WO2024027007A1 - 发射模组的脏污监测系统、脏污检测方法及相关设备 - Google Patents

发射模组的脏污监测系统、脏污检测方法及相关设备 Download PDF

Info

Publication number
WO2024027007A1
WO2024027007A1 PCT/CN2022/123162 CN2022123162W WO2024027007A1 WO 2024027007 A1 WO2024027007 A1 WO 2024027007A1 CN 2022123162 W CN2022123162 W CN 2022123162W WO 2024027007 A1 WO2024027007 A1 WO 2024027007A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
dirt
light source
processor
optical
Prior art date
Application number
PCT/CN2022/123162
Other languages
English (en)
French (fr)
Inventor
孙瑞
王家麒
焦健楠
陶郅
王飞
Original Assignee
奥比中光科技集团股份有限公司
深圳奥芯微视科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥比中光科技集团股份有限公司, 深圳奥芯微视科技有限公司 filed Critical 奥比中光科技集团股份有限公司
Publication of WO2024027007A1 publication Critical patent/WO2024027007A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen

Definitions

  • This application relates to the field of three-dimensional visual sensing technology, and in particular to a dirt monitoring system for a transmitting module, a depth camera, an intelligent terminal, a dirt detection method, and a computer-readable storage medium.
  • Robots are widely used in various scenarios, such as food delivery robots, sweeping robots, etc.
  • Robots usually use structured light sensors, time-of-flight (TOF) sensors, etc.
  • TOF time-of-flight
  • Three-dimensional vision sensors perform visual perception to achieve functions such as spatial positioning, navigation, and obstacle avoidance.
  • the 3D vision sensor is used for a long time, the surface of the 3D vision sensor will inevitably become dirty, affecting the detection accuracy and other performance of the 3D vision sensor.
  • the main purpose of this application is to provide a dirt monitoring system, a depth camera, a smart terminal, a dirt detection method and a computer-readable storage medium for a launch module, aiming to solve the problem in the existing technology when the three-dimensional vision sensor is used for a long time.
  • Technical problems such as dirt appearing on the surface of the 3D vision sensor will affect the detection accuracy and other performance of the 3D vision sensor.
  • the pollution monitoring system includes a light source, an optical element, a detection element and a processor, wherein: the light source is used to emit light signals, and the optical element is located On the projection path of the light source, the detection element generates a photocurrent after receiving the optical signal reflected by the optical element.
  • the processor is used to calculate the reflectivity of the optical element to the optical signal based on the photocurrent. When the reflectivity of the optical element is greater than the first preset threshold , it is determined that the optical element is dirty.
  • the dirt monitoring system further includes a driver chip for driving the light source to emit light, and the driver chip is also used to adjust the luminous power of the light source according to the degree of dirt.
  • the processor when it is determined that the optical element is dirty, the processor is further configured to issue an optical element dirty reminder.
  • the processor when the reflectivity of the optical element is less than the second preset threshold and greater than the third preset threshold, the processor is also used to determine that the optical element is broken, and to issue an optical element breakage reminder and turn off the light source; when the optical element is broken When the reflectivity of the element is less than a third preset threshold, the processor is also used to determine that the optical element has fallen off, issue a reminder of the optical element falling off, and turn off the light source; wherein the second preset threshold is less than or equal to the first preset threshold.
  • the second aspect of this application provides a depth camera, which includes a receiving module and a pollution monitoring system of a transmitting module as described in any of the above embodiments.
  • the optical signal emitted by the light source is emitted by the optical element and then projected to the target object.
  • the module is used to receive the light signal reflected back from the target object.
  • a third aspect of this application provides an intelligent terminal, including a memory and a pollution monitoring system for the transmitting module described in the first aspect.
  • the fourth aspect of the present application provides a dirt detection method based on the dirt monitoring system described in the first aspect, including: controlling the light source to emit a light signal, and projecting the light signal to the target object after passing through the optical element; controlling the detection element to receive the detected
  • the optical element reflects the optical signal and generates a photocurrent; the reflectivity of the optical element to the optical signal is calculated based on the photocurrent. When the reflectivity of the optical element is greater than the first preset threshold, it is determined that the optical element is dirty.
  • a fifth aspect of the present application provides a computer-readable storage medium.
  • a dirt detection program is stored on the computer-readable storage medium. When the dirt detection program is executed by a processor, the steps of the above dirt detection method are implemented.
  • the detection element receives the optical signal reflected by the optical element and generates a photocurrent.
  • the processor calculates the reflectivity of the optical element to the optical signal based on the photocurrent.
  • the reflectivity of the optical element is greater than the first preset threshold , it is determined that the optical elements are dirty. Therefore, the dirt monitoring system can monitor whether the optical elements are dirty. When the optical elements are dirty, they can be detected in time, thereby ensuring the detection accuracy of the depth camera.
  • Figure 1 is a schematic structural diagram of some embodiments of the smart terminal of the present application.
  • Figure 2 is a schematic structural diagram of some embodiments of the depth camera of the present application.
  • Figure 3 is a schematic structural diagram of some embodiments of the pollution monitoring system of the transmitting module of the present application.
  • Figure 4 is a schematic diagram of the optical signal emitted by the transmitting module when the optical element is not dirty according to the embodiment of the present application;
  • Figure 5 is a schematic diagram of the optical signal emitted by the transmitting module when the optical element is dirty according to the embodiment of the present application;
  • Figure 6 is a fitting curve between the reflectivity and the degree of contamination of the optical element provided by the embodiment of the present application.
  • Figure 7 is a schematic flowchart of some embodiments of the dirt detection method provided by the embodiment of the present application.
  • the term “if” may be interpreted as “when” or “once” or “in response to determining” or “in response to detecting” depending on the context.
  • the phrase “if determined” or “if [the described condition or event] is detected” may be interpreted, depending on the context, to mean “once determined” or “in response to a determination” or “once the [described condition or event] is detected” event]” or “in response to detection of [the described condition or event]”.
  • 3D vision sensors such as structured light, binocular, iTOF, and dTOF can meet the application of robots for short-range obstacle avoidance, indoor space positioning, and navigation.
  • mobile robots usually have dust and other dirty environments in their applications.
  • dirt will inevitably appear on the surface. At this time, it will affect the detection accuracy and other performance of the 3D vision sensor, resulting in reliable detection. sexual decline.
  • This application provides an intelligent terminal, which includes a depth camera 100, a processor 200 and a memory 300.
  • the depth camera 100 is used to obtain depth images.
  • the processor 200 can be used to implement navigation, obstacle avoidance, and navigation based on the depth images.
  • the memory 300 is used to store data.
  • Smart terminals can be smart door locks, sweeping robots, service robots, mobile phones and other terminals, which are not listed here. It should be noted that the smart terminal may also include other functional modules or units, such as a heat dissipation module, a casing, etc., which are not specifically limited here.
  • FIG. 1 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the smart terminal to which the solution of the present application is applied. Specifically, the smart terminal More or fewer components may be included than shown in the figures, or certain components may be combined, or may have a different arrangement of components.
  • the depth camera 100 includes a circuit board 10, a transmitting module 11, a receiving module 12 and a control and processor 13.
  • the transmitting module 11 and the receiving module 12 are both installed on the circuit board 10 and are connected to the circuit board 10.
  • the control is connected to the processor 13.
  • the circuit board 10 provides current to the transmitting module 11 and the receiving module 12.
  • the transmitting module 11 is used to transmit an optical signal to the target object. After the optical signal reaches the target object, it will be reflected by the target object.
  • the receiving module The group 12 is used to receive the optical signal reflected back by the target object.
  • the control and processor 13 processes the optical signal received by the receiving module 12 to obtain the depth data of the target object, thereby measuring the depth distance, thereby satisfying the positioning requirements of the intelligent terminal. , navigation, obstacle avoidance and other visual perception needs.
  • the depth camera can be a structured light depth camera, an iTOF depth camera, a dTOF depth camera, etc., and is not limited here.
  • the emission module 11 includes a base 111, a light source 112, an optical element 113 and a detection element 114.
  • the base 111 includes a bottom plate and a side plate, and the bottom plate and the side plate form a housing.
  • the light source 112 is disposed on the bottom plate and is located in the receiving cavity 1111.
  • the detection element 114 is disposed in the receiving cavity 1111 on the bottom plate or the side plate.
  • the optical element 113 is disposed on the side plate 111 and is located on the projection path of the light source 112.
  • the light source 112 is used to emit a light signal
  • the optical element 113 is used to diffuse the light signal emitted by the light source 112, part of the light signal will be reflected by the optical element 113 when passing through the optical element 113
  • the detection element 114 is used to receive the light signal transmitted by the optical element 113.
  • 113 reflects the light signal and generates photocurrent.
  • the detection element 114 is disposed on the bottom plate and is located around the light source 112 .
  • the dirt monitoring system of the emission module includes a processor 130 and the light source 112, optical element 113, and detection element 114 in the emission module, or the dirt monitoring system includes the processor 130 and the The processor 130 is connected to the transmitting module 11 .
  • the processor 130 calculates the reflectivity of the optical element 113 to the light signal emitted by the light source 112 based on the photocurrent generated by the detection element 114. When the reflectivity of the optical element 113 is greater than the first preset threshold, it is determined that the optical element 113 is dirty.
  • the processor 130 calculates the reflectivity of the optical element 113 to the optical signal emitted by the light source 112 based on the total photocurrent corresponding to the optical signal emitted by the light source 112 and the photocurrent generated by the detection element 114 .
  • the first preset threshold is the reflectivity of the optical element 113 to the light signal emitted by the light source 112 when the optical element 113 is not dirty or has less dirt. For example, the highest reflectivity of the optical element 113 to the light signal when there is no dirt. 7%, then the first preset threshold may be 7%, 7.5%, 8%, etc., which is equal to or slightly larger than the highest reflectivity value.
  • the processor 130 in the dirt monitoring system may be the control and processor 13 in the depth camera 100. That is, the control and processor 13, the light source 112, the optical element 113, and the detection element 114 constitute the dirt sensor of the present application.
  • dirt monitoring system; or the processor 130 in the dirt monitoring system can also be the processor 200 in the smart terminal, that is, the processor 200, the light source 112, the optical element 113, and the detection element 114 constitute the dirt monitoring system of the present application;
  • the processor 130 in the dirt monitoring system can also be a separate processor, and the separate processor, the light source 112, the optical element 113, and the detection element 114 constitute the dirt monitoring system of the present application.
  • the reflectivity of the optical element 113 to the optical signal emitted by the light source 112 will inevitably increase, which will in turn lead to an increase in the reflectivity of the optical element 113 to the optical signal emitted by the light source 112.
  • the reflection effect increases, correspondingly causing the signal intensity of the optical signal received by the detection element 114 to increase, causing the photocurrent generated by the detection element 114 to increase.
  • the processor 130 detects that the photocurrent exceeds the preset threshold range, it indicates that the optical element If the reflectivity of 113 is greater than the first preset threshold, it can be determined that the optical element 113 is dirty, and the surface of the optical element 113 can be cleaned in time to ensure the reliability of the emission module 11 during long-term operation.
  • the surface of the optical element 113 becomes dirty
  • the receiving module 12 since the receiving module 12 is arranged adjacent to the transmitting module 11 and the surface of the optical element 113 becomes dirty, the surface of the receiving module 12 will also most likely become dirty. Dirty conditions occur, so when cleaning the transmitting module 11, the receiving module 12 can be cleaned at the same time, thereby ensuring the accuracy of the light obtained by the receiving module 12 and improving the accuracy of the depth camera 100.
  • the base 111 is made of ceramic material.
  • the base 111 made of ceramic has good heat dissipation performance and can dissipate heat for the light source 112 and the detection element 114 .
  • the base 111 can be made of other materials, which is not limited here.
  • the light source 112 is installed on the base and located in the receiving cavity 1111.
  • the light emitted by the light source 112 is visible light and/or infrared light.
  • the light source 112 is a vertical cavity surface emitting laser or an edge emitting laser. device.
  • the optical element 113 is installed on the side panel and is located on the emission path of the light source 112.
  • the optical element 113 can cover the opening of the receiving cavity 1111.
  • the optical element 113 is a diffuser or a diffractive optical element.
  • the optical element 113 includes a diffuser or DOE, and a glass cover located on the light exit side of the diffuser; in some embodiments, the optical element 113 includes a collimating element and a diffuser ( diffuser), or collimation elements and DOE.
  • the number of detection elements 114 may be one or more. When there are multiple detection elements 114 , the multiple detection elements 114 may be uniformly or arbitrarily distributed in the receiving cavity 1111 . For example, the multiple detection elements 114 may be distributed around the light source 112 . In some embodiments, the detection element 114 and the light source 112 are integrated into one device to reduce the volume of the emission module 11 .
  • the detection element 114 is a photodiode (Photo-Diode, PD) as an example for exemplary explanation. It should be noted that the detection element 114 is not limited to a photodiode, and may also be other elements.
  • the light source 112 is not limited to a vertical-cavity surface-emitting laser or an edge-emitting laser transmitter, but may also be other types.
  • the optical element 113 is not limited to diffuser or DOE, and may also be other elements. The light source 112, optical element 113 and detection element 114 are not limited here.
  • the detection element 114 generates a photocurrent after receiving the optical signal.
  • the photocurrent can represent the intensity of the optical signal received by the detection element 114.
  • the detection element 114 is connected to the processor 130.
  • the processor 130 can according to the photocurrent.
  • the reflectivity of the optical element 113 to the light signal emitted by the light source 112 is calculated. When the reflectance is greater than the first preset threshold, it indicates that the optical element 113 is dirty, and the processor 130 is used to determine that the optical element 113 is dirty. Further, the processor 130 is also configured to issue a reminder that the optical element 113 is dirty, to remind the user that the optical element 113 is dirty, so that the user can clean the optical element 113 in time.
  • the processor 130 is also used to determine the degree of dirt of the optical element 113 according to the photocurrent. Specifically, the reflectivity of the optical element 113 is different under different degrees of dirt, and the corresponding photocurrent is also different. The mapping relationship between the photocurrent or reflectivity and the degree of dirt can be calibrated in advance. After obtaining the photocurrent, the processor 130 The corresponding reflectivity can be calculated to further determine the degree of contamination of the optical element 113 .
  • Figure 4 shows a diagram of the optical signal emitted by the emission module 11 when the surface of the emission module 11 is not dirty. After the optical signal is diffused by the optical element 113, due to the There is a certain reflection inside 113. After passing through the optical element 113, most of the optical signals are irradiated into the environment at a certain Field of View (FOV). A small part of the optical signals are reflected by the optical element 113 and then received by the detection element 114. .
  • Figure 5 shows a schematic diagram of the light signal emitted by the emission module 11 when the surface of the emission module 11 is dirty.
  • the processor 130 determines that the surface of the optical element 113 is dirty, and sends a dirty reminder instruction to the user to remind the user that the need to perform Dirt erasure processing.
  • the degree of dirtiness has a certain mapping relationship with the intensity of the photocurrent, and the processor can calculate the degree of dirtiness based on the photocurrent. It should be noted that part of the optical signal reflected by the optical element 113 directly enters the detection element 114, and part is reflected to the cavity wall of the receiving cavity 1111 and then reflected by the cavity wall to the detection element 114.
  • the dirt level in order to detect the degree of dirt, the dirt level may be calibrated in advance. For example, dirt can be gradually added to the surface of the optical element 113 in a laboratory or production line, and the photocurrent I of the corresponding photodiode under each degree of dirt can be marked and the reflectivity R of the optical signal of the optical element 113 can be calculated accordingly. , a curve is fitted according to the degree of dirt W and the corresponding reflectance R, as shown in Figure 6.
  • R 0 in Figure 5 is the reflectivity when there is no dirt
  • the first preset threshold can be is R 0 or slightly larger than R 0 .
  • the dirt monitoring system also includes a driver chip.
  • the driver chip is connected to the light source 112 and is used to drive the light source 112 to emit light.
  • the driver chip is used to control and adjust the luminous power of the light source 112 according to the degree of dirt.
  • the driver chip is connected to the processor 130.
  • the processor 130 further calculates the luminous power of the light source 112 after calculating the degree of contamination of the optical element 113, or the driver chip further calculates the luminous power of the light source 112 after obtaining the degree of contamination of the optical element 113.
  • the luminous power of the light source 112 is calculated, and then the driver chip adjusts the luminous power of the light source 112 to the calculated luminous power.
  • the driver chip can reduce the error caused by dirt by adjusting the power of the light source 112 .
  • the processor 130 when it is detected that the reflectivity of the optical element 113 is less than the second preset threshold and greater than the third preset threshold, the processor 130 is also used to determine that the optical element 113 is broken. Further, the processor 130 is also used to A rupture reminder of the optical element 113 is issued to remind the user that the optical element 113 is ruptured so that the user can replace the optical element 113 in time.
  • the second preset threshold is less than or equal to the first preset threshold. For example, when the optical element is not dirty and the lowest reflectivity of the optical signal is 5%, the second preset threshold can be 5%, and the third preset threshold can be 5%.
  • the threshold is close to 0 and may be 0.5% or 1%, for example.
  • the processor 130 when the reflectivity of the optical element 113 is detected to be less than the third preset threshold, the processor 130 is also used to determine that the optical element 113 has fallen off, and further issues a reminder that the optical element 113 has fallen off to remind the user that the optical element 113 has fallen off. off, so that the user can handle and install the optical element 113 back to the base 111 in time.
  • the processor 130 when it is detected that the reflectivity of the optical element 113 is less than the second preset threshold, the processor 130 is also used to turn off the light source 112 to avoid safety hazards caused by failure to turn off the light source 112 in time.
  • the intensity of the optical signal received by the detection element 114 can be represented by the photocurrent value generated by the detection element 114.
  • the larger the photocurrent value the more optical signals are received, the higher the reflectivity of the optical element 113, and the light
  • the processor 130 can calculate the reflectivity of the optical element 113 based on the value of the photocurrent of the detection element 114, and then It is determined based on the reflectivity whether the optical element 113 is cracked or detached.
  • the processor 130 detects that the reflectivity of the optical element 113 is less than the second preset threshold and greater than the third preset threshold through the photocurrent of the detection element 114, it can be determined that the optical element 113 is broken, and a rupture reminder of the optical element 113 is issued.
  • the processor 130 may directly issue or the processor 130 may control other devices to issue a reminder that the optical element 113 is dirty, that the optical element 113 is falling off, or that the optical element 113 is broken.
  • the dirt monitoring system also includes lamp beads.
  • the processor 130 controls the lamp beads to issue different warning colors according to different situations to respectively correspond to the rupture reminder of the optical element 113 and the detachment reminder of the optical element 113; in other cases,
  • the processor 130 is a device with a wireless connection function, and then wirelessly connects to the target user terminal to directly send a rupture reminder of the optical element 113 and/or a detachment reminder of the optical element 113 to the target user terminal.
  • corresponding reminders can also be sent in other ways.
  • the dirt monitoring system also includes a wireless communication module.
  • the processor 130 can send a rupture reminder of the optical element 113 and/or a detachment reminder of the optical element 113 to the user terminal through the wireless communication module. There is no restriction on this.
  • the processor 130 may use the sum of the values of the multiple detection elements 114 or The mean is determined.
  • the optical element 11 is dirty and the degree of dirt, which has universal applicability. , at the same time, it can also monitor whether the optical element 113 has fallen off or broken, thereby protecting human eye safety.
  • the luminous power of the light source 112 when the luminous power of the light source 112 is different, the intensity of the light received by the detection element 114 will be different, resulting in different photocurrents generated.
  • the total photocurrent corresponding to the optical signal emitted by the light source 112 at different luminous powers can be pre-calibrated.
  • the processor 130 calculates the effect of the optical element 113 on the optical signal. When the reflectivity of the light source 112 is obtained, the luminous power of the light source 112 can be obtained first, and then the total photocurrent corresponding to the luminous power can be matched. Then the reflectivity of the optical element calculated based on the total photocurrent is more accurate.
  • this embodiment takes into account the difference in photocurrent when using light sources 112 with different luminous powers through reflectivity, and the monitoring results are more accurate. precise.
  • part of the optical signal reflected by the optical element 113 may not be absorbed by the detection element 114.
  • This part of the optical signal can be calibrated in advance.
  • the optical element 113 can calibrate the optical signal when it is not dirty. The reflectivity is known, and then the proportion of the light signal reflected by the optical element 113 that cannot enter the detection element 114 when there is no dirt can be calibrated based on the known reflectivity through experiments, etc., and then the processor 130 can The photocurrent needs to consider this ratio when calculating the reflectivity of the optical element 113 to the optical signal. That is, the processor 130 calculates the reflectivity of the optical element 113 to the optical signal based on the ratio and the photocurrent.
  • multiple detection elements 114 can also be evenly arranged in the receiving cavity 1111 so that more of the optical signals reflected by the optical elements 114 are absorbed by the detection elements.
  • the receiving module includes a lens 121, a filter 122 and a photosensitive chip 123.
  • the transmitting module 11 is used to emit light signals to the target object.
  • the light signals reflected back by the target object are transmitted through the lens 121 and the filter 122.
  • the photosensitive chip 123 receives and the optical filter 122 is used to filter out at least part of the ambient light to avoid interference from the ambient light.
  • the photosensitive chip 123 is used to convert the received optical signal into an electrical signal.
  • the detection element 114 receives the optical signal reflected by the optical element 113 and generates a photocurrent.
  • the processor 130 calculates the reflectivity of the optical element 113 to the optical signal based on the photocurrent. When the reflectivity of the optical element 113 is greater than the third When a preset threshold is reached, it is determined that the optical element 113 is dirty. Therefore, the dirt monitoring system can monitor whether the optical element 113 is dirty. When the optical element 113 is dirty, it can be detected in time, thereby ensuring the detection accuracy of the depth camera 100.
  • this application also provides a dirt detection method, in which the dirt detection method is mainly used to detect dirt on the optical element 113 of the emission module 11 described in the above embodiment.
  • the depth camera 100 or The smart terminal can detect whether there is dirt on the surface of the optical element 113 according to the dirt detection method.
  • the dirt detection method is executed by the processor 130 in the dirt monitoring system of the emission module 11, or a depth camera, or an intelligent terminal with the emission module 11.
  • the dirt detection method includes the following steps:
  • Step S601 the light source 112 is controlled to emit a light signal.
  • the light signal is projected to the target object after passing through the optical element 113 , and part of the light signal is reflected by the optical element 113 to the detection element 114 .
  • the processor controls the light source 112 to emit a light signal, and the light signal is projected to the target object after passing through the optical element 113.
  • part of the light signal will be reflected to the detection due to a certain reflection in the optical element 113.
  • Element 114 Element 114.
  • step S602 the detection element 114 is controlled to receive the optical signal reflected by the optical element 113 and generate a photocurrent.
  • Step S603 Calculate the reflectivity of the optical element 113 to the optical signal based on the photocurrent generated by the detection element 114.
  • the processor calculates the reflectivity of the optical element 113 to the optical signal based on the photocurrent of the detection element 114, and then determines whether the optical element 113 is dirty based on the reflectivity.
  • the contamination detection method may also include at least one of the following steps:
  • Step S604 Determine the degree of contamination of the optical element 113 according to the photocurrent.
  • Step S605 control the driver chip to adjust the power of the light source 112 according to the degree of dirt.
  • Step S606 When the reflectivity of the optical element 113 is less than the second preset threshold and greater than the third preset threshold, it is determined that the optical element 113 is broken, and a rupture reminder of the optical element 113 is issued and the light source 112 is turned off.
  • Step S607 when the reflectivity of the optical element 113 is less than the third preset threshold, it is determined that the optical element 113 has fallen off, and a reminder that the optical element 113 has fallen off is issued and the light source 112 is turned off.
  • the detection element 114 receives the optical signal reflected by the optical element 113 and generates a photocurrent, and then calculates the reflectivity of the optical element 113 to the optical signal based on the photocurrent.
  • the reflectivity of the optical element 113 When it is greater than the first preset threshold, it is determined that the optical element 113 is dirty. Therefore, whether the optical element 113 is dirty can be detected through the dirt detection method. When the optical element 113 is dirty, it can be discovered in time, thereby ensuring the detection of the depth camera 100 Accuracy.
  • a dirt detection program is stored in the memory 300 of the smart terminal and can be run on the processor 200.
  • the dirt detection program is executed by the processor 200, the steps of the above dirt detection method are implemented.
  • the dirt detection program performs the following operation instructions when executed by the processor:
  • the light source 112 is controlled to emit a light signal.
  • the light signal is projected to the target object through the optical element 113 , and part of the light signal is reflected by the optical element 113 to the detection element 114 .
  • the detection element 114 is controlled to receive the optical signal reflected by the optical element 113 and generate a photocurrent.
  • the reflectivity of the optical element 113 to the optical signal is calculated based on the photocurrent generated by the detection element 114. When the reflectivity of the optical element 113 is greater than the first preset threshold, it is determined that the optical element 113 is dirty.
  • the smart terminal may also include a cleaning device (not shown).
  • the cleaning device may be installed on the body of the smart terminal.
  • the cleaning device may clean the depth camera.
  • the outer surface is cleaned, or the processor can control the cleaning device to clean the outer surface of the depth camera.
  • the cleaning device can also clean the outer surface of the depth camera at predetermined intervals to ensure that the outer surface of the depth camera is not prone to dirt.
  • the cleaning device may include a water outlet member and a cleaning member.
  • the water outlet member may emit water or cleaning liquid toward the cleaning member, or the cleaning member may emit water or cleaning liquid toward the outer surface of the depth camera, and the cleaning member may emit water or cleaning liquid toward the depth camera. Clean the outer surface of the camera. The cleaning parts can clean the outer surface of the depth camera even more under the action of water or cleaning fluid.
  • the cleaning device may include a water outlet member, and the water outlet member may spray water directly toward the outer surface of the depth camera to directly remove dust, sewage, and other dirt on the outer surface of the depth camera.
  • the structure of the cleaning device and the depth camera is similar to the structure of human eyelids and eyes, or the cleaning device is similar to the structure of a robot hand, which is not specifically limited here.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a dirt detection program is stored on the computer-readable storage medium.
  • the dirt detection program is executed by a processor, the steps of the above-mentioned dirt detection method are implemented.
  • sequence number of each step in the above embodiment does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • Module completion means dividing the internal structure of the above device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be hardware-based. It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the convenience of distinguishing each other and are not used to limit the scope of protection of the present application.
  • For the specific working processes of the units and modules in the above system please refer to the corresponding processes in the foregoing method embodiments, and will not be described again here.
  • the disclosed apparatus/terminal equipment and methods can be implemented in other ways.
  • the apparatus/terminal equipment embodiments described above are only illustrative.
  • the division of the above modules or units is only a logical function division. In actual implementation, it can be divided in other ways, such as multiple units or units. Components may be combined or may be integrated into another system, or some features may be ignored, or not implemented.
  • the above-mentioned integrated modules/units are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the present application can implement all or part of the processes in the methods of the above embodiments by instructing relevant hardware through a computer program.
  • the above computer program can be stored in a computer-readable storage medium.
  • the computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of each of the above method embodiments can be implemented.
  • the above-mentioned computer program includes computer program code, and the above-mentioned computer program code may be in the form of source code, object code, executable file or some intermediate form, etc.
  • the above-mentioned computer-readable media may include: any entity or device capable of carrying the above-mentioned computer program code, recording media, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random accessory Access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media, etc. It should be noted that the content contained in the above computer-readable storage media can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种发射模组的脏污监测系统、深度相机、智能终端、脏污检测方法及计算机可读存储介质,脏污监测系统包括光源(112)、光学元件(113)、检测元件(114)及处理器(130),光源(112)用于发射光信号,光学元件(113)位于光源(112)的投射路径上,检测元件(114)在接收被光学元件(113)反射的光信号后生成光电流,处理器(130)用于根据光电流计算光学元件(113)对光信号的反射率,当光学元件(113)的反射率大于第一预设阈值时,判定光学元件(113)存在脏污。处理器(130)根据检测元件(114)生成的光电流计算光学元件(113)对光信号的反射率,并根据反射率监测光学元件(113)是否脏污,在光学元件(113)脏污时可以及时察觉。

Description

发射模组的脏污监测系统、脏污检测方法及相关设备
本申请要求于2022年8月1日提交中国专利局,申请号为202210917457.3,发明名称为“发射模组的脏污监测系统、脏污检测方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维视觉传感技术领域,尤其涉及的是一种发射模组的脏污监测系统、深度相机、智能终端、脏污检测方法及计算机可读存储介质。
背景技术
随着自动化技术和人工智能的迅速发展,机器人被广泛应用在各种场景,例如送餐机器人、扫地机机器人等,通常机器人使用结构光传感器、飞行时间(Time-of-Flight,TOF)传感器等三维视觉传感器进行视觉感知,以实现空间定位、导航、避障等功能。然而,在实际应用中,当三维视觉传感器长期使用时,三维视觉传感器的表面不可避免的会出现脏污,影响三维视觉传感器的探测精度等性能。
技术解决方案
本申请的主要目的在于提供一种发射模组的脏污监测系统、深度相机、智能终端、脏污检测方法及计算机可读存储介质,旨在解决现有技术中当三维视觉传感器长期使用时,会在三维视觉传感器的表面出现脏污,影响三维视觉传感器的探测精度等性能的技术问题。
为了实现上述目的,本申请第一方面提供一种发射模组的脏污监测系统,脏污监测系统包括光源、光学元件、检测元件及处理器,其中:光源用于发射光信号,光学元件位于光源的投射路径上,检测元件在接收被光学元件反射的光信号后生成光电流,处理器用于根据光电流计算光学元件对光信号的反射率,当光学元件的反射率大于第一预设阈值时,判定光学元件存在脏污。
在一些实施例中,脏污监测系统还包括用于驱动光源发光的驱动芯片,驱动芯片还用于根据脏污程度调节光源的发光功率。
在一些实施例中,当确定光学元件脏污时,处理器还用于发出光学元件脏污提醒。
在一些实施例中,当光学元件的反射率小于第二预设阈值且大于第三预设阈值时,处理器还用于确定光学元件发生破裂,并发出光学元件破裂提醒及关闭光源;当光学元件的反射率小于第三预设阈值时,处理器还用于确定光学元件脱落,并发出光学元件脱落提醒及关闭 光源;其中,第二预设阈值小于或等于第一预设阈值。
本申请第二方面提供一种深度相机,包括接收模组及如上述任一实施例所述的发射模组的脏污监测系统,光源发射的光信号经光学元件出射后投射至目标物体,接收模组用于接收目标物体反射回的光信号。
本申请第三方面提供一种智能终端,包括存储器及上述第一方面所述的发射模组的脏污监测系统。
本申请第四方面提供一种基于上述第一方面所述的脏污监测系统的脏污检测方法,包括:控制光源发射光信号,光信号经光学元件后投射至目标物体;控制检测元件接收被光学元件反射的光信号并生成光电流;根据光电流计算光学元件对光信号的反射率,当光学元件的反射率大于第一预设阈值时,判定光学元件存在脏污。
本申请第五方面提供一种计算机可读存储介质,计算机可读存储介质上存储有脏污检测程序,脏污检测程序被处理器执行时实现上述脏污检测方法的步骤。
有益效果
由上可见,本申请中,检测元件接收光学元件反射的光信号并生成光电流,处理器根据光电流计算光学元件对光信号的反射率,当光学元件的反射率大于第一预设阈值时,判定光学元件存在脏污,因此,通过脏污监测系统可以监测光学元件是否脏污,当光学元件脏污时可以及时发现,进而保证深度相机的探测精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请智能终端的一些实施例的结构示意图
图2是本申请深度相机的一些实施例的结构示意图;
图3是本申请发射模组的脏污监测系统的一些实施例的结构示意图;
图4是本申请实施例提供的当光学元件无脏污时,发射模组发射的光信号示意图;
图5是本申请实施例提供的当光学元件有脏污时,发射模组发射的光信号示意图;
图6是本申请实施例提供的光学元件的反射率与脏污程度的拟合曲线;
图7是本申请实施例提供的脏污检测方法的一些实施例的流程示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体 细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况下,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当…时”或“一旦”或“响应于确定”或“响应于检测到”。类似的,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述的条件或事件]”或“响应于检测到[所描述条件或事件]”。
下面结合本申请实施例的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其它不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
随着科技的发展,移动机器人已经随处可见,例如餐厅的送餐机器人,家居的扫地机机器人等,为了提高移动机器人应用的可靠性,需要使用各种不同类型的传感器。例如结构光、双目、iTOF、dTOF等三维视觉传感器可以满足机器人的近距避障、室内空间定位、导航的应用。目前,移动机器人在应用中通常存在灰尘等脏污的环境,当三维视觉传感器长期使用时,不可避免的会在表面出现脏污,此时会影响三维视觉传感器的探测精度等性能,导致探测可靠性下降。
请参阅图1,本申请提供了一种智能终端,包括深度相机100、处理器200及存储器300,深度相机100用于获取深度图像,处理器200可以用于根据深度图像实现导航、避障、定位等视觉感知功能,存储器300用于存储数据。智能终端可以是智能门锁、扫地机器人、服务 机器人、手机等终端,在此不一一列举。需要说明的是,智能终端还可以包括其它功能模块或单元,例如散热模块、壳体等,在此不作具体限定。
本领域技术人员可以理解,图1中示出的原理框图仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的智能终端的限定,具体地,智能终端可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
如图2所示,深度相机100包括电路板10、发射模组11、接收模组12及控制与处理器13,发射模组11及接收模组12均安装于电路板10上,且均与控制与处理器13连接,电路板10为发射模组11及接收模组12提供电流,发射模组11用于向目标物体发射光信号,光信号到达目标物体后会被目标物体反射,接收模组12用于接收目标物体反射回的光信号,控制与处理器13通过对接收模组12接收到的光信号进行处理得到目标物体的深度数据,进而实现测量深度距离,从而满足智能终端关于定位、导航、避障等视觉感知需求。需要说明的是,深度相机可以是结构光深度相机、iTOF深度相机、dTOF深度相机等,在此不做限制。
具体的,如图1及图2所示,发射模组11包括基座111、光源112、光学元件113及检测元件114,其中:基座111包括底板及侧板,底板与侧板围成收容腔1111,光源112设置于底板且位于收容腔1111内,检测元件114设置于收容腔1111位于底板或侧板上,光学元件113设置于侧板上111并位于光源112的投射路径上。具体而言,光源112用于发射光信号,光学元件113用于扩散光源112发射的光信号,部分光信号穿过光学元件113时会被光学元件113反射,检测元件114用于接收由光学元件113反射的光信号并生成光电流。在图2所示的实施例中,检测元件114设于底板并位于光源112的周围。
如图3所示,本申请提供的发射模组的脏污监测系统包括处理器130及发射模组中的光源112、光学元件113、检测元件114,或者脏污监测系统包括处理器130及与处理器130连接的发射模组11。处理器130根据检测元件114生成的光电流计算光学元件113对光源112发射的光信号的反射率,当光学元件113的反射率大于第一预设阈值时,判定光学元件113存在脏污。
具体地,处理器130根据光源112发射出的光信号对应的总光电流、及检测元件114生成的光电流,计算得到光学元件113对光源112发射出的光信号的反射率。其中,第一预设阈值为光学元件113无脏污或者脏污较少时光学元件113对光源112发射的光信号的反射率,例如光学元件113无脏污时对光信号的最高反射率为7%,则第一预设阈值可为7%、7.5%、8%等等于或略大于最高反射率的数值。
需要说明的是,脏污监测系统中的处理器130可以是深度相机100中的控制与处理器13,即,控制与处理器13与光源112、光学元件113、检测元件114构成本申请的脏污监测 系统;或者脏污监测系统中的处理器130也可以是智能终端内的处理器200,即,处理器200与光源112、光学元件113、检测元件114构成本申请的脏污监测系统;或者脏污监测系统中的处理器130还可以是单独的一颗处理器,该单独的处理器与光源112、光学元件113、检测元件114构成本申请的脏污监测系统。
具体而言,当光学元件113的表面有灰尘、污水等脏污时,必然会导致光学元件113对光源112发射的光信号的反射率增加,进而导致光学元件113对光源112发射的光信号的反射效果提升,相应引起检测元件114接收到的光信号的信号强度增强,使得检测元件114生成的光电流增大,处理器130一旦监测到光电流超出预设的阈值范围时,则表明光学元件113的反射率大于第一预设阈值,即可以判定光学元件113出现脏污情况,进而可以及时清洗光学元件113的表面,保障发射模组11在长期工作过程中的可靠性。
一般而言,当光学元件113的表面出现脏污情况时,由于接收模组12相邻于发射模组11设置,光学元件113的表面出现脏污情况,接收模组12的表面大概率也会出现脏污情况,因此在对发射模组11的清洗时,可以一并对接收模组12进行清洗,进而保证了接收模组12获取到的光线的准确性,提升了深度相机100的精度。
本实施例中,基座111由陶瓷材料制成,陶瓷制成的基座111具有良好的散热性能,可以为光源112及检测元件114进行散热。在其他实施例中,基座111可以由其他材质制成,在此不做限制。
本实施例中,光源112安装在底座上并位于收容腔1111内,光源112发射的光为可见光和/或红外光,在一些实施方式中,光源112为垂直腔面发射激光器或边发射激光发射器。光学元件113安装在侧板上并位于光源112的发射路径上,光学元件113可以遮盖收容腔1111的腔口,在一些实施方式中,光学元件113为扩散器(diffuser)或衍射光学元件(Diffractive Optical Element,DOE);在一些实施方式中,光学元件113包括扩散器或DOE、及位于扩散器的出光侧的玻璃盖板;在一些实施方式中,光学元件113包括准直元件及扩散器(diffuser)、或准直元件及DOE。检测元件114的数量可以为一个或多个,具有多个检测元件114时,多个检测元件114在收容腔1111内均匀分布或任意分布,例如,多个检测元件114可以环绕光源112分布。在一些实施方式中,检测元件114与光源112集成为一个器件,以减少发射模组11的体积。
本实施例中以检测元件114为光电二极管(Photo-Diode,PD)为例进行示例性说明。需要说明的是,检测元件114并不限于光电二极管,还可以是其它。光源112并不限于垂直腔面发射激光器或边发射激光发射器,还可以是其它。光学元件113并不限于diffuser或DOE,还可以是其它。光源112、光学元件113及检测元件114在此不做限制。
本实施例中,检测元件114在接收到的光信号后产生光电流,光电流可以表征检测元件114接收到的光信号的强度,检测元件114与处理器130连接,处理器130根据光电流可以计算光学元件113对光源112发射的光信号的反射率,当反射率大于第一预设阈值时,表明光学元件113存在脏污,处理器130用于判定光学元件113脏污。进一步地,处理器130还用于发出光学元件113脏污提醒,以提醒用户光学元件113出现脏污,以使用户能够及时清洁光学元件113。
进一步地,处理器130还用于根据光电流确定光学元件113的脏污程度。具体而言,不同脏污程度下光学元件113的反射率不同,对应的光电流也不同,可提前标定光电流或反射率与脏污程度之间的映射关系,处理器130在获得光电流后即可计算对应的反射率后进一步确定光学元件113的脏污程度。
具体地,如图4及图5所示,图4示出了当发射模组11表面无脏污时,发射模组11发射的光信号示意,光信号经过光学元件113扩散后,由于光学元件113内部存在一定的反射,大部分光信号经过光学元件113后,以一定的视场角(Field of View,FOV)照射至环境中,少部分光信号被光学元件113反射后被检测元件114接收。图5示出了当发射模组11表面有脏污时,发射模组11发射的光信号示意,当表面有脏污时,脏污会阻挡光照射至环境中的能力,增加光学元件113的反射率,则透过光学元件113的光信号减少,被光学元件113反射回收容腔1111内部的光信号增加,检测元件114接收到的光信号增多,生成的光电流增强。当光电流超出阈值时,则表明光学元件113的反射率也超出第一预设阈值,处理器130则判定光学元件113的表面存在脏污,并给用户发送脏污提醒指令,提醒用户需要进行脏污擦除处理。
进一步地,脏污程度越高,则光学元件113对光信号的反射率越高,则检测元件114接收到光信号越多,生成的光电流越强。脏污程度与光电流的强弱成一定的映射关系,则处理器根据光电流可以计算出脏污程度。其中,需要说明的是,被光学元件113反射的光信号中的一部分直接进入检测元件114,部分会被反射至收容腔1111的腔壁后被腔壁反射至检测元件114。
本实施例中,为了检测出脏污程度,可以预先对脏污水平进行标定。例如,可以在实验室或者产线在光学元件113的表面逐渐增加脏污,并标记每个脏污程度下的对应的光电二极管的光电流I及对应计算光学元件113对光信号的反射率R,根据脏污程度W及对应的反射率R拟合出一条曲线,如图6所示,为了便于直接确定脏污程度,可以直接确定反射率R与光电流I之间存在映射关系,进一步确定光电流I与脏污程度之间的映射关系,进而在应用中可以直接根据光电流判断脏污程度,其中,图5中的R 0为没有脏污时的反射率,第一预 设阈值可为R 0或略大于R 0
本实施例中,脏污监测系统还包括驱动芯片,驱动芯片与光源112连接,用于驱动光源112发光,驱动芯片用于根据脏污程度控制调节光源112的发光功率。
本实施例中,驱动芯片与处理器130连接,处理器130在计算得到光学元件113的脏污程度后进一步计算光源112的发光功率,或者驱动芯片在获取到光学元件113的脏污程度后进一步计算光源112的发光功率,然后驱动芯片调节光源112的发光功率为计算后的发光功率。具体的,在脏污程度不严重时,驱动芯片通过调节光源112的功率能降低脏污带来的误差。例如,当检测元件114产生的光电流I 1只是略大于无脏污时的光电流I 0时,例如,I 1-I 0<a,则认为脏污程度不严重,通过增大光源112的功率能够克服脏污带来的影响,则暂时可以不进行擦除;当I 1大于I 0较多时,例如,I 1-I 0>a,通过调节光源112的功率无法克服脏污带来的影响时,则需要发出提醒擦除脏污。
在一些实施例中,当监测到光学元件113的反射率小于第二预设阈值且大于第三预设阈值时,处理器130还用于确定光学元件113发生破裂,进一步处理器130还用于发出光学元件113破裂提醒,以提醒用户光学元件113破裂,以便于用户及时更换光学元件113。其中,第二预设阈值小于或等于第一预设阈值,例如光学元件无脏污时,对光信号的最低反射率为5%,则第二预设阈值可为5%,第三预设阈值接近于0,例如可为0.5%或1%。
在一些实施例中,当监测到光学元件113的反射率小于第三预设阈值时,处理器130还用于确定光学元件113脱落,并进一步发出光学元件113脱落提醒,以提醒用户光学元件113脱落,以便于用户及时处理将光学元件113装回基座111。
在一些实施例中,当监测到光学元件113的反射率小于第二预设阈值时,处理器130还用于关闭光源112,避免光源112关闭不及时造成安全隐患。
具体地,检测元件114接收到的光信号的强度可以通过检测元件114生成的光电流数值表示,光电流数值越大,则接收到的光信号越多,光学元件113的反射率越高,光电流数值越小,则接收到的光信号越少,光学元件113的反射率越低。当发射模组11的光学元件113发生破裂时,光学元件113的对光信号的反射率相对下降,导致检测元件114接收到的光信号的强度同步下降;当发射模组11的光学元件113脱落时,检测元件114甚至接收不到光学元件113反射的光信号,导致光信号的强度明显下降;基于此,处理器130可以根据检测元件114的光电流的值计算光学元件113的反射率,进而根据反射率判断光学元件113是否发生破裂或脱落。
当处理器130通过检测元件114的光电流监测到光学元件113的反射率小于第二预设阈值且大于第三预设阈值时,可以判定光学元件113发生破裂,并发出光学元件113破裂提 醒,以提醒用户及时更换光学元件113,同时关闭光源112,以避免出射的光线过强对用户造成伤害;当处理器130通过检测元件114的光电流监测到光学元件113的反射率小于第三预设阈值时,确定光学元件113脱落,并发出光学元件113脱落提醒,以提醒用户及时将光学元件113安装回基座111,同时关闭光源112,以避免出射的光线过强对用户造成伤害。其中,处理器130可以直接发出或者处理器130控制其它器件发出光学元件113脏污提醒、光学元件113脱落提醒或者光学元件113破裂提醒。
进一步地,在一些实施例中,脏污监测系统还包括灯珠,处理器130通过控制灯珠根据不同情况发出不同示警颜色以分别对应光学元件113破裂提醒与光学元件113脱落提醒;在另外一些实施例中,处理器130为具备无线连接功能的器件,进而无线连接目标用户终端,以直接给目标用户终端发送光学元件113破裂提醒和/或光学元件113脱落提醒。当然,还可以通过其它方式发送相应的提醒,例如脏污监测系统还包括无线通讯模块,处理器130可通过无线通讯模块发送光学元件113破裂提醒和/或光学元件113脱落提醒至用户终端,在此不做限制。
在一些实施方式中,检测元件114的数量为多个时,当判断光学元件113是否脏污、破裂、掉落及脏污程度时,处理器130可以根据多个检测元件114的值的总和或者均值确定。
本实施例中通过检测元件114接收到的光学元件113反射的光信号,并进一步计算光学元件113的反射率,即可判断光学元件11是否存在脏污和存在脏污的程度,具有普适性,同时,还可以监测光学元件113是否发生脱落或破裂,进而保护人眼安全。
需要说明的是,在光源112的发光功率不同时,检测元件114接收到的光线强弱会存在差异进而导致生成的光电流不同。为了准确地监测光学元件112是否破裂、脱落、脏污以及脏污程度,可预先标定光源112在不同发光功率时发出的光信号对应的总光电流,处理器130在计算光学元件113对光信号的反射率时,可以先获取光源112的发光功率,然后匹配与该发光功率对应的总光电流,进而根据总光电流计算得到的光学元件的反射率更加准确,对于光学元件112破裂、脱落、脏污以及脏污程度的判断结果更加准确。因此,相较于直接通过光电流监测光学元件112是否破裂、脱落、脏污以及脏污程度,本实施例通过反射率的方式考虑到了不同发光功率的光源112时的光电流不同,监测结果更加准确。
另外,还需要说明的是,被光学元件113反射的光信号有一部分可能无法被检测元件114吸收,可以预先对该部分光信号进行标定,例如,光学元件113在无脏污时对光信号的反射率是已知的,则可以根据已知反射率然后通过实验等方式标定得到无脏污时被光学元件113反射的光信号中无法进入到检测元件114中的占比,进而处理器130根据光电流计算光学元件113对光信号的反射率时需考虑该占比,即,处理器130根据该占比及光电流计算光 学元件113对光信号的反射率,如此,计算得到的反射率更加准确,不容易出现误判的情况。在一些实施方式中,也可以在收容腔1111内均匀布置多个检测元件114,以使被光学元件114反射的光信号更多地被检测元件吸收。
请参见图2,接收模组包括镜头121、滤光片122以及感光芯片123,发射模组11用于向目标物体发射光信号,目标物体反射回的光信号通过镜头121和滤光片122被感光芯片123接收,滤光片122用于过滤掉至少部分环境光,避免环境光的干扰,感光芯片123用于将接收到的光信号换转为电信号。
综上,本实施例中,检测元件114接收光学元件113反射的光信号并生成光电流,处理器130根据光电流计算光学元件113对光信号的反射率,当光学元件113的反射率大于第一预设阈值时,判定光学元件113存在脏污,因此,通过脏污监测系统可以监测光学元件113是否脏污,当光学元件113脏污时可以及时发现,进而保证深度相机100的探测精度。
如图7所示,本申请还提供了一种脏污检测方法,其中脏污检测方法主要用于对上述实施例所述的发射模组11的光学元件113进行脏污检测,深度相机100或智能终端可以根据该脏污检测方法检测光学元件113的表面是否存在脏污。
脏污检测方法由发射模组11的脏污监测系统中的处理器130、或深度相机、或带有发射模组11的智能终端执行,脏污检测方法包括如下步骤:
步骤S601,控制光源112发射光信号,光信号经光学元件113后投射至目标物体,部分光信号被光学元件113反射至检测元件114。具体的,处理器控制光源112发射光信号,光信号透过光学元件113后被投射至目标物体,部分光信号在经过光学元件113时由于光学元件113内存在一定的反射,会被反射至检测元件114。
步骤S602,控制检测元件114接收由光学元件113反射的光信号并生成光电流。
步骤S603,根据检测元件114生成的光电流计算光学元件113对光信号的反射率,当光学元件113的反射率大于第一预设阈值时,判定光学元件113存在脏污。具体的,处理器根据检测元件114的光电流计算光学元件113对光信号的反射率,进而根据反射率判断光学元件113是否存在脏污。
脏污检测方法还可包括以下步骤中的至少一个步骤:
步骤S604,根据光电流确定光学元件113的脏污程度。
步骤S605,控制驱动芯片根据脏污程度调节光源112的功率。
步骤S606,当光学元件113的反射率小于第二预设阈值且大于第三预设阈值时,确定光学元件113发生破裂,并发出光学元件113破裂提醒及关闭光源112。
步骤S607,当光学元件113的反射率小于第三预设阈值时,确定光学元件113脱落,并 发出光学元件113脱落提醒及关闭光源112。
由上可见,本脏污检测方法中,通过检测元件114接收光学元件113反射的光信号并生成光电流,然后根据光电流计算光学元件113对光信号的反射率,当光学元件113的反射率大于第一预设阈值时,判定光学元件113存在脏污,因此,通过脏污检测方法可以检测光学元件113是否脏污,当光学元件113脏污时可以及时发现,进而保证深度相机100的探测精度。
基于上述实施例,智能终端的存储器300上存储有并可在处理器200上运行的脏污检测程序,脏污检测程序被处理器200执行时实现上述脏污检测方法的步骤。
在一些实施例中,脏污检测程序被处理器执行时进行以下操作指令:
控制光源112发射光信号,光信号经光学元件113后投射至目标物体,部分光信号被光学元件113反射至检测元件114。
控制检测元件114接收由光学元件113反射的光信号并生成光电流。
根据检测元件114生成的光电流计算光学元件113对光信号的反射率,当光学元件113的反射率大于第一预设阈值时,判定光学元件113存在脏污。
在一些实施方式中,智能终端还可以包括清洁装置(图未示),清洁装置可以安装在智能终端的本体,当接收到发射模组的外表面脏污指令时,清洁装置可以对深度相机的外表面进行清洁,或者处理器可以控制清洁装置对深度相机的外表面进行清洁。清洁装置也可以每间隔预定时长对深度相机的外表面进行清洁,以保证深度相机的外表面不容易存在脏污。
进一步地,在一些实施例中,清洁装置可以包括出水件及清洁件,出水件可以朝清洁件出水或清洁液,或清洁件可以朝深度相机的外表面出水或清洁液,清洁件可以对深度相机的外表面进行清洁,清洁件在水或者清洁液的作用下,可以将深度相机的外表面清洁得更加干净。在另一个实施例中,清洁装置可包括出水件,出水件可以直接朝深度相机的外表面喷水,直接将深度相机的外表面的灰尘、污水等脏污去除。在一些实施方式中,清洁装置与深度相机的结构类似于人眼皮与眼睛的结构,或者清洁装置类似于机械手的结构,在此不做具体限制。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有脏污检测程序,脏污检测程序被处理器执行时实现上述所述的脏污检测方法的步骤。
应理解,上述实施例中各步骤的序号大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、 模块完成,即将上述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各实例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟是以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以由另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
上述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,上述计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,上述计算机程序包括计算机程序代码,上述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。上述计算机可读介质可以包括:能够携带上述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,上述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不是相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请 的保护范围之内。

Claims (10)

  1. 一种发射模组的脏污监测系统,其特征在于,包括光源、光学元件、检测元件及处理器,其中:
    所述光源用于发射光信号;
    所述光学元件位于所述光源的投射路径上;
    所述检测元件在接收被所述光学元件反射的光信号后生成光电流;
    所述处理器用于根据所述光电流计算所述光学元件对所述光信号的反射率,当所述光学元件的反射率大于第一预设阈值时,判定所述光学元件存在脏污。
  2. 根据权利要求1所述的脏污监测系统,其特征在于,所述处理器还用于根据所述光电流确定所述光学元件的脏污程度。
  3. 根据权利要求2所述的脏污监测系统,其特征在于,所述脏污监测系统还包括用于驱动所述光源发光的驱动芯片,所述驱动芯片还用于根据所述脏污程度调节所述光源的发光功率。
  4. 根据权利要求1所述的脏污监测系统,其特征在于,当确定所述光学元件脏污时,所述处理器还用于发出所述光学元件脏污提醒。
  5. 根据权利要求1所述的脏污监测系统,其特征在于,当所述光学元件的反射率小于第二预设阈值且大于第三预设阈值时,所述处理器还用于确定所述光学元件发生破裂,并发出所述光学元件破裂提醒;当所述光学元件的反射率小于所述第三预设阈值时,所述处理器还用于确定所述光学元件脱落,并发出所述光学元件脱落提醒;其中,所述第二预设阈值小于或等于所述第一预设阈值。
  6. 根据权利要求5所述的脏污监测系统,其特征在于,当所述光学元件的反射率小于所述第二预设阈值时,所述处理器还用于关闭所述光源。
  7. 一种深度相机,其特征在于,包括接收模组及如权利要求1-6任一项所述的发射模组的脏污监测系统,所述光源发射的光信号经所述光学元件出射后投射至目标物体,所述接收模组用于接收所述目标物体反射回的光信号。
  8. 一种智能终端,其特征在于,包括存储器及如权利要求1-6所述的发射模组的脏污监测系统。
  9. 一种基于权利要求1-6任一项所述的脏污监测系统的脏污检测方法,其特征在于,包括:
    控制所述光源发射光信号,所述光信号经所述光学元件后投射至目标物体;
    控制所述检测元件接收被所述光学元件反射的所述光信号并生成光电流;
    根据所述光电流计算所述光学元件对所述光信号的反射率,当所述光学元件的反射率大于所述第一预设阈值时,判定所述光学元件存在脏污。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有脏污检测程序,所述脏污检测程序被处理器执行时实现如权利要求9所述脏污检测方法的步骤。
PCT/CN2022/123162 2022-08-01 2022-09-30 发射模组的脏污监测系统、脏污检测方法及相关设备 WO2024027007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210917457.3A CN115390049A (zh) 2022-08-01 2022-08-01 发射模组的脏污监测系统、脏污检测方法及相关设备
CN202210917457.3 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027007A1 true WO2024027007A1 (zh) 2024-02-08

Family

ID=84117924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123162 WO2024027007A1 (zh) 2022-08-01 2022-09-30 发射模组的脏污监测系统、脏污检测方法及相关设备

Country Status (2)

Country Link
CN (1) CN115390049A (zh)
WO (1) WO2024027007A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131414A2 (ko) * 2008-04-25 2009-10-29 한국광기술원 광신호 모니터링 장치와 그 제조 방법, 및 광원 분석 시스템과 그 방법
CN107505331A (zh) * 2017-10-19 2017-12-22 厦门盈趣科技股份有限公司 激光头脏污检测系统及方法
CN108614383A (zh) * 2018-04-03 2018-10-02 Oppo广东移动通信有限公司 泛光灯组件、泛光灯损坏的检测方法和电子装置
CN109151271A (zh) * 2018-08-22 2019-01-04 Oppo广东移动通信有限公司 激光投射模组及其控制方法、图像获取设备和电子装置
CN208654455U (zh) * 2018-09-25 2019-03-26 南昌欧菲生物识别技术有限公司 光电模组、深度获取装置及终端
CN111551946A (zh) * 2020-04-30 2020-08-18 深圳煜炜光学科技有限公司 一种激光雷达和通光罩脏污的检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131414A2 (ko) * 2008-04-25 2009-10-29 한국광기술원 광신호 모니터링 장치와 그 제조 방법, 및 광원 분석 시스템과 그 방법
CN107505331A (zh) * 2017-10-19 2017-12-22 厦门盈趣科技股份有限公司 激光头脏污检测系统及方法
CN108614383A (zh) * 2018-04-03 2018-10-02 Oppo广东移动通信有限公司 泛光灯组件、泛光灯损坏的检测方法和电子装置
CN109151271A (zh) * 2018-08-22 2019-01-04 Oppo广东移动通信有限公司 激光投射模组及其控制方法、图像获取设备和电子装置
CN208654455U (zh) * 2018-09-25 2019-03-26 南昌欧菲生物识别技术有限公司 光电模组、深度获取装置及终端
CN111551946A (zh) * 2020-04-30 2020-08-18 深圳煜炜光学科技有限公司 一种激光雷达和通光罩脏污的检测方法

Also Published As

Publication number Publication date
CN115390049A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
EP3715904B1 (en) Time of flight assembly, terminal device and control method for time of flight assembly
WO2020038060A1 (zh) 激光投射模组及其控制方法、图像获取设备和电子装置
WO2018161739A1 (zh) 显示屏状态控制方法、装置、存储介质及终端
WO2020038067A1 (zh) 激光投射模组及控制方法、深度图像获取设备和电子装置
CN110828439B (zh) 光源装置及可携式通讯设备
US8169624B2 (en) Transmissive dimension measuring device
TWI693916B (zh) 可連接面加工設備的基座、包含此種基座的系統以及操作此基座的方法
JP2021515533A (ja) 安全でセキュアな自由空間電力伝送及びデータ伝送の方法
US8217595B2 (en) System for controlling light in dependence of time-of-flight signal
CN109031252B (zh) 标定方法、标定控制器及标定系统
WO2020052284A1 (zh) 控制方法及装置、深度相机、电子装置及可读存储介质
CN109981902B (zh) 终端及控制方法
WO2020038064A1 (zh) 控制方法及装置、深度相机、电子装置及可读存储介质
CN109831255B (zh) 飞行时间组件的控制系统和终端
CN110412540B (zh) 光发射模组、飞行时间相机和电子装置
WO2024027007A1 (zh) 发射模组的脏污监测系统、脏污检测方法及相关设备
CN110849895A (zh) 一种汽车挡风玻璃的积尘检测与清洁提醒系统及方法
CN109861757B (zh) 控制方法、飞行时间组件、电子装置及可读存储介质
CN109905175B (zh) 飞行时间组件的控制系统和终端
CN113325391A (zh) 广角tof模组及其应用
WO2021026829A1 (zh) 光发射模组、光接收模组、深度相机和电子设备
CN213023561U (zh) 一种激光测距模组以及自移动机器人
WO2019223451A1 (zh) 激光投射模组、深度相机和电子装置
CN112393691A (zh) 光发射模组、深度相机及电子设备
JP2002296342A (ja) 物体情報検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953800

Country of ref document: EP

Kind code of ref document: A1