WO2024026906A1 - 一种封装极性标识设计方法、系统、电子设备和存储介质 - Google Patents

一种封装极性标识设计方法、系统、电子设备和存储介质 Download PDF

Info

Publication number
WO2024026906A1
WO2024026906A1 PCT/CN2022/111054 CN2022111054W WO2024026906A1 WO 2024026906 A1 WO2024026906 A1 WO 2024026906A1 CN 2022111054 W CN2022111054 W CN 2022111054W WO 2024026906 A1 WO2024026906 A1 WO 2024026906A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular frame
polarity
type
sub
area
Prior art date
Application number
PCT/CN2022/111054
Other languages
English (en)
French (fr)
Inventor
钱胜杰
李媛
刘丰收
Original Assignee
上海望友信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海望友信息科技有限公司 filed Critical 上海望友信息科技有限公司
Publication of WO2024026906A1 publication Critical patent/WO2024026906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement

Definitions

  • the invention belongs to the field of PCB design, and specifically relates to a packaging polarity mark design method, system, electronic equipment and storage medium.
  • component packaging design is an important process, and its design quality will directly affect the later manufacturing process and final product quality.
  • some components have polarity direction requirements. For example, electrolytic capacitors, diodes, transistors, integrated circuits IC, etc.
  • the industry generally makes a mark for components that require polarity directions. This mark indicates the positive and negative poles or the position of the first pin of the component. Polarized components need to be mounted in a certain direction when mounted on the PCB to ensure that the positive and negative poles of the component or the first pin of the component match the actual circuit of the PCB board. If the mounting direction is incorrect, it will cause circuit blockage, component body short-circuit and burnout, and circuit failure to work properly.
  • the present invention provides a packaging polarity mark design method, system, electronic equipment and storage medium.
  • the technical problems to be solved by the present invention are achieved through the following technical solutions:
  • an embodiment of the present invention provides a packaging polarity mark design method, which method includes:
  • each spanning area is composed of a strip of the circumscribed rectangular frame Multiple sub-regions corresponding to the edges are connected;
  • embodiments of the present invention provide a package polarity mark design system, which includes:
  • the sub-region dividing module is used to divide the external rectangular frame of the component with the polarity mark to be designed into multiple sub-regions according to the preset division method, and obtain the size of the external rectangular frame;
  • a polarity identification pattern selection module used to determine the polarity identification pattern of the component with a polarity identification to be designed
  • a reference area name definition module used to define the names of multiple reference areas corresponding to the polarity identification graphics; wherein the multiple reference areas are the multiple sub-areas or multiple across areas; each across area It is composed of multiple sub-areas corresponding to one side of the circumscribed rectangular frame;
  • a position range determination module used to determine the position range of the polarity identification graphic to be inside or outside the circumscribed rectangular frame
  • a position coordinate calculation module configured to determine a target reference area among the plurality of reference areas, and calculate the target reference area based on the size of the circumscribed rectangular frame, the polarity identification graphic, the position range and the name of the target reference area. , calculate the position coordinates of the polar identification graphic;
  • a size calculation module configured to calculate the size of the polar identification graphic based on the size of the external rectangular frame and the polar identification graphic;
  • the package attribute assignment module is used to assign the polarity identification graphic, the name of the target reference area, the position coordinates and the size of the polarity identification graphic to the component with the polarity identification to be designed. Encapsulation, as an attribute of said encapsulation.
  • embodiments of the present invention provide an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete interactions with each other through the communication bus.
  • Communication including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete interactions with each other through the communication bus.
  • the memory is used to store computer programs
  • the processor is configured to implement the steps of the package polarity mark design method provided by the embodiment of the present invention when executing the program stored in the memory.
  • embodiments of the present invention provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the packaging device provided by the embodiment of the present invention is implemented. Steps in the sexual identity design method.
  • the packaging polarity mark design method can determine the polarity mark graphics, target reference area, position coordinates and The size of the polarity mark graphic is assigned to the package of the polarity mark component to be designed, and is carried in the electronic design file of the PCB as an attribute of the package itself.
  • the relevant information of the polarity mark can be determined to determine the polarity direction of the component, without the need for manual judgment. Way. Therefore, problems such as difficulties in polarity identification and identification errors that occur when manually identifying and checking the polarity of components due to too close components can be avoided, and the accuracy and efficiency of polarity identification can be improved.
  • Figure 1 is a schematic flow chart of a packaging polarity mark design method provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of dividing the external rectangular frame of the component with polarity marking to be designed according to the 9-square grid division method in the embodiment of the present invention
  • Figure 3 is a schematic diagram for understanding sub-regions and spanning regions in an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the name marking method of each sub-region and across regions in the embodiment of the present invention.
  • Figures 5(a) to 5(c) show the triangle relative to the circumscribed rectangle in the embodiment of the present invention, taking the polarity mark graphic as a triangle and the circumscribed rectangular frame as the rectangular frame of the component body to be designed with the polarity mark as an example.
  • Figures 6(a) to 6(d) are partial step result diagrams of Example 1 in the embodiment of the present invention.
  • Figures 7(a) to 7(c) are partial step result diagrams of Example 2 in the embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of a package polarity mark design system provided by an embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • embodiments of the present invention provide a packaging polarity mark design method, system, electronic device and storage medium.
  • an embodiment of the present invention provides a packaging polarity mark design method, as shown in Figure 1, which may include the following steps:
  • S1 Divide the external rectangular frame of the component with the polarity mark to be designed into multiple sub-areas according to a preset division method, and obtain the size of the external rectangular frame.
  • the external rectangular frame of the component with a polarity mark to be designed can be obtained from its attribute information.
  • the external rectangular frame may be a rectangular frame of the component body with the polarity mark to be designed, or a rectangular frame containing the component body with the polarity mark to be designed and the corresponding pad.
  • the design may be based on Need to choose.
  • the external rectangular frame is divided into multiple sub-regions in order to form different regions inside the rectangular frame and even further outside, so as to facilitate the use of different regions to subsequently locate the position of the polarity mark. Regarding this part, This will be explained in detail later.
  • the pole to be designed is The external rectangular frame of the sexually-identified component is divided into multiple sub-areas according to the preset division method, which can include:
  • the specific process of the 9-square grid division method includes: for each set of opposite sides of the circumscribed rectangular frame, use 2 parallel straight lines that are perpendicular and exceed the distance between the opposite sides of the set to divide the set of opposite sides into 3 equal parts. , so that the circumscribed rectangular frame is divided into 9 sub-regions. And the four dividing straight lines extend infinitely to both sides, so that, except for the central sub-region, the scope of any sub-region is not limited to the inside of the rectangular frame, but covers the extension defined by the two dividing straight lines corresponding to the sub-region. area, that is to say, the extension line range of the sub-area also belongs to the sub-area.
  • the solid rectangular frame in Figure 2 is the rectangular frame of the component body with the polarity mark to be designed.
  • the dotted rectangular frame is the component body containing the polarity mark to be designed and the corresponding component body.
  • a rectangular frame for the pad The length direction of the rectangular frame is along the X-axis, and the length is expressed as L; the width direction of the rectangular frame is along the Y-axis direction, and the width is expressed as W; the shorter of the length L and the width W is a.
  • the dot represents the center of the rectangular box.
  • the preset division method of the embodiment of the present invention is not limited to the above-mentioned 9-square division method.
  • a parallel straight line that is perpendicular and exceeds the distance between the set of opposite sides can be used.
  • any pattern commonly used in EDA package design can be selected as the polarity marking pattern of the component with polarity marking to be designed.
  • the categories of polarity identification graphics include first type graphics and second type graphics.
  • the first type of graphics may include circles or triangles; the display effect of a circle may be " ⁇ "; the triangle may be an equilateral triangle, and the display effect may be " ⁇ ".
  • the first type of graphics may also include shapes such as "+”.
  • the second type of graphics may include line segments.
  • circles or triangles in the first type of graphics can be selected; for diodes, line segments in the second type of graphics can be selected, and so on.
  • the plurality of reference areas are the plurality of sub-areas or multiple spanning areas; each spanning area is formed by connecting multiple sub-areas corresponding to one side of the circumscribed rectangular frame.
  • Figure 3 is a schematic diagram for understanding sub-regions and spanning regions in an embodiment of the present invention.
  • Figure 3 takes the external rectangular frame of the component with the polarity mark to be designed as the rectangular frame of the component body with the polarity mark to be designed as an example, and the left side of the external rectangular frame divided by the 9-square grid
  • the three sub-regions corresponding to the side short sides are explained as examples. These three sub-regions are represented by different shades, but the shaded area in the figure does not limit the range of the sub-regions.
  • each sub-region not only includes the internal region of the circumscribed rectangular frame, but also includes the extended region defined by the corresponding two dividing lines. Then, these three sub-regions can be connected to form a spanning region, corresponding to the left short side of the circumscribed rectangular frame. Similarly, for the remaining three sides of the circumscribed rectangular frame, the spanning area corresponding to each side is composed of three sub-areas connected on the side, that is, there are a total of 4 spanning areas for the 9 sub-areas. The determination methods of the remaining crossing areas will not be illustrated one by one here.
  • the polarity identification graphics and the reference area have a preset corresponding relationship.
  • the polarity identification pattern is a first type of pattern, determine that the multiple reference areas corresponding to the polarity identification pattern correspond to the multiple sub-areas one by one; and according to the preset sub-area name marking method, Define the names of the multiple sub-regions.
  • the polarity identification pattern is a second type of pattern, determine the multiple reference areas corresponding to the polarity identification pattern as the multiple crossing areas; and according to the preset crossing area name marking method, Defines the names of the multiple spanning regions.
  • the polarity identification pattern is a first type of pattern
  • multiple reference areas corresponding to the polarity identification pattern are determined to be the plurality of sub-regions. Taking the 9-square grid as an example, when the polarity identification pattern is the first type of pattern, the 9 sub-regions are its 9 reference regions.
  • the polarity identification pattern is a second type of pattern, it is determined that multiple reference areas corresponding to the polarity identification pattern are the plurality of crossing areas. Taking the 9-square grid as an example, when the polarity mark pattern is a second type pattern, the four crossing areas are its four reference areas.
  • the preset name marking method of sub-regions or cross-regions can be any method of marking names without repeating, in order to achieve the purpose of distinguishing each sub-region from each other or distinguishing each cross-region from each other, including But it is not limited to random marking or marking according to a certain order, etc., and there is no restriction here.
  • S4 Determine the position range of the polarity identification graphic to be inside or outside the circumscribed rectangular frame.
  • the position range of the polarity identification graphic is inside or outside the circumscribed rectangular frame can be selected according to certain requirements.
  • the position range of the polarity mark graphic is selected to be outside the external rectangular frame, that is, the polarity mark is marked outside the external rectangular frame, mainly to facilitate the connection between the polarity points on the physical components and the PCB silk screen. Check the polarity point.
  • the position range of the polarity marking pattern can also be selected to be outside the circumscribed rectangular frame.
  • the factors for selecting the position range of the polar identification graphics may also include layout aesthetics, etc.
  • S5 Determine a target reference area among the multiple reference areas, and calculate the polarity according to the size of the circumscribed rectangular frame, the polarity identification graphic, the position range and the name of the target reference area. The location coordinates of the sexual identification graphic.
  • one of the multiple reference areas corresponding to the polarity identification graphics can be selected as the target reference area range according to the design requirements, which is not limited here.
  • the name of the target reference area can be obtained for subsequent use.
  • the position range may be the inside or outside of the circumscribed rectangular frame
  • the polarity identification graphic may be the first type of graphic or the second type of graphic
  • the target reference area For each of the plurality of sub-regions and each of the plurality of spanning regions, according to mathematical geometry theory, the center of the circumscribed rectangular frame is used as the origin, and the circumscribed rectangular frame is used as the origin.
  • the size of the rectangular frame pre-construct the calculation formula of the center position coordinates (x, y) of the polarity mark figure relative to the origin in various situations. Then, in step S5, for any situation, you can select the corresponding The preset formula calculates the center position coordinates (x, y) of the polar identification graphic.
  • S6 Calculate the size of the polar identification graphic according to the size of the circumscribed rectangular frame and the polar identification graphic.
  • the corresponding size can be calculated according to the specific shape of the polar identification graphic and a preset parameter calculation formula.
  • the preset parameter calculation formula can be a calculation formula about the radius.
  • the radius of the circle can be calculated using this formula, and the polar identification figure as a circle is determined. size of.
  • the preset parameter calculation formula may be a calculation formula regarding the radius of a circle. The radius calculated using this formula can be used to determine a circle, and then the inscribed triangle of the circle is found to determine the size of the polarity logo graphic as a triangle.
  • the preset parameter calculation formula can be a calculation formula about line length and line width.
  • the length and width of the line segment can be calculated using this formula, and then the line segment is determined.
  • S7 Assign the polarity identification pattern, the name of the target reference area, the position coordinates and the size of the polarity identification pattern to the package of the component with the polarity identification to be designed, as the An encapsulated property.
  • the polarity identification pattern, the name of the target reference area, the position coordinates and the size of the polarity identification pattern are assigned to the components with the polarity identification to be designed.
  • Package as an attribute of the package, completes the EDA package polarity mark design of the component with the polarity mark to be designed. Later, this attribute can be carried in the electronic design file of the PCB.
  • the package polarity mark design method can determine the polarity mark graphics, target reference area, and position of the component with the polarity mark to be designed through a digital method at the early EDA design end.
  • the dimensions of the coordinates and polarity identification graphics are assigned to the package of the polarity identification component to be designed, and carried in the electronic design file of the PCB as an attribute of the package itself.
  • the relevant information of the polarity mark can be determined to determine the polarity direction of the component, without the need for manual judgment. Way. Therefore, problems such as difficulties in polarity identification and identification errors that occur when manually identifying and checking the polarity of components due to too close components can be avoided, and the accuracy and efficiency of polarity identification can be improved.
  • defining the names of the multiple sub-regions according to a preset sub-region name marking method includes: using each first character in a preset first character sequence to define the names of the plurality of sub-regions. Names are defined in sequence for each of the multiple sub-areas obtained based on the preset sub-area arrangement.
  • the first character sequence may be a numeric sequence (1, 2, 3, 4, 5, 6, 7, 8, 9), and the preset sub-region arrangement includes each sub-region from top to bottom, from Arrangement from left to right.
  • the preset sub-region arrangement may also include the arrangement of each sub-region from left to right, top to bottom, and so on.
  • Defining the names of the multiple spanning areas according to the preset spanning area name marking method includes: using each second character in the preset second character sequence to mark the multiple spanning areas. Names are defined in sequence for each spanned area obtained by the default spanned area arrangement.
  • the second character sequence may be a letter sequence (A, B, C, D), and the preset cross-area arrangement includes a counterclockwise arrangement of each cross-area.
  • the four span areas are named A, B, C, and D starting from the span area on the left.
  • the spanning area A can also be any one of the other three spanning areas.
  • the preset arrangement of the across areas may also include a clockwise arrangement of each across area, or from top to bottom, from left to right, and from left to right, from Arrangement from top to bottom, etc.
  • the first character sequence includes a numerical sequence (1, 2, 3, 4, 5, 6, 7, 8, 9); the preset sub-region arrangement includes each sub-region from top to bottom and from left to right.
  • the arrangement method of Areas 1, 2, and 3 are composed of; spanned area B is composed of subareas 3, 6, and 9; spanned area C is composed of subareas 7, 8, and 9; spanned area D is composed of subareas 1, 4, and 7. Please refer to Figure 4 for details.
  • the position coordinates of the polar identification pattern are calculated according to the size of the circumscribed rectangular frame, the polar identification pattern, the position range and the name of the target reference area, and the position coordinates of the polar identification pattern are calculated according to different situations.
  • the center of the circumscribed rectangular frame is used as the origin (0,0), and the size of the circumscribed rectangular frame is used to calculate the center position coordinates (x, y) of the polar logo graphic pre-constructed in the Cartesian coordinate system relative to the origin.
  • the center of the circumscribed rectangular frame is used as the origin (0,0)
  • the size of the circumscribed rectangular frame is used to calculate the center position coordinates (x, y) of the polar logo graphic pre-constructed in the Cartesian coordinate system relative to the origin.
  • the polarity identification graphic is the first type of graphic, such as a circle or a triangle, it is determined among multiple preset first type formulas
  • the target first type formula corresponding to the target reference area uses the target first type formula, the size of the circumscribed rectangular frame and the selected adjustment parameter value to calculate the relative position of the polar identification graphic to the center of the circumscribed rectangular frame. location coordinates.
  • the plurality of preset first-type formulas include:
  • x and y respectively represent the x coordinate and y coordinate in the center position coordinates of the polar marking figure when the center of the circumscribed rectangular frame is the origin;
  • L represents the length of the circumscribed rectangular frame along the x-axis direction;
  • W represents The width of the circumscribed rectangular frame along the y-axis direction;
  • a represents the short side size of the circumscribed rectangular frame;
  • k represents the adjustment parameter value, k ⁇ [6,8], k can be selected as needed.
  • the target is determined among a plurality of preset second type formulas Refer to the target second type formula corresponding to the area, and use the target second type formula, the size of the circumscribed rectangular frame and the selected adjustment parameter value to calculate the position coordinates of the polar identification graphic relative to the center of the circumscribed rectangular frame. ;
  • the plurality of preset second-type formulas include:
  • x and y respectively represent the x coordinate and y coordinate in the center position coordinates of the polar marking figure when the center of the circumscribed rectangular frame is the origin;
  • L represents the length of the circumscribed rectangular frame along the x-axis direction;
  • W represents The width of the circumscribed rectangular frame along the y-axis direction;
  • a represents the short side size of the circumscribed rectangular frame;
  • k represents the adjustment parameter value, k ⁇ [6,8], k can be selected as needed.
  • the line segment length direction is along the Y-axis direction
  • the y coordinate is 0, and only the x coordinate needs to be calculated
  • the line segment length The direction is along the X-axis
  • the x-coordinate is 0, and only the y-coordinate needs to be calculated.
  • the polarity identification figure is the first type of figure, such as a circle or a triangle, it is determined among a plurality of preset third type formulas
  • the target third type formula corresponding to the target reference area uses the target third type formula, the size of the circumscribed rectangular frame and the selected adjustment parameter value to calculate the relative position of the polarity identification graphic to the center of the circumscribed rectangular frame. position coordinates;
  • the plurality of preset third-type formulas include:
  • x and y respectively represent the x coordinate and y coordinate in the center position coordinates of the polar marking figure when the center of the circumscribed rectangular frame is the origin;
  • L represents the length of the circumscribed rectangular frame along the x-axis direction;
  • W represents The width of the circumscribed rectangular frame along the y-axis direction;
  • a represents the short side size of the circumscribed rectangular frame;
  • k represents the adjustment parameter value, k ⁇ [6,8], k can be selected as needed.
  • the target is determined among a plurality of preset fourth type formulas. Referring to the target fourth type formula corresponding to the area, using the target fourth type formula, the size of the circumscribed rectangular frame and the selected adjustment parameter value, calculate the position coordinates of the polar identification graphic relative to the center of the circumscribed rectangular frame. ;
  • the plurality of preset fourth type formulas include:
  • x and y respectively represent the x coordinate and y coordinate in the center position coordinates of the polar marking figure when the center of the circumscribed rectangular frame is the origin;
  • L represents the length of the circumscribed rectangular frame along the x-axis direction;
  • W represents The width of the circumscribed rectangular frame along the y-axis direction;
  • a represents the short side size of the circumscribed rectangular frame;
  • k represents the adjustment parameter value, k ⁇ [6,8], k can be selected as needed.
  • the line segment length direction is along the Y-axis direction
  • the y coordinate is 0, and only the x coordinate needs to be calculated
  • the line segment length The direction is along the X-axis
  • the x-coordinate is 0, and only the y-coordinate needs to be calculated.
  • calculating the size of the polar identification graphic based on the size of the circumscribed rectangular frame and the polar identification graphic includes:
  • the polar identification figure is a circle, determine the radius as a/p to obtain the size of the polar identification figure; where, p ⁇ [9,18].
  • the polar marking pattern is a triangle
  • obtain the circle R with the radius a/p and find an inscribed triangle of the circle R to obtain the size of the polar marking pattern.
  • the polarity marking graphic is a line segment, determine the line length to be W and the line width to be a/p for areas A and C across; determine the line length to be L and the line width to be a for areas B and D to span areas B and D. /p to obtain the size of the polarity marking pattern.
  • p can be 12.
  • the polarity identification graphic is a first type of graphic. If the first type of graphic is non-circular, then the first type of graphic may rotate relative to the center of the first type of graphic.
  • the circumscribed rectangular frame may have different positional shapes, and its degree of rotation relative to the specific position of the circumscribed rectangular frame may be designed to a certain extent.
  • the polarity mark graphic as a triangle and the circumscribed rectangular frame as the rectangular frame of the component body to be designed with the polarity mark. If the center of the triangle is located in the outer area of a corner of the circumscribed rectangular frame, in an optional embodiment, the triangle's mid-perpendicular to the vertex of the target corner of the corner is located in the circumscribed rectangle.
  • the extension line connecting the center of the frame and the vertex of the corner toward one side of the triangle please refer to Figure 5(a) to understand, where the corner of the triangle is the upper left corner of the circumscribed rectangular frame, and the vertical line in the triangle is Indicated by dotted lines.
  • angles between the vertical line in the triangle where the vertex of the target angle of the triangle is toward the corner, and the two extension lines of the corner on the sides of the triangle are both 45°, please.
  • the corner facing the triangle is the upper left corner of the circumscribed rectangular frame
  • the vertical line in the triangle is represented by a dotted line
  • the two extension lines of the corner on the side of the triangle are represented by dotted lines.
  • the triangle faces the perpendicular of the triangle where the target corner of the side is located, perpendicular to the side, see Figure 5(c) shows that the triangle faces the left side of the circumscribed rectangular frame, and the vertical line in the triangle is represented by a dotted line.
  • the polar identification graphics are non-circular first-class graphics.
  • the position shape based on the corresponding center position coordinates is not limited to the above examples. It can be reasonably selected according to needs during design, and further, Parameter information related to its position and form may also be assigned to the package of the component with the polarity mark to be designed.
  • the polarity identification graphic, the name of the target reference area, the position coordinates and the size of the polarity identification graphic are assigned to the polarity identification to be designed.
  • the display attribute of the polarity mark graphic on the PCB is set, and the display attribute includes display or hiding.
  • the EDA package polarity mark when using the method of the embodiment of the present invention to design the EDA package polarity mark, it is possible to realize whether the component polarity mark is hidden and optional according to the polarity mark display requirements. Then the polarity of the component package does not need to be graphically displayed. Instead of appearing in the form, it is used as an internal attribute of a component. In this way, the internal attribute can be used to avoid the difficulty of manual polarity identification, easy confusion, and identification errors due to the close distance between components during mounting direction inspection. question.
  • the polarity mark graphic will be drawn on the silk screen layer based on the properties of the package obtained in S7; if you choose to hide the polarity mark, the polarity mark will not be drawn on the PCB silk screen layer.
  • Polar logo graphics can leave space to make the PCB denser, thereby making products with smaller size and stronger functions, and it is conducive to product confidentiality.
  • the external rectangular frame is the rectangular frame of the component body of the polarity mark to be designed, using a 9-square grid division method. Please see Figure 4 for the naming method of each sub-region and across the region.
  • FIG. 6(a) design a package polarity mark for a component with a package name of "SOP16".
  • the external rectangular frame of the component "SOP16" is divided into 9 sub-areas according to the 9-square grid division method. ;
  • the polarity marking graphic is: ⁇ ; the name of the target reference area: sub-area 1; the center position coordinates of the polarity marking graphic (-4.333, 1.333) and polarity
  • the size of the logo graphic is the radius of the circle r: 0.333, which is assigned to the package as an attribute of the package. Please see Table 1 for details of the assigned encapsulated attributes.
  • the polarity mark will be drawn on the silk screen layer according to the properties of the package obtained in S7.
  • FIG. 7(a) design a package polarity mark for a component with a package name of "SMD-1005".
  • the name definition results of the four spanning areas are shown in Figure 7(b). That is, the name of the sub-area in the upper left corner of the nine-square grid is 1. From top to bottom and from left to right, the names of each sub-area are 2, 3, and 4 respectively. , 5, 6, 7, 8, 9, sub-areas 1, 2, and 3 are connected to form the span area A; sub-areas 3, 6, and 9 are connected to form the span area B; sub-areas 7, 8, and 9 are connected to form the span area. Area C; sub-areas 1, 4, and 7 are connected to form the spanning area D.
  • the line length is W
  • the line width is a/p
  • the polarity design of the component package "SMD-1005" has been completed, and the polarity marking graphic is:
  • the polarity mark will be drawn on the silk screen layer according to the properties of the package obtained in S7.
  • embodiments of the present invention also provide a package polarity mark design system. As shown in Figure 8, the system includes:
  • the sub-region dividing module 801 is used to divide the external rectangular frame of the component with the polarity mark to be designed into multiple sub-regions according to the preset division method, and obtain the size of the external rectangular frame;
  • the polarity identification pattern selection module 802 is used to determine the polarity identification pattern of the component with the polarity identification to be designed;
  • the reference area name definition module 803 is used to define the names of multiple reference areas corresponding to the polarity identification graphics; wherein the multiple reference areas are the multiple sub-areas or multiple spanning areas; each spanning area The area is composed of multiple sub-areas corresponding to one side of the circumscribed rectangular frame;
  • the position range determination module 804 is used to determine the position range of the polar identification graphic as the inside or outside of the circumscribed rectangular frame;
  • the position coordinate calculation module 805 is used to determine a target reference area among the plurality of reference areas, and calculate the target reference area according to the size of the circumscribed rectangular frame, the polarity identification graphic, the position range and the target reference area. Name, calculate the position coordinates of the polarity identification graphic;
  • the size calculation module 806 is used to calculate the size of the polar identification graphic according to the size of the circumscribed rectangular frame and the polar identification graphic;
  • the package attribute assignment module 807 is used to assign the polarity identification graphic, the name of the target reference area, the position coordinates and the size of the polarity identification graphic to the component with the polarity identification to be designed. of encapsulation, as an attribute of said encapsulation.
  • embodiments of the present invention also provide an electronic device, as shown in Figure 9, including a processor 901, a communication interface 902, a memory 903, and a communication bus 904.
  • the processor 901, the communication interface 902, the memory 903 Communication between each other is completed through the communication bus 904,
  • the memory is used to store computer programs
  • the processor is configured to implement the steps of any package polarity mark design method provided in the first aspect of the embodiment of the present invention when executing a program stored in the memory.
  • the communication bus mentioned in the above-mentioned electronic equipment can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus, etc.
  • the communication interface is used for communication between the above-mentioned electronic devices and other devices.
  • the memory may include random access memory (Random Access Memory, RAM) or non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processing, DSP), special integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA), etc.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the method provided by the embodiment of the present invention can be applied to electronic devices.
  • the electronic device can be: a desktop computer, a portable computer, a smart mobile terminal, a server, etc., which are not limited here.
  • embodiments of the present invention also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • any of the aspects provided in the first aspect of the embodiment of the present invention is implemented.
  • the steps of a package polarity marking design method is not limited to:
  • embodiments of the present application may be provided as methods, apparatuses (devices), or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects, all of which are collectively referred to herein as a "module” or “system.” Furthermore, the present application may take the form of a computer program product embodied on one or more computer-readable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. The computer program is stored/distributed on a suitable medium, provided with or as part of other hardware, and may also take other forms of distribution, such as over the Internet or other wired or wireless telecommunications systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Architecture (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种封装极性标识设计方法、系统、电子设备和存储介质,方法包括:将待设计极性标识的元器件的外接矩形框依据预设划分方式划分为多个子区域,获取外接矩形框的尺寸;确定极性标识图形;定义多个参考区域的名称;确定极性标识图形的位置范围为外接矩形框的内部或外部;确定一个目标参考区域,根据外接矩形框的尺寸、极性标识图形、位置范围和目标参考区域的名称计算极性标识图形的位置坐标;计算极性标识图形的尺寸;将极性标识图形、目标参考区域的名称、位置坐标和极性标识图形的尺寸,赋值给待设计极性标识的元器件的封装作为封装的一个属性。本发明能解决现有通过人工辨别、核对确认元器件极性导致极性识别困难、识别错误等缺陷。

Description

一种封装极性标识设计方法、系统、电子设备和存储介质 技术领域
本发明属于PCB设计领域,具体涉及一种封装极性标识设计方法、系统、电子设备和存储介质。
背景技术
随着集成电路和电子行业的发展,小型化、高密度化、多功能化和数字化已经成为目前PCB设计的趋势。在PCB设计过程中,元器件的封装设计是一个重要的过程,其设计质量会直接影响后期制造过程以及最终的产品质量。而在元器件封装设计过程中,部分元器件是有极性方向要求的。例如电解电容、二极管、三极管、集成电路IC等。行业内一般会为有极性方向要求的元器件做一种标识,这种标识指出该元器件的正负极或第一个引脚的位置。有极性的元器件在PCB板上贴装时需按一定的方向进行,以确保元器件正负极或元器件第一脚与PCB板实际线路相符。如果贴装时方向不正确,则会造成电路不通、元器件本体短路烧毁、电路无法正常工作等后果。
目前,行业内的元器件封装极性标识设计在PCB丝印层,一般用“○”、“▲”、“+”等符号进行标识。在进行贴装方向检查时,均是通过人工辨别、核对的方式进行确认。但在高密度化的PCB中,由于两元器件之间的距离非常近,很容易出现极性识别困难、混淆和识别错误等情况,最终造成产品功能不良和整块PCBA板的失效,造成经济损失。
那么,针对有极性的元器件,如何在EDA(Electronic design automation,电子设计自动化)设计中建立一种数字化的方法以实现元器件封装的极性设计,进而解决现有技术通过人工辨别、核对来确认元器件极性,导致出现极性识别困难、识别错误等缺陷,已成为PCB封装设计环节中一个重要的技术问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种封装极性标识设计方法、系统、电子设备和存储介质。本发明要解决的技术问题通过以下技术方案实现:
第一方面,本发明实施例提供了一种封装极性标识设计方法,所述方法包括:
将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,并获取所述外接矩形框的尺寸;
确定所述待设计极性标识的元器件的极性标识图形;
定义所述极性标识图形对应的多个参考区域的名称;其中,所述多个参考区域为所述多个子区域或多个横跨区域;每个横跨区域由所述外接矩形框的一条边所对应的多个子区域连接构成;
确定所述极性标识图形的位置范围为所述外接矩形框的内部或外部;
在所述多个参考区域中确定一个目标参考区域,并根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标;
根据所述外接矩形框的尺寸和所述极性标识图形计算所述极性标识图形的尺寸;
将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性。
第二方面,本发明实施例提供了一种封装极性标识设计系统,所述系统包括:
子区域划分模块,用于将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,并获取所述外接矩形框的尺寸;
极性标识图形选择模块,用于确定所述待设计极性标识的元器件的极性标识图形;
参考区域名称定义模块,用于定义所述极性标识图形对应的多个参考区域的名称;其中,所述多个参考区域为所述多个子区域或多个横跨区域;每个横跨区域由所述外接矩形框的一条边所对应的多个子区域连接构成;
位置范围确定模块,用于确定所述极性标识图形的位置范围为所述外接矩形框的内部或外部;
位置坐标计算模块,用于在所述多个参考区域中确定一个目标参考区域,并根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标;
尺寸计算模块,用于根据所述外接矩形框的尺寸、所述极性标识图形计算所述极性标识图形的尺寸;
封装属性赋值模块,用于将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性。
第三方面,本发明实施例提供了一种电子设备,包括处理器、通信接口、存储器和通信 总线,其中,所述处理器、所述通信接口、所述存储器通过所述通信总线完成相互间的通信;
所述存储器,用于存放计算机程序;
所述处理器,用于执行所述存储器上所存放的程序时,实现本发明实施例所提供的封装极性标识设计方法的步骤。
第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例所提供的封装极性标识设计方法的步骤。
本发明的有益效果:
本发明实施例所提供的封装极性标识设计方法,可以在前期的EDA设计端,通过数字化方法,确定所述待设计极性标识的元器件的极性标识图形、目标参考区域、位置坐标和极性标识图形的尺寸,并将这些信息赋值给所述待设计极性标识的元器件的封装,作为其封装本身的一个属性携带在PCB的电子设计文件中。在进行贴装方向检查时,通过查询极性元器件的PCB的电子设计文件中这一封装属性,即可确定极性标识的相关信息从而判断元器件的极性方向,而无需再使用人工判断方式。因此,能够避免由于元器件距离过近,在人工辨别、核对元器件极性时出现的极性识别困难、识别错误等问题,能够提高极性识别的准确率和效率。
附图说明
图1为本发明实施例所提供的一种封装极性标识设计方法的流程示意图;
图2为本发明实施例中将所述待设计极性标识的元器件的外接矩形框依据9宫格划分方式进行划分的示意图;
图3为本发明实施例中子区域和横跨区域的理解示意图;
图4为本发明实施例中各子区域和横跨区域名称标记方式的一种示意图;
图5(a)~图5(c)为本发明实施例中以极性标识图形为三角形、外接矩形框为待设计极性标识的元器件本体的矩形框为例给出的三角形相对外接矩形框的位置形态的三种示例;
图6(a)~图6(d)为本发明实施例中示例1的部分步骤结果图;
图7(a)~图7(c)为本发明实施例中示例2的部分步骤结果图;
图8为本发明实施例所提供的一种封装极性标识设计系统的结构示意图;
图9为本发明实施例所提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
为了解决现有技术中的上述缺陷,本发明实施例提供了一种封装极性标识设计方法、系统、电子设备和存储介质。
需要说明的是,本发明实施例所提供的方案,可以嵌入至现有的EDA封装设计软件中,现有的EDA封装设计软件包括但不限于Cadence Allegro、Altium Designer、Mentor Pads等。
第一方面,本发明实施例提供了一种封装极性标识设计方法,如图1所示,可以包括如下步骤:
S1,将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,并获取所述外接矩形框的尺寸。
针对任一待设计极性标识的元器件,在进行封装极性标识设计时,可以从其属性信息中,获取所述待设计极性标识的元器件的外接矩形框。所述外接矩形框可以为所述待设计极性标识的元器件本体的矩形框,或者,为包含所述待设计极性标识的元器件本体和对应焊盘的矩形框,在设计时可以根据需要选择。
本发明实施例将所述外接矩形框划分为多个子区域是为了在所述矩形框内部甚至进一步在外部形成不同的区域,以便于利用不同区域在后续定位极性标识的位置,关于该部分内容在后文中将会予以详细说明。
为了提高极性标识位置定位的精确性,可以考虑尽可能划分出较多的子区域,但同时考虑到尽量减少计算复杂度,因此,可选的一种实施方式中,所述将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,可以包括:
将所述待设计极性标识的元器件的外接矩形框,依据9宫格划分方式划分为9个子区域。
其中,9宫格划分方式的具体过程包括:针对所述外接矩形框的每一组对边,利用垂直且超出该组对边间距的2条平行直线,将该组对边均进行3等分,使得所述外接矩形框被划分为9个子区域。且四条用于划分的直线向两边无限延长,使得除中心子区域外,任一子区域的范围不局限于所述矩形框内部,而是涵盖该子区域对应的两条划分直线所限定的延伸区域,也就是说,子区域的延长线范围也属于该子区域。
具体请参见图2理解,图2中实线的矩形框为所述待设计极性标识的元器件本体的矩形框,虚线的矩形框为包含所述待设计极性标识的元器件本体和对应焊盘的矩形框。矩形框沿X轴方向为长度方向,长度表示为L;矩形框沿Y轴方向为宽度方向,宽度表示为W;长度L和宽度W中较短的为a。圆点表示矩形框的中心。
当然,本发明实施例的预设划分方式不限于上述9宫格划分方式,也可以针对所述外接矩形框的每一组对边,利用垂直且超出该组对边间距的1条平行直线,将该组对边均进行2等分,使得所述外接矩形框被划分为4个子区域;或者,针对所述外接矩形框的每一组对边,利用垂直且超出该组对边间距的3条平行直线,将该组对边均进行4等分,使得所述外接矩形框被划分为16个子区域;或者利用与所述外接矩形框各边平行的交叉直线对所述外接矩形框各边进行非均等分,使得所述外接矩形框被划分为多个子区域,等等。
S2,确定所述待设计极性标识的元器件的极性标识图形。
本发明实施例可以选取EDA封装设计中常用的任意一种图形作为所述待设计极性标识的元器件的极性标识图形。
可选的一种实施方式中,极性标识图形的类别包括第一类图形和第二类图形。
其中,所述第一类图形可以包括圆形或三角形;其中,圆形的显示效果可以为“○”;所述三角形为等边三角形,显示效果可以为“▲”。当然,所述第一类图形还可以包括“+”等形状。所述第二类图形可以包括线段。
在具体设计时,可以考虑所述待设计极性标识的元器件的不同类型,合理进行PCB布局设计以及满足清晰美观等方面的设计需求,选择所述第一类图形或者所述第二类图形中的任意一种作为所述待设计极性标识的元器件的极性标识图形。
比如,针对BGA器件,可以选取所述第一类图形中的圆形或三角形;针对二极管,可以选取所述第二类图形中的线段,等等。
需要说明的是,S2和S1的执行顺序可以交换。
S3,定义所述极性标识图形对应的多个参考区域的名称。
其中,所述多个参考区域为所述多个子区域或多个横跨区域;每个横跨区域由所述外接矩形框的一条边所对应的多个子区域连接构成。
为了便于理解子区域和横跨区域的概念,请结合图2和图3理解。图3为本发明实施例中子区域和横跨区域的理解示意图。图3以所述待设计极性标识的元器件的外接矩形框为所述待设计极性标识的元器件本体的矩形框为例,且以9宫格划分出的所述外接矩形框的左侧短边所对应的三个子区域作为示例进行说明。这三个子区域分别以不同的阴影示意,但图中阴影面积并不作为对子区域范围的限制。从图3可见,每个子区域不仅包含所述外接矩形框的内部区域,还包括对应的两条划分直线所限定的延伸区域。那么,这三个子区域可以连接构成一个横跨区域,对应于所述外接矩形框的左侧短边。同理,针对所述外接矩形框的其余三边,对应于每一边的横跨区域由该边上的三个子区域连接构成,即针对9个子区域共计有4个 横跨区域。关于其余横跨区域的确定方式在此不再一一进行图示说明。
可选的一种实施方式中,极性标识图形与参考区域具有预设的对应关系。针对任一极性标识图形,其多个参考区域为多个子区域或者多个横跨区域。因此,所述定义所述极性标识图形对应的多个参考区域的名称,可以包括:
(1)若所述极性标识图形为第一类图形,确定所述极性标识图形对应的多个参考区域与所述多个子区域一一对应;并根据预设的子区域名称标记方式,定义所述多个子区域的名称。
(2)若所述极性标识图形为第二类图形,确定所述极性标识图形对应的多个参考区域为所述多个横跨区域;并根据预设的横跨区域名称标记方式,定义所述多个横跨区域的名称。
为了便于对比理解,将上述两种情况进行集中说明。具体的:
如果所述极性标识图形为第一类图形,则确定所述极性标识图形对应的多个参考区域为所述多个子区域。以9宫格为例,所述极性标识图形为第一类图形时,9个子区域即为其9个参考区域。
如果所述极性标识图形为第二类图形,则确定所述极性标识图形对应的多个参考区域为所述多个横跨区域。以9宫格为例,所述极性标识图形为第二类图形时,4个横跨区域即为其4个参考区域。
所述预设的子区域或横跨区域的名称标记方式可以为任意一种不重复标记名称的方式,以实现各子区域之间互相区分、或各横跨区域之间互相区分的目的,包括但不限于随机标记或者依据一定的次序标记等,在此不做限制。
S4,确定所述极性标识图形的位置范围为所述外接矩形框的内部或外部。
本步骤可以根据一定需求选择所述极性标识图形的位置范围是所述外接矩形框的内部还是外部。选定所述极性标识图形的位置范围为所述外接矩形框的外部,即将极性标识标记在所述外接矩形框之外,主要是为了方便实物元器件上的极性点与PCB丝印上的极性点进行核对。此外,如果PCB布局的空间余量较大,也可以选定所述极性标识图形的位置范围为所述外接矩形框的外部。当然,选定所述极性标识图形的位置范围的因素还可以包括布局美观性等。
S5,在所述多个参考区域中确定一个目标参考区域,并根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标。
本步骤中,可以根据设计需求在所述极性标识图形对应的多个参考区域内任意选取一个 作为所述目标参考区域范围,在此不做限定。在确定所述目标参考区域之后,可以获知所述目标参考区域的名称以便后续使用。
本发明实施例中,可以针对所述位置范围为所述外接矩形框的内部或外部,所述极性标识图形为所述第一类图形或所述第二类图形,以及所述目标参考区域为所述多个子区域中的每一个、所述多个横跨区域中的每一个,所组合构成的不同情况,根据数学几何理论,以所述外接矩形框的中心作为原点,利用所述外接矩形框的尺寸,预先构建各种情况下,所述极性标识图形中心位置坐标(x,y)相对所述原点的计算公式,那么,在S5步骤中,针对任意一种情况,可以选取对应的预设公式计算出所述极性标识图形的中心位置坐标(x,y)。
上述各种情况的预设公式可以根据需要合理设置,在此不做具体限制。针对9宫格划分方式,各种情况的预设公式将在后文中具体示例说明。
S6,根据所述外接矩形框的尺寸和所述极性标识图形计算所述极性标识图形的尺寸。
在该步骤中,可以根据极性标识图形的具体形状,按照预设的参数计算公式,计算出对应尺寸。
比如,如果极性标识图形为圆形,所述预设的参数计算公式可以为一个关于半径的计算公式,利用该公式可以计算出圆形的半径,则确定了作为圆形的极性标识图形的尺寸。
再比如,如果极性标识图形为三角形,所述预设的参数计算公式可以为一个关于圆形半径的计算公式。利用该公式计算得到的半径可以确定一个圆形,然后再求取该圆形的内接三角形,则确定了作为三角形的极性标识图形的尺寸。
又比如,如果极性标识图形为线段,所述预设的参数计算公式可以为一个关于线长和线宽的计算公式,利用该公式可以计算出线段的长度和宽度,则确定了作为线段的极性标识图形的尺寸。
当然,针对其余形状的极性标识图形,也可以预先构建出一些能够确定其图形尺寸的关键参数的计算公式,在此不再举例说明。
S7,将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性。
可以理解的是,该步骤将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性,完成了所述待设计极性标识的元器件的EDA封装极性标识设计。之后,在PCB的电子设计文件中可以携带有该属性。
可见,本发明实施例所提供的封装极性标识设计方法,可以在前期的EDA设计端,通过数字化方法,确定所述待设计极性标识的元器件的极性标识图形、目标参考区域、位置坐标和极性标识图形的尺寸,并将这些信息赋值给所述待设计极性标识的元器件的封装,作为其封装本身的一个属性携带在PCB的电子设计文件中。在进行贴装方向检查时,通过查询极性元器件的PCB的电子设计文件中这一封装属性,即可确定极性标识的相关信息从而判断元器件的极性方向,而无需再使用人工判断方式。因此,能够避免由于元器件距离过近,在人工辨别、核对元器件极性时出现的极性识别困难、识别错误等问题,能够提高极性识别的准确率和效率。
以下对本发明一些可选的实施方式进行具体说明。
可选的一种实施方式中,所述根据预设的子区域名称标记方式,定义所述多个子区域的名称,包括:利用预设的第一字符序列中的各个第一字符,对所述多个子区域中依据预设子区域排列方式得到的各个子区域依次定义名称。
为了便于理解方案,后文中均以9宫格划分方式进行说明。
其中,所述第一字符序列可以为数字序列(1、2、3、4、5、6、7、8、9),所述预设子区域排列方式包括各子区域从上到下、从左至右的排列方式。当然,针对9宫格划分方式划分出的9个子区域,所述预设子区域排列方式也可以包括各子区域从左至右、从上到下的排列方式,等等。
所述根据预设的横跨区域名称标记方式,定义所述多个横跨区域的名称,包括:利用预设的第二字符序列中的各个第二字符,对所述多个横跨区域中依据预设横跨区域排列方式得到的各个横跨区域依次定义名称。
其中,所述第二字符序列可以为字母序列(A、B、C、D),所述预设横跨区域排列方式包括各横跨区域逆时针的排列方式。比如,4个横跨区域从左侧的横跨区域开始名称依次为A、B、C、D。当然,横跨区域A也可以是其余三个横跨区域中的任一个。
针对划分出的4个横跨区域,所述预设横跨区域排列方式也可以包括各横跨区域顺时针的排列方式,或者从上至下、从左至右,以及从左至右、从上至下的排列方式,等等。
示例性地给出一种优选的实施方式为:
所述第一字符序列包括数字序列(1、2、3、4、5、6、7、8、9);所述预设子区域排列方式包括各子区域从上到下、从左至右的排列方式;所述第二字符序列包括字母序列(A、B、C、D);所述预设横跨区域排列方式包括各横跨区域逆时针的排列方式;并且,横跨区域A由子区域1、2、3构成;横跨区域B由子区域3、6、9构成;横跨区域C由子区域7、 8、9构成;横跨区域D由子区域1、4、7构成。具体请参见图4理解。
S5中,根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标,根据不同情况下以所述外接矩形框的中心作为原点(0,0),利用所述外接矩形框的尺寸,在直角坐标系中预先构建的所述极性标识图形中心位置坐标(x,y)相对所述原点的计算公式的不同,可以有以下几种可选的实施方式。
1)若所述位置范围为所述外接矩形框的内部,且所述极性标识图形为所述第一类图形,比如为圆形或三角形,在预设的多个第一类公式中确定所述目标参考区域对应的目标第一类公式,利用所述目标第一类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标。
其中,所述预设的多个第一类公式,包括:
子区域1对应的第一类公式为:(x,y)={-(L/2-a/k),(W/2-a/k)};
子区域2对应的第一类公式为:(x,y)={-(L/2-a/k),0};
子区域3对应的第一类公式为:(x,y)={-(L/2-a/k),-(W/2-a/k)};
子区域4对应的第一类公式为:(x,y)={0,(W/2-a/k)};
子区域6对应的第一类公式为:(x,y)={0,-(W/2-a/k)};
子区域7对应的第一类公式为:(x,y)={(L/2-a/k),(W/2-a/k)};
子区域8对应的第一类公式为:(x,y)={(L/2-a/k),0};
子区域9对应的第一类公式为:(x,y)={(L/2-a/k),-(W/2-a/k)};
其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8],k可以根据需要选取。
2)若所述位置范围为所述外接矩形框的内部,且所述极性标识图形为所述第二类图形,比如为线段,在预设的多个第二类公式中确定所述目标参考区域对应的目标第二类公式,利用所述目标第二类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
其中,所述预设的多个第二类公式,包括:
横跨区域A对应的第二类公式为:(x,y)={-(L/2-a/k),0};对应的线方程为:x=-(L/2-a/k);
横跨区域B对应的第二类公式为:(x,y)={0,-(W/2-a/k)};对应的线方程为:y=-(W/2-a/k);
横跨区域C对应的第二类公式为:(x,y)={(L/2-a/k),0};对应的线方程为:x=(L/2-a/k);
横跨区域D对应的第二类公式为:(x,y)={0,(W/2-a/k)};对应的线方程为:y=(W/2-a/k);
其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8],k可以根据需要选取。
可以理解的是,该种情况下,针对横跨区域A和C,线段长度方向沿着Y轴方向,y坐标为0,仅需要计算x坐标即可;针对横跨区域B和D,线段长度方向沿着X轴方向,x坐标为0,仅需要计算y坐标即可。
3)若所述位置范围为所述外接矩形框的外部,且所述极性标识图形为所述第一类图形,比如为圆形或三角形,在预设的多个第三类公式中确定所述目标参考区域对应的目标第三类公式,利用所述目标第三类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
其中,所述预设的多个第三类公式,包括:
子区域1对应的第三类公式为:(x,y)={-(L/2-a/k),(W/2+a/k)}或(x,y)={-(L/2+a/k),(W/2-a/k)}或(x,y)={-(L/2+a/k),(W/2+a/k)};
子区域2对应的第三类公式为:(x,y)={-(L/2+a/k),0};
子区域3对应的第三类公式为:(x,y)={-(L/2-a/k),-(W/2+a/k)}或(x,y)={-(L/2+a/k),-(W/2-a/k)}或(x,y)={-(L/2+a/k),-(W/2+a/k)};
子区域4对应的第三类公式为:(x,y)={0,(W/2+a/k)};
子区域6对应的第三类公式为:(x,y)={0,-(W/2+a/k)};
子区域7对应的第三类公式为:(x,y)={(L/2-a/k),(W/2+a/k)}或(x,y)={(L/2+a/k),(W/2-a/k)}或(x,y)={(L/2+a/k),(W/2+a/k)};
子区域8对应的第三类公式为:(x,y)={(L/2+a/k),0};
子区域9对应的第三类公式为:(x,y)={(L/2-a/k),-(W/2+a/k)}或(x,y)={(L/2+a/k),-(W/2-a/k)}或(x,y)={(L/2+a/k),-(W/2+a/k)};
其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8],k可以根据需要选取。
需要说明的是,若某一子区域具有多个第三类公式,可以根据需要选择其中一个用于计算。
4)若所述位置范围为所述外接矩形框的外部,且所述极性标识图形为所述第二类图形,比如为线段,在预设的多个第四类公式中确定所述目标参考区域对应的目标第四类公式,利用所述目标第四类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
其中,所述预设的多个第四类公式,包括:
横跨区域A对应的第四类公式为:(x,y)={-(L/2+a/k),0};对应的线方程为:x=-(L/2+a/k);
横跨区域B对应的第四类公式为:(x,y)={0,-(W/2+a/k)};对应的线方程为:y=-(W/2+a/k);
横跨区域C对应的第四类公式为:(x,y)={(L/2+a/k),0};对应的线方程为:x=(L/2+a/k);
横跨区域D对应的第四类公式为:(x,y)={0,(W/2+a/k)};对应的线方程为:y=(W/2+a/k);
其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8],k可以根据需要选取。
可以理解的是,该种情况下,针对横跨区域A和C,线段长度方向沿着Y轴方向,y坐标为0,仅需要计算x坐标即可;针对横跨区域B和D,线段长度方向沿着X轴方向,x坐标为0,仅需要计算y坐标即可。
可以理解的是,上述各计算公式是针对9宫格划分方式确定的,如果采用9宫格划分方式之外的其余方式,也可以根据相关的数学几何理论构造不同情况下,各目标参考区域对应的预设公式,在此不再举例说明。
针对S6,可选的一种实施方式中,所述根据所述外接矩形框的尺寸和所述极性标识图形计算所述极性标识图形的尺寸,包括:
①若所述极性标识图形为圆形,确定半径为a/p,以得到所述极性标识图形的尺寸;其中,p∈[9,18]。
②若所述极性标识图形为三角形,以半径a/p得到圆形R,并求取所述圆形R的一个内接三角形,以得到所述极性标识图形的尺寸。
③若所述极性标识图形为线段,针对横跨区域A和C,确定线长为W,线宽为a/p;针对横跨区域B和D,确定线长为L,线宽为a/p,以得到所述极性标识图形的尺寸。
其中,优选的实施方式中,p可以为12。
可选的一种实施方式中,针对所述极性标识图形为第一类图形,如果该第一类图形非圆形,那么该第一类图形在以其中心进行旋转时,可能相对于所述外接矩形框可以具有不同的位置形态,那么可以对其相对于所述外接矩形框特定位置的旋转程度进行一定的设计。
以所述极性标识图形为三角形、所述外接矩形框为所述待设计极性标识的元器件本体的矩形框为例。如果该三角形的中心位于所述外接矩形框一个边角的外区域,可选的一种实施方式中,该三角形朝向该边角的目标角的顶点所在的三角形中垂线,位于所述外接矩形框中心与该边角顶点连线向该三角形一侧方向的延长线上,请参见图5(a)理解,其中,该三角形朝向的边角为外接矩形框的左上角,三角形中垂线以虚线示意。可选的另一种实施方式中,该三角形朝向该边角的目标角的顶点所在的三角形中垂线,与该边角在该三角形侧的两条延长线的夹角均为45°,请参见图5(b)理解,其中,该三角形朝向的边角为外接矩形框的左上角,三角形中垂线以虚线示意,该边角在该三角形侧的两条延长线以点划线示意。
如果该三角形的中心位于所述外接矩形框一条边的附近区域,可选的一种实施方式中,该三角形朝向该条边的目标角所在的三角形中垂线,垂直于该条边,请参见图5(c)理解,其中,该三角形朝向所述外接矩形框的左侧边,三角形中垂线以虚线示意。
当然,所述极性标识图形为非圆形的第一类图形,在对应的中心位置坐标基础上的位置形态,并不局限于以上示例,在设计时可以根据需要合理选择,并且进一步的,也可以将其位置形态相关的参数信息也一起赋值给所述待设计极性标识的元器件的封装。
可选的一种实施方式中,所述将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性之后,所述方法还包括:
根据所述待设计极性标识的元器件的极性标识显示需求,设置所述极性标识图形在PCB上的显示属性,所述显示属性包括显示或隐藏。
也就是说,利用本发明实施例的方法进行EDA封装极性标识设计时,能够根据极性标识显示需求,实现元器件极性标识是否隐藏可选,那么元器件封装的极性可以不用图形的形式出现,而是作为一个元器件内部属性来使用,这样能够利用该内部属性,避免在进行贴装方向检查时,由于元器件距离过近,导致人工识别极性困难、易混淆、识别错误等问题。可以理解的是,如果选择显示极性标识,则根据S7得到的该封装的属性,在丝印层上画出该极性标识图形;如果选择隐藏极性标识,则不在PCB丝印层上画出该极性标识图形,那么可以留出空间使PCB更高密度化,进而做出体积更小功能更强的产品,并且有利于产品的保密。
为了更直观清晰地理解本发明实施例方法的各步骤,以下以两个具体的示例进行详细说明。两个示例中,所述外接矩形框为所述待设计极性标识的元器件本体的矩形框,采用9宫格划分方式,各子区域和横跨区域的命名方式请参见图4。
(一)示例1
针对S1,请参见图6(a),为一个封装名为“SOP16”的元器件设计封装极性标识,将元器件“SOP16”的外接矩形框,依据9宫格划分方式划分为9个子区域;所述外接矩形框长度沿X轴方向,长度为L=10mm;宽度沿Y轴方向,宽度为W=4mm。对比长度L和宽度W,取较短的一边为a。
针对S2,确定极性标识图形为第一类图形中的圆形“○”。
针对S3,确定圆形的极性标识图形对应的多个参考区域为9个子区域,并定义这9个子区域的名称。
9个子区域的名称定义结果请见图6(b),即九宫格左上角的子区域的名称为1,从上到下从左到右,各子区域的名称分别为2、3、4、5、6、7、8、9。
针对S4,确定所述极性标识图形的位置范围为所述外接矩形框的内部。
针对S5,选择目标参考区域为子区域1,并根据子区域1对应的第一类公式: (x,y)={-(L/2-a/k),(W/2-a/k)},代入L=10mm,W=4mm,a=4mm,k=6,计算所述极性标识图形的位置坐标,得到(x,y)=(-4.333,1.333)。该步骤的结果请见图6(c)。
针对S6,根据圆形的半径的计算公式a/p,代入a=4mm,p=12,计算出圆形的半径为r=0.333mm,则确定出该极性标识图形的尺寸。该步骤的结果请见图6(d)。
针对S7,元器件封装“SOP16”的极性设计完毕,将极性标识图形:○;目标参考区域的名称:子区域1;极性标识图形的中心位置坐标(-4.333,1.333)和极性标识图形的尺寸即圆的半径r:0.333,赋值给该封装,作为该封装的一个属性。赋值的封装的属性具体请见表1。
表1
Figure PCTCN2022111054-appb-000001
进一步的,如果若有显示极性标识的需求,则根据S7得到的该封装的属性,在丝印层上画出该极性标识。
(二)示例2
针对S1,请参见图7(a),为一个封装名为“SMD-1005”的元器件设计封装极性标识,将元器件“SMD-1005”的外接矩形框,依据9宫格划分方式划分为9个子区域;所述外接矩形框长度沿X轴方向,长度为L=4.8mm;宽度沿Y轴方向,宽度为W=2mm。对比长度L和宽度W,取较短的一边为a,a=2mm。
针对S2,确定极性标识图形为第二类图形中的线段
Figure PCTCN2022111054-appb-000002
针对S3,确定线段的极性标识图形对应的多个参考区域为4个横跨区域,并定义这4个横跨区域的名称。
4个横跨区域的名称定义结果请见图7(b),即九宫格左上角的子区域的名称为1,从上到下从左到右,各子区域的名称分别为2、3、4、5、6、7、8、9,子区域1、2、3连接构成横跨区域A;子区域3、6、9连接构成横跨区域B;子区域7、8、9连接构成横跨区域C;子区域1、4、7连接构成横跨区域D。
针对S4,确定所述极性标识图形的位置范围为所述外接矩形框的外部。
针对S5,选择目标参考区域为横跨区域C,并根据横跨区域C对应的第四类公式: (x,y)={(L/2+a/k),0},代入L=4.8mm,W=2mm,a=2mm,k=6,计算所述极性标识图形的位置坐标,得到(x,y)=(2.733,0),且将上述参数代入对应的线方程x=(L/2+a/k),得到x=2.733。
针对S6,根据线段的长度和宽度的计算公式:线长为W,线宽为a/p;代入W=2mm,a=4mm,p=12,计算出线段的长度为l=2mm,宽度为w=0.167mm,则确定出该极性标识图形的尺寸。S5和S6的结果请见图7(c)。
针对S7,元器件封装“SMD-1005”的极性设计完毕,将极性标识图形:
Figure PCTCN2022111054-appb-000003
目标参考区域的名称:横跨区域C;极性标识图形的中心位置坐标(2.733,0),线方程:x=2.733和极性标识图形的尺寸即l=2mm,w=0.167mm,赋值给该封装,作为该封装的一个属性。赋值的封装的属性具体请见表2。
表2
Figure PCTCN2022111054-appb-000004
进一步的,如果若有显示极性标识的需求,则根据S7得到的该封装的属性,在丝印层上画出该极性标识。
第二方面,相应于上述方法实施例,本发明实施例还提供了一种封装极性标识设计系统,如图8所示,该系统包括:
子区域划分模块801,用于将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,获取所述外接矩形框的尺寸;
极性标识图形选择模块802,用于确定所述待设计极性标识的元器件的极性标识图形;
参考区域名称定义模块803,用于定义所述极性标识图形对应的多个参考区域的名称;其中,所述多个参考区域为所述多个子区域或多个横跨区域;每个横跨区域由所述外接矩形框的一条边所对应的多个子区域连接构成;
位置范围确定模块804,用于确定所述极性标识图形的位置范围为所述外接矩形框的内部或外部;
位置坐标计算模块805,用于在所述多个参考区域中确定一个目标参考区域,并根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标;
尺寸计算模块806,用于根据所述外接矩形框的尺寸、所述极性标识图形计算所述极性标识图形的尺寸;
封装属性赋值模块807,用于将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性。
第三方面,本发明实施例还提供了一种电子设备,如图9所示,包括处理器901、通信接口902、存储器903和通信总线904,其中,处理器901、通信接口902、存储器903通过通信总线904完成相互间的通信,
所述存储器,用于存放计算机程序;
所述处理器,用于执行所述存储器上所存放的程序时,实现本发明实施例第一方面所提供的任一封装极性标识设计方法的步骤。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)等。
本发明实施例提供的方法可以应用于电子设备。具体的,该电子设备可以为:台式计算机、便携式计算机、智能移动终端、服务器等,在此不作限定。
第四方面,本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,计算机程序被处理器执行时实现本发明实施例第一方面所提供的任一封装极性标识设计方法的步骤。
对于系统/电子设备/存储介质实施例而言,具体实现原理、过程和技术效果与方法实施 例类似,在此不再赘述。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述和区分目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (13)

  1. 一种封装极性标识设计方法,其特征在于,包括:
    将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,并获取所述外接矩形框的尺寸;
    确定所述待设计极性标识的元器件的极性标识图形;
    定义所述极性标识图形对应的多个参考区域的名称;其中,所述多个参考区域为所述多个子区域或多个横跨区域;每个横跨区域由所述外接矩形框的一条边所对应的多个子区域连接构成;
    确定所述极性标识图形的位置范围为所述外接矩形框的内部或外部;
    在所述多个参考区域中确定一个目标参考区域,并根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标;
    根据所述外接矩形框的尺寸和所述极性标识图形计算所述极性标识图形的尺寸;
    将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性。
  2. 根据权利要求1所述的封装极性标识设计方法,其特征在于,所述将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,包括:
    将所述待设计极性标识的元器件的外接矩形框,依据9宫格划分方式划分为9个子区域。
  3. 根据权利要求2所述的封装极性标识设计方法,其特征在于,所述定义所述极性标识图形对应的多个参考区域的名称,包括:
    若所述极性标识图形为第一类图形,确定所述极性标识图形对应的多个参考区域与所述多个子区域一一对应;并根据预设的子区域名称标记方式,定义所述多个子区域的名称;
    若所述极性标识图形为第二类图形,确定所述极性标识图形对应的多个参考区域为所述多个横跨区域;并根据预设的横跨区域名称标记方式,定义所述多个横跨区域的名称;
    其中,所述第一类图形包括圆形或三角形;所述第二类图形包括线段。
  4. 根据权利要求3所述的封装极性标识设计方法,其特征在于,
    所述根据预设的子区域名称标记方式,定义所述多个子区域的名称,包括:
    利用预设的第一字符序列中的各个第一字符,对所述多个子区域中依据预设子区域排列方式得到的各个子区域依次定义名称;其中,所述第一字符序列包括数字序列(1、2、3、4、5、6、7、8、9);所述预设子区域排列方式包括各子区域从上到下、从左至右的排列方式;
    所述根据预设的横跨区域名称标记方式,定义所述多个横跨区域的名称,包括:
    利用预设的第二字符序列中的各个第二字符,对所述多个横跨区域中依据预设横跨区域排列方式得到的各个横跨区域依次定义名称;其中,所述第二字符序列包括字母序列(A、B、C、D);所述预设横跨区域排列方式包括各横跨区域逆时针的排列方式;并且,横跨区域A由子区域1、2、3构成;横跨区域B由子区域3、6、9构成;横跨区域C由子区域7、8、9构成;横跨区域D由子区域1、4、7构成。
  5. 根据权利要求4所述的封装极性标识设计方法,其特征在于,所述根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标,包括:
    若所述位置范围为所述外接矩形框的内部,且所述极性标识图形为所述第一类图形,在预设的多个第一类公式中确定所述目标参考区域对应的目标第一类公式,利用所述目标第一类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
    其中,所述预设的多个第一类公式,包括:
    子区域1对应的第一类公式为:(x,y)={-(L/2-a/k),(W/2-a/k)};
    子区域2对应的第一类公式为:(x,y)={-(L/2-a/k),0};
    子区域3对应的第一类公式为:(x,y)={-(L/2-a/k),-(W/2-a/k)};
    子区域4对应的第一类公式为:(x,y)={0,(W/2-a/k)};
    子区域6对应的第一类公式为:(x,y)={0,-(W/2-a/k)};
    子区域7对应的第一类公式为:(x,y)={(L/2-a/k),(W/2-a/k)};
    子区域8对应的第一类公式为:(x,y)={(L/2-a/k),0};
    子区域9对应的第一类公式为:(x,y)={(L/2-a/k),-(W/2-a/k)};
    其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8]。
  6. 根据权利要求4所述的封装极性标识设计方法,其特征在于,所述根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标,包括:
    若所述位置范围为所述外接矩形框的内部,且所述极性标识图形为所述第二类图形,在 预设的多个第二类公式中确定所述目标参考区域对应的目标第二类公式,利用所述目标第二类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
    其中,所述预设的多个第二类公式,包括:
    横跨区域A对应的第二类公式为:(x,y)={-(L/2-a/k),0};对应的线方程为:x=-(L/2-a/k);
    横跨区域B对应的第二类公式为:(x,y)={0,-(W/2-a/k)};对应的线方程为:y=-(W/2-a/k);
    横跨区域C对应的第二类公式为:(x,y)={(L/2-a/k),0};对应的线方程为:x=(L/2-a/k);
    横跨区域D对应的第二类公式为:(x,y)={0,(W/2-a/k)};对应的线方程为:y=(W/2-a/k);
    其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8]。
  7. 根据权利要求4所述的封装极性标识设计方法,其特征在于,所述根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标,包括:
    若所述位置范围为所述外接矩形框的外部,且所述极性标识图形为所述第一类图形,在预设的多个第三类公式中确定所述目标参考区域对应的目标第三类公式,利用所述目标第三类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
    其中,所述预设的多个第三类公式,包括:
    子区域1对应的第三类公式为:(x,y)={-(L/2-a/k),(W/2+a/k)}或(x,y)={-(L/2+a/k),(W/2-a/k)}或(x,y)={-(L/2+a/k),(W/2+a/k)};
    子区域2对应的第三类公式为:(x,y)={-(L/2+a/k),0};
    子区域3对应的第三类公式为:(x,y)={-(L/2-a/k),-(W/2+a/k)}或(x,y)={-(L/2+a/k),-(W/2-a/k)}或(x,y)={-(L/2+a/k),-(W/2+a/k)};
    子区域4对应的第三类公式为:(x,y)={0,(W/2+a/k)};
    子区域6对应的第三类公式为:(x,y)={0,-(W/2+a/k)};
    子区域7对应的第三类公式为:(x,y)={(L/2-a/k),(W/2+a/k)}或(x,y)={(L/2+a/k),(W/2-a/k)}或(x,y)={(L/2+a/k),(W/2+a/k)};
    子区域8对应的第三类公式为:(x,y)={(L/2+a/k),0};
    子区域9对应的第三类公式为:(x,y)={(L/2-a/k),-(W/2+a/k)}或(x,y)={(L/2+a/k),-(W/2-a/k)}或(x,y)={(L/2+a/k),-(W/2+a/k)};
    其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8]。
  8. 根据权利要求4所述的封装极性标识设计方法,其特征在于,所述根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标,包括:
    若所述位置范围为所述外接矩形框的外部,且所述极性标识图形为所述第二类图形,在预设的多个第四类公式中确定所述目标参考区域对应的目标第四类公式,利用所述目标第四类公式、所述外接矩形框的尺寸和选取的调节参数值,计算所述极性标识图形相对所述外接矩形框中心的位置坐标;
    其中,所述预设的多个第四类公式,包括:
    横跨区域A对应的第四类公式为:(x,y)={-(L/2+a/k),0};对应的线方程为:x=-(L/2+a/k);
    横跨区域B对应的第四类公式为:(x,y)={0,-(W/2+a/k)};对应的线方程为:y=-(W/2+a/k);
    横跨区域C对应的第四类公式为:(x,y)={(L/2+a/k),0};对应的线方程为:x=(L/2+a/k);
    横跨区域D对应的第四类公式为:(x,y)={0,(W/2+a/k)};对应的线方程为:y=(W/2+a/k);
    其中,x,y分别表示以所述外接矩形框中心为原点时所述极性标识图形中心位置坐标中 的x坐标和y坐标;L表示所述外接矩形框沿x轴方向的长度;W表示所述外接矩形框沿y轴方向的宽度;a表示所述外接矩形框的短边尺寸;k表示所述调节参数值,k∈[6,8]。
  9. 根据权利要求1-8任一项所述的封装极性标识设计方法,其特征在于,所述根据所述外接矩形框的尺寸和所述极性标识图形计算所述极性标识图形的尺寸,包括:
    若所述极性标识图形为圆形,确定半径为a/p,以得到所述极性标识图形的尺寸;其中,p∈[9,18];
    若所述极性标识图形为三角形,以半径a/p得到圆形R,并求取所述圆形R的一个内接三角形,以得到所述极性标识图形的尺寸;
    若所述极性标识图形为线段,针对横跨区域A和C,确定线长为W,线宽为a/p;针对横跨区域B和D,确定线长为L,线宽为a/p,以得到所述极性标识图形的尺寸。
  10. 根据权利要求1所述的封装极性标识设计方法,其特征在于,所述将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性之后,所述方法还包括:
    根据所述待设计极性标识的元器件的极性标识显示需求,设置所述极性标识图形在PCB上的显示属性,所述显示属性包括显示或隐藏。
  11. 一种封装极性标识设计系统,其特征在于,包括:
    子区域划分模块,用于将待设计极性标识的元器件的外接矩形框,依据预设划分方式划分为多个子区域,并获取所述外接矩形框的尺寸;
    极性标识图形选择模块,用于确定所述待设计极性标识的元器件的极性标识图形;
    参考区域名称定义模块,用于定义所述极性标识图形对应的多个参考区域的名称;其中,所述多个参考区域为所述多个子区域或多个横跨区域;每个横跨区域由所述外接矩形框的一条边所对应的多个子区域连接构成;
    位置范围确定模块,用于确定所述极性标识图形的位置范围为所述外接矩形框的内部或外部;
    位置坐标计算模块,用于在所述多个参考区域中确定一个目标参考区域,并根据所述外接矩形框的尺寸、所述极性标识图形、所述位置范围和所述目标参考区域的名称,计算所述极性标识图形的位置坐标;
    尺寸计算模块,用于根据所述外接矩形框的尺寸、所述极性标识图形计算所述极性标识图形的尺寸;
    封装属性赋值模块,用于将所述极性标识图形、所述目标参考区域的名称、所述位置坐标和所述极性标识图形的尺寸,赋值给所述待设计极性标识的元器件的封装,作为所述封装的一个属性。
  12. 一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,所述处理器、所述通信接口、所述存储器通过所述通信总线完成相互间的通信;
    所述存储器,用于存放计算机程序;
    所述处理器,用于执行所述存储器上所存放的程序时,实现权利要求1-10任一所述的方法步骤。
  13. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-10任一所述的方法步骤。
PCT/CN2022/111054 2022-08-03 2022-08-09 一种封装极性标识设计方法、系统、电子设备和存储介质 WO2024026906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210927435.5 2022-08-03
CN202210927435.5A CN115221832A (zh) 2022-08-03 2022-08-03 一种封装极性标识设计方法、系统、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024026906A1 true WO2024026906A1 (zh) 2024-02-08

Family

ID=83615220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111054 WO2024026906A1 (zh) 2022-08-03 2022-08-09 一种封装极性标识设计方法、系统、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN115221832A (zh)
WO (1) WO2024026906A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054084A (zh) * 2009-11-09 2011-05-11 英业达股份有限公司 电子元件的极性标示方法
CN102542087A (zh) * 2010-12-23 2012-07-04 研华股份有限公司 封装接脚对应设计自动化系统及方法
CN105513046A (zh) * 2015-11-23 2016-04-20 广州视源电子科技股份有限公司 电子元件极性的识别方法和系统、标注方法和系统
EP3169146B1 (en) * 2014-07-10 2018-10-31 FUJI Corporation Method for producing component placement coordinates and device for producing component placement coordinates
US20210133382A1 (en) * 2019-10-31 2021-05-06 Boe Technology Group Co., Ltd. Electronic device, method for generating package drawing and computer readable storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054084A (zh) * 2009-11-09 2011-05-11 英业达股份有限公司 电子元件的极性标示方法
CN102542087A (zh) * 2010-12-23 2012-07-04 研华股份有限公司 封装接脚对应设计自动化系统及方法
EP3169146B1 (en) * 2014-07-10 2018-10-31 FUJI Corporation Method for producing component placement coordinates and device for producing component placement coordinates
CN105513046A (zh) * 2015-11-23 2016-04-20 广州视源电子科技股份有限公司 电子元件极性的识别方法和系统、标注方法和系统
US20210133382A1 (en) * 2019-10-31 2021-05-06 Boe Technology Group Co., Ltd. Electronic device, method for generating package drawing and computer readable storage medium

Also Published As

Publication number Publication date
CN115221832A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN109165401B (zh) 一种基于土建结构三维模型生成二维施工图的方法和装置
US11568118B2 (en) Electronic device, method for generating package drawing and computer readable storage medium
CN114463438A (zh) 一种标定板、标定板识别方法、装置及计算机可读介质
WO2024026906A1 (zh) 一种封装极性标识设计方法、系统、电子设备和存储介质
CN114611452A (zh) 基于电路原理图在版图中自动生成Sub Cell的方法
WO2024037336A1 (zh) 构建芯片pad图形的方法、系统、存储介质及电子设备
CN114297739A (zh) 用于版图验证的标识处理方法、装置、服务器和存储介质
WO2023197430A1 (zh) 集成电路的设计方法、设计设备及计算机可读存储介质
Hao et al. Conic tangents based high precision extraction method of concentric circle centers and its application in camera parameters calibration
CN108133502B (zh) 一种业务流程图的展示方法
CN113221499B (zh) 掩膜版图生成方法、装置、计算机设备及存储介质
CN113419485A (zh) 定位打孔方法、设备、存储介质及装置
CN115496029A (zh) 几何图形的表示方法、提取方法、存储介质
JP2024518963A (ja) チップレイアウトからチップモデルを確立する方法、装置及び記憶媒体
CN108205563A (zh) 电子地图信息标注方法、装置及终端
CN111199133B (zh) 一种自动布线绕线的方法
CN113838165B (zh) 一种图斑自动编号方法及装置、电子设备、存储介质
JP4907255B2 (ja) 表示パネルの製造方法およびそれに用いる露光システム
CN117151020B (zh) 基于四叉树的覆铜形状相交状态快速判断方法及装置
CN112347727A (zh) 一种支持圆弧边的填充型覆铜方法、系统、设备及存储介质
TWI795127B (zh) 電路板工程圖錫點標示方法及其裝置
WO2024021797A1 (zh) 芯片版图的布线方法、装置、设备、存储介质及芯片版图
CN116422543B (zh) 一种基于空间平面的点胶控制方法、装置、设备及介质
WO2021013241A1 (zh) 一种文档元素对齐方法、装置、电子设备及存储介质
CN104615830A (zh) 一种基于pcb设计的元器件贴图方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953705

Country of ref document: EP

Kind code of ref document: A1