WO2024026851A1 - 电池单体、电池及用电设备 - Google Patents

电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2024026851A1
WO2024026851A1 PCT/CN2022/110631 CN2022110631W WO2024026851A1 WO 2024026851 A1 WO2024026851 A1 WO 2024026851A1 CN 2022110631 W CN2022110631 W CN 2022110631W WO 2024026851 A1 WO2024026851 A1 WO 2024026851A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
insulating layer
active material
positive electrode
material layer
Prior art date
Application number
PCT/CN2022/110631
Other languages
English (en)
French (fr)
Inventor
常雯
付成华
叶永煌
郭锁刚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/110631 priority Critical patent/WO2024026851A1/zh
Publication of WO2024026851A1 publication Critical patent/WO2024026851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and electrical equipment.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • the purpose of this application is to provide a battery cell, battery and electrical equipment.
  • the battery cell has high safety.
  • the application provides a battery cell, including an electrode assembly.
  • the electrode assembly includes: a negative electrode sheet, including a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode current collector includes a negative electrode body and a negative electrode tab. , the negative electrode tab protrudes from the negative electrode body, and at least part of the negative electrode active material layer is provided on the surface of the negative electrode body;
  • the positive electrode piece includes a positive electrode current collector and a positive electrode active material layer, the positive electrode current collector It includes a positive electrode body and a positive electrode tab.
  • the positive electrode tab extends from the first edge of the positive electrode body along the first direction.
  • the positive electrode active material layer is disposed on the surface of the positive electrode body, along the surface of the negative electrode body.
  • the projection of the positive active material layer on the negative electrode sheet falls into the negative active material layer; wherein the negative electrode sheet further includes a first insulating layer, and the first insulating layer is disposed on the negative electrode sheet.
  • the projection of the first edge on the negative electrode plate falls into the first insulating layer.
  • a first insulating layer is provided on the negative electrode current collector, and the projection of the first edge on the negative electrode piece falls into the first insulating layer, so as to increase the cutting of the negative electrode piece and the positive electrode body.
  • the insulation effect of the edges formed by the positive electrode tabs reduces the risk of burrs on the first edge piercing the isolation film and directly overlapping the negative electrode tabs and short-circuiting, thereby improving the safety of the battery cells.
  • the negative electrode body includes a second edge close to the first edge, and the second edge extends beyond the first edge along the first direction.
  • the negative active material layer exceeds the positive active material layer and the second edge exceeds the first edge, the negative active material layer can have a larger size in the first direction, thereby making the negative active material layer and the positive active material
  • the capacity of the layers can be larger, allowing the battery cells to have higher energy density.
  • the first insulating layer covers a part of the negative active material layer.
  • the first insulating layer covers part of the negative active material layer, so that the area of the negative active material layer on the negative electrode body can be larger, so that the capacity of the negative active material layer is larger, and the capacity of the positive active material layer is also larger. Can be larger.
  • the negative active material layer extends to the second edge.
  • the negative active material layer extends to the second edge, so that the negative active material layer occupies a larger area on the negative electrode body and the capacity of the negative active material layer is larger.
  • the negative electrode tab extends from the second edge, in a direction from the negative electrode body to the negative electrode tab along the first direction, and the first insulating layer extends beyond The second edge covers a portion of the negative electrode tab.
  • the first insulating layer extends beyond the second edge and covers part of the negative electrode tab.
  • the first insulating layer covers a larger area on the negative electrode current collector, reducing the risk of contact short circuit between the positive electrode piece and the negative electrode piece.
  • the size of the first insulating layer covering the negative electrode tab is E1, satisfying 0 ⁇ E1 ⁇ 8mm, preferably, 1mm ⁇ E1 ⁇ 3mm.
  • the size of the first insulating layer covering the negative electrode tab meets the above range, and has a good insulation effect without affecting the connection between the negative electrode tab and other components (such as an adapter). If the size of the first insulating layer covering the negative electrode tab is small, the insulation effect will be weak; if the size of the first insulating layer covering the negative electrode tab is large, it will occupy a larger size of the negative electrode tab in the first direction, affecting The connection between the negative pole tab and other components.
  • the size of the first insulating layer covering the negative electrode body is F1, which satisfies 3mm ⁇ F1 ⁇ 10mm.
  • the size of the first insulating layer covering the negative electrode body meets the above range and can define the position of the first edge of the positive electrode body, so that the size of the positive electrode body in the first direction can be reduced with a good insulation effect.
  • the size of the positive active material layer is larger, and the capacity of the positive active material layer is larger, so that the battery cell has a higher energy density.
  • the negative active material layer includes a thinned region and a main body region, the thinned region and the main body region are arranged along the first direction, and the thickness of the thinned region is less than the The thickness of the main body area, the first insulating layer covering the thinned area.
  • the first insulating layer covers the thinned area, so that the total thickness of the first insulating layer covering the negative active material layer is low, thereby reducing the risk of lithium precipitation.
  • the sum of the thicknesses of the first insulating layer and the thinned region is H1
  • the thickness of the main body region is H2, satisfying -2mm ⁇ H1 -H2 ⁇ 2mm.
  • the sum of the thicknesses H1 of the first insulating layer and the thinned area and the thickness H2 of the main body area satisfy the above relationship.
  • the distance between the negative electrode piece and the positive electrode piece is small, which facilitates the movement of metal ions and reduces precipitation. Lithium Risks. If the sum of the thicknesses H1 of the first insulating layer and the thinned area is too small, the distance between the surface of the first insulating layer and the surface of the main body area will be larger along the thickness direction of the negative electrode body, and the negative electrode will be active in the thinned area.
  • the thickness of the material layer is small, and the capacity of the negative active material layer is low; if the sum H1 of the thickness of the first insulating layer and the thinned area is too large, the surface of the first insulating layer protrudes from the surface of the main body area, increasing the main body area.
  • the distance between the area and the positive electrode piece makes it easy for lithium to precipitate.
  • the cathode active material layer includes a third edge close to the first edge; in a direction from the cathode body to the cathode tab along the first direction, the cathode
  • the size of the active material layer beyond the third edge is C1, which satisfies 0.5mm ⁇ C1 ⁇ 3mm, preferably, 1mm ⁇ C1 ⁇ 2mm.
  • the size C1 of the negative active material layer beyond the third edge meets the above range, so as to control the size of the negative active material layer beyond the positive active material layer and reduce the risk of lithium precipitation.
  • the positive electrode piece further includes a second insulating layer, the second insulating layer is provided on the positive current collector, and the second insulating layer extends to the first edge.
  • the second insulating layer can cover the burrs on the first edge, making it more difficult for the burrs to penetrate the isolation film and reducing the risk of contact short circuit between the positive electrode piece and the negative electrode piece.
  • the second insulating layer and the cathode active material layer are arranged along the first direction.
  • the second insulating layer and the cathode active material layer are arranged along the first direction, which facilitates the assembly of the second insulating layer and the cathode current collector. At the same time, it can also avoid the second insulating layer covering the cathode active material layer and increasing the number of cathodes. The distance between the active material layer and the negative electrode sheet reduces the risk of lithium precipitation.
  • the size of the second insulating layer covering the cathode body is M1, and the size of the cathode body is M2, satisfying 0.2% ⁇ M1/M2 ⁇ 2.8%. , preferably, 0.4% ⁇ M1/M2 ⁇ 2%.
  • the ratio of the size M1 of the second insulating layer covering the cathode body to the size M2 of the cathode body satisfies the above range, the second insulating layer has a better insulating effect, and the second insulating layer is in the first
  • the size occupied in the direction is smaller, and the capacity of the positive active material layer can be larger.
  • the projection of the second insulating layer on the negative electrode piece falls into the first insulating layer.
  • the projection of the second insulating layer on the negative electrode plate falls into the first insulating layer, the second insulating layer and the first insulating layer have a large overlapping area, and the first insulating layer has a better insulating effect, and at the same time , the size of the second insulating layer in the first direction is smaller, and the capacity of the positive active material layer is larger, so that the battery cell has a higher energy density.
  • the first insulating layer exceeds the second insulating layer.
  • the first insulating layer exceeds the second insulating layer, the size of the second insulating layer in the first direction is smaller, the size of the positive active material layer in the first direction is larger, and the capacity of the positive active material layer is smaller. many.
  • the size of the negative active material layer is D1
  • the size of the positive active material layer is D2
  • the size of the second insulating layer is M1, satisfying M1 ⁇ (D1-D2)/2.
  • the size of the second insulating layer, the size of the negative active material layer and the size of the positive active material layer satisfy the above relationship, the size of the second insulating layer is smaller, and the second insulating layer is in the first direction. Occupying less space in one direction, the positive active material layer can have a larger size in the first direction, so that the battery cell has a higher energy density.
  • the second insulating layer includes a fourth edge close to the first edge; along the first direction in a direction from the cathode body to the cathode tab, the third The dimension of an insulating layer beyond the fourth edge is C2, satisfying 0 ⁇ C2 ⁇ 2.5mm.
  • the size of the first insulating layer beyond the fourth edge satisfies the above relationship, so as to control the size of the first insulating layer in the first direction, so that there is a better insulation effect between the positive electrode piece and the negative electrode piece. , making the battery cells have higher safety.
  • the size of the second insulating layer covering the cathode body is M1, satisfying 0.3mm ⁇ M1 ⁇ 1.5mm, preferably, 0.5mm ⁇ M1 ⁇ 1mm.
  • the size of the second insulating layer covering the cathode body satisfies the above relationship.
  • the second insulating layer occupies less space in the first direction. If the size of the second insulating layer covering the cathode body is too small, the insulation effect of the second insulating layer is poor; if the size of the second insulating layer covering the cathode body is too large, the space occupied by the second insulating layer in the first direction If larger, the size of the positive active material layer in the first direction is smaller, and the capacity of the positive active material layer is smaller, which affects the energy density of the battery cell.
  • the second insulating layer extends beyond the first edge and covers a portion of the cathode tab.
  • the second insulating layer extends beyond the first edge and covers part of the positive electrode tab.
  • the second insulating layer covers a larger area on the positive electrode current collector, reducing the risk of contact short circuit between the positive electrode piece and the negative electrode piece.
  • the size of the second insulating layer covering the positive electrode tab is E2, satisfying 0 ⁇ E2 ⁇ 8mm, preferably, 1mm ⁇ E2 ⁇ 3mm.
  • the size of the second insulating layer covering the positive electrode tab meets the above range, and has a good insulation effect without affecting the connection between the positive electrode tab and other components (such as an adapter). If the size of the second insulating layer covering the positive electrode tab is small, the insulation effect is weak; if the size of the second insulating layer covering the positive electrode tab is large, it will occupy a larger size of the positive electrode tab in the first direction, affecting The connection between the positive terminal lug and other components.
  • the thickness of the second insulating layer is H3, the thickness of the cathode current collector is H4, and the thickness of the cathode active material layer is H5, satisfying H3>H4 and H3 ⁇ H5.
  • the thickness of the second insulating layer is greater than the thickness of the positive electrode current collector, which has a better covering effect on the burrs generated after cutting the positive electrode tab, and increases the difficulty of the burrs piercing the second insulating layer; the second insulation layer
  • the thickness of the layer is less than or equal to the thickness of the positive electrode active material layer, so that the second insulating layer occupies less space in the thickness direction of the positive electrode current collector, reducing the risk of lithium precipitation.
  • the second insulating layer includes a ceramic layer or a high molecular polymer layer.
  • the ceramic layer has larger ceramic material particles, and metal ions can pass through the ceramic layer, which facilitates the movement of metal ions;
  • the second insulating layer includes a polymer layer , the second insulating layer has better insulation effect and reduces the risk of contact short circuit between the positive electrode piece and the negative electrode piece.
  • the first insulating layer includes a ceramic layer.
  • the ceramic layer has larger ceramic material particles, and metal ions can pass through the ceramic layer, which facilitates the movement of metal ions and does not affect the activity of the active material.
  • the ceramic layer includes a water-based ceramic slurry or an oil-based ceramic slurry.
  • the ceramic layer when the ceramic layer includes aqueous ceramic slurry, it has a higher ceramic material content, which is beneficial to the migration of metal ions and electrolyte storage.
  • the ceramic layer when the ceramic layer includes oil-based ceramic slurry, it has better insulation effect.
  • the present application provides a battery, including a box and a plurality of battery cells provided in the above embodiments, and a plurality of the battery cells are arranged in the box.
  • the present application provides an electrical device, including the battery cell provided in the above embodiment, and the battery cell is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Figure 5 is a cross-sectional view along the A-A direction of Figure 4.
  • FIG. 6 is a schematic structural diagram of an electrode assembly provided by other embodiments of the present application.
  • Figure 7 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Figure 8 is a cross-sectional view along the B-B direction of Figure 7;
  • Figure 9 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Marking description 100-battery; 10-box; 11-first sub-box; 12-second sub-box; 20-battery cell; 21-casing; 22-end cover; 22a-electrode terminal; 23 -Electrode assembly; 231-negative electrode plate; 2311-negative electrode current collector; 2311a-negative electrode body; 2311b-negative electrode tab; 2311c-second edge; 2312-negative electrode active material layer; 2312a-thinning area; 2312b-main area ; 2313-first insulating layer; 232-positive electrode plate; 2321-positive electrode current collector; 2321a-positive electrode body; 2321b-positive electrode tab; 2321c-first edge; 2322-positive electrode active material layer; 2322a-third edge; 2323-second insulation layer; 2323a-fourth edge; 233-isolation film; 24-adapter; 200-controller; 300-motor; 1000-vehicle.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • Multiple appearing in this application refers to more than two (including two). Similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple tablets” refers to two or more tablets. (Includes two pieces).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cells may be in the shape of a flat body, a rectangular parallelepiped, or other shapes, and the embodiments of the present application are not limited to this.
  • the battery mentioned refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or the like.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the positive pole tab and the negative pole tab can come out from the same side or from different sides, which is not limited by this application.
  • an active material layer is usually coated on the surface of the current collector, and then the tabs are cut out on the edge of the current collector.
  • the positive electrode piece, isolation film and negative electrode piece are stacked, rolled or placed to form an electrode assembly.
  • the negative electrode current collector can be set beyond the positive electrode current collector.
  • cutting in the area of the positive electrode active material layer can easily cause metal beads and edge active material to fall off. Therefore, the positive electrode sheet is generally cut in the empty foil area of the positive electrode current collector.
  • cutting the positive tab in the empty foil area is prone to burrs.
  • the burrs on the edges formed by cutting the positive electrode tabs of the positive electrode piece can easily pierce the isolation film and short-circuit the negative electrode piece, causing a safety hazard.
  • the inventor has designed a technical solution after in-depth research , set a first insulating layer on the negative electrode current collector, and the projection of the edge formed by the cut positive electrode tab of the positive electrode piece on the negative electrode piece falls into the first insulating layer, increasing the cutting distance between the negative electrode piece and the positive electrode piece.
  • the insulation effect of the edge of the ear increases the difficulty of burrs piercing the isolation film and contacting the negative electrode piece, reduces the risk of burrs piercing the isolation film and directly overlapping the negative electrode piece and short-circuiting, and improves the safety of the battery cells.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, vehicles, ships, aircraft, and other electrical equipment.
  • the power supply system of the electrical equipment can be composed of the battery cells disclosed in this application.
  • Embodiments of the present application provide an electrical device that uses a battery cell as a power source.
  • the electrical device can be, but is not limited to, a mobile phone, a tablet computer, a notebook computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric vehicle, Ships, spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electrical device is a vehicle.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 can be used to power the vehicle 1000 .
  • the battery 100 can be used as an operating power source for the vehicle 1000 and for the circuit system of the vehicle 1000 , such as for the starting, navigation and operating power requirements of the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300.
  • the controller 200 is used to control the battery 100 to provide power to the motor 300, for example, for the starting, navigation and operating power requirements of the vehicle 1000.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first sub-box 11 and a second sub-box 12.
  • the first sub-box 11 and the second sub-box 12 cover each other.
  • the first sub-box 11 and the second sub-box 12 are The two sub-boxes 12 jointly define an accommodation space for accommodating the battery cells 20 .
  • the second sub-box 12 can be a hollow structure with one end open, and the first sub-box 11 can be a plate-like structure.
  • the first sub-box 11 is covered with the open side of the second sub-box 12 so that the first sub-box 11 can have a plate-like structure.
  • the box 11 and the second sub-box 12 jointly define an accommodation space; the first sub-box 11 and the second sub-box 12 can also be hollow structures with one side open, and the open side of the first sub-box 11 It is closed on the open side of the second sub-box 12 .
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component 30 for realizing electrical connections between multiple battery cells 20 .
  • the battery cell 20 may be a secondary battery or a primary battery; the battery cell 20 may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • FIG. 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery 100 .
  • the battery cell 20 includes a casing 21 , an end cover 22 , an electrode assembly 23 and an adapter 24 .
  • the housing 21 is a component used to cooperate with the end cover 22 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the electrode assembly 23 , electrolyte, and other components.
  • the housing 21 and the end cover 22 may be independent components, and an opening may be provided on the housing 21, and the end cover 22 covers the opening at the opening to form the internal environment of the battery cell 20.
  • the housing 21 can be of various shapes and sizes, for example, rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 21 can be determined according to the specific shape and size of the electrode assembly 23 .
  • the housing 21 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the end cap 22 refers to a component that covers the opening of the case 21 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 22 can be adapted to the shape of the housing 21 to fit the housing 21 .
  • the end cap 22 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 22 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher durability. Structural strength and safety performance can also be improved.
  • the electrode terminal 22a is provided on the end cover 22, and the electrode terminal 22a can be used to electrically connect with the electrode assembly 23 for outputting or inputting electric energy of the battery cell 20.
  • the end cap 22 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating structure may be provided inside the end cover 22 , and the insulating structure may be used to isolate the electrical connection components in the housing 21 from the end cover 22 to reduce the risk of short circuit.
  • the insulating structure may be plastic, rubber, etc.
  • the electrode assembly 23 is a component in the battery cell 20 where electrochemical reactions occur.
  • One or more electrode assemblies 23 may be contained within the housing 21.
  • the electrode assembly 23 is mainly formed by winding or stacking a positive electrode piece and a negative electrode piece, and is usually provided with an isolation film between the positive electrode piece and the negative electrode piece.
  • the isolation film is used to insulate and isolate the positive electrode piece and the negative electrode piece.
  • the portions of the positive electrode piece and the negative electrode piece that are coated with the active material layer constitute the main body of the electrode assembly 23 , and the portions of the positive electrode piece and the negative electrode piece that are not coated with the active material layer each constitute the tab.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • the adapter 24 is a component used to connect the electrode terminal 22a and the tab, and the electrical connection between the electrode terminal 22a and the tab is achieved through the adapter 24.
  • Figure 4 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application
  • Figure 5 is a cross-sectional view along the A-A direction of Figure 4.
  • the present application provides a battery cell 20.
  • the battery cell 20 includes an electrode assembly 23.
  • the electrode assembly 23 includes a negative electrode piece 231 and a positive electrode piece 232.
  • the negative electrode sheet 231 includes a negative electrode current collector 2311 and a negative electrode active material layer 2312.
  • the negative electrode current collector 2311 includes a negative electrode body 2311a and a negative electrode tab 2311b.
  • the negative electrode tab 2311b protrudes from the negative electrode body 2311a.
  • At least part of the negative electrode active material layer 2312 is provided on The surface of the negative electrode body 2311a; the positive electrode piece 232 includes a positive electrode current collector 2321 and a positive electrode active material layer 2322.
  • the positive electrode current collector 2321 includes a positive electrode body 2321a and a positive electrode tab 2321b.
  • the positive electrode tab 2321b extends from the positive electrode body 2321a along the first direction X
  • the first edge 2321c extends out, and the positive active material layer 2322 is disposed on the surface of the positive electrode body 2321a.
  • the projection of the positive active material layer 2322 on the negative electrode plate 231 falls into the negative active material layer 2312.
  • the negative electrode piece 231 also includes a first insulating layer 2313.
  • the first insulating layer 2313 is disposed on the negative electrode current collector 2311.
  • the projection of the first edge 2321c on the negative electrode piece 231 falls into the third An insulating layer 2313.
  • the direction indicated by the letter X is the first direction X.
  • the first direction X is perpendicular to the thickness direction of the positive electrode body 2321a.
  • the first direction is the length direction of the positive electrode piece 232 .
  • the direction indicated by letter Y is the thickness direction of the negative electrode body 2311a.
  • the thickness direction Y of the negative electrode body 2311a is also the thickness direction of the negative electrode current collector 2311.
  • the thickness direction Y of the negative electrode body 2311a is mutually exclusive with the thickness direction of the negative electrode active material layer 2312, the thickness direction of the positive electrode body 2321a, and the thickness direction of the positive electrode active material layer 2322. parallel.
  • the electrode assembly 23 also includes an isolation film 233 , which is disposed between the positive electrode piece 232 and the negative electrode piece 231 for insulating and isolating the positive electrode piece 232 and the negative electrode piece 231 .
  • At least part of the negative active material layer 2312 is disposed on the surface of the negative electrode body 2311a. It may be that part of the negative active material layer 2312 is disposed on the surface of the negative electrode body 2311a, and another part of the negative active material layer 2312 is disposed on part of the surface of the negative electrode tab 2311b; or, The entire negative electrode active material layer 2312 may also be provided on the surface of the negative electrode body 2311a.
  • the negative active material layer 2312 may be disposed on one surface of the negative electrode body 2311a in the thickness direction Y, or the negative active material layer 2312 may be disposed on two opposite surfaces of the negative electrode body 2311a in the thickness direction Y.
  • the negative electrode body 2311a is the part of the negative electrode current collector 2311 where the negative electrode active material layer 2312 is provided, and the negative electrode tab 2322b is cut out of the negative electrode current collector 2311 without the negative electrode active material layer 2312.
  • the negative active material layer 2312 can extend to the negative electrode tab 2311b.
  • the negative electrode active material layer 2312 is present at the edge of the negative electrode tab 2311b of the negative electrode current collector 2311, that is, the negative electrode is cut.
  • the active material layer 2312 and the negative electrode current collector 2311 are provided with the negative electrode active material layer 2312 in a partial area of the negative electrode tab 2311b.
  • the negative electrode tab 2311b protrudes from the negative electrode body 2311a means that the negative electrode tab 2311b protrudes from the edge of the negative electrode body 2311a in the direction perpendicular to the thickness direction Y of the negative electrode body 2311a, and the edge is the cutout of the negative electrode body 2311a.
  • the positive electrode tab 2321b extends from the first edge 2321c of the positive electrode body 2321a along the first direction That is, the first edge 2321c is an edge formed by cutting the positive electrode tab 2321b of the positive electrode body 2321a.
  • the positive active material layer 2322 may be provided on one surface of the positive electrode body 2321a in the thickness direction, or the positive active material layer 2322 may be provided on two opposite surfaces of the positive electrode body 2321a in the thickness direction.
  • the positive electrode body 2321a is the portion of the positive electrode current collector 2321 where the positive electrode active material layer 2322 is provided, and the positive electrode tab 2321b is cut out of the portion of the positive electrode current collector 2321 where the positive electrode active material layer 2322 is not provided.
  • the projection of the positive electrode active material layer 2322 on the negative electrode plate 231 falls into the negative electrode active material layer 2312, that is, in the plane perpendicular to the thickness direction Y of the negative electrode body 2311a, the positive electrode active material
  • the layer 2322 falls into the negative active material layer 2312, and the area of the negative active material layer 2312 is larger than the area of the positive active material layer 2322 to reduce the risk of lithium precipitation.
  • the first insulating layer 2313 is a component that plays an insulating role.
  • the first insulating layer 2313 is provided on the negative electrode current collector 2311.
  • the first insulating layer 2313 may be coated on the surface of the negative electrode current collector 2311.
  • the first insulating layer 2313 can be coated on the surface of the negative electrode body 2311a, or the first insulating layer 2313 can be coated on the surface of the negative electrode body 2311a and the surface of the negative electrode active material layer 2312, or the first insulating layer 2313 It can be coated on the surface of the negative electrode active material layer 2312 and the surface of the negative electrode tab 2311b.
  • the projection of the first edge 2321c on the negative electrode piece 231 falls into the first insulating layer 2313.
  • the first insulating layer 2313 can block it. The burrs are in contact with the negative electrode current collector 2311 or the negative electrode active material layer 2312.
  • both ends of the negative active material layer 2312 exceed the positive active material layer 2322, and the ends of the second direction Z, the first direction X and the negative electrode body 2311a
  • the thickness direction Y is perpendicular to each other.
  • the projection of the first edge 2321c on the negative electrode piece 231 falls into the first insulating layer 2313 to increase the number of negative electrode pieces.
  • the edge of the cathode body 2321a where the cathode tab 2321b is cut reduces the risk of the burrs on the first edge 2321c piercing the isolation film 233 and directly overlapping the anode current collector 2311 or the anode active material layer 2312 for a short circuit, and improves the The safety of the battery cell 20 is improved.
  • the negative electrode body 2311a includes a second edge 2311c close to the first edge 2321c, and along the first direction X, the second edge 2311c exceeds the first edge 2321c.
  • the second edge 2311c is an edge of the negative electrode body 2311a along the first direction X, and the second edge 2311c is close to the first edge 2321c relative to other edges of the negative electrode body 2311a along the first direction X.
  • the negative electrode tab 2311b can extend from the second edge 2311c, or the negative electrode tab 2311b can also extend from the edge of the negative electrode body 2311a opposite to the second edge 2311c, or the negative electrode tab 2311b can also extend from the negative electrode body 2311a.
  • the edge adjacent to the second edge 2311c extends out.
  • the second edge 2311c exceeds the first edge 2321c, that is, the negative electrode body 2311a exceeds the positive electrode body 2321a.
  • the first insulating layer 2313 may extend to the second edge 2311c, and the first edge 2321c may be disposed close to the second edge 2311c, so that the cathode body 2321a may have a larger size in the first direction X, so that the cathode active material layer 2322
  • the capacity can be larger, so that the battery cell 20 can have a higher energy density.
  • the negative active material layer 2312 exceeds the positive active material layer 2322 and the second edge 2311c exceeds the first edge 2321c, the negative active material layer 2312 may have a larger size in the first direction X, and the positive active material layer 2322 may have a larger size in the first direction
  • the first insulating layer 2313 covers a part of the negative active material layer 2312 .
  • the first insulating layer 2313 covers a part of the negative active material layer 2312, that is, the first insulating layer 2313 covers the negative active material layer 2312. It can be that part of the first insulating layer 2313 covers the negative active material layer 2312, and the other part of the first insulating layer 2313 covers the negative active material layer 2312.
  • the insulating layer 2313 covers the negative electrode body 2311a, or the entire first insulating layer 2313 may cover the negative electrode active material layer 2312.
  • the first insulating layer 2313 covers part of the negative active material layer 2312, so that the area of the negative active material layer 2312 on the negative body 2311a can be larger, so that the capacity of the negative active material layer 2312 is larger, and the positive active material The capacity of material layer 2322 can also be larger.
  • the negative active material layer 2312 extends to the second edge 2311c.
  • the negative active material layer 2312 extends to the second edge 2311c, so that the negative active material layer 2312 occupies a larger area on the negative electrode body 2311a, and the negative active material layer 2312 has a larger capacity.
  • FIG. 6 is a schematic structural diagram of an electrode assembly provided by other embodiments of the present application.
  • the negative electrode tab 2311b extends from the second edge 2311c, in the direction from the negative electrode body 2311a to the negative electrode tab 2311b along the first direction A part of the negative electrode tab 2311b.
  • the negative electrode tab 2311b extends from the second edge 2311c, and the second edge 2311c can cut the edge of the negative electrode tab 2311b for the negative electrode current collector 2311.
  • the negative active material layer 2312 extends to the second edge 2311c, when cutting the negative tab 2311b, the negative active material layer 2312 and the negative current collector 2311 may be cut.
  • the first insulating layer 2313 extends beyond the second edge 2311c and covers a portion of the negative electrode tab 231.
  • the first insulating layer 2313 extends to the negative electrode tab 2311b. When the negative electrode tab 2311b is bent, the negative electrode tab 2311b and the positive electrode current collector 2321 are lowered. Risk of contact short circuit.
  • the first insulating layer 2313 exceeds the second edge 2311c and covers a part of the negative electrode tab 2311b.
  • the first insulating layer 2313 covers a larger area on the negative electrode current collector 2311, reducing the positive electrode tab 232 and the negative electrode tab. 231 Risk of contact short circuit.
  • the negative electrode tab 2311b is easily short-circuited in contact with the positive electrode tab 232; if the first insulating layer 2313 covers the negative electrode tab 2311b If the size of the negative electrode tab 2311b is larger (for example, more than 8 mm), it will occupy a larger size of the negative electrode tab 2311b in the first direction X, affecting the connection between the negative electrode tab 2311b and other components.
  • the first insulating layer 2313 has a better insulation effect on the negative electrode tab 2311b, and occupies a smaller size of the negative electrode tab 2311b in the first direction X .
  • E1 can be 0.5mm, 1mm, 1.2mm, 1.5mm, 2mm, 2.5mm, 3mm, 4mm, 4.5mm, 5mm, 6mm, 7mm or 8mm, etc.
  • F1 may be the size of the first insulating layer 2313 covering the negative electrode body 2311a in the first direction X; or, when the second insulating layer 2323 covers the negative electrode body 2311a, When part of the negative electrode body 2311a and part of the negative electrode active material layer 2312 are used, F1 may also be the size of the second insulating layer 2323 covering the negative electrode body 2311a and the size of the negative electrode active material layer 2312 in the first direction X; or when When the first insulating layer 2313 only covers the negative active material layer 2312, F1 may also be the size of the first insulating layer 2313 covering the negative active material layer 2312 in the first direction X.
  • the size of the positive electrode body 2321a in the first direction X is larger, the size of the positive electrode active material layer 2322 is larger, and the capacity of the positive electrode active material layer 2322 is larger, so that the battery cell 20 has a higher energy density.
  • F1 is small (such as less than 3 mm)
  • the coverage area of the first insulating layer 2313 on the negative electrode body 2311a is small, and the insulation effect of the first insulating layer 2313 is poor, which may easily lead to contact between the positive electrode piece 232 and the negative electrode piece 231 short circuit.
  • F1 is larger (for example, larger than 10 mm), the size of the first insulating layer 2313 is larger, which wastes material and increases the cost.
  • F1 can be 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm.
  • the negative active material layer 2312 includes a thinned region 2312a and a main body region 2312b.
  • the thinned region 2312a and the main body region 2312b are arranged along the first direction X.
  • the thickness of the thinned region 2312a Less than the thickness of the body region 2312b, the first insulating layer 2313 covers the thinned region 2312a.
  • the thinned region 2312a and the main body region 2312b are two regions of the negative active material layer 2312.
  • the thinned region 2312a may be a thinner region of the negative active material layer 2312, and the thickness of the thinned region 2312a may gradually change along the first direction X, for example, along the first direction direction, the thickness of the thinned region 2312a may gradually increase.
  • the main body region 2312b may be the thickest region of the negative active material layer 2312, and the thickness at any position of the main body region 2312b is the same.
  • the first insulating layer 2313 covers the thinned area 2312a, so that the total thickness of the first insulating layer 2313 covering the negative active material layer 2312 is low, thereby reducing the risk of lithium precipitation.
  • the sum of the thicknesses of the first insulating layer 2313 and the thinned region 2312a is H1
  • the thickness of the main body region 2312b is H2, satisfying - 2mm ⁇ H1-H2 ⁇ 2mm.
  • the sum of the thicknesses of the first insulating layer 2313 and the thinned region 2312a means that at any position in the first direction The distance between the surface of the layer 2313 away from the negative electrode body 2311a and the negative electrode body 2311a.
  • H1-H2 can be -2mm, -1mm, 0, 1mm or 2mm, etc.
  • the sum H1 of the thickness of the first insulating layer 2313 and the thinned region 2312a and the thickness H2 of the main body region 2312b satisfy the above relationship.
  • the distance between the negative electrode piece 231 and the positive electrode piece 232 is small, which is convenient for metal ions. movement to reduce the risk of lithium precipitation. If the sum H1 of the thickness of the first insulating layer 2313 and the thinned area 2312a is too small (H1-H2 ⁇ -2mm), then along the thickness direction Y of the negative electrode body 2311a, the surface of the first insulating layer 2313 away from the negative electrode body 2311a will face each other.
  • the surface of the main body region 2312b that is far away from the negative electrode body 2311a is close to the negative electrode body 2311a.
  • the distance between the surface of the first insulating layer 2313 that is far away from the negative electrode body 2311a and the surface of the main body region 2312b that is far from the negative electrode body 2311a is relatively large.
  • the thinned region 2312a at , the thickness of the negative active material layer 2312 is small, and the capacity of the negative active material layer 2312 is low; if the sum H1 of the thickness of the first insulating layer 2313 and the thinned region 2312a is too large (H1-H2>2mm), then the The surface of an insulating layer 2313 protrudes from the surface of the main body region 2312b, which increases the distance between the main body region 2312b and the positive electrode piece 232, making it easier for lithium to precipitate.
  • the positive active material layer 2322 includes a third edge 2322a close to the first edge 2321c; along the first direction
  • the size of the active material layer 2312 beyond the third edge 2322a is C1, which satisfies 0.5mm ⁇ C1 ⁇ 3mm, preferably, 1mm ⁇ C1 ⁇ 2mm.
  • the third edge 2322a is the edge of the cathode active material layer 2322 along the first direction X, and the third edge 2322a is close to the first edge 2321c relative to other edges of the cathode active material layer 2322 along the first direction X.
  • the size C1 of the negative active material layer 2312 beyond the third edge 2322a meets the above range, so as to control the size of the negative active material layer 2312 beyond the positive active material layer 2322 and reduce the risk of lithium precipitation. If the size of the negative active material layer 2312 beyond the third edge 2322a is too small (such as less than 0.5 mm), lithium precipitation is likely to occur; if the size of the negative active material layer 2312 beyond the third edge 2322a is too large (such as greater than 3 mm), then The capacity of the positive active material layer 2322 is small, which affects the energy density of the battery cell 20 .
  • C1 can be 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm or 3mm, etc.
  • FIG. 7 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • FIG. 8 is a cross-sectional view along the B-B direction of FIG. 7 .
  • the positive electrode piece 232 further includes a second insulating layer 2323.
  • the second insulating layer 2323 is disposed on the positive current collector 2321, and the second insulating layer 2323 extends to the first edge 2321c.
  • the second insulating layer 2323 extends to the first edge 2321c, that is, the second insulating layer 2323 is disposed near the first edge 2321c of the cathode body 2321a.
  • the second insulating layer 2323 extends to the first edge 2321c.
  • the second insulating layer 2323 can cover the burrs on the first edge 2321c, increasing the difficulty of the burrs penetrating the isolation film 233 and reducing the risk of the positive electrode piece 232 and the negative electrode.
  • Chip 231 contacts risk of short circuit.
  • the second insulating layer 2323 and the cathode active material layer 2322 are arranged along the first direction X.
  • the second insulating layer 2323 and the cathode active material layer 2322 are arranged along the first direction X.
  • the second insulating layer 2323 is disposed in the empty foil area of the cathode body 2321a. Along the first direction There may be a gap therebetween, or the second insulating layer 2323 may be in contact with the cathode active material layer 2322.
  • the second insulating layer 2323 and the cathode active material layer 2322 are arranged along the first direction
  • the active material layer 2322 increases the distance between the positive active material layer 2322 and the negative electrode piece 231, thereby reducing the risk of lithium precipitation.
  • the second insulating layer 2323 can also cover the cathode active material layer 2322, that is, part of the second insulating layer 2323 covers the cathode body 2321a, and the other part of the second insulating layer 2323 covers the cathode active material layer 2322. .
  • the thickness of the area of the cathode active material layer 2322 covered by the second insulating layer 2323 can be reduced.
  • M1 may be the size of the second insulating layer 2323 covering the positive electrode body 2321a in the first direction X, or when the second insulating layer 2323 covers the positive electrode body 2321a.
  • M1 may also be the size of the second insulating layer 2323 covering the cathode body 2321a and the size of the cathode active material layer 2322 in the first direction X.
  • the size occupied by the layer 2323 in the first direction X is smaller, and the capacity of the cathode active material layer 2322 can be larger. If M1/M2 is too small (for example, less than 0.2%), the size of the second insulating layer 2323 covering the cathode body 2321a in the first direction X is small, and the insulation effect is poor. If M1/M2 is too large (for example, greater than 2.8%), the size of the second insulating layer 2323 covering the cathode body 2321a in the first direction X is larger, and the size of the cathode active material layer 2322 in the first direction X is smaller. , affecting the energy density of the battery cell 20 .
  • the second insulating layer 2323 has better insulation effect and has less impact on the energy density of the battery cell 20.
  • M1/M2 can be 0.2%, 0.4%, 0.5%, 0.51%, 0.52%, 0.6%, 0.8%, 1%, 1.2%, 1.4%, 1.5%, 1.51%, 1.52%, 1.6% , 1.78%, 1.79%, 1.8%, 2%, 2.2%, 2.4%, 2.6% or 2.8%, etc.
  • the projection of the second insulating layer 2323 on the negative electrode piece 231 falls into the first insulating layer 2313.
  • the projection of the second insulating layer 2323 on the negative electrode piece 231 falls into the first insulating layer 2313.
  • the second insulating layer 2323 and the first insulating layer 2313 have a large overlapping area.
  • the first The insulating layer 2313 has a better insulating effect.
  • the first insulating layer 2313 exceeds the second insulating layer 2323 .
  • the first insulating layer 2313 exceeds the second insulating layer 2323, the second insulating layer 2323 has a smaller size in the first direction X, the positive electrode active material layer 2322 has a larger size in the first direction X, and the positive electrode The active material layer 2322 has a large capacity.
  • the size of the negative active material layer 2312 is D1
  • the size of the positive active material layer 2322 is D2
  • the size of the second insulating layer 2323 is M1. Satisfy M1 ⁇ (D1-D2)/2.
  • the insulating layer 2323 occupies a smaller space in the first direction X, and the positive active material layer 2322 may have a larger size in the first direction X, so that the battery cell 20 has a higher energy density. If M1>(D1-D2)/2, the size of the second insulating layer 2323 in the first direction X is larger, and the size of the positive active material layer 2322 in the first direction Energy Density.
  • the second insulating layer 2323 includes a fourth edge 2323a close to the first edge 2321c; along the first direction
  • the dimension of the insulating layer 2313 beyond the fourth edge 2323a is C2, which satisfies 0 ⁇ C2 ⁇ 2.5mm.
  • the fourth edge 2323a is an edge of the second insulation layer 2323 in the first direction X, and the fourth edge 2323a is close to the first edge 2321c.
  • the size of the first insulating layer 2313 beyond the fourth edge 2323a may be, along the first direction X, the distance between an end of the first edge 2321c away from the second insulating layer 2323 and the fourth edge 2323a.
  • the size of the first insulating layer 2313 beyond the fourth edge 2323a satisfies the above relationship, so as to control the size of the first insulating layer 2313 in the first direction It has a good insulation effect, so that the battery cell 20 has high safety. If C2 is too large (for example, greater than 2.5 mm), the size of the first insulating layer 2313 in the first direction X will be larger, and the size of the positive active material layer 2322 in the first direction Energy Density.
  • C2 can be 0.5mm, 0.75mm, 1mm, 1.5mm, 2mm or 2.5mm, etc.
  • the size of the second insulating layer 2323 covering the cathode body 2321a satisfies the above relationship.
  • the second insulating layer 2323 occupies a smaller space in the first direction X. Small.
  • the insulation effect of the second insulating layer 2323 is poor; if the size of the second insulating layer 2323 covering the cathode body 2321a is too large (eg, greater than 1.5mm), the second insulating layer 2323 occupies a larger space in the first direction X, the size of the positive active material layer 2322 in the first direction Energy density of monomer 20.
  • the second insulating layer 2323 Compared with 0.3mm ⁇ M1 ⁇ 1.5mm, when 0.5mm ⁇ M1 ⁇ 1mm, the second insulating layer 2323 has a better insulation effect, and the second insulating layer 2323 covers the size of the cathode body 2321a in the first direction X. It is smaller and has less impact on the energy density of the battery cell 20 .
  • M1 may be 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm or 1.5mm.
  • FIG. 9 is a schematic structural diagram of an electrode assembly provided in some embodiments of the present application. According to some embodiments of the present application, as shown in FIG. 9 , in the direction from the positive electrode body 2321a to the positive electrode tab 2321b along the first direction .
  • the second insulating layer 2323 exceeds the first edge 2321c and covers a part of the positive electrode tab 2321b.
  • the second insulating layer 2323 covers a larger area on the positive electrode current collector 2321, reducing the positive electrode tab 232 and the negative electrode tab. 231 Risk of contact short circuit.
  • the size of the second insulating layer 2323 covering the positive electrode tab 2321b is E2, satisfying 0 ⁇ E2 ⁇ 8mm, preferably, 1mm ⁇ E2 ⁇ 3mm.
  • the size of the second insulating layer 2323 covering the positive electrode tab 2321b meets the above range and has a good insulation effect without affecting the connection between the positive electrode tab 2321b and other components (such as an adapter). If the size of the second insulating layer 2323 covering the positive electrode tab 2321b is small (or the second insulating layer 2323 does not cover the positive electrode tab 2321b), the insulation effect will be weak and affect the safety of the battery cell 20; if the second insulating layer 2323 does not cover the positive electrode tab 2321b, If 2323 covers the positive electrode tab 2321b with a larger size (eg, greater than 8 mm), it will occupy a larger size of the positive electrode tab 2321b in the first direction X, affecting the connection between the positive electrode tab 2321b and other components.
  • a larger size eg, greater than 8 mm
  • the second insulating layer 2323 has a better insulation effect on the positive electrode tab 2321b, and occupies a smaller size of the positive electrode tab 2321b in the first direction X .
  • E2 can be 0.5mm, 1mm, 1.2mm, 1.5mm, 2mm, 2.5mm, 3mm, 4mm, 4.5mm, 5mm, 6mm, 7mm or 8mm, etc.
  • the thickness of the second insulating layer 2323 is H3, the thickness of the cathode current collector 2321 is H4, and the thickness of the cathode active material layer 2322 is H5, satisfying H3>H4, H3 ⁇ H5 .
  • the thickness of the second insulating layer 2323 is greater than the thickness of the positive electrode current collector 2321, which has a better covering effect on the burrs generated after cutting the positive electrode tab 2321b, and increases the difficulty of the burrs penetrating the second insulating layer 2323. ;
  • the thickness of the second insulating layer 2323 is less than or equal to the thickness of the cathode active material layer 2322, so that the second insulating layer 2323 occupies less space in the thickness direction of the cathode current collector 2321, reducing the risk of lithium precipitation.
  • the second insulating layer 2323 includes a ceramic layer or a high molecular polymer layer.
  • the ceramic layer 2323 when the second insulating layer 2323 includes a ceramic layer, the ceramic layer has larger ceramic material particles, and metal ions can pass through the ceramic layer, which facilitates the movement of metal ions; when the second insulating layer 2323 includes a high molecular polymer When layered, the second insulating layer 2323 has a better insulation effect and reduces the risk of contact short circuit between the positive electrode piece 232 and the negative electrode piece 231.
  • the ceramic layer in the second insulating layer 2323, includes a water-based ceramic slurry or an oil-based ceramic slurry.
  • the ceramic layer includes aqueous ceramic slurry, it has a higher ceramic material content, which is beneficial to the migration of metal ions and electrolyte storage.
  • the ceramic layer includes oil-based ceramic slurry, it has better insulation effect.
  • the water-based ceramic slurry uses water as a solvent and has a solid content of 20% to 85%, preferably 40% to 75%; the water-based ceramic slurry Including ceramic materials, adhesives, thickeners, dispersants and defoaming agents, ceramic materials account for 20% to 80% of the total solid content.
  • the oil-based ceramic slurry uses N-methylpyrrolidone as a solvent and has a solid content of 10% to 60%, preferably 20% to 50%. %, the oil-based ceramic slurry includes ceramic materials and binders, and the ceramic material content is 1/10 to 10 times the binder content.
  • the high molecular polymer layer may include at least one of polyvinylidene fluoride, polypropylene, polyamide, epoxy resin, and the like.
  • the first insulating layer 2313 includes a ceramic layer.
  • the ceramic layer 2313 when the first insulating layer 2313 includes a ceramic layer, the ceramic layer has larger ceramic material particles, and metal ions can pass through the ceramic layer, which facilitates the movement of metal ions and does not affect the activity of the active material.
  • the ceramic layer in the first insulating layer 2313, includes a water-based ceramic slurry or an oil-based ceramic slurry.
  • the ceramic layer includes aqueous ceramic slurry, it has a higher ceramic material content, which is beneficial to the migration of metal ions and electrolyte storage.
  • the ceramic layer includes oil-based ceramic slurry, it has better insulation effect.
  • the water-based ceramic slurry uses water as a solvent and has a solid content of 20% to 70%, preferably 35% to 45%; the water-based ceramic slurry Including ceramic materials, adhesives, thickeners, dispersants and defoaming agents, ceramic materials account for 85% to 95% of the total solid content.
  • the oil-based ceramic slurry uses N-methylpyrrolidone as a solvent and has a solid content of 10% to 30%, preferably 10% to 20%. %, the oil-based ceramic slurry includes ceramic materials and a binder.
  • the content of the ceramic material is 5 to 10 times, preferably 6 to 8 times, the content of the binder.
  • composition of the aqueous ceramic slurry in the first insulating layer 2313 and the composition of the aqueous ceramic slurry in the second insulating layer 2323 may be consistent.
  • the ceramic material may be one of hydrated alumina, magnesium oxide, silicon carbide and silicon nitride.
  • the adhesive may be at least one of polyacrylate, methyl acrylate, ethyl acrylate, 2-methyl methacrylate, and 2-ethyl methacrylate.
  • the thickener may be one of sodium carboxymethylcellulose, carboxymethylcellulose, methylcellulose and sodium polyacrylate.
  • the dispersant may be at least one of polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone.
  • the defoaming agent may be one of n-butanol and ethanol.
  • composition of the oil-based ceramic slurry in the first insulating layer 2313 and the composition of the oil-based ceramic slurry in the second insulating layer 2323 may be consistent.
  • the ceramic material may be one of hydrated alumina, magnesium oxide, silicon carbide and silicon nitride.
  • the binder may be one of polyvinylidene fluoride or polyacrylonitrile.
  • the present application also provides a battery 100.
  • the battery 100 includes a box 10 and a plurality of battery cells 20 provided in any of the above embodiments.
  • the plurality of battery cells 20 are arranged in the box. Within 10.
  • the present application also provides an electrical device.
  • the electrical device includes the battery cell 20 provided in any of the above embodiments.
  • the battery cell 20 is used to provide electric energy.
  • the electrical equipment is any of the above-mentioned devices or systems using the battery cells 20 .
  • the present application provides a battery cell 20 , which includes a case 21 , an end cap 22 , an electrode assembly 23 and an adapter 24 .
  • the housing 21 has an opening, the end cover 22 closes the opening, and the electrode assembly 23 is disposed in the housing 21 .
  • the electrode assembly 23 includes a negative electrode piece 231 and a positive electrode piece 232 .
  • the negative electrode piece 231 includes a negative electrode current collector 2311 and a negative electrode active material layer 2312.
  • the negative electrode current collector 2311 includes a negative electrode body 2311a and a negative electrode tab 2311b.
  • the negative electrode tab 2311b extends from the second edge 2311c of the negative electrode body 2311a along the first direction X.
  • the positive electrode sheet 232 includes a positive electrode current collector 2321 and a positive electrode active material layer 2322.
  • the positive electrode current collector 2321 includes a positive electrode body 2321a and a positive electrode tab 2321b.
  • the positive electrode tab 2321b extends from the first edge 2321c of the positive electrode body 2321a along the first direction X. It is shown that the positive electrode active material layer 2322 is disposed on the surface of the positive electrode body 2321a. Along the thickness direction Y of the negative electrode body 2311a, the projection of the positive electrode active material layer 2322 on the negative electrode plate 231 falls into the negative electrode active material layer 2312.
  • the end cap 22 is provided with two electrode terminals 22a.
  • the two electrode terminals 22a are respectively a positive electrode terminal and a negative electrode terminal.
  • One adapter 24 connects the positive electrode lug 2321b and the positive electrode terminal.
  • Another adapter 24 connects the negative tab 2311b and the negative electrode terminal.
  • the negative electrode piece 231 also includes a first insulating layer 2313.
  • the first insulating layer 2313 is disposed on the negative electrode current collector 2311.
  • the cathode plate 232 also includes a second insulating layer 2323.
  • the second insulating layer 2323 is disposed on the cathode current collector 2321.
  • the second insulating layer 2323 extends to the first edge 2321c.
  • the second insulating layer 2323 and the cathode active material layer 2322 extend along the first edge 2321c. Arrange in direction X. Along the thickness direction Y of the negative electrode body 2311a, the projection of the second insulating layer 2323 on the negative electrode piece 231 falls into the first insulating layer 2313.
  • the positive active material layer 2322 includes a third edge 2322a close to the first edge 2321c; in the direction from the positive body 2321a to the positive tab 2321b along the first direction Meet 1mm ⁇ C1 ⁇ 2mm.
  • the battery cell 20 of the embodiment of the present application by providing the first insulating layer 2313 on the negative electrode current collector 2311 and the second insulating layer 2323 on the positive electrode current collector 2321, the projection of the first edge 2321c on the negative electrode plate 231 Fall into the first insulating layer 2313, the second insulating layer 2323 fall into the first insulating layer 2313, and the second insulating layer 2323 extends to the first edge 2321c to increase the cutting of the cathode tab 231 and the cathode body 2321a.
  • the insulation effect of the edge reduces the risk of the burrs on the first edge 2321c piercing the isolation film 233 and directly overlapping the negative electrode current collector 2311 or the negative electrode active material layer 2312 and short-circuiting, thereby improving the safety of the battery cell 20 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请实施例提供一种电池单体、电池及用电设备。该电池单体包括电极组件,电极组件包括:负极极片,包括负极集流体和负极活性物质层,负极集流体包括负极本体和负极极耳,至少部分负极活性物质层设置于负极本体的表面;正极极片,包括正极集流体和正极活性物质层,正极集流体包括正极本体和正极极耳,正极极耳从正极本体的第一边缘延伸出,正极活性物质层设置于正极本体的表面,沿负极本体的厚度方向,正极活性物质层在负极极片上的投影落入负极活性物质层;其中,负极极片还包括第一绝缘层,第一绝缘层设置于负极集流体,沿负极本体的厚度方向,第一边缘在负极极片上的投影落入第一绝缘层。该电池单体具有较高的安全性。

Description

电池单体、电池及用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池及用电设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的能量密度外,电池的安全性也是一个不可忽视的问题。因此,如何提高电池的安全性,是电池技术中一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池单体、电池及用电设备。该电池单体具有较高的安全性。
本申请是通过如下技术方案来实现的:
第一方面,本申请提供了一种电池单体,包括电极组件,所述电极组件包括:负极极片,包括负极集流体和负极活性物质层,所述负极集流体包括负极本体和负极极耳,所述负极极耳凸出于所述负极本体,至少部分所述负极活性物质层设置于所述负极本体的表面;正极极片,包括正极集流体和正极活性物质层,所述正极集流体包括正极本体和正极极耳,所述正极极耳从所述正极本体的沿第一方向的第一边缘延伸出,所述正极活性物质层设置于所述正极本体的表面,沿所述负极本体的厚度方向,所述正极活性物质层在所述负极极片上的投影落入所述负极活性物质层;其中,所述负极极片还包括第一绝缘层,所述第一绝缘层设置于所述负极集流体,沿所述负极本体的厚度方向,所述第一边缘在所述负极极片上的投影落入所述第一绝缘层。
根据本申请实施例的电池单体,通过在负极集流体上设置第一绝缘层,且第一边缘在负极极片上的投影落入第一绝缘层,以增加负极极片与正极本体的裁切正极极耳形成的边缘的绝缘效果,降低第一边缘的毛刺刺穿隔离膜后直接与负极极片搭接短路的风险,提高了电池单体的安全性。
根据本申请的一些实施例,所述负极本体包括靠近所述第一边缘的第二边缘,沿所述第一方向,所述第二边缘超出所述第一边缘。
在上述方案中,由于负极活性物质层超出正极活性物质层,第二边缘超出第一边缘,负极活性物质层可以在第一方向上具有较大的尺寸,进而使得负极活性物质层和正极活性物质层的容量可以较多,使得电池单体具有较高的能量密度。
根据本申请的一些实施例,所述第一绝缘层覆盖所述负极活性物质层的一部分。
在上述方案中,第一绝缘层覆盖负极活性物质层的一部分,使得负极本体上的负极活性物质层的设置面积可以较大,使得负极活性物质层的容量较大,正极活性物质层的容量也可以较大。
根据本申请的一些实施例,所述负极活性物质层延伸至所述第二边缘。
在上述方案中,负极活性物质层延伸至第二边缘,使得负极活性物质层在负极 本体上的占用面积较大,负极活性物质层的容量较大。
根据本申请的一些实施例,所述负极极耳由所述第二边缘延伸出,沿所述第一方向的由所述负极本体指向所述负极极耳的方向,所述第一绝缘层超出所述第二边缘并覆盖所述负极极耳的一部分。
在上述方案中,第一绝缘层超出第二边缘并覆盖负极极耳的一部分,第一绝缘层在负极集流体上的覆盖面积较大,降低正极极片和负极极片接触短路的风险。
根据本申请的一些实施例,沿所述第一方向,所述第一绝缘层覆盖所述负极极耳的尺寸为E1,满足0<E1≤8mm,优选地,1mm≤E1≤3mm。
在上述方案中,第一绝缘层覆盖负极极耳的尺寸满足上述范围,在具有较好的绝缘效果的情况下,不影响负极极耳与其他部件(如转接件)的连接。如果第一绝缘层覆盖负极极耳的尺寸较小,则绝缘效果较弱;如果第一绝缘层覆盖负极极耳的尺寸较大,则在第一方向上占用负极极耳较大的尺寸,影响负极极耳与其他部件的连接。
根据本申请的一些实施例,沿所述第一方向,所述第一绝缘层覆盖所述负极本体的尺寸为F1,满足3mm≤F1≤10mm。
在上述方案中,第一绝缘层覆盖负极本体的尺寸满足上述范围,能够限定正极本体的第一边缘的位置,在具有较好的绝缘效果的情况下,使得正极本体在第一方向上的尺寸较大,正极活性物质层的尺寸较大,正极活性物质层的容量较大,从而使得电池单体具有较高的能量密度。
根据本申请的一些实施例,所述负极活性物质层包括减薄区和主体区,所述减薄区和所述主体区沿所述第一方向排列,所述减薄区的厚度小于所述主体区的厚度,所述第一绝缘层覆盖所述减薄区。
在上述方案中,第一绝缘层覆盖减薄区,使得第一绝缘层覆盖负极活性物质层的总厚度较低,降低析锂的风险。
根据本申请的一些实施例,沿所述负极本体的厚度方向,所述第一绝缘层与所述减薄区的厚度之和为H1,所述主体区的厚度为H2,满足-2mm≤H1-H2≤2mm。
在上述方案中,第一绝缘层与减薄区的厚度之和H1与主体区的厚度H2满足上述关系,负极极片与正极极片之间的距离较小,便于金属离子的移动,降低析锂的风险。如果第一绝缘层与减薄区的厚度之和H1过小,则沿负极本体的厚度方向,第一绝缘层的表面与主体区的表面之间的距离较大,减薄区处,负极活性物质层的厚度较小,负极活性物质层的容量较低;如果第一绝缘层与减薄区的厚度之和H1过大,则第一绝缘层的表面凸出于主体区的表面,增加主体区和正极极片之间的距离,容易析锂。
根据本申请的一些实施例,所述正极活性物质层包括靠近所述第一边缘的第三边缘;沿所述第一方向的由所述正极本体指向所述正极极耳的方向,所述负极活性物质层超出所述第三边缘的尺寸为C1,满足0.5mm≤C1≤3mm,优选地,1mm≤C1≤2mm。
在上述方案中,负极活性物质层超出第三边缘的尺寸C1满足上述范围,以便于控制负极活性物质层超出正极活性物质层的尺寸,降低析锂的风险。
根据本申请的一些实施例,所述正极极片还包括第二绝缘层,所述第二绝缘层设置于所述正极集流体,所述第二绝缘层延伸至所述第一边缘。
在上述方案中,第二绝缘层能够包覆第一边缘的毛刺,增加毛刺穿透隔离膜的难度,降低正极极片和负极极片接触短路的风险。
根据本申请的一些实施例,所述第二绝缘层与所述正极活性物质层沿所述第一方向排列。
在上述方案中,第二绝缘层与正极活性物质层沿第一方向排列,便于实现第二绝缘层与正极集流体的装配,同时,还可以避免第二绝缘层覆盖正极活性物质层而增加正极活性物质层与负极极片之间的距离,降低析锂的风险。
根据本申请的一些实施例,沿所述第一方向,所述第二绝缘层覆盖所述正极本体的尺寸为M1,所述正极本体的尺寸为M2,满足0.2%≤M1/M2≤2.8%,优选地,0.4%≤M1/M2≤2%。
在上述方案中,沿第一方向,第二绝缘层覆盖正极本体的尺寸M1与正极本体的尺寸M2的比值满足上述范围,第二绝缘层具有较好的绝缘效果,第二绝缘层在第一方向上占用的尺寸较小,正极活性物质层的容量可以较多。
根据本申请的一些实施例,沿所述负极本体的厚度方向,所述第二绝缘层在所述负极极片上的投影落入所述第一绝缘层。
在上述方案中,第二绝缘层在负极极片上的投影落入第一绝缘层,第二绝缘层与第一绝缘层具有较大的重叠面积,第一绝缘层具有较好的绝缘效果,同时,第二绝缘层在第一方向上的尺寸较小,正极活性物质层的容量较多,使得电池单体具有较高的能量密度。
根据本申请的一些实施例,沿所述第一方向的由所述正极极耳指向所述正极本体的方向,所述第一绝缘层超出所述第二绝缘层。
在上述方案中,第一绝缘层超出第二绝缘层,第二绝缘层在第一方向上的尺寸较小,正极活性物质层在第一方向上的尺寸较大,正极活性物质层的容量较多。
根据本申请的一些实施例,沿所述第一方向,所述负极活性物质层的尺寸为D1,所述正极活性物质层的尺寸为D2,所述第二绝缘层的尺寸为M1,满足M1≤(D1-D2)/2。
在上述方案中,沿第一方向,第二绝缘层的尺寸、负极活性物质层的尺寸和正极活性物质层的尺寸满足上述关系,第二绝缘层的尺寸较小,第二绝缘层在第一方向上占用较小的空间,正极活性物质层在第一方向上可以具有较大的尺寸,使得电池单体具有较高的能量密度。
根据本申请的一些实施例,所述第二绝缘层包括靠近所述第一边缘的第四边缘;沿所述第一方向的由所述正极本体指向所述正极极耳的方向,所述第一绝缘层超出所述第四边缘的尺寸为C2,满足0<C2≤2.5mm。
在上述方案中,第一绝缘层超出第四边缘的尺寸满足上述关系,以便于控制第一绝缘层在第一方向上的尺寸,使得正极极片和负极极片之间具有较好的绝缘效果,使得电池单体具有较高的安全性。
根据本申请的一些实施例,沿所述第一方向,所述第二绝缘层覆盖所述正极本体的尺寸为M1,满足0.3mm≤M1≤1.5mm,优选地,0.5mm≤M1≤1mm。
在上述方案中,第二绝缘层覆盖正极本体的尺寸满足上述关系,第二绝缘层具有较好的绝缘效果的情况下,第二绝缘层在第一方向上占用的空间较小。如果第二绝缘层覆盖正极本体的尺寸过小,则第二绝缘层的绝缘效果较差;如果第二绝缘层覆盖正极本体的尺寸过大,则第二绝缘层在第一方向上占用的空间较大,正极活性物质层在第一方向上的尺寸较小,正极活性物质层的容量较小,影响电池单体的能量密度。
根据本申请的一些实施例,沿所述第一方向的由所述正极本体指向所述正极极耳的方向,所述第二绝缘层超出所述第一边缘并覆盖所述正极极耳的一部分。
在上述方案中,第二绝缘层超出第一边缘并覆盖正极极耳的一部分,第二绝缘层在正极集流体上的覆盖面积较大,降低正极极片和负极极片接触短路的风险。
根据本申请的一些实施例,所述第二绝缘层覆盖所述正极极耳的尺寸为E2,满足0<E2≤8mm,优选地,1mm≤E2≤3mm。
在上述方案中,第二绝缘层覆盖正极极耳的尺寸满足上述范围,在具有较好的绝缘效果的情况下,不影响正极极耳与其他部件(如转接件)的连接。如果第二绝缘层覆盖正极极耳的尺寸较小,则绝缘效果较弱;如果第二绝缘层覆盖正极极耳的尺寸较大,则在第一方向上占用正极极耳较大的尺寸,影响正极极耳与其他部件的连接。
根据本申请的一些实施例,所述第二绝缘层的厚度为H3,所述正极集流体的厚度H4,所述正极活性物质层的厚度为H5,满足H3>H4,H3≤H5。
在上述方案中,第二绝缘层的厚度大于正极集流体的厚度,对于裁切正极极耳后产生的毛刺具有较好的包覆效果,提高毛刺刺穿第二绝缘层的难度;第二绝缘层的厚度小于或等于正极活性物质层的厚度,使得第二绝缘层在正极集流体的厚度方向占用较小的空间,降低析锂的风险。
根据本申请的一些实施例,所述第二绝缘层包括陶瓷层或高分子聚合物层。
在上述方案中,当第二绝缘层包括陶瓷层时,陶瓷层因陶瓷材料颗粒较大,金属离子能够穿过陶瓷层,便于金属离子的移动;当第二绝缘层包括高分子聚合物层时,第二绝缘层具有较好的绝缘效果,降低正极极片和负极极片接触短路的风险。
根据本申请的一些实施例,所述第一绝缘层包括陶瓷层。
在上述方案中,第一绝缘层包括陶瓷层时,陶瓷层因陶瓷材料颗粒较大,金属离子能够穿过陶瓷层,便于金属离子的移动,不影响活性物质的活性。
根据本申请的一些实施例,所述陶瓷层包括水系陶瓷浆料或油系陶瓷浆料。
在上述方案中,当陶瓷层包括水系陶瓷浆料时,具有较高的陶瓷材料含量,有利于金属离子的迁移和电解液储存。当陶瓷层包括油系陶瓷浆料时,具有较好的绝缘效果。
第二方面,本申请提供了一种电池,包括箱体和多个上述实施例提供的电池单体,多个所述电池单体设置于所述箱体内。
第三方面,本申请提供了一种用电设备,包括上述实施例提供的电池单体,所述电池单体用于提供电能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的电极组件的结构示意图;
图5为图4的A-A方向的剖视图;
图6为本申请另一些实施例提供的电极组件的结构示意图;
图7为本申请又一些实施例提供的电极组件的结构示意图;
图8为图7的B-B方向的剖视图;
图9为本申请再一些实施例提供的电极组件的结构示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;10-箱体;11-第一子箱体;12-第二子箱体;20-电池单体;21-壳体;22-端盖;22a-电极端子;23-电极组件;231-负极极片;2311-负极集流体;2311a-负极本体;2311b-负极极耳;2311c-第二边缘;2312-负极活性物质层;2312a-减薄区;2312b-主体区;2313-第一绝缘层;232-正极极片;2321-正极集流体;2321a-正极本体;2321b-正极极耳;2321c-第一边缘;2322-正极活性物质层;2322a-第三边缘;2323-第二绝缘层;2323a-第四边缘;233-隔离膜;24-转接件;200-控制器;300-马达;1000-车辆。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限定本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈扁平体、长方体或其它形状等,本申请实施例对此也不限定。
在本申请中,所提及的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提及的电池可以包括电池模块等。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可 以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。正极极耳和负极极耳可以同侧出,也可以异侧出,本申请也不限制。
极片成型过程中,通常在集流体的表面涂布活性物质层,然后在集流体边缘裁切出极耳。极片成型后,正极极片、隔离膜和负极极片层叠卷绕或放置形成电极组件。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,影响安全性的因素很多,例如,环境温度、正负极短路、析锂、泄压不及时等。
现有技术中,为了降低析锂的风险,负极集流体可以超出正极集流体设置。在正极极片裁切正极极耳时,由于在正极活性物质层区域裁切容易导致产生金属熔珠和边缘活性物质脱落,因此,正极极片一般在正极集流体的空箔区进行裁切正极极耳,但是,在空箔区裁切正极极耳容易产生毛刺。当正极极片和负极极片层叠设置,正极极片的裁切正极极耳形成的边缘的毛刺容易刺穿隔离膜而与负极极片接触短路,造成安全隐患。
鉴于此,为了解决正极极片的裁切边缘的毛刺刺穿隔离膜而与负极极片接触短路、进而电池单体的安全性较低的问题,发明人经过深入研究,设计了一种技术方案,在负极集流体上设置第一绝缘层,正极极片的裁切正极极耳形成的边缘在负极极片上的投影落入第一绝缘层,增加负极极片与正极极片的裁切正极极耳的边缘的绝缘效果,增加毛刺刺穿隔离膜而与负极极片接触的难度,降低毛刺刺穿隔离膜后直接与负极极片搭接短路的风险,提高了电池单体的安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体组成该用电设备的电源系统。
本申请实施例提供一种使用电池单体作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为 马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一子箱体11和第二子箱体12,第一子箱体11与第二子箱体12相互盖合,第一子箱体11和第二子箱体12共同限定出用于容纳电池单体20的容纳空间。第二子箱体12可以为一端开口的空心结构,第一子箱体11可以为板状结构,第一子箱体11盖合于第二子箱体12的开口侧,以使第一子箱体11与第二子箱体12共同限定出容纳空间;第一子箱体11和第二子箱体12也可以是均为一侧开口的空心结构,第一子箱体11的开口侧盖合于第二子箱体12的开口侧。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件30,用于实现多个电池单体20之间的电连接。
其中,电池单体20可以为二次电池或一次电池;电池单体20还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。
请参照图3,图3为本申请一些实施例提供的电池单体的爆炸图。电池单体20是指组成电池100的最小单元。如图3,电池单体20包括有壳体21、端盖22、电极组件23以及转接件24。
壳体21是用于配合端盖22以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体21和端盖22可以是独立的部件,可以于壳体21上设置开口,通过在开口处使端盖22盖合开口以形成电池单体20的内部环境。壳体21可以是多种形状和多种尺寸的,例如,长方体形、圆柱体形、六棱柱形等。具体地,壳体21的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体21的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
端盖22是指盖合于壳体21的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖22的形状可以与壳体21的形状相适应以配合壳体21。可选地,端盖22可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖22在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。电极端子22a设置于端盖22,电极端子22a可以用于与电极组件23电连接,以用于输出或输入电池单体20的电能。端盖22的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖22的内侧还可以设置有绝缘结构,绝缘结构可以用于隔离壳体21内的电连接部件与端盖22,以降低短路的风险。示例性的,绝缘结构可以是塑料、橡胶等。
电极组件23是电池单体20中发生电化学反应的部件。壳体21内可以包含一 个或多个电极组件23。电极组件23主要由正极极片和负极极片卷绕或层叠放置形成,并且通常在正极极片和负极极片之间设有隔离膜,隔离膜用于绝缘隔离正极极片和负极极片。正极极片和负极极片涂覆有活性物质层的部分构成电极组件23的主体,正极极片和负极极片未涂覆有活性物质层的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体的一端或是分别位于主体的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子22a以形成电流回路。
转接件24是用于连接电极端子22a和极耳的部件,通过转接件24实现电极端子22a和极耳的电连接。
请参见图3,并进一步参见图4和图5,图4为本申请一些实施例提供的电极组件的结构示意图,图5为图4的A-A方向的剖视图。本申请提供了一种电池单体20,该电池单体20包括电极组件23,电极组件23包括负极极片231和正极极片232。负极极片231包括负极集流体2311和负极活性物质层2312,负极集流体2311包括负极本体2311a和负极极耳2311b,负极极耳2311b凸出于负极本体2311a,至少部分负极活性物质层2312设置于负极本体2311a的表面;正极极片232包括正极集流体2321和正极活性物质层2322,正极集流体2321包括正极本体2321a和正极极耳2321b,正极极耳2321b从正极本体2321a的沿第一方向X的第一边缘2321c延伸出,正极活性物质层2322设置于正极本体2321a的表面,沿负极本体2311a的厚度方向,正极活性物质层2322在负极极片231上的投影落入负极活性物质层2312。其中,负极极片231还包括第一绝缘层2313,第一绝缘层2313设置于负极集流体2311,沿负极本体2311a的厚度方向Y,第一边缘2321c在负极极片231上的投影落入第一绝缘层2313。
图中,字母X所指示的方向为第一方向X,第一方向X垂直于正极本体2321a的厚度方向,第一方向X可以为正极极片232的宽度方向,或者,第一方向X也可以为正极极片232的长度方向。字母Y所指示的方向为负极本体2311a的厚度方向。负极本体2311a的厚度方向Y也即负极集流体2311的厚度方向,负极本体2311a的厚度方向Y与负极活性物质层2312的厚度方向、正极本体2321a的厚度方向及正极活性物质层2322的厚度方向相互平行。
需要指出的是,图4和图5中的负极极片231和正极极片232均为展开状态示意图。
电极组件23还包括隔离膜233,隔离膜233设置于正极极片232和负极极片231之间,用于绝缘隔离正极极片232和负极极片231。
至少部分负极活性物质层2312设置于负极本体2311a的表面,可以为部分负极活性物质层2312设置于负极本体2311a的表面、另一部分负极活性物质层2312设置于负极极耳2311b的部分表面;或者,也可以为全部负极活性物质层2312设置于负极本体2311a的表面。
负极活性物质层2312可以设置于负极本体2311a的厚度方向Y的一个表面,或者,负极活性物质层2312也可以设置于负极本体2311a的厚度方向Y的相对的两个表面。
通常情况下,负极本体2311a为负极集流体2311的设置负极活性物质层2312的部分,未设置负极活性物质层2312的负极集流体2311裁切出负极极耳2322b。但是,在一些实施例中,负极活性物质层2312可以延伸至负极极耳2311b,此时,负极集流体2311的裁切负极极耳2311b的边缘处具有负极活性物质层2312,也即裁切负极活性物质层2312和负极集流体2311,使得负极极耳2311b的部分区域设置有负极活性物质层2312。
负极极耳2311b凸出于负极本体2311a是指,从垂直于负极本体2311a的厚度方向Y的方向上,负极极耳2311b凸出于负极本体2311a的边缘,该边缘为负极本体2311a的裁切出负极极耳2311b的边缘。
正极极耳2321b从正极本体2321a的沿第一方向X的第一边缘2321c延伸出,可以为正极极耳2321b由正极集流体2321的未设置正极活性物质层2322的空箔区裁切而成,也即,第一边缘2321c为正极本体2321a的裁切正极极耳2321b形成的边缘。
正极活性物质层2322可以设置于正极本体2321a的厚度方向的一个表面,或者,正极活性物质层2322也可以设置于正极本体2321a的厚度方向的相对的两个表面。
正极本体2321a为正极集流体2321的设置正极活性物质层2322的部分,正极集流体2321的未设置正极活性物质层2322的部分裁切出正极极耳2321b。
沿负极本体2311a的厚度方向Y,正极活性物质层2322在负极极片231上的投影落入负极活性物质层2312,也即,在垂直于负极本体2311a的厚度方向Y的平面内,正极活性物质层2322落入负极活性物质层2312内,负极活性物质层2312的面积大于正极活性物质层2322的面积,以降低析锂的风险。
第一绝缘层2313为起到绝缘作用的部件。第一绝缘层2313设置于负极集流体2311,可以为第一绝缘层2313涂布于负极集流体2311的表面。例如,第一绝缘层2313可以涂布于负极本体2311a的表面,或者,第一绝缘层2313可以涂布于负极本体2311a的表面和负极活性物质层2312的表面,又或者,第一绝缘层2313可以涂布于负极活性物质层2312的表面和负极极耳2311b的表面。
沿负极本体2311a的厚度方向Y,第一边缘2321c在负极极片231上的投影落入第一绝缘层2313,当第一边缘2321c的毛刺刺破隔离膜233后,第一绝缘层2313能够阻挡毛刺与负极集流体2311或负极活性物质层2312接触。
为了降低析锂的风险,如图4所示,在第二方向Z上,负极活性物质层2312的两端均超出正极活性物质层2322,第二方向Z、第一方向X及负极本体2311a的厚度方向Y两两垂直。
根据本申请实施例的电池单体20,通过在负极集流体2311上设置第一绝缘层2313,第一边缘2321c在负极极片231上的投影落入第一绝缘层2313,以增加负极极片231与正极本体2321a的裁切正极极耳2321b的边缘的绝缘效果,降低第一边缘2321c的毛刺刺穿隔离膜233后直接与负极集流体2311或负极活性物质层2312搭接短路的风险,提高了电池单体20的安全性。
根据本申请的一些实施例,如图4和图5所示,负极本体2311a包括靠近第一边缘2321c的第二边缘2311c,沿第一方向X,第二边缘2311c超出第一边缘2321c。
第二边缘2311c为负极本体2311a的沿第一方向X的边缘,并且第二边缘2311c相对于负极本体2311a的沿第一方向X的其他边缘靠近第一边缘2321c。负极极耳2311b可以从第二边缘2311c延伸出,或者,负极极耳2311b也可以从负极本体2311a的与第二边缘2311c相对的边缘延伸出,又或者,负极极耳2311b也可以从负极本体2311a的与第二边缘2311c相邻的边缘延伸出。
沿第一方向X,第二边缘2311c超出第一边缘2321c,也即,负极本体2311a超出正极本体2321a。
第一绝缘层2313可以延伸至第二边缘2311c,第一边缘2321c可以靠近第二边缘2311c设置,以使得正极本体2321a在第一方向X上可以具有较大的尺寸,使 得正极活性物质层2322的容量可以较多,进而使得电池单体20可以具有较高的能量密度。
在上述方案中,由于负极活性物质层2312超出正极活性物质层2322,第二边缘2311c超出第一边缘2321c,负极活性物质层2312可以在第一方向X上具有较大的尺寸,正极活性物质层2322可以在第一方向X上具有较大的尺寸,进而使得负极活性物质层2312和正极活性物质层2322的容量可以较多,使得电池单体20具有较高的能量密度。
根据本申请的一些实施例,如图4和图5所示,第一绝缘层2313覆盖负极活性物质层2312的一部分。
第一绝缘层2313覆盖负极活性物质层2312的一部分,也即,第一绝缘层2313覆盖于负极活性物质层2312,可以为部分第一绝缘层2313覆盖于负极活性物质层2312、另一部分第一绝缘层2313覆盖于负极本体2311a,或者,也可以为全部第一绝缘层2313覆盖于负极活性物质层2312。
在上述方案中,第一绝缘层2313覆盖负极活性物质层2312的一部分,使得负极本体2311a上的负极活性物质层2312的设置面积可以较大,使得负极活性物质层2312的容量较大,正极活性物质层2322的容量也可以较大。
根据本申请的一些实施例,负极活性物质层2312延伸至第二边缘2311c。
负极活性物质层2312延伸至第二边缘2311c,使得负极活性物质层2312在负极本体2311a上的占用面积较大,负极活性物质层2312的容量较大。
请参见图6,图6为本申请另一些实施例提供的电极组件的结构示意图。根据本申请的一些实施例,负极极耳2311b由第二边缘2311c延伸出,沿第一方向X的由负极本体2311a指向负极极耳2311b的方向,第一绝缘层2313超出第二边缘2311c并覆盖负极极耳2311b的一部分。
负极极耳2311b由第二边缘2311c延伸出,第二边缘2311c可以为负极集流体2311裁切负极极耳2311b的边缘。
在负极活性物质层2312延伸至第二边缘2311c的实施例中,在裁切负极极耳2311b时,可以裁切负极活性物质层2312和负极集流体2311。
第一绝缘层2313超出第二边缘2311c并覆盖负极极片231的一部分,第一绝缘层2313延伸至负极极耳2311b,当负极极耳2311b折弯时,降低负极极耳2311b与正极集流体2321接触短路的风险。
在上述方案中,第一绝缘层2313超出第二边缘2311c并覆盖负极极耳2311b的一部分,第一绝缘层2313在负极集流体2311上的覆盖面积较大,降低正极极片232和负极极片231接触短路的风险。
根据本申请的一些实施例,如图6所示,沿第一方向X,第一绝缘层2313覆盖负极极耳2311b的尺寸为E1,满足0<E1≤8mm,优选地,1mm≤E1≤3mm。
沿第一方向X,第一绝缘层2313覆盖负极极耳2311b的尺寸为E1,是指,在负极极片231的展开状态下,第一绝缘层2313在第一方向X上覆盖负极极耳2311b的尺寸。
沿第一方向X,第一绝缘层2313覆盖负极极耳2311b的尺寸E1满足上述范围,在具有较好的绝缘效果的情况下,不影响负极极耳2311b与其他部件(如转接件)的连接。如果第一绝缘层2313覆盖负极极耳2311b的尺寸较小(或者不覆盖负极极耳2311b),则负极极耳2311b容易与正极极片232接触短路;如果第一绝缘层2313覆盖负极极耳2311b的尺寸较大(如超过8mm),则在第一方向X上占用负极极 耳2311b较大的尺寸,影响负极极耳2311b与其他部件的连接。
相较于0<E1≤8mm,当1mm≤E1≤3mm时,第一绝缘层2313在负极极耳2311b上具有较好的绝缘效果,并且在第一方向X占用负极极耳2311b较小的尺寸。
可选地,E1可以为0.5mm、1mm、1.2mm、1.5mm、2mm、2.5mm、3mm、4mm、4.5mm、5mm、6mm、7mm或8mm等。
根据本申请的一些实施例,如图5所示,沿第一方向X,第一绝缘层2313覆盖负极本体2311a的尺寸为F1,满足3mm≤F1≤10mm。
沿第一方向X,第一绝缘层2313覆盖负极本体2311a的尺寸F1,也即,沿负极本体2311a的厚度方向Y,第一绝缘层2313在负极本体2311a上的投影在第一方向X上的尺寸。换句话说,当第一绝缘层2313仅覆盖于负极本体2311a时,F1可以为第一绝缘层2313在第一方向X上覆盖于负极本体2311a的尺寸;或者,当第二绝缘层2323覆盖于部分负极本体2311a和部分负极活性物质层2312时,F1还可以为第二绝缘层2323在第一方向X上覆盖于负极本体2311a的尺寸和覆盖于负极活性物质层2312的尺寸;又或者,当第一绝缘层2313仅覆盖于负极活性物质层2312时,F1还可以为第一绝缘层2313在第一方向X上覆盖于负极活性物质层2312的尺寸。
在上述方案中,沿第一方向X,第一绝缘层2313覆盖负极本体2311a的尺寸F1满足上述范围,能够限定正极本体2321a的第一边缘2321c的位置,在具有较好的绝缘效果的情况下,使得正极本体2321a在第一方向X上的尺寸较大,正极活性物质层2322的尺寸较大,正极活性物质层2322的容量较大,从而使得电池单体20具有较高的能量密度。如果F1较小(如小于3mm),则第一绝缘层2313在负极本体2311a上的覆盖面积较小,第一绝缘层2313的绝缘效果较差,容易导致正极极片232和负极极片231接触短路。如果F1较大(如大于10mm),则第一绝缘层2313的尺寸较大,浪费材料,成本较高。
可选地,5mm≤F1≤8mm。
可选地,F1可以为3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm。
根据本申请的一些实施例,如图5所示,负极活性物质层2312包括减薄区2312a和主体区2312b,减薄区2312a和主体区2312b沿第一方向X排列,减薄区2312a的厚度小于主体区2312b的厚度,第一绝缘层2313覆盖减薄区2312a。
减薄区2312a和主体区2312b为负极活性物质层2312的两个区域。减薄区2312a可以为负极活性物质层2312的厚度较薄的区域,减薄区2312a的厚度可以沿第一方向X逐渐变化,例如,沿第一方向X的由正极极耳2321b指向正极本体2321a的方向,减薄区2312a的厚度可以逐渐增大。主体区2312b可以为负极活性物质层2312的厚度最厚的区域,主体区2312b的任意位置的厚度均相等。
在上述方案中,第一绝缘层2313覆盖减薄区2312a,使得第一绝缘层2313覆盖负极活性物质层2312的总厚度较低,降低析锂的风险。
根据本申请的一些实施例,如图5所示,沿负极本体2311a的厚度方向Y,第一绝缘层2313与减薄区2312a的厚度之和为H1,主体区2312b的厚度为H2,满足-2mm≤H1-H2≤2mm。
沿负极本体2311a的厚度方向Y,第一绝缘层2313与减薄区2312a的厚度之和,是指,在第一方向X上的任意位置处,沿负极本体2311a的厚度方向Y,第一绝缘层2313的远离负极本体2311a的表面与负极本体2311a之间的距离。
可选地,H1-H2可以为-2mm、-1mm、0、1mm或2mm等。
在上述方案中,第一绝缘层2313与减薄区2312a的厚度之和H1与主体区2312b的厚度H2满足上述关系,负极极片231与正极极片232之间的距离较小,便于金属离子的移动,降低析锂的风险。如果第一绝缘层2313与减薄区2312a的厚度之和H1过小(H1-H2<-2mm),则沿负极本体2311a的厚度方向Y,第一绝缘层2313的远离负极本体2311a的表面相对于主体区2312b的远离负极本体2311a的表面靠近负极本体2311a,第一绝缘层2313的远离负极本体2311a的表面与主体区2312b的远离负极本体2311a的表面之间的距离较大,减薄区2312a处,负极活性物质层2312的厚度较小,负极活性物质层2312的容量较低;如果第一绝缘层2313与减薄区2312a的厚度之和H1过大(H1-H2>2mm),则第一绝缘层2313的表面凸出于主体区2312b的表面,增加主体区2312b和正极极片232之间的距离,容易析锂。
根据本申请的一些实施例,如图5所示,正极活性物质层2322包括靠近第一边缘2321c的第三边缘2322a;沿第一方向X的由正极本体2321a指向正极极耳2321b的方向,负极活性物质层2312超出第三边缘2322a的尺寸为C1,满足0.5mm≤C1≤3mm,优选地,1mm≤C1≤2mm。
第三边缘2322a为正极活性物质层2322的沿第一方向X上的边缘,第三边缘2322a相对于正极活性物质层2322的沿第一方向X上的其他边缘靠近第一边缘2321c。
在上述方案中,负极活性物质层2312超出第三边缘2322a的尺寸C1满足上述范围,以便于控制负极活性物质层2312超出正极活性物质层2322的尺寸,降低析锂的风险。如果负极活性物质层2312超出第三边缘2322a的尺寸过小(如小于0.5mm),则容易出现析锂;如果负极活性物质层2312超出第三边缘2322a的尺寸过大(如大于3mm),则正极活性物质层2322的容量较小,影响电池单体20的能量密度。
相较于0.5mm≤C1≤3mm,当1mm≤C1≤2mm时,正极活性物质层2322的容量较多,并且不容易产生析锂。
可选地,C1可以为0.5mm、1mm、1.5mm、2mm、2.5mm或3mm等。
请参见图7和图8,图7为本申请又一些实施例提供的电极组件的结构示意图,图8为图7的B-B方向的剖视图。根据本申请的一些实施例,正极极片232还包括第二绝缘层2323,第二绝缘层2323设置于正极集流体2321,第二绝缘层2323延伸至第一边缘2321c。
第二绝缘层2323延伸至第一边缘2321c,也即,第二绝缘层2323设置于正极本体2321a的靠近第一边缘2321c处。
在上述方案中,第二绝缘层2323延伸至第一边缘2321c,第二绝缘层2323能够包覆第一边缘2321c的毛刺,增加毛刺穿透隔离膜233的难度,降低正极极片232和负极极片231接触短路的风险。
根据本申请的一些实施例,如图7和图8所示,第二绝缘层2323与正极活性物质层2322沿第一方向X排列。
第二绝缘层2323与正极活性物质层2322沿第一方向X排列,第二绝缘层2323设置于正极本体2321a的空箔区,沿第一方向X,第二绝缘层2323与正极活性物质层2322之间可以具有间隙,或者,第二绝缘层2323可以与正极活性物质层2322接触。
在上述方案中,第二绝缘层2323与正极活性物质层2322沿第一方向X排列,便于实现第二绝缘层2323与正极集流体2321的装配,同时,还可以避免第二绝 缘层2323覆盖正极活性物质层2322而增加正极活性物质层2322与负极极片231之间的距离,降低析锂的风险。
在一些实施例中,第二绝缘层2323还可以覆盖于正极活性物质层2322,也即,部分第二绝缘层2323覆盖于正极本体2321a,另一部分第二绝缘层2323覆盖于正极活性物质层2322。为了减少第二绝缘层2323覆盖正极活性物质层2322后的总厚度,可以将正极活性物质层2322的被第二绝缘层2323覆盖区域的厚度减薄。
根据本申请的一些实施例,如图8所示,沿第一方向X,第二绝缘层2323覆盖正极本体2321a的尺寸为M1,正极本体2321a的尺寸为M2,满足0.2%≤M1/M2≤2.8%,优选地,0.4%≤M1/M2≤2%。
沿第一方向X,第二绝缘层2323覆盖正极本体2321a的尺寸M1,也即,沿正极本体2321a的厚度方向(即Y方向),第二绝缘层2323在正极本体2321a上的投影在第一方向X上的尺寸。换句话说,当第二绝缘层2323仅覆盖于正极本体2321a时,M1可以为第二绝缘层2323在第一方向X上覆盖于正极本体2321a的尺寸,或者,当第二绝缘层2323覆盖于部分正极本体2321a和部分正极活性物质层2322时,M1还可以为第二绝缘层2323在第一方向X上覆盖于正极本体2321a的尺寸和覆盖于正极活性物质层2322的尺寸。
在上述方案中,沿第一方向X,第二绝缘层2323正极本体2321a的尺寸M1与正极本体2321a的尺寸M2的比值满足上述范围,第二绝缘层2323具有较好的绝缘效果,第二绝缘层2323在第一方向X上占用的尺寸较小,正极活性物质层2322的容量可以较多。如果M1/M2过小(如小于0.2%),则第二绝缘层2323在第一方向X上覆盖于正极本体2321a的尺寸较小,绝缘效果较差。如果M1/M2过大(如大于2.8%),则第二绝缘层2323在第一方向X上覆盖于正极本体2321a的尺寸较大,正极活性物质层2322在第一方向X上的尺寸较小,影响电池单体20的能量密度。
相较于0.2%≤M1/M2≤2.8%,当0.4%≤M1/M2≤2%时,第二绝缘层2323具有较好的绝缘效果,且对电池单体20的能量密度影响较小。
可选地,M1/M2可以为0.2%、0.4%、0.5%、0.51%、0.52%、0.6%、0.8%、1%、1.2%、1.4%、1.5%、1.51%、1.52%、1.6%、1.78%、1.79%、1.8%、2%、2.2%、2.4%、2.6%或2.8%等。
根据本申请的一些实施例,如图7和图8所示,沿负极本体2311a的厚度方向Y,第二绝缘层2323在负极极片231上的投影落入第一绝缘层2313。
沿负极本体2311a的厚度方向Y,第二绝缘层2323在负极极片231上的投影落入第一绝缘层2313,第二绝缘层2323与第一绝缘层2313具有较大的重叠面积,第一绝缘层2313具有较好的绝缘效果,同时,第二绝缘层2323在第一方向X上的尺寸较小,正极活性物质层2322的容量较多,使得电池单体20具有较高的能量密度。
根据本申请的一些实施例,如图7和图8所示,沿第一方向X的由正极极耳2321b指向正极本体2321a的方向,第一绝缘层2313超出第二绝缘层2323。
在上述方案中,第一绝缘层2313超出第二绝缘层2323,第二绝缘层2323在第一方向X上的尺寸较小,正极活性物质层2322在第一方向X上的尺寸较大,正极活性物质层2322的容量较多。
根据本申请的一些实施例,如图8所示,沿第一方向X,负极活性物质层2312的尺寸为D1,正极活性物质层2322的尺寸为D2,第二绝缘层2323的尺寸为M1,满足M1≤(D1-D2)/2。
当负极活性物质层2312在第一方向X上的两端超出正极活性物质层2322 的尺寸相同时,在第一方向X上的任一端,负极活性物质层2312超出正极活性物质层2322的尺寸为(D1-D2)/2。
在上述方案中,沿第一方向X,第二绝缘层2323的尺寸、负极活性物质层2312的尺寸和正极活性物质层2322的尺寸满足上述关系,第二绝缘层2323的尺寸较小,第二绝缘层2323在第一方向X上占用较小的空间,正极活性物质层2322在第一方向X上可以具有较大的尺寸,使得电池单体20具有较高的能量密度。如果M1>(D1-D2)/2,则第二绝缘层2323在第一方向X上的尺寸较大,正极活性物质层2322在第一方向X上的尺寸较小,影响电池单体20的能量密度。
根据本申请的一些实施例,如图8所示,第二绝缘层2323包括靠近第一边缘2321c的第四边缘2323a;沿第一方向X的由正极本体2321a指向正极极耳2321b的方向,第一绝缘层2313超出第四边缘2323a的尺寸为C2,满足0<C2≤2.5mm。
第四边缘2323a为第二绝缘层2323的在第一方向X上的边缘,并且第四边缘2323a靠近第一边缘2321c。
第一绝缘层2313超出第四边缘2323a的尺寸,可以为,沿第一方向X,第一边缘2321c的远离第二绝缘层2323的一端与第四边缘2323a之间的距离。
在上述方案中,第一绝缘层2313超出第四边缘2323a的尺寸满足上述关系,以便于控制第一绝缘层2313在第一方向X上的尺寸,使得正极极片232和负极极片231之间具有较好的绝缘效果,使得电池单体20具有较高的安全性。如果C2过大(如大于2.5mm),则第一绝缘层2313在第一方向X上的尺寸较大,正极活性物质层2322在第一方向X上的尺寸较小,影响电池单体20的能量密度。
可选地,0.5mm≤C2≤1.5mm。
可选地,C2可以为0.5mm、0.75mm、1mm、1.5mm、2mm或2.5mm等。
根据本申请的一些实施例,如图8所示,沿第一方向X,第二绝缘层2323覆盖正极本体2321a的尺寸为M1,满足0.3mm≤M1≤1.5mm,优选地,0.5mm≤M1≤1mm。
在上述方案中,第二绝缘层2323覆盖正极本体2321a的尺寸满足上述关系,第二绝缘层2323具有较好的绝缘效果的情况下,第二绝缘层2323在第一方向X上占用的空间较小。如果第二绝缘层2323覆盖正极本体2321a的尺寸过小(如小于0.3mm),则第二绝缘层2323的绝缘效果较差;如果第二绝缘层2323覆盖正极本体2321a的尺寸过大(如大于1.5mm),则第二绝缘层2323在第一方向X上占用的空间较大,正极活性物质层2322在第一方向X上的尺寸较小,正极活性物质层2322的容量较小,影响电池单体20的能量密度。
相较于0.3mm≤M1≤1.5mm,当0.5mm≤M1≤1mm时,第二绝缘层2323具有较好的绝缘效果,并且第二绝缘层2323在第一方向X上覆盖正极本体2321a的尺寸较小,对电池单体20的能量密度影响较小。
可选地,M1可以为0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm、1.2mm、1.3mm、1.4mm或1.5mm。
请参见图9,图9为本申请再一些实施例提供的电极组件的结构示意图。根据本申请的一些实施例,如图9所示,沿第一方向X的由正极本体2321a指向正极极耳2321b的方向,第二绝缘层2323超出第一边缘2321c并覆盖正极极耳2321b的一部分。
在上述方案中,第二绝缘层2323超出第一边缘2321c并覆盖正极极耳2321b的一部分,第二绝缘层2323在正极集流体2321上的覆盖面积较大,降低正极极 片232和负极极片231接触短路的风险。
根据本申请的一些实施例,如图9所示,第二绝缘层2323覆盖正极极耳2321b的尺寸为E2,满足0<E2≤8mm,优选地,1mm≤E2≤3mm。
在上述方案中,第二绝缘层2323覆盖正极极耳2321b的尺寸满足上述范围,在具有较好的绝缘效果的情况下,不影响正极极耳2321b与其他部件(如转接件)的连接。如果第二绝缘层2323覆盖正极极耳2321b的尺寸较小(或者第二绝缘层2323不覆盖正极极耳2321b),则绝缘效果较弱,影响电池单体20的安全性;如果第二绝缘层2323覆盖正极极耳2321b的尺寸较大(如大于8mm),则在第一方向X上占用正极极耳2321b较大的尺寸,影响正极极耳2321b与其他部件的连接。
相较于0<E2≤8mm,当1mm≤E2≤3mm时,第二绝缘层2323在正极极耳2321b上具有较好的绝缘效果,并且在第一方向X占用正极极耳2321b较小的尺寸。
可选地,E2可以为0.5mm、1mm、1.2mm、1.5mm、2mm、2.5mm、3mm、4mm、4.5mm、5mm、6mm、7mm或8mm等。
根据本申请的一些实施例,如图8所示,第二绝缘层2323的厚度为H3,正极集流体2321的厚度H4,正极活性物质层2322的厚度为H5,满足H3>H4,H3≤H5。
在上述方案中,第二绝缘层2323的厚度大于正极集流体2321的厚度,对于裁切正极极耳2321b后产生的毛刺具有较好的包覆效果,提高毛刺刺穿第二绝缘层2323的难度;第二绝缘层2323的厚度小于或等于正极活性物质层2322的厚度,使得第二绝缘层2323在正极集流体2321的厚度方向占用较小的空间,降低析锂的风险。
根据本申请的一些实施例,第二绝缘层2323包括陶瓷层或高分子聚合物层。
在上述方案中,当第二绝缘层2323包括陶瓷层时,陶瓷层因陶瓷材料颗粒较大,金属离子能够穿过陶瓷层,便于金属离子的移动;当第二绝缘层2323包括高分子聚合物层时,第二绝缘层2323具有较好的绝缘效果,降低正极极片232和负极极片231接触短路的风险。
根据本申请的一些实施例,在第二绝缘层2323中,陶瓷层包括水系陶瓷浆料或油系陶瓷浆料。当陶瓷层包括水系陶瓷浆料时,具有较高的陶瓷材料含量,有利于金属离子的迁移和电解液储存。当陶瓷层包括油系陶瓷浆料时,具有较好的绝缘效果。
在第二绝缘层2323中,在陶瓷层包括水系陶瓷浆料的实施例中,水系陶瓷浆料以水作溶剂,固含量为20%~85%,优选40%~75%;水系陶瓷浆料包括陶瓷材料、粘接剂、增稠剂、分散剂和消泡剂,陶瓷材料占总固含量的20%~80%。
在第二绝缘层2323中,在陶瓷层包括油系陶瓷浆料的实施例中,油系陶瓷浆料以N-甲基吡咯烷酮为溶剂,固含量为10%~60%,优选20%~50%,油系陶瓷浆料包括陶瓷材料和粘结剂,陶瓷材料含量是粘结剂含量的1/10~10倍。
在第二绝缘层2323包括高分子聚合物层的实施例中,高分子聚合物层可以包括聚偏二氟乙烯、聚丙烯、聚酰胺、环氧树脂等中的至少一种。
根据本申请的一些实施例,第一绝缘层2313包括陶瓷层。
在上述方案中,第一绝缘层2313包括陶瓷层时,陶瓷层因陶瓷材料颗粒较大,金属离子能够穿过陶瓷层,便于金属离子的移动,不影响活性物质的活性。
根据本申请的一些实施例,在第一绝缘层2313中,陶瓷层包括水系陶瓷浆料或油系陶瓷浆料。当陶瓷层包括水系陶瓷浆料时,具有较高的陶瓷材料含量,有利于金属离子的迁移和电解液储存。当陶瓷层包括油系陶瓷浆料时,具有较好的绝缘效 果。
在第一绝缘层2313中,在陶瓷层包括水系陶瓷浆料的实施例中,水系陶瓷浆料以水作溶剂,固含量为20%~70%,优选35%~45%;水系陶瓷浆料包括陶瓷材料、粘接剂、增稠剂、分散剂和消泡剂,陶瓷材料占总固含量的85%~95%。
在第一绝缘层2313中,在陶瓷层包括油系陶瓷浆料的实施例中,油系陶瓷浆料以N-甲基吡咯烷酮为溶剂,固含量为10%~30%,优选10%~20%,油系陶瓷浆料包括陶瓷材料和粘结剂,陶瓷材料含量是粘结剂含量的5~10倍,优选6~8倍。
在上述实施例中,第一绝缘层2313中的水系陶瓷浆料的组成成分和第二绝缘层2323中的水系陶瓷浆料的组成成分可以一致。
可选地,陶瓷材料可以为水合氧化铝、氧化镁、碳化硅和氮化硅中的一种。
可选地,粘接剂可以为聚丙烯酸酯、丙烯酸甲酯、丙烯酸乙酯、2-甲基丙烯酸甲酯、2-甲基丙烯酸乙酯中的至少一种。
可选地,增稠剂可以为羧甲基纤维素钠、羧甲基纤维素、甲基纤维素和聚丙烯酸钠中的一种。
可选地,分散剂可以为聚丙烯酰胺、聚乙烯醇和聚乙烯吡咯烷酮中的至少一种。
可选地,消泡剂可以为正丁醇和乙醇中的一种。
在上述实施例中,第一绝缘层2313中的油系陶瓷浆料的组成成分和第二绝缘层2323中的油系陶瓷浆料的组成成分可以一致。
可选地,油系陶瓷浆料中,陶瓷材料可以为水合氧化铝、氧化镁、碳化硅和氮化硅中的一种。粘结剂可以为聚偏二氟乙烯或聚丙烯腈中的一种。
根据本申请的一些实施例,本申请还提供了一种电池100,该电池100包括箱体10和多个上述任一实施例提供的电池单体20,多个电池单体20设置于箱体10内。
根据本申请的一些实施例,本申请还提供了一种用电设备,该用电设备包括上述任一实施例提供的电池单体20,电池单体20用于提供电能。
用电设备为上述任一应用电池单体20的装置或系统。
根据本申请的一些实施例,参见图3至图9,本申请提供了一种电池单体20,该电池单体20包括壳体21、端盖22、电极组件23及转接件24。壳体21具有开口,端盖22封闭开口,电极组件23设置于壳体21内。电极组件23包括负极极片231和正极极片232。负极极片231包括负极集流体2311和负极活性物质层2312,负极集流体2311包括负极本体2311a和负极极耳2311b,负极极耳2311b从负极本体2311a的沿第一方向X的第二边缘2311c延伸出,至少负极活性物质层2312设置于负极本体2311a的表面。正极极片232包括正极集流体2321和正极活性物质层2322,正极集流体2321包括正极本体2321a和正极极耳2321b,正极极耳2321b从正极本体2321a的沿第一方向X的第一边缘2321c延伸出,正极活性物质层2322设置于正极本体2321a的表面,沿负极本体2311a的厚度方向Y,正极活性物质层2322在负极极片231上的投影落入负极活性物质层2312。端盖22设置有两个电极端子22a,两个电极端子22a分别为正极电极端子和负极电极端子,转接件24设置有两个,一个转接件24连接正极极耳2321b和正极电极端子,另一个转接件24连接负极极耳2311b和负极电极端子。其中,负极极片231还包括第一绝缘层2313,第一绝缘层2313设置于负极集流体2311,沿负极本体2311a的厚度方向Y,第二边缘2311c在负极极片231上的投影落入第一绝缘层2313。正极极片232还包括第二绝缘层2323,第二绝缘层2323设置于正极集流体2321,第二绝缘层2323延伸至第一边缘2321c,第二绝缘层2323与正极活 性物质层2322沿第一方向X排列。沿负极本体2311a的厚度方向Y,第二绝缘层2323在负极极片231上的投影落入第一绝缘层2313。正极活性物质层2322包括靠近第一边缘2321c的第三边缘2322a;沿第一方向X的由正极本体2321a指向正极极耳2321b的方向,负极活性物质层2312超出第三边缘2322a的尺寸为C1,满足1mm≤C1≤2mm。
根据本申请实施例的电池单体20,通过在负极集流体2311上设置第一绝缘层2313、在正极集流体2321上设置第二绝缘层2323,第一边缘2321c在负极极片231上的投影落入第一绝缘层2313,第二绝缘层2323落入第一绝缘层2313,第二绝缘层2323延伸至第一边缘2321c,以增加负极极片231与正极本体2321a的裁切正极极耳2321b的边缘的绝缘效果,降低第一边缘2321c的毛刺刺穿隔离膜233后直接与负极集流体2311或负极活性物质层2312搭接短路的风险,提高了电池单体20的安全性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (26)

  1. 一种电池单体,包括电极组件,所述电极组件包括:
    负极极片,包括负极集流体和负极活性物质层,所述负极集流体包括负极本体和负极极耳,所述负极极耳凸出于所述负极本体,至少部分所述负极活性物质层设置于所述负极本体的表面;
    正极极片,包括正极集流体和正极活性物质层,所述正极集流体包括正极本体和正极极耳,所述正极极耳从所述正极本体的沿第一方向的第一边缘延伸出,所述正极活性物质层设置于所述正极本体的表面,沿所述负极本体的厚度方向,所述正极活性物质层在所述负极极片上的投影落入所述负极活性物质层;
    其中,所述负极极片还包括第一绝缘层,所述第一绝缘层设置于所述负极集流体,沿所述负极本体的厚度方向,所述第一边缘在所述负极极片上的投影落入所述第一绝缘层。
  2. 根据权利要求1所述的电池单体,其中,所述负极本体包括靠近所述第一边缘的第二边缘,沿所述第一方向,所述第二边缘超出所述第一边缘。
  3. 根据权利要求2所述的电池单体,其中,所述第一绝缘层覆盖所述负极活性物质层的一部分。
  4. 根据权利要求3所述的电池单体,其中,所述负极活性物质层延伸至所述第二边缘。
  5. 根据权利要求2-4中任一项所述的电池单体,其中,所述负极极耳由所述第二边缘延伸出,沿所述第一方向的由所述负极本体指向所述负极极耳的方向,所述第一绝缘层超出所述第二边缘并覆盖所述负极极耳的一部分。
  6. 根据权利要求5所述的电池单体,其中,沿所述第一方向,所述第一绝缘层覆盖所述负极极耳的尺寸为E1,满足0<E1≤8mm,优选地,1mm≤E1≤3mm。
  7. 根据权利要求1-6中任一项所述的电池单体,其中,沿所述第一方向,所述第一绝缘层覆盖所述负极本体的尺寸为F1,满足3mm≤F1≤10mm。
  8. 根据权利要求1-7中任一项所述的电池单体,其中,所述负极活性物质层包括减薄区和主体区,所述减薄区和所述主体区沿所述第一方向排列,所述减薄区的厚度小于所述主体区的厚度,所述第一绝缘层覆盖所述减薄区。
  9. 根据权利要求8所述的电池单体,其中,沿所述负极本体的厚度方向,所述第一绝缘层与所述减薄区的厚度之和为H1,所述主体区的厚度为H2,满足-2mm≤H1-H2≤2mm。
  10. 根据权利要求1-9中任一项所述的电池单体,其中,所述正极活性物质层包括靠近所述第一边缘的第三边缘;
    沿所述第一方向的由所述正极本体指向所述正极极耳的方向,所述负极活性物质层超出所述第三边缘的尺寸为C1,满足0.5mm≤C1≤3mm,优选地,1mm≤C1≤2mm。
  11. 根据权利要求1-10中任一项所述的电池单体,其中,所述正极极片还包括第二绝缘层,所述第二绝缘层设置于所述正极集流体,所述第二绝缘层延伸至所述第一边缘。
  12. 根据权利要求11所述的电池单体,其中,所述第二绝缘层与所述正极活性物质层沿所述第一方向排列。
  13. 根据权利要求11或12所述的电池单体,其中,沿所述第一方向,所述第二绝缘层覆盖所述正极本体的尺寸为M1,所述正极本体的尺寸为M2,满足0.2%≤M1/M2≤2.8%,优选地,0.4%≤M1/M2≤2%。
  14. 根据权利要求11-13中任一项所述的电池单体,其中,沿所述负极本体的厚度方向,所述第二绝缘层在所述负极极片上的投影落入所述第一绝缘层。
  15. 根据权利要求14所述的电池单体,其中,沿所述第一方向的由所述正极极耳指向所述正极本体的方向,所述第一绝缘层超出所述第二绝缘层。
  16. 根据权利要求11-15中任一项所述的电池单体,其中,沿所述第一方向,所述负极活性物质层的尺寸为D1,所述正极活性物质层的尺寸为D2,所述第二绝缘层的尺寸为M1,满足M1≤(D1-D2)/2。
  17. 根据权利要求11-16中任一项所述的电池单体,其中,所述第二绝缘层包括靠近所述第一边缘的第四边缘;
    沿所述第一方向的由所述正极本体指向所述正极极耳的方向,所述第一绝缘层超出所述第四边缘的尺寸为C2,满足0<C2≤2.5mm。
  18. 根据权利要求11-17中任一项所述的电池单体,其中,沿所述第一方向,所述第二绝缘层覆盖所述正极本体的尺寸为M1,满足0.3mm≤M1≤1.5mm,优选地,0.5mm≤M1≤1mm。
  19. 根据权利要求11-18中任一项所述的电池单体,其中,沿所述第一方向的由所述正极本体指向所述正极极耳的方向,所述第二绝缘层超出所述第一边缘并覆盖所述正极极耳的一部分。
  20. 根据权利要求19所述的电池单体,其中,沿所述第一方向,所述第二绝缘层覆盖所述正极极耳的尺寸为E2,满足0<E2≤8mm,优选地,1mm≤E2≤3mm。
  21. 根据权利要求11-20中任一项所述的电池单体,其中,所述第二绝缘层的厚度为H3,所述正极集流体的厚度H4,所述正极活性物质层的厚度为H5,满足H3>H4,H3≤H5。
  22. 根据权利要求11-21中任一项所述的电池单体,其中,所述第二绝缘层包括陶瓷层或高分子聚合物层。
  23. 根据权利要求1-22中任一项所述的电池单体,其中,所述第一绝缘层包括陶瓷层。
  24. 根据权利要求23所述的电池单体,其中,所述陶瓷层包括水系陶瓷浆料或油系陶瓷浆料。
  25. 一种电池,包括箱体和多个如权利要求1-24中任一项所述的电池单体,多个所述电池单体设置于所述箱体内。
  26. 一种用电设备,包括如权利要求1-24中任一项所述的电池单体,所述电池单体用于提供电能。
PCT/CN2022/110631 2022-08-05 2022-08-05 电池单体、电池及用电设备 WO2024026851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110631 WO2024026851A1 (zh) 2022-08-05 2022-08-05 电池单体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110631 WO2024026851A1 (zh) 2022-08-05 2022-08-05 电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2024026851A1 true WO2024026851A1 (zh) 2024-02-08

Family

ID=89848365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110631 WO2024026851A1 (zh) 2022-08-05 2022-08-05 电池单体、电池及用电设备

Country Status (1)

Country Link
WO (1) WO2024026851A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103356A (ja) * 2005-09-12 2007-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池
CN111801837A (zh) * 2019-02-01 2020-10-20 株式会社Lg化学 包括具有绝缘层的电极的堆叠型电极组件和包括该堆叠型电极组件的锂二次电池
WO2021195852A1 (zh) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 电池组件、应用所述电池组件的电池及电子装置
CN216354298U (zh) * 2021-11-15 2022-04-19 珠海冠宇电池股份有限公司 一种极片、叠片电芯、电池及电子产品
CN216354300U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置
CN115882039A (zh) * 2021-09-26 2023-03-31 比亚迪股份有限公司 叠片式锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103356A (ja) * 2005-09-12 2007-04-19 Matsushita Electric Ind Co Ltd 非水系二次電池
CN111801837A (zh) * 2019-02-01 2020-10-20 株式会社Lg化学 包括具有绝缘层的电极的堆叠型电极组件和包括该堆叠型电极组件的锂二次电池
WO2021195852A1 (zh) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 电池组件、应用所述电池组件的电池及电子装置
CN115882039A (zh) * 2021-09-26 2023-03-31 比亚迪股份有限公司 叠片式锂离子电池
CN216354298U (zh) * 2021-11-15 2022-04-19 珠海冠宇电池股份有限公司 一种极片、叠片电芯、电池及电子产品
CN216354300U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置

Similar Documents

Publication Publication Date Title
US11757161B2 (en) Battery cell, battery and electricity consuming device
US20230170592A1 (en) Electrode assembly, battery cell, battery, and electric apparatus
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023246134A1 (zh) 极片、电极组件、电池单体、电池及用电设备
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
CN217334332U (zh) 电极组件、电池单体、电池及用电装置
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023020119A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
CN115084782B (zh) 电极组件、电池单体、电池及用电装置
WO2024026851A1 (zh) 电池单体、电池及用电设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN221304944U (zh) 电池单体、电池及用电设备
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
WO2024021082A1 (zh) 电池及用电设备
US20240213633A1 (en) Shell, Battery Cell, Battery, and Power Consumption Device
WO2023216254A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023216038A1 (zh) 电极组件、电池单体、电池及用电装置
US11978910B2 (en) Electrode assembly, battery cell, battery, and electrical device
WO2024060093A1 (zh) 电池单体、电池及用电装置
WO2023236219A1 (zh) 电池单体、电池及用电设备
WO2023184422A1 (zh) 电池单体、电池及用电设备
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953656

Country of ref document: EP

Kind code of ref document: A1