WO2024025193A1 - 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도 - Google Patents

기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2024025193A1
WO2024025193A1 PCT/KR2023/009502 KR2023009502W WO2024025193A1 WO 2024025193 A1 WO2024025193 A1 WO 2024025193A1 KR 2023009502 W KR2023009502 W KR 2023009502W WO 2024025193 A1 WO2024025193 A1 WO 2024025193A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
cells
cell
hydrogel
mechanical strength
Prior art date
Application number
PCT/KR2023/009502
Other languages
English (en)
French (fr)
Inventor
김병곤
박희환
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2024025193A1 publication Critical patent/WO2024025193A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells

Definitions

  • the present invention relates to a composition for culturing stem cells containing a substrate with controlled mechanical strength and its use, and more specifically, to a composition for culturing stem cells and a scaffold material including a substrate with controlled mechanical strength, and to the use of the same. It relates to a stem cell culture method comprising culturing stem cells with a culture composition and a cell therapy product comprising the scaffold material.
  • Loss of neurological function that accompanies central nervous system damage such as spinal cord injury or stroke occurs due to damage to the neural circuit due to the death of nerve cells.
  • central nervous system damage such as spinal cord injury or stroke occurs due to damage to the neural circuit due to the death of nerve cells.
  • motor neuron cells in the spinal cord that are involved in body movement die due to the harmful environment and secondary damage within the damaged area.
  • the axons (hereinafter referred to as axons) originating from the motor nerve center of the brain are cut due to damage, thereby breaking the neural network connection between the spinal cord and the motor neurons of the brain.
  • Mature central nervous system axons lack the ability to spontaneously regenerate after injury, and many central nervous system patients suffer from permanent motor function impairments such as lower limb paralysis or quadriplegia. To prevent or treat these neurological disorders, there is currently no clear method used in clinical practice other than temporary symptom relief therapy using high doses of steroids.
  • neural stem cells In order to rebuild damaged neural circuits, much research is being conducted on ways to reconstruct damaged neural circuits by transplanting neural stem cells (NSCs) with high differentiation capacity into brain motor neurons into the damaged spinal cord. There are limitations such as death of neural stem cells and insufficient differentiation capacity into nerve cells in a damaged biological environment.
  • the present inventors have made diligent efforts to develop a reconstruction treatment technology for neural circuits by increasing the transplant survival rate of neural stem cells. As a result, they have confirmed that the adhesive ability and survival rate of neural stem cells can be controlled by the mechanical strength of the matrix around the cells.
  • the present invention was completed by identifying and utilizing the molecular mechanism for.
  • the purpose of the present invention is to provide a composition for culturing stem cells comprising a substrate with controlled mechanical strength and its use.
  • the present invention provides a composition for stem cell culture including a substrate with a mechanical strength of 0.2 kPa to 500 kPa.
  • the substrate may be a hydrogel.
  • the material constituting the hydrogel may be a natural polymer, a synthetic polymer, or a hybrid thereof.
  • the hydrogel may be characterized as containing an actin fiber activity regulator or a mechanoreceptor activity regulator.
  • the stem cells may be neural stem cells.
  • the present invention also provides a stem cell culturing method comprising culturing stem cells with the composition.
  • the present invention also provides a scaffold material for stem cell culture including a substrate with a mechanical strength of 0.2 kPa to 500 kPa.
  • the substrate may be a hydrogel.
  • the material constituting the hydrogel may be a natural polymer, a synthetic polymer, or a hybrid thereof.
  • the hydrogel may be characterized as containing an actin fiber activity regulator or a mechanoreceptor activity regulator.
  • the stem cells may be neural stem cells.
  • the present invention also provides a cell therapy product containing the scaffold material as an active ingredient.
  • the cell therapy agent may be used to treat neurological diseases.
  • neural stem cells cultured on a substrate with controlled mechanical strength have the advantage of being able to be used as a cell therapy agent because their cell adhesion ability and survival rate are significantly improved after transplantation.
  • Figure 1 relates to the results of confirming changes in cell shape of neural stem cells (neural stem/progenitor cells (NSC)) as mechanical strength increases.
  • Figure 1A shows a phase/contrast image
  • Figure 1B shows a fluorescence image.
  • kPa represents Kilo pascal (a unit representing mechanical strength)
  • GFP NSC represents NSC (neural stem/progenitor cells) neural stem cells that exhibit green fluorescent protein (GFP) fluorescence.
  • GFP green fluorescent protein
  • Figure 2 relates to quantitative analysis of cell shape changes in neural stem cells as mechanical strength increases.
  • Figure 3 relates to the results of confirming the survival rate of neural stem cells according to the increase in mechanical strength.
  • the Live/dead cytotoxicity assay kit was used as a reagent, and Calcein AM (green, live cells) and Ethidium homodimer-1 (red, dead cells) are shown.
  • Figure 4 relates to quantitative analysis of the survival rate of neural stem cells according to increase in mechanical strength.
  • Figure 5 relates to RT-PCR results confirming cellular receptors that respond to mechanical sensitivity. Brain and lung samples were used as positive controls, and 18S refers to the housekeeping gene.
  • Figure 6 relates to changes in spontaneous calcium oscillation (calcium ion concentration change) inside cells according to mechanical sensitivity. Calcium levels inside cells were measured using the Fluo4AM calcium indicator, and spontaneous calcium oscillations of neural stem cells according to mechanical sensitivity were confirmed in real time.
  • Figure 7 relates to quantitative analysis of changes in calcium ion concentration inside cells according to mechanical sensitivity.
  • A Normalized intensity
  • B Calcium responsive rate
  • C Amplitude
  • D Frequency
  • Figure 8 relates to cell shape changes caused by mechanical stimulation cell receptor inhibitors in response to mechanical sensitivity.
  • GsMtx4 is a well-known mechanosensitive cell receptor inhibitor that responds to mechanical sensitivity.
  • Figure 9 relates to quantitative analysis of cell shape changes caused by cell receptor inhibitors in response to mechanical sensitivity.
  • Figure 10 relates to changes in cell viability caused by cell receptor inhibitors in response to mechanical sensitivity.
  • the Live/dead cytotoxicity assay kit was used as a reagent, and Calcein AM (green live cells) and Ethidium homodimer-1 (red dead cells) are shown.
  • Figure 11 relates to quantitative analysis of changes in cell viability caused by cell receptor inhibitors in response to mechanical sensitivity.
  • Figure 12 relates to the results of measuring the elasticity of cells using a high-speed atomic force microscope (kPa (Killo pascal) refers to a unit representing mechanical strength).
  • Figure 12A shows the force and separation distance when neural stem cells are cultured on hydrogel substrates of 12, 25, and 100 kPa, the cells are fixed, and the high-speed atomic force microscope cantilever (probe) approaches the cells. It is shown.
  • Figure 12B is a quantitative analysis of the final results of cell elasticity by applying and calculating the Sneddon model to the results for Figure 12A.
  • Figure 13 relates to cell elasticity due to differences in the mechanical strength of the substrate (DMSO: control drug, Cyto.D: actin fiber destabilizing drug (cytochalasin D)).
  • Figure 14 relates to spontaneous calcium oscillation changes due to differences in the mechanical strength of the substrate.
  • Figure 15 relates to the adhesion ability and cell shape of neural stem cells (Scale: 50 ⁇ m (top), 20 ⁇ m (bottom)).
  • Figures 15A-B are the imaging results after siRNA-delivered neural stem cells were cultured on a hydrogel substrate for 24 hours and the cells were fixed (ascending scale bar: 50 micrometers, descending scale bar: 20 micrometers).
  • Figures 15C-E show cell adhesion ability (C), cell spreading area (D), cell perimeter (E), etc. by Piezo-1 siRNA in neural stem cells cultured on 0.2 kPa and 25 kPa substrates. This is a graph quantifying .
  • the present inventors designed an in vitro culture system to culture E14 spinal cord-derived neural stem cells on hydrogel substrates with various strengths ranging from 0.2 to 25 kPa. Neural stem cells cultured on hard substrates had increased spreading area and cellular perimeter, and improved cell adhesion. Additionally, the ratio of living and dying cells significantly increased.
  • the present inventors confirmed that neural stem cells are activated by mechanical responses and express several mechanosensitive ion channels that induce calcium currents.
  • the degree of calcium oscillation of neural stem cells cultured in 25 kPa hydrogel was significantly increased compared to neural stem cells cultured in 0.2 kPa hydrogel.
  • pharmacological inhibition of mechanosensory-sensitive channels using GsMTx4 attenuated the intensity-dependent enhancement of cytoplasmic expansion, adhesive ability, and cell survival of neural stem cells. Through the above mechanism, it was confirmed that the adhesion ability and survival rate of neural stem cells can be controlled by the mechanical strength of the matrix around the cells.
  • the present invention relates to a composition for stem cell culture, which includes a substrate having a mechanical strength of 0.2 kPa to 500 kPa.
  • the mechanical strength of the substrate may vary depending on the mechanical strength of spinal cord tissue of humans and animals.
  • the mechanical strength of spinal cord tissue may vary depending on the species of animal. For example, the mechanical strength of human spinal cord tissue is about 100 kPa, and the mechanical strength of porcine spinal cord tissue is about 500 kPa.
  • stem cell refers to a cell that has the ability to self-replicate and differentiate into two or more different types of cells.
  • the substrate may be characterized as a hydrogel, but is not limited thereto.
  • the material constituting the hydrogel is a natural polymer, a synthetic polymer, or a hybrid thereof.
  • Natural polymers may include, but are not limited to, collagen, elastin, fibrin, silk, matrigel, hyaluronic acid (HA), chitosan, collagen, laminin, and gelatin.
  • Synthetic polymers include PHEMA (poly hydroxyethyl methacrylate), PHPMA (poly hydroxypropyl methacrylate), PPF (poly propylene fumarate), PVA (poly vinyl alcohol), PEG (poly ethylene glycol), PEGMA (poly ethylene glycol monoacrylate), and PAAM (polyacrylamide). ), etc., but is not limited thereto.
  • hybrids may be ingredients that blend or copolymerize natural polymers and synthetic polymers.
  • the hydrogel may contain an actin fiber activity regulator or a mechanoreceptor activity regulator.
  • the actin fiber activity regulator may be cytochalasin D
  • the mechanoreceptor activity regulator may be GsMtx-4.
  • the stem cells may be characterized as neural stem cells, but are not limited thereto.
  • the present invention relates to a stem cell culturing method comprising culturing stem cells with the composition.
  • the present invention relates to a scaffold material for stem cell culture comprising a substrate with a mechanical strength of 0.2 kPa to 500 kPa.
  • the term "scaffold” can be referred to as a "support” and is a term used in tissue engineering, which refers to a structure that uses a combination of cells and various materials to anchor living cells.
  • Bio-scaffold refers to a biological structure, that is, a structure (cast) that removes cells by decellularizing a living organ, leaving only the microstructure and outline of the organ.
  • the substrate may be a hydrogel, but is not limited thereto.
  • the stem cells may be characterized as neural stem cells, but are not limited thereto.
  • the present invention relates to a cell therapy product containing the scaffold material as an active ingredient.
  • the term "cell therapy product” refers to cells and tissues produced through isolation, culture, and special manipulation from an individual, and is a medicine used for treatment, diagnosis, and prevention purposes to restore the function of cells or tissues. It refers to a medicine in which these cells are used for the purpose of treatment, diagnosis, and prevention of disease through a series of actions such as proliferating and selecting living autologous allogeneic or heterogeneous cells in vitro or changing the biological characteristics of the cells by other methods.
  • the cell therapy agent may be used to treat neurological diseases, but is not limited thereto.
  • the cell therapy agent can be used for regenerative treatment of traumatic and non-traumatic central nervous system damage diseases accompanied by tissue defects.
  • the cell therapy composition may preferably contain 0.01 to 99.9% by weight, more preferably 0.1 to 99% by weight, of the stem cells based on the total weight.
  • the cell therapy composition may further include appropriate carriers, excipients, and diluents commonly used in the production of cell therapy compositions.
  • the cell therapy composition can be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, and aerosols, external preparations, suppositories, and sterile injection solutions, respectively, according to conventional methods.
  • Carriers, excipients, and diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, and methylcellulose. Examples include rose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate, and mineral oil.
  • the cell therapy composition When formulating the cell therapy composition, it is prepared using commonly used diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc. These solid preparations are made by mixing the above compound with at least one excipient, such as cotton, starch, calcium carbonate, sucrose or lactose, gelatin, etc. It is prepared.
  • excipient such as cotton, starch, calcium carbonate, sucrose or lactose, gelatin, etc. It is prepared.
  • lubricants such as magnesium styrate talc are also used.
  • Liquid preparations for oral administration of the cell therapy composition include suspensions, oral solutions, emulsions, and syrups.
  • various excipients such as wetting agents, Sweeteners, flavoring agents, preservatives, etc. may be included.
  • Preparations for parenteral administration of the cell therapy composition include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories.
  • Non-aqueous solvents and suspensions include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate.
  • injectable ester such as ethyl oleate.
  • Withepsol, Macrogol, Tween 61, cacao, laurin, glycerol gelatin, etc. can be used as a base for suppositories.
  • the preferred dosage of the cell therapy composition varies depending on the patient's condition and weight, degree of disease, drug type, administration route and period, but can be appropriately selected by a person skilled in the art.
  • the composition is preferably administered at 0.01 mg/kg to 10 g/kg per day, preferably at 1 mg/kg to 1 g/kg. Administration may be administered once a day, or may be administered in several divided doses.
  • the cell therapy composition can be administered to mammals such as rats, mice, livestock, and humans through various routes. All methods of administration may be conventional methods, for example, oral, rectal or intravenous administration.
  • the adhesion ability of neural stem cells cultured on a substrate with controlled mechanical strength may be characterized as increased by 50% to 100%, but is not limited thereto.
  • the survival rate of neural stem cells cultured on a substrate with controlled mechanical strength may be characterized as increased by 50% to 100%, but is not limited thereto.
  • the survival rate can be calculated as the ratio of live cells/dead cells.
  • Example 1 Method of cultivating neural stem cells in hydrogel matrix
  • the present inventors varied the mechanical strength of the hydrogel substrate purchased from Matrigen (Matrigen, LLC, 4790 Irvine Blvd STE 105-433, Irvine, CA 92620) https://matrigen.com/ ) in the range of 0.2 to 25 kPa.
  • An in vitro culture system was designed to culture neural stem cells (NSC) derived from embryonic spinal cord tissue on day 14 on the hydrogel substrate. Specifically, the spinal cord of a pregnant mouse embryo (14 days old) showing GFP (green fluorescent protein) fluorescence throughout the body was isolated and neural stem cells were cultured. The isolated neural stem cells were cultured in the form of neurospheres and subcultured in single cell units every week. For experiments related to the hydrogel matrix, neurosphere-like cells (passages 2 to 5) were separated into single cells and cultured on the hydrogel matrix for 24 hours.
  • NSC neural stem cells
  • Example 2 Analysis results of changes in cell shape of neural stem cells according to increase in mechanical strength
  • Example 3 Results of analysis of survival rate of neural stem cells according to increase in mechanical strength
  • the survival rate of neural stem cells according to the increase in mechanical strength was analyzed 24 hours after neurosphere-like cells (passages 2 to 4) were separated into single cells and the single nerve cells were cultured on a hydrogel substrate.
  • a live/dead cytotoxicity assay kit (Invitrogen, #L3224) was used as a reagent, showing Calcein AM (green, live cells) and Ethidium homodimer-1 (red, dead cells).
  • Example 4 Analysis results of cell receptors responding to mechanical sensitivity
  • RNA from neural stem cells cultured on a general culture plate After extracting RNA from neural stem cells cultured on a general culture plate, cDNA was synthesized through reverse transcription, and PCR was performed.
  • Example 5 Change in calcium ion concentration inside cells according to mechanical sensitivity
  • the above mechanosensitive receptors are all well-known calcium ion channels. Therefore, in order to investigate the activation of mechanical sensitivity receptors by the hydrogel matrix, changes in intracellular calcium ions were analyzed. To analyze changes in calcium ion concentration inside cells through mechanical sensitivity receptors, single nerve cells were cultured on 0.2 kPa and 25 kPa hydrogel substrates, and 24 hours later, the calcium level inside cells was measured using the fluo4AM calcium indicator. Calcium changes in neural stem cells according to mechanical sensitivity were confirmed in real time for 1 minute.
  • Example 6 Analysis of changes in cell shape and cell viability by cell receptor inhibitors in response to mechanical sensitivity
  • Example 7 Measurement of changes in cell elasticity as the mechanical strength of the substrate increases
  • AFM atomic force microscopy
  • Example 8 Role of actin fibers in cell elasticity due to differences in mechanical strength
  • the graph on the right side of Figure 14 displays the change in intensity of the fluorescent signal representing the concentration of calcium during the 1-minute period of observing the cells.
  • the increase in intensity of the fluorescent signal appearing in cells cultured on a 25 kPa substrate is due to the actin fiber destabilizing agent. It shows that it disappears. It was confirmed that spontaneous calcium oscillations of neural stem cells in response to mechanical strength were reduced by treatment with cytochalasin D, an actin fiber destabilizing agent.
  • the mechanical stimulation receptor piezo1 was confirmed to play a role in cell adhesion and cytoplasmic expansion on stiff hydrogel substrates.
  • siRNA small interfering RNA
  • Scramble control group
  • Piezo1 experimental group, Piezo1

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명의 기계적 강도가 조절된 기질(예컨대, 하이드로젤)을 포함하는 배양용 조성물에서 배양한 신경줄기세포는 이식 후 세포접착능 및 생존율이 우수하여 세포치료제로 활용할 수 있다는 장점이 있다.

Description

기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도
본 발명은 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도에 관한 것으로, 더 상세하게는 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물과 스캐폴드 재료, 상기 줄기세포 배양용 조성물로 줄기세포를 배양하는 단계를 포함하는 줄기세포 배양방법 및 상기 스캐폴드 재료를 포함하는 세포치료제에 관한 것이다.
척수손상이나 뇌졸중과 같은 중추신경계 손상에 동반되는 신경기능의 소실은 신경세포의 사멸에 의한 신경회로의 손상으로 인해 발생한다. 특히, 척수손상의 경우 신체의 운동에 관여하는 척수의 운동신경원세포가 손상 부위 내 해로운 환경과 2차적인 손상으로 인해서 사멸하게 된다. 또한 뇌의 운동신경중추에서 기원하는 축삭돌기(이하 액손)가 손상으로 인해 절단되어 척수와 뇌의 운동신경세포 간의 신경회로망 연결이 끊어지게 된다. 성숙한 중추신경계의 액손은 손상 후 자발적 재생 능력이 결여되어 많은 중추신경계 환자들이 하지 마비 혹은 사지 마비등과 같은 영구적인 운동기능의 장애를 갖게 된다. 이러한 신경 장애의 예방 혹은 치료를 위하여 임상 현장에서 사용하는 방법에는 고용량의 스테로이드를 이용한 일시적인 증상완화 요법 외에 아직까지 뚜렷한 것이 없는 실정이다.
손상된 신경회로를 재건하기 위하여 뇌운동신경세포로 분화능이 높은 신경줄기세포(neural stem cell; NSC)를 손상된 척수에 이식하여 파괴된 신경회로를 재구축 하는 방안에 대한 많은 연구가 진행되고 있으나, 이식된 신경줄기세포의 사멸과 손상된 생체 환경 내에서 불충분한 신경세포로의 분화능과 같은 한계가 존재한다.
이에, 본 발명자들은 신경줄기세포의 이식 생존율을 증가시켜 신경회로의 재건치료기술을 개발하고자 예의 노력한 결과, 신경줄기세포의 접착능 및 생존율이 세포 주위 기질의 기계적 강도에 의해서 조절이 가능하다는 것을 확인하고 이에 대한 분자적 메커니즘을 규명 및 이용함으로써, 본 발명을 완성하였다.
본 발명의 목적은 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은 기계적 강도가 0.2kPa ~ 500kPa의 기질을 포함하는 줄기세포 배양용 조성물을 제공한다.
본 발명에 있어서, 상기 기질은 하이드로젤(hydrogel)인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 하이드로젤을 구성하는 물질은 천연고분자, 합성고분자, 또는 이들의 하이브리드인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 하이드로젤은 액틴섬유 활성 조절제 또는 기계적수용체 활성 조절제를 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 줄기세포는 신경줄기세포인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 조성물로 줄기세포를 배양하는 단계를 포함하는 줄기세포 배양방법을 제공한다.
본 발명은 또한, 기계적 강도가 0.2kPa ~ 500kPa의 기질을 포함하는 줄기세포 배양용 스캐폴드 재료를 제공한다.
본 발명에 있어서, 상기 기질은 하이드로젤인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 하이드로젤을 구성하는 물질은 천연고분자, 합성고분자, 또는 이들의 하이브리드인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 하이드로젤은 액틴섬유 활성 조절제 또는 기계적수용체 활성 조절제를 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 줄기세포는 신경줄기세포인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 스캐폴드 재료를 유효성분으로 포함하는 세포치료제를 제공한다.
본 발명에 있어서, 상기 세포치료제는 신경계 질환 치료용인 것을 특징으로 할 수 있다.
본 발명에서 기계적 강도가 조절된 기질(예컨대, 하이드로젤)에서 배양한 신경줄기세포는 이식 후 세포접착능 및 생존율이 유의하게 향상되어 세포치료제로 활용할 수 있다는 장점이 있다.
도 1은 기계적 강도 증가에 따른 신경줄기세포(neural stem/progenitor cells; NSC)의 세포모양 변화를 확인한 결과에 관한 것이다. 도 1A는 Phase/contrast 이미지, 도 1B는 형광이미지를 나타낸다. 도 1에서 kPa는 Kilo pascal (기계적 강도를 나타내는 단위), GFP NSC는 green fluorescent protein (GFP) 형광을 나타내는 NSC (neural stem/progenitor cells) 신경줄기세포를 나타낸다.
도 2는 기계적 강도 증가에 따른 신경줄기세포의 세포모양 변화에 대한 정량적 분석에 관한 것이다.
도 3은 기계적 강도 증가에 따른 신경줄기세포의 생존율을 확인한 결과에 관한 것이다. 도 3에서 Live/dead cytotoxicity assay kit 을 시약으로 사용하였으며, Calcein AM(green, 살아있는 세포), Ethidium homodimer-1 (red, 죽은세포)를 나타낸다.
도 4는 기계적 강도 증가에 따른 신경줄기세포의 생존율에 대한 정량적 분석에 관한 것이다.
도 5는 기계적 민감도에 반응하는 세포수용체를 확인한 RT-PCR 결과에 관한 것이다. Brain, lung 시료들(samples)은 positive control로 사용되었으며, 18S는 housekeeping gene을 의미한다.
도 6은 기계적 민감도에 따른 세포 내부의 자발적 칼슘진동(칼슘이온 농도변화) 변화에 관한 것이다. Fluo4AM calcium indicator를 이용하여 세포내부의 칼슘레벨을 측정하였으며, 기계적 민감도에 따른 신경줄기세포의 자발적 칼슘진동을 실시간으로 확인하였다.
도 7은 기계적 민감도에 따른 세포내부의 칼슘이온 농도 변화에 대한 정량적 분석에 관한 것이다. (A) 정규화된 강도(Normalized intensity), (B) 칼슘 반응 비율(Calcium responsive rate), (C) 진폭(Amplitude), (D) 빈도(Frequency)를 나타낸다.
도 8은 기계적 민감도에 반응하는 기계적 자극 세포수용체 억제제에 의한 세포 모양 변화에 관한 것이다. GsMtx4는 잘 알려진 기계적 민감도에 반응하는 기계적 자극 세포수용체 억제제이다.
도 9는 기계적 민감도에 반응하는 세포수용체 억제제에 의한 세포 모양 변화에 대한 정량적 분석에 관한 것이다.
도 10은 기계적 민감도에 반응하는 세포수용체 억제제에 의한 세포 생존능 변화에 관한 것이다. 도 10에서 Live/dead cytotoxicity assay kit 를 시약으로 사용하였으며, Calcein AM(green 살아있는 세포), Ethidium homodimer-1 (Red 죽은세포)를 나타낸다.
도 11은 기계적 민감도에 반응하는 세포수용체 억제제에 의한 세포 생존능 변화에 대한 정량적 분석에 관한 것이다.
도 12는 고속원자력현미경을 이용한 세포의 탄성력 측정 결과에 관한 것이다(kPa(Killo pascal)은 기계적 강도를 나타내는 단위를 의미한다). 도 12A는 신경줄기세포를 12, 25, 100 kPa의 하이드로젤 기판에 배양을 한 뒤에 세포를 고정하여 고속원자력현미경 cantilever(탐침)를 세포에 접근시켰을 때의 힘(force)과 분리(separation)거리를 나타낸 것이다. 도 12B는 도 12A에 대한 결과값을 Sneddon model을 적용 및 계산하여 최종적으로 세포의 탄성력(elasticity)에 대한 결과를 정량적 분석한 값이다.
도 13은 기질의 기계적강도 차이에 의한 세포탄성력에 관한 것이다(DMSO: 대조군 약물, Cyto.D: 액틴섬유 불안정화 약물 (cytochalasin D)).
도 14는 기질의 기계적강도 차이에 의한 자발적 칼슘진동 변화에 관한 것이다.
도 15는 신경줄기세포의 부착능과 세포 모양에 관한 것이다(Scale: 50 μm (top), 20 μm (bottom)). 도 15A-B는 siRNA 전달을 한 신경줄기세포를 하이드로젤 기판에 24시간 배양하여 세포를 고정시킨 후 이미징한 결과이다(상행의 스케일 바: 50 마이크로미터, 하행의 스케일 바: 20 마이크로미터). 도 15C-E는 0.2 kPa 및 25 kPa 기질에서 배양한 신경줄기세포에서 Piezo-1 siRNA에 의한 세포부착능 (C), 세포퍼짐영역 (spreading area, D), 세포주변둘레길이 (perimeter, E) 등을 정량한 그래프이다.
이하, 본 발명을 상세하게 설명한다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
척수 손상에 대한 세포 이식 치료는 이식된 세포의 열악한 생존률이 문제된다. 생체 재료 기반 스캐폴드는 손상된 척수의 열악한 미세 환경에서 세포 생착을 돕는다. 이전 연구에서 본 발명자들은 감열성(thermosensitive)의 주사 가능한 하이드로젤의 주사가 낭포성 공동(cystic cavities)으로 발전할 수 있는 손상 중심(lesion epicenter)에서 세포외 기질(extracellular matrix; ECM)을 생성할 수 있음을 입증하였다. 이에 하이드로젤의 공간 채우기(space-filling) 효과가 이식 생존(graft survival)에 매우 도움이 될 것으로 예상했으나, 하이드로젤과 복합체로 전달된 신경줄기세포(neural stem cell; NSC)는 빈번한 이식 실패로 이식에서 간신히 살아남는 현상을 관찰하였다.
본 발명자들은 축적된 증거를 통해 세포막으로 전달되는 기계적 자극이 세포 행동에 상당한 영향을 미칠 수 있음을 확인하였고, 이에 하이드로젤의 기계적 강도(mechanical stiffness)가 하이드로젤 복합체 내에 이식된 신경줄기세포의 생존을 조절하는 중요한 요소일 수 있다는 점을 가정하였다.
본 발명자들은 0.2 ~ 25kPa 범위의 다양한 강도를 가진 하이드로젤 기질에서 E14 척수 유래 신경줄기세포를 배양하는 in vitro 배양 시스템을 설계하였다. 단단한 기질에서 배양된 신경줄기세포는 퍼짐 영역(spreading area)과 세포 둘레(cellular perimeter)가 증가하였으며, 세포 접착능이 향상되었다. 또한, 살아있는 세포와 죽어가는 세포의 비율이 유의하게 증가하였다.
본 발명자들은 신경줄기세포가 기계적 반응에 활성화되어 칼슘 전류(calcium current)를 유도하는 여러 기계적 감각 민감성 이온 채널 (Mechanosensitive ion channel)을 발현한다는 것을 확인하였다. 0.2kPa 하이드로젤에서 배양된 신경줄기세포에 비해 25kPa 하이드로젤에서 배양된 신경줄기세포의 칼슘 진동(calcium oscillation) 정도가 현저하게 증가하였다. 반면, GsMTx4를 사용한 기계적 감각 민감성 채널의 약리학적 억제는 신경줄기세포의 세포질 확장, 접착능 및 세포의 생존율의 강도 의존적 향상을 약화시켰다. 상기 메커니즘을 통해 신경줄기세포의 접착능 및 생존율이 세포 주위 기질의 기계적 강도에 의해서 조절이 가능하다는 것을 확인하였다.
이에, 본 발명은 일관점에서 기계적 강도가 0.2kPa ~ 500kPa의 기질을 포함하는 줄기세포 배양용 조성물에 관한 것이다.
본 발명에 있어서, 상기 기질의 기계적 강도는 인간과 동물의 척수 조직의 기계적 강도에 따라 달라질 수 있다. 동물의 종에 따라서도 척수 조직의 기계적 강도는 상이할 수 있다. 예컨대, 인간 척수 조직의 기계적 강도는 약 100 kPa이고, 돼지 척수 조직의 기계적 강도는 약 500 kPa이다.
본 발명에 있어서, 용어 "줄기세포"는 자기 복제 능력을 가지면서 두 개 이상의 서로 다른 종류의 세포로 분화하는 능력을 가지는 세포를 의미한다.
본 발명에 있어서, 상기 기질은 하이드로젤(hydrogel)인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 하이드로젤을 구성하는 물질은 천연고분자, 합성고분자, 또는 이들의 하이브리드이다. 천연고분자로는 콜라젠, 엘라스틴, 피브린, 실크, 매트리젤, 히알루론산(HA), 키토산, 콜라젠, 라미닌, 젤라틴 등 일 수 있으나, 이에 제한되지 않는다. 합성고분자로는 PHEMA (poly hydroxyethyl methacrylate), PHPMA (poly hydroxypropyl methacrylate), PPF (poly propylene fumarate), PVA (poly vinyl alcohol), PEG (poly ethylene glycol), PEGMA (poly ethylene glycol monoacrylate), PAAM (polyacrylamide) 등 일 수 있으나, 이에 제한되지 않는다. 또한, 하이브리드는 천연고분자와 합성고분자를 블렌딩하거나 공중합한 성분일 수 있다.
본 발명에 있어서, 상기 하이드로젤은 액틴섬유 활성 조절제 또는 기계적수용체 활성 조절제를 포함할 수 있다. 또한, 본 발명의 일 실시예에 따라 상기 액틴섬유 활성 조절제로는 cytochalasin D일 수 있으며, 상기 기계적수용체 활성 조절제로는 GsMtx-4일 수 있다.
본 발명에 있어서, 상기 줄기세포는 신경줄기세포인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명은 다른 관점에서, 상기 조성물로 줄기세포를 배양하는 단계를 포함하는 줄기세포 배양방법에 관한 것이다.
본 발명은 또 다른 관점에서, 기계적 강도가 0.2kPa ~ 500kPa의 기질을 포함하는 줄기세포 배양용 스캐폴드 재료에 관한 것이다.
본 발명에 있어서, 용어 "스캐폴드(scaffold)"는 “지지체”라고 할 수 있으며, 조직공학(Tissue engineering)에 사용되는 용어로서 생체 세포를 안착시켜 세포와 여러 가지 물질들의 조합을 이용하는 구조물을 말하며, 바이오 스캐폴드란 생체 구조물 즉, 생체 장기를 탈세포화(decellularization)시켜 세포를 제거한 후, 미세구조 및 장기의 윤곽만을 남긴 구조물(주형물)을 의미한다.
본 발명에 있어서, 상기 기질은 하이드로젤인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
상기 스캐폴드 재료에 포함되는 상술한 하이드로젤에 상응하는 특징들은 상술된 부분에서 대신할 수 있으므로, 그 기재를 생략한다.
본 발명에 있어서, 상기 줄기세포는 신경줄기세포인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명은 또 다른 관점에서, 상기 스캐폴드 재료를 유효성분으로 포함하는 세포치료제에 관한 것이다.
본 발명에 있어서, 용어 "세포치료제"는 개체로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로, 치료, 진단 및 예방의 목적으로 사용되는 의약품으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가 동종 또는 이종세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 이러한 세포가 질병의 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.
본 발명에 있어서, 상기 세포치료제는 신경계 질환 치료용인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다. 구체적으로, 상기 세포치료제는 조직 결손을 동반하는 외상성 및 비외상성 중추신경계 손상 질환의 재생 치료용으로 활용할 수 있다.
본 발명에 있어서, 상기 세포치료제 조성물은 총 중량에 대하여 상기 줄기세포를 바람직하게는 0.01 내지 99.9중량%, 더욱 바람직하게는 0.1 내지 99 중량%로 포함할 수 있다.
본 발명에 있어서, 상기 세포치료제 조성물은 세포치료제 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 추가로 포함할 수 있다.
상기 세포치료제 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있으며, 이에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸셀룰 로오스, 미정질셀룰로스, 폴리비닐피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
상기 세포치료제 조성물을 제제화할 경우, 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐 제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제 적어도 면, 전분, 칼슘카보네이트, 슈크로스 또는 락토오스, 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트탈 크 같은 윤활제들도 사용된다.
상기 세포치료제 조성물의 경구투여를 위한, 경구를 위한 액상제제로는 현탁제, 내용 액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
상기 세포치료제 조성물의 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세롤젤라틴 등이 사용될 수 있다.
본 발명에 있어서, 상기 세포치료제 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직한 효과를 위해서, 조성물은 1일 0.01 mg/kg 내지 10 g/kg으로, 바람직하게는 1 mg/kg 내지 1 g/kg으로 투여하는 것이 좋다. 투여는 하루에 한 번 투여할 수도 있고, 수회 나누어 투여할 수 있다.
상기 세포치료제 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 통상의 방법에 의할 수 있고, 일 예로 경구 및 직장 또는 정맥 등의 방법을 통하여 투여할 수 있다.
본 발명에서 기계적 강도가 조절된 기질(예컨대, 하이드로젤)에서 배양한 신경줄기세포의 접착능이 50% 내지 100% 증가하는 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명에서 기계적 강도가 조절된 기질(예컨대, 하이드로젤)에서 배양한 신경줄기세포의 생존율 50% 내지 100% 증가하는 것을 특징으로 할 수 있으나, 이에 제한되지 않는다. 상기 생존율은 살아있는 세포/죽은 세포 비율로 계산할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않은 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명한 것이다.
실시예 1: 하이드로젤 기질에서 신경줄기세포 배양방법
본 발명자들은 미국 Matrigen사에서 구입한 하이드로젤 기질(Matrigen, LLC, 4790 Irvine Blvd STE 105-433, Irvine, CA 92620) https://matrigen.com/)의 기계적 강도를 0.2 ~ 25kPa 범위로 다양하게 조정하고, 상기 하이드로젤 기질에서 14일째 배아 척수조직 유래 신경줄기세포(neural stem cell; NSC)를 배양하는 in vitro 배양 시스템을 설계하였다. 구체적으로 GFP (green fluorescent protein) 형광을 온 몸에 나타내는 임신쥐의 배아 (embryo 14일) 척수를 분리하여 신경줄기세포를 배양하였다. 상기 분리한 신경줄기세포는 신경구 (neurosphere) 형태로 배양을 하였고 매주 단일세포 단위로 계대배양을 하였다. 하이드로젤 기질과 관련된 실험을 위해 신경구상태의 세포 (passage 2~5)를 단일세포로 분리하여 하이드로젤 기질 위에서 24시간동안 배양하였다.
실시예 2: 기계적 강도 증가에 따른 신경줄기세포의 세포모양 변화 분석 결과
기계적 강도 증가에 따른 신경줄기세포의 세포모양 변화는 상기 신경줄기세포를 하이드로젤 기질 위에서 배양 후 24시간 뒤에 4% paraformaldehyde로 상기 신경줄기세포를 고정하고 공초점현미경을 이용하여 세포의 이미지를 얻은 후 ImageJ 프로그램을 이용하여 분석하였다.
그 결과, 기계적 강도가 증가함에 따라 세포 모양의 변화관점에서 퍼짐영역(spreading area), 부착세포둘레(perimeter)가 효과적으로 증가하는 것을 확인하였다 (도 1 및 2).
실시예 3: 기계적 강도 증가에 따른 신경줄기세포의 생존율 분석 결과
기계적 강도 증가에 따른 신경줄기세포의 생존율은 신경구상태의 세포 (passage 2~4)를 단일세포로 분리하여 단일신경세포를 하이드로젤 기질에 배양 후 24시간뒤에 분석하였다. 세포의 생존율을 관찰하기 위하여 live/dead cytotoxicity assay kit (Invitrogen, #L3224)를 시약으로 사용하였으며, Calcein AM(green, 살아있는 세포), Ethidium homodimer-1 (red, 죽은세포)를 나타낸다.
그 결과, 기계적 강도가 증가할수록 살아있는 세포의 비율이 유의하게 증가하고, 죽은 세포의 비율이 유의하게 감소하는 것을 확인하였다(도 3 및 4). 따라서, 기계적 강도가 증가함에 따라 신경줄기세포의 생존율은 증가한다는 것을 나타낸다.
실시예 4: 기계적 민감도에 반응하는 세포수용체 분석 결과
RT-PCR 기법을 이용하여 기계적 민감도에 반응하는 세포수용체를 확인하였다. 구체적으로 기계적 민감도에 반응하는 세포수용체가 많이 발현한다고 알려진 rat brain과 lung 조직을 positive control로 사용하였다. 일반 culture plate에 배양한 신경줄기세포의 RNA를 추출한 후 cDNA를 합성하여 reverse transcription (역전사)을 통해서 cDNA를 합성하고PCR을 진행하였다.
그 결과, piezo1, piezo2, TRPC1, TRPP2와 같은 기계적 민감도에 반응하는 세포수용체가 많이 발현한다는 것을 확인하였고, TRPV4 수용체도 소량 발현하는 것을 확인하였다(도 5). 이는 척수유래 신경줄기세포에서 다양한 기계적 민감도 반응수용체가 발현하는 것을 의미한다.
실시예 5: 기계적 민감도에 따른 세포 내부의 칼슘이온 농도 변화
상기 기계적 민감도 수용체는 모두 잘 알려진 칼슘이온 채널이다. 따라서, 하이드로젤 기질에 의한 기계적 민감도 수용체의 활성화를 알아보기 위하여 세포내의 칼슘이온 변화를 분석하였다. 기계적 민감도 수용체를 통한 세포 내부의 칼슘이온 농도 변화를 분석하기 위해 0.2 kPa, 25 kPa 하이드로젤 기질에 단일신경세포를 배양 후 24시간 뒤에 fluo4AM calcium indicator를 이용하여 세포내부의 칼슘레벨을 측정하였다. 기계적 민감도에 따른 신경줄기세포의 칼슘변화를 1분동안 실시간으로 확인하였다.
그 결과, 0.2kPa 하이드로젤 기질에서는 신경줄기세포의 자발적인 칼슘활동이 약 28%정도인 것에 반해, 25 kPa의 단단한 하이드로젤 기질에서 배양된 세포에서는 약 80%의 자발적인 칼슘레벨이 변하는 것을 확인하였다. 또한, 각각의 칼슘변화를 나타내는 세포에서 자발적인 칼슘레벨의 peak amplitude와 frequency가 단단한 기질에서 배양한 세포그룹에서 현저하게 증가함을 확인하였다 (도 6 및 7).
실시예 6: 기계적 민감도에 반응하는 세포수용체 억제제에 의한 세포 모양 및 세포 생존능 변화 분석
상기 기계적 강도에 의한 세포 모양 및 세포의 생존능이 기계적 민감도 세포수용체에 의한 변화인지를 증명하기 위하여 기계적 민감도에 반응하는 세포수용체 억제제를 세포배양시 같이 처리하여 결과를 확인하였다.
그 결과, 단단한 하이드로젤 기질에 세포를 배양하고 기계적 민감도 세포수용체 억제제를 처리한 그룹에서 억제제를 처리하지 않은 그룹과 비교하였을 때 세포질의 퍼짐이 유의하게 감소한 것을 확인하였다(도 8 및 9). 또한, 기계적 민감도 세포수용체 억제제를 처리한 그룹에서 세포의 생존율 및 접착능이 현저하게 감소함을 확인하였다(도 10 및 11). 이는 단단한 기계적 민감도에 따른 세포 접착능 및 세포 생존율이 기계적 민감도 수용체에 의해서 이루어진다는 것을 시사한다.
실시예 7: 기질의 기계적 강도 증가에 따른 세포의 탄성력 변화 측정
기질의 기계적 강도 증가에 따른 신경줄기세포의 탄성력(elastic modulus) 변화를 측정하였다(도 12). 세포의 탄성력은 고속원자력현미경(atomic force microscopy, AFM)를 이용하여 측정하였다. AFM은 cantilever(탐침)이 샘플 표면사이에 작용하는 힘(force)을 광학시스템을 이용하여 세포의 탄성력 (elasticity)를 측정하는 장비이다.
그 결과, 세포 자체의 기계적 탄성력은 기판의 기질의 강도가 높을수록 증가한다는 것을 확인하였다(도 12).
실시예 8: 기계적강도 차이에 의한 세포탄성력에서 액틴섬유의 역할
기질의 기계적강도 차이에 의한 세포탄성력이 액틴섬유에 의존적인지 확인하기 위하여 세포탄성력 변화를 측정하였다(도 13). 세포의 탄성력은 고속원자력현미경(atomic force microscopy, AFM)를 이용하여 측정하였다. 액틴섬유를 저해하였을때 세포의 탄성력자체가 변하는지를 확인하기 위하여 세포에 액틴섬유 불안정화 약물 (Cytochalasin D, Cyto D)를 처리한 후, AFM을 이용하여 세포의 탄성력을 측정하였다. 기계적 강도가 다른 기질에 신경줄기세포 배양을 하고, 액틴섬유 불안정화 약물(Cyto. D)을 처리하여 세포의 탄성력을 측정하여 결과를 확인하였다(도 13).
그 결과, Cyto. D를 처리하게 되면 세포의 액틴섬유가 감소하고 이는 세포자체의 탄성력 감소로 이어진 결과를 나타낸다. 따라서, 기판의 기계적 강도차이가 세포의 액틴섬유 발달에 영향을 끼치고, 이는 세포자체의 탄성력에 중요한 역할을 한다는 결과를 보여준다.
실시예 9: 세포 자발적 칼슘진동을 위한 액틴섬유의 역할 확인
기질의 기계적강도 차이에 의한 자발적 칼슘진동이 액틴섬유에 의존적인지 확인하기 위하여 자발적 칼슘진동을 측정하였다(도 14). 해당 실험에서는 칼슘농도 측정을 위한 타임 랩스 현미경 영상 촬용 시작전 30분 전에 액틴섬유 불안정제인 cytochalasin 혹은 대조 그룹으로 DMSO을 처리하고 영상을 획득하였다. 도 14의 좌측 도면에서 타임 랩스 동영상 촬영(이중 O sec, 24 sec의 순간 사진을 나타냄)에서 자발적 칼슘진동이 관찰된 세포들이 화살표로 표시되어 있다.
그 결과, 0.2 kPa 기질에서 배양한 세포들은 액틴섬유 불안정제 처리에 상관없이 자발적 칼슘진동이 거의 관찰되지 않지만, 25kPa 기질에서 뚜렷하게 관찰되는 자발적 칼슘진동을 나타내는 세포의 숫자가 액틴섬유 불안정제 처리에 의하여 크게 감소함을 관찰할 수 있다. 도 14의 우측 도면에서의 그래프는 세포를 관찰하는 1분의 시간동안 칼슘의 농도를 나타내는 형광신호의 강도 변화를 표시하는데, 25kPa 기질에서 배양한 세포에서 나타나는 형광신호가 강도 증가가 액틴섬유 불안정제에 의하여 사라짐을 보여준다. 기계적강도에 따른 신경줄기세포의 자발적 칼슘진동이 액틴섬유 불안정제인 cytochalasin D 약물 처리에 의해 감소함을 확인하였다.
실시예 10: 세포부착능과 세포모양변화에서 Piezo1 수용체의 기능 확인
기계적자극 수용체 piezo1이 stiff 하이드로젤 기판에서 세포의 부착능 및 세포질 확장에 관한 역할을 확인하였다. 우선, Piezo1의 기능을 알아보기 위하여 siRNA (small interference RNA, 짧은 간섭 RNA)를 신경줄기세포에 전기천공법(electroporation)을 이용하여 전달하였고, Scramble (대조군), Piezo1 (실험군, Piezo1의 유전자 발현율을 일시적으로 감소시킴) siRNA를 사용하였다.
그 결과, 25 kPa 하이드로젤 기판에 배양한 Piezo1 siRNA 그룹의 세포부착능 및 세포질확장이 대조군 (scrambled siRNA, 25 kPa)에 비해서 현저하게 감소함을 보여준다(도 15A 내지 D).

Claims (13)

  1. 기계적 강도가 0.2kPa ~ 500 kPa의 기질을 포함하는 줄기세포 배양용 조성물.
  2. 제1항에 있어서,
    상기 기질은 하이드로젤인 것을 특징으로 하는, 줄기세포 배양용 조성물.
  3. 제1항에 있어서,
    상기 하이드로젤을 구성하는 물질은 천연고분자, 합성고분자, 또는 이들의 하이브리드인 것을 특징으로 하는, 줄기세포 배양용 조성물.
  4. 제1항에 있어서,
    상기 하이드로젤은 액틴섬유 활성 조절제 또는 기계적수용체 활성 조절제를 포함하는 것을 특징으로 하는, 줄기세포 배양용 조성물.
  5. 제1항에 있어서,
    상기 줄기세포는 신경줄기세포인 것을 특징으로 하는, 줄기세포 배양용 조성물.
  6. 제1항 내지 제5항 중 어느 한 항의 조성물로 줄기세포를 배양하는 단계를 포함하는 줄기세포 배양방법.
  7. 기계적 강도가 0.2kPa ~ 500 kPa의 기질을 포함하는 줄기세포 배양용 스캐폴드 재료.
  8. 제7항에 있어서,
    상기 기질은 하이드로젤인 것을 특징으로 하는, 줄기세포 배양용 스캐폴드 재료.
  9. 제7항에 있어서,
    상기 하이드로젤을 구성하는 물질은 천연고분자, 합성고분자, 또는 이들의 하이브리드인 것을 특징으로 하는, 줄기세포 배양용 스캐폴드 재료.
  10. 제7항에 있어서,
    상기 하이드로젤은 액틴섬유 활성 조절제 또는 기계적수용체 활성 조절제를 포함하는 것을 특징으로 하는, 줄기세포 배양용 스캐폴드 재료.
  11. 제7항에 있어서,
    상기 줄기세포는 신경줄기세포인 것을 특징으로 하는, 줄기세포 배양용 스캐폴드 재료.
  12. 제7항 내지 제11항 중 어느 한 항의 스캐폴드 재료를 유효성분으로 포함하는 세포치료제.
  13. 제12항에 있어서,
    상기 세포치료제는 신경계 질환 치료용인 것을 특징으로 하는, 세포치료제.
PCT/KR2023/009502 2022-07-25 2023-07-05 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도 WO2024025193A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220091590 2022-07-25
KR10-2022-0091590 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024025193A1 true WO2024025193A1 (ko) 2024-02-01

Family

ID=89706768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009502 WO2024025193A1 (ko) 2022-07-25 2023-07-05 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도

Country Status (2)

Country Link
KR (1) KR20240014436A (ko)
WO (1) WO2024025193A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110062804A (ko) * 2009-12-04 2011-06-10 연세대학교 산학협력단 Ipn 하이드로젤 및 그 제조방법
KR20160034690A (ko) * 2014-09-22 2016-03-30 (주)안트로젠 중간엽줄기세포-하이드로겔을 함유하는 조성물 및 이의 제조방법
KR20180038573A (ko) * 2015-09-03 2018-04-16 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 오가노이드 배양을 위한 3차원 하이드로겔
KR20200083329A (ko) * 2018-12-28 2020-07-08 서울대학교산학협력단 공배양용 3d 하이드로젤 스캐폴드
US20200239824A1 (en) * 2017-04-10 2020-07-30 TheWell Bioscience Hydrogel for stem cell and organoid culture
KR20200113838A (ko) * 2019-03-26 2020-10-07 인천대학교 산학협력단 하이드로겔의 기계적 강도를 이용한 줄기세포 유래 세포외 소포체의 혈관신생 관련 사이토카인 조절 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428120B1 (ko) 2020-09-23 2022-08-04 주식회사 티에스바이오 신규 줄기세포 배양용 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110062804A (ko) * 2009-12-04 2011-06-10 연세대학교 산학협력단 Ipn 하이드로젤 및 그 제조방법
KR20160034690A (ko) * 2014-09-22 2016-03-30 (주)안트로젠 중간엽줄기세포-하이드로겔을 함유하는 조성물 및 이의 제조방법
KR20180038573A (ko) * 2015-09-03 2018-04-16 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) 오가노이드 배양을 위한 3차원 하이드로겔
US20200239824A1 (en) * 2017-04-10 2020-07-30 TheWell Bioscience Hydrogel for stem cell and organoid culture
KR20200083329A (ko) * 2018-12-28 2020-07-08 서울대학교산학협력단 공배양용 3d 하이드로젤 스캐폴드
KR20200113838A (ko) * 2019-03-26 2020-10-07 인천대학교 산학협력단 하이드로겔의 기계적 강도를 이용한 줄기세포 유래 세포외 소포체의 혈관신생 관련 사이토카인 조절 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, EUN-JUNG: "Cell-laden Microengineered Hybrid Hydrogels of Graphene and Sol-gel Derived Biomaterial for Spinal Cord Injury", NATIONAL RESEARCH AND DEVELOPMENT FINAL REPORT, 1 August 2017 (2017-08-01), Korea, pages 1 - 20, XP009553749 *

Also Published As

Publication number Publication date
KR20240014436A (ko) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2013025042A2 (ko) 줄기세포 유래 미세소포를 포함하는 신경 생성 촉진용 조성물
KR100959995B1 (ko) 인간 제대혈 유래 간엽 줄기세포를 유효성분으로 포함하는,신경전구세포 또는 신경줄기세포의 신경세포로의 분화 및증식 유도용 조성물
Gonmanee et al. Neuronal differentiation of dental pulp stem cells from human permanent and deciduous teeth following coculture with rat auditory brainstem slices
WO2019004792A9 (ko) 인간 유래 심장 줄기세포 미세구의 제조 방법 및 용도
WO2022231295A1 (ko) 파킨슨병 예방 또는 치료용 약학 조성물 및 그 제조방법
WO2013085303A1 (ko) 개과동물 양막-유래 다분화능 줄기세포
WO2022097984A1 (ko) 3 차원 스페로이드형 세포 응집체 유래 세포외소포의 제조방법
WO2017146468A1 (ko) 줄기세포의 효능 개선을 위한 조성물 및 방법
Norte-Muñoz et al. Neuroprotection and axonal regeneration induced by bone marrow mesenchymal stromal cells depend on the type of transplant
WO2024025193A1 (ko) 기계적 강도가 조절된 기질을 포함하는 줄기세포 배양용 조성물 및 이의 용도
KR20090055691A (ko) 인간 제대혈 유래 간엽 줄기세포를 유효성분으로 포함하는,신경전구세포 또는 신경줄기세포의 신경세포로의 분화 및증식 유도용 조성물
WO2020242250A1 (ko) 조골세포 유래 미토콘드리아를 포함하는 골형성 촉진을 위한 약학적 조성물
WO2020184975A1 (ko) 신경 줄기세포의 구형배양 방법
WO2023191225A1 (ko) 장 오가노이드 제조용 배지 조성물
US10137156B2 (en) Composition comprising neural cell and elastin-like polypeptide for treating Parkinson's disease
Biernaskie et al. White matter repair: skin-derived precursors as a source of myelinating cells
WO2022010181A1 (ko) 뇌신경계질환 예방 또는 치료용 약학적 조성물
WO2022181920A1 (ko) 엘레우테로사이드 b를 유효성분으로 포함하는 뇌신경염증 치료용 약학적 조성물
WO2014051338A2 (ko) 말초혈액 단핵세포를 유효성분으로 포함하는 예방 또는 치료용 약제학적 조성물
WO2017078439A1 (ko) 췌장소도세포 및 엘라스틴 유사 인공 세포외 기질을 포함하는 당뇨병 치료용 약학적 조성물
WO2021107692A1 (ko) 시신경 질환 예방 또는 치료용 약학적 조성물
WO2014042292A1 (ko) 단백질 인산화효소 c 활성화제를 포함하는 줄기세포 부착 촉진용 조성물 및 줄기세포의 부착 촉진 방법
WO2020130312A1 (ko) 지방줄기세포 시트를 함유하는 심장조직 모사 심장이식용 시트 및 이의 제조방법
WO2021010702A1 (ko) 성장판 재생용 조성물
WO2019168364A1 (ko) 줄기세포의 티오레독신 발현을 증진시키는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846852

Country of ref document: EP

Kind code of ref document: A1