成金属反光层3。镀铝过程中工艺参数控制为:真空度在6×10-4mbar,放卷张力为180-200N,收卷张力为40-50N,线速度为115米/每分钟。铝层厚度控制为700~900埃,光密度为4.0。
步骤3,将含离型背衬的膜再次放卷,铝面上涂敷丙烯酸酯UV固化胶水,使用平滑结构背辊,使胶水充分浸润后固化,控制厚度在25微米,硬度达到2H以上,形成透明绝缘层2。
步骤4,将离型膜剥离,将PMMA投入挤出机,设置挤出机温度260度,热熔后涂覆在透明绝缘层1外表面,形成透明硬质防粘层4,厚度控制在15微米。
步骤5,将三氟氯乙烯和乙烯基醚交替排列的共聚物和异氰酸酯固化剂按10:1固体份数称取,稀释到20%固体含量,然后涂覆在透明硬质防粘层4表层,干燥后形成透明活化层5,控制厚度2~3微米。
本实施例中,透明硬质防粘层4与透明活化层5还可以仅设于透明绝缘层2外表面,或者同时设于两侧透明绝缘层外表面。
本实施例中复合材料的透明硬质防粘层4也可以为双层共挤出层,可将交联的EAA与PMMA按10微米和10微米分配,共挤出到透明绝缘层外表面。
如图3所示,实施例3
一种反光复合材料,该复合材料包括金属反光层以及包覆于反光层两侧的透明绝缘层、透明绝缘层外表面所设的透明硬质防粘层4、透明硬质防粘层4外表面的透明活化层5和透明胶粘层6。
其制备方法如下:
步骤1,将高精度模具上顶角设置为60度,底角为120度,棱镜深度设定为15微米,模具沿薄膜机械方向45度设置;将50微米的离型膜放卷,其中离型力50克/25mm 左右,然后涂覆上丙烯酸酯UV固化胶水,然后转移至高精度模具上,通过UV固化定型,涂层厚度控制在25微米,形成透明绝缘层2。其中丙烯酸酯UV固化胶水由第一丙烯酸类单体(丙烯酸羟丙酯,80%质量分数)、第二丙烯酸类单体(二丙二醇二丙烯酸酯,19.5%质量分数)和固化剂TPO(二苯基(2,4,6-三甲基苯甲酰基)氧化膦,0.5%质量分数)混合得到。
步骤2,在透明绝缘层2上进行真空蒸镀实现镀铝,形成金属反光层3。镀铝过程中工艺参数控制为:真空度在6×10-4mbar,放卷张力为180-200N,收卷张力为40-50N,线速度为115米/每分钟。铝层厚度控制为700~900埃,光密度为4.0。
步骤3,将含离型背衬的膜再次放卷,在铝面上热熔涂敷EVA热熔胶,使胶水充分挤压浸润,控制厚度在25微米,形成透明绝缘层1。
步骤4,将15微米厚度的4-甲基戊烯薄膜,通过热压贴合方式在透明绝缘层1外表面,形成透明硬质防粘层4,同时通过电子束辐照的方式进一步提高该层粘结强度和硬度。
步骤5,将含多羟基聚酯溶液和氨基固化剂按10:1固体份数称取,稀释到20%固体含量,然后涂覆在透明硬质防粘层4表层,干燥后形成透明活化层5,控制厚度为2~3微米。
步骤6,将离型背衬去除,取重量分数为97.2%的乙烯辛烯共聚物POE,重量分数为0.5%的交联剂TAEC,重量分数为0.5%的助交联剂TMPTMA,重量分数为0.3%的硅烷偶联剂,重量分数为1.5%的紫外线吸收剂UV531,高速预混分散;设定挤出机温度100度,将预混好的配方熔融后涂覆到刚去除离型背衬的透明绝缘层2表面,厚度控制在75微米,形成透明胶粘层6。
本实施例中,透明硬质防粘层4与透明活化层5还可以仅设于透明绝缘层2外表面,或者如图4所示同时设于两侧透明绝缘层外表面。此外,透明胶粘层6还可以设于透明绝缘层1外表面或透明活化层5外表面,即设于反光复合材料的上表面或下表面。
本实施例中复合材料的透明硬质防粘层4也可以为双层共挤出层,可将交联的EVA与4-甲基戊烯按10微米和10微米分配,共挤出到透明绝缘层外表面。
如图6所示,实施例4,一种反光复合材料,其结构与实施例3的复合材料结构基本相同,区别在于,其金属反光层3表面设有金属氧化保护层7。
其制备方法如下:
步骤1,将高精度模具上顶角设置为60度,底角为120度,棱镜深度设定为15微米,模具沿薄膜机械方向45度设置;将38微米的透明PET膜放卷,然后涂覆上丙烯酸酯UV固化胶水,然后转移至高精度模具上,通过UV固化定型,涂层厚度控制在25 微米,形成透明绝缘层1。其中丙烯酸酯固化胶水的配比由第一丙烯酸类单体(丙烯酸羟丙酯,80%质量分数)、第二丙烯酸类单体(二丙二醇二丙烯酸酯,19.5%质量分数)和固化剂TPO(二苯基(2,4,6-三甲基苯甲酰基)氧化膦,0.5%质量分数)混合得到。
步骤2,在透明绝缘层1表面进行真空蒸镀实现镀铝,形成金属反光层3。镀铝过程中工艺参数控制为:真空度在6×10-4mbar,放卷张力为180-200N,收卷张力为40-50N,线速度为115米/每分钟。铝层厚度控制为700~900埃,光密度为4.0。
步骤3,在金属反光层3上进行高能表面处理形成金属氧化铝保护层7。
步骤4,将EAA与HDPE共挤出到金属氧化保护层表面,使EAA面贴合在金属氧化层上,控制总厚度在20微米,EAA与HDPE层各为10微米,形成透明绝缘层2。其中HDPE熔点大于130度,添加有0.5%TAEC助交联剂。再通过电子束交联,控制电压在100KV,辐照剂量在30kGy,使透明绝缘层2表面达到大于10%的交联度,从而最终形成透明硬质防粘层4。
步骤5,将含多羟基聚酯溶液和氨基固化剂按10:1固体份数称取,稀释到20%固体含量,然后涂覆在透明硬质防粘层4表层,干燥后形成透明活化层5,控制厚度2~3微米。
步骤6,取重量分数为97.2%的乙烯辛烯共聚物POE,重量分数为0.5%的交联剂TAEC,重量分数为0.5%的助交联剂TMPTMA,重量分数为0.3%的硅烷偶联剂,重量分数为1.5%的紫外线吸收剂UV531,高速预混分散;设定挤出机温度100度,将预混好的配方熔融后涂覆到透明绝缘层1表面,厚度控制在75微米,形成透明胶粘层6。
实施例4中,透明硬质防粘层4与透明活化层5还可以仅设于透明绝缘层1外表面,或者同时设于两侧透明绝缘层外表面。此外,透明胶粘层6还可以设于透明绝缘层2外表面或透明活化层5外表面,即设于反光复合材料的上表面或下表面。
对实施例3中反光复合材料进行以下实验:
以600W标准太阳能组件为空白组;将图5所示的反光复合材料贴在电池板缝隙间,透明胶粘层与太阳能组件背板粘结,作为实验组;同时将普通单面反光材料设于太阳能背板上,作为对照组。
时间跨度为1小时。
实验结果为对照组太阳能组件功率为606.6W,功效增加1.1%;实验组太阳能组件功率为608.4W,功效增加1.4%。实验结果表明,本发明所述的双面反光的复合材料可以起到明显的增加太阳能组件功效的效果。

Claims (19)

  1. 一种多层反光复合材料,其特征在于,包括双面可反光的金属反光层(3),所述金属反光层(3)为三角波纹形,上下两侧设有透明绝缘层,透明绝缘层一侧为平面,另一侧为契合金属反光层(3)的三角波纹形,透明绝缘层平面一侧设有透明硬质防粘层(4)。
  2. 根据权利要求1所述的多层反光复合材料,其特征在于,所述透明硬质防粘层(4)外表面一侧设有透明活化层(5)。
  3. 根据权利要求1所述的多层反光复合材料,其特征在于,还包括透明胶粘层(6)。
  4. 根据权利要求1所述的多层反光复合材料,其特征在于,所述金属反光层(3)表面镀有金属氧化保护层(7),其厚度为10-20nm。
  5. 根据权利要求1所述的多层反光复合材料,其特征在于,所述金属反光层(3)高度介于5-20um,厚度介于50-150nm,顶角为120°±5°,顶角具有圆形倒角,直径为0.1-2um,波纹延伸方向与复合材料长度方向非平行;所述透明绝缘层的高度不超过75um;透明硬质防粘层(4)的厚度介于5-50um。
  6. 根据权利要求1所述的多层反光复合材料,其特征在于,所述透明硬质防粘层(4)仅设于上侧透明绝缘层(2)或下侧透明绝缘层(1)外,或者同时设于两侧透明绝缘层外。
  7. 根据权利要求2所述的多层反光复合材料,其特征在于,所述透明活化层(5)的高度不超过2um。
  8. 根据权利要求3所述的多层反光复合材料,其特征在于,所述透明胶粘层(6)设于复合材料的上表面最外侧或下表面最外侧,其厚度不大于100um。
  9. 根据权利要求1所述的多层反光复合材料,其特征在于,所述金属反光层(3)对可见光反射率大于95%,其光密度大于2.0;所述透明绝缘层(1)、透明绝缘层(2)、透明硬质防粘层(4)的透光率大于89%,光折射率介于1.40-1.60,体积电阻率大于1.0E+13Ω·CM,透明硬质防粘层(4)的软化点大于90度。
  10. 一种权利要求1所述的反光复合材料的制备方法,其特征在于,包括如下步骤:
    步骤1,设定模具顶角、底角、深度,设定模具水平倾斜角度,使透明绝缘层材料在预先设定好的反光结构模具上冷却定型或UV光激发定型,形成透明绝缘层(1)。
    步骤2,在透明绝缘层(1)上进行真空蒸镀、溅射或者利用等离子工艺实现镀铝,形成双面反光的金属反光层(3)。
    步骤3,在金属镀层表面涂覆透明绝缘层材料,使其充分浸润后固化定型,形成透明绝缘层(2)。
    步骤4,在透明绝缘层(1)或透明绝缘层(2)表面涂覆或复合绝缘材料,使其充 分浸润后固化定型形成透明硬质防粘层(4),或者通过高能电子束对透明绝缘层(1)或透明绝缘层(2)进行表面处理,形成透明硬质防粘层(4)。
  11. 一种权利要求10所述的反光复合材料的制备方法,其特征在于,所述步骤4后还包括如下步骤,在透明硬质防粘层(4)表面涂覆活化处理材料,干燥后形成透明活化层(5)。
  12. 一种权利要求10所述的反光复合材料的制备方法,其特征在于,所述步骤4后还包括如下步骤,在反光复合材料的一侧涂覆透明的耐候性热熔胶,形成透明胶粘层(6)。
  13. 一种权利要求10所述的反光复合材料的制备方法,其特征在于,所述步骤2还包括对金属反光层(3)表面进行高能氧化处理或进行蒸镀溅射,形成或增加金属氧化保护层(7)。
  14. 根据权利要求10所述的多层反光复合材料的制备方法,其特征在于,所述步骤1中的透明绝缘层(1)材料是聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、共聚酯PETG、丙烯腈与苯乙烯共聚物ASA、4-甲基戊烯、环状烯烃共聚物COC、聚酯类丙烯酸酯UV固化胶水、聚氨酯类丙烯酸酯类UV固化胶水、环氧类丙烯酸酯类UV固化胶水或者脂肪族聚氨酯甲基丙烯酸酯类UV固化胶水的一种或几种。
  15. 根据权利要求10所述的多层反光复合材料的制备方法,其特征在于,所述步骤3中透明绝缘层(2)材料是EVA、聚烯烃、乙烯丙烯酸EAA、聚酯类丙烯酸酯UV固化胶水、聚氨酯类丙烯酸酯类UV固化胶水、环氧类丙烯酸酯类UV固化胶水或者脂肪族聚氨酯甲基丙烯酸酯类UV固化胶水的一种或几种。
  16. 根据权利要求10所述的多层反光复合材料的制备方法,其特征在于,所述步骤4中透明硬质防粘层(4)的材料是聚对苯二甲酸乙二醇酯PET、聚甲基丙烯酸甲酯PMMA、共聚酯PETG、丙烯腈与苯乙烯共聚物ASA、环状烯烃共聚物COC、聚碳酸酯PC、交联的EVA、交联的EAA、交联的聚烯烃、聚酯类丙烯酸酯UV固化胶水、聚氨酯类丙烯酸酯类UV固化胶水、环氧类丙烯酸酯类UV固化胶水或者脂肪族聚氨酯甲基丙烯酸酯类UV固化胶水的一种或几种。
  17. 根据权利要求11所述的多层反光复合材料的制备方法,其特征在于,所述活化处理材料通过三氟氯乙烯和乙烯基醚交替排列的共聚物和异氰酸酯固化剂按10:1固体份数称取后稀释到20%固体含量涂覆固化获得,或者通过脂肪族聚酯材料与氨基类固化剂固化得到,或者通过脂肪族聚氨酯材料与异氰酸酯固化得到,或者通过多羟基型丙烯酸酯类UV固化得到。
  18. 根据权利要求12所述的多层反光复合材料的制备方法,其特征在于,所述透 明胶粘层(6)的材料组成是质量分数为96%-98%的主体树脂,质量分数为0.1%-0.6%的过氧化物类交联剂,质量分数为0.1%-0.5%的助交联剂,质量分数为0.2%-0.9%的硅烷偶联剂和质量分数不小于1.5%的紫外线吸收剂。
  19. 根据权利要求18所述的多层反光复合材料的制备方法,其特征在于,所述主体树脂是含18%-33%VA的乙烯醋酸乙烯酯共聚物、乙烯辛烯类共聚物、乙烯丙烯酸类共聚物、乙烯丙烯酸酯类共聚物、聚酯类热熔胶、聚酰胺类热熔胶或者聚氨酯类热熔胶的一种或者几种。
PCT/CN2023/100988 2022-08-04 2023-06-19 一种多层反光复合材料及其制备方法 WO2024027355A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210935565.3A CN115216236A (zh) 2022-08-04 2022-08-04 一种多层反光复合材料及其制备方法
CN202222042218.6 2022-08-04
CN202210935565.3 2022-08-04
CN202222042218.6U CN218989143U (zh) 2022-08-04 2022-08-04 一种多层复合材料反光膜

Publications (1)

Publication Number Publication Date
WO2024027355A1 true WO2024027355A1 (zh) 2024-02-08

Family

ID=89848450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100988 WO2024027355A1 (zh) 2022-08-04 2023-06-19 一种多层反光复合材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2024027355A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207781618U (zh) * 2017-12-28 2018-08-28 浙江祥邦科技股份有限公司 一种用于光伏组件增效的复合材料
CN108598208A (zh) * 2018-05-03 2018-09-28 中天科技精密材料有限公司 一种太阳能反光膜及其制作方法
CN108598184A (zh) * 2018-05-03 2018-09-28 中天科技精密材料有限公司 具有耐酸碱功能的光伏组件用反光膜保护层及其制作方法
CN208336246U (zh) * 2018-05-03 2019-01-04 中天科技精密材料有限公司 一种太阳能反光膜
CN110896106A (zh) * 2018-09-10 2020-03-20 中天科技精密材料有限公司 反光膜、光伏组件及反光膜制作方法
US20210384364A1 (en) * 2020-06-04 2021-12-09 Tsec Corporation Solar cell structure and fabrication method thereof
CN115216236A (zh) * 2022-08-04 2022-10-21 无锡荷雨新能源科技有限公司 一种多层反光复合材料及其制备方法
CN218989143U (zh) * 2022-08-04 2023-05-09 无锡荷雨新能源科技有限公司 一种多层复合材料反光膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207781618U (zh) * 2017-12-28 2018-08-28 浙江祥邦科技股份有限公司 一种用于光伏组件增效的复合材料
CN108598208A (zh) * 2018-05-03 2018-09-28 中天科技精密材料有限公司 一种太阳能反光膜及其制作方法
CN108598184A (zh) * 2018-05-03 2018-09-28 中天科技精密材料有限公司 具有耐酸碱功能的光伏组件用反光膜保护层及其制作方法
CN208336246U (zh) * 2018-05-03 2019-01-04 中天科技精密材料有限公司 一种太阳能反光膜
CN110896106A (zh) * 2018-09-10 2020-03-20 中天科技精密材料有限公司 反光膜、光伏组件及反光膜制作方法
US20210384364A1 (en) * 2020-06-04 2021-12-09 Tsec Corporation Solar cell structure and fabrication method thereof
CN115216236A (zh) * 2022-08-04 2022-10-21 无锡荷雨新能源科技有限公司 一种多层反光复合材料及其制备方法
CN218989143U (zh) * 2022-08-04 2023-05-09 无锡荷雨新能源科技有限公司 一种多层复合材料反光膜

Similar Documents

Publication Publication Date Title
KR101320024B1 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
EP1898470B1 (en) Use of a back sheet for photovoltaic modules and resulting photovoltaic module
CN1094831C (zh) 热熔基材、层压材料和层压材料制造方法
JP5414426B2 (ja) 複合フィルム
KR20080053469A (ko) 태양 전지 모듈용 밀봉 필름 및 태양 전지 모듈
JP5613093B2 (ja) フィルム、太陽電池用バックシートおよびフィルムの製造方法
KR101349734B1 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
TW201816030A (zh) 用於光重導向膜之黏著劑
TW200823053A (en) Encapsulation film for photovoltaic module and photovoltaic module using the same
JP2011184488A (ja) ポリエステルフィルム及びその製造方法、並びに太陽電池モジュール
JP2010135652A (ja) 太陽電池用面状封止材および太陽電池モジュール
TW200528533A (en) Transparent gel adhesive, transparent gel adhesive sheet, and optical filter for display
WO2022062303A1 (zh) 间隙反光膜及其制备方法、光伏组件
JP4896558B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルムおよびそれを用いた太陽電池裏面保護膜
JP3901911B2 (ja) 透明積層フィルム
JP2006261288A (ja) 太陽電池用表面保護フィルムおよびそれを用いた太陽電池積層体
JP4928274B2 (ja) 反射防止導電性フィルム
JP2010165873A (ja) 裏面保護シート及びそれを用いた太陽電池モジュール
CN115216236A (zh) 一种多层反光复合材料及其制备方法
WO2024027355A1 (zh) 一种多层反光复合材料及其制备方法
JP2005183546A (ja) 太陽電池モジュール
KR102113225B1 (ko) 스마트 윈도우 필름 및 이의 제조방법
CN218989143U (zh) 一种多层复合材料反光膜
JP2008201922A (ja) コーティング剤、硬化コート層および構造体
JP2008214571A (ja) 帯電防止性ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849065

Country of ref document: EP

Kind code of ref document: A1