WO2024024867A1 - 眼科装置 - Google Patents

眼科装置 Download PDF

Info

Publication number
WO2024024867A1
WO2024024867A1 PCT/JP2023/027474 JP2023027474W WO2024024867A1 WO 2024024867 A1 WO2024024867 A1 WO 2024024867A1 JP 2023027474 W JP2023027474 W JP 2023027474W WO 2024024867 A1 WO2024024867 A1 WO 2024024867A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilting
unit
fine movement
stick
optometry
Prior art date
Application number
PCT/JP2023/027474
Other languages
English (en)
French (fr)
Inventor
憲嗣 野澤
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Publication of WO2024024867A1 publication Critical patent/WO2024024867A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present disclosure relates to an ophthalmological device for testing a subject's eye.
  • ophthalmological devices for example, eye refractive power measurement device, corneal curvature measurement device, intraocular pressure measurement device, fundus camera, OCT device, laser scanning ophthalmoscopy device (SLO), etc.
  • eye refractive power measurement device for example, corneal curvature measurement device, intraocular pressure measurement device, fundus camera, OCT device, laser scanning ophthalmoscopy device (SLO), etc.
  • OCT device laser scanning ophthalmoscopy device
  • Fine movement is a small (or slow) movement of at least a portion of the device to finely adjust the relative position.
  • Coarse movement refers to moving at least a portion of the device more (or faster) than during fine movement in order to roughly adjust the relative position.
  • the ophthalmologic apparatus described in Patent Document 1 slightly moves the optometry means when the operation stick is tilted within a certain tilting range, and also moves the optometry means when the push button at the top of the operation stick is operated. Move roughly. Further, there is also known an ophthalmologic apparatus that slightly moves the optometry means when the tilting range of the operating stick is within a predetermined range, and coarsely moves the optometry means when the tilting range of the operating stick exceeds the predetermined range.
  • a typical object of the present invention is to provide an ophthalmologic apparatus that can efficiently adjust the relative position between an eye to be examined and an optometry unit.
  • An ophthalmologic apparatus provided by a typical embodiment of the present disclosure includes an optometry unit for testing an eye to be examined, a drive unit that moves the relative position of the optometry unit with respect to the eye to be examined, and an ophthalmology apparatus capable of tilting in any direction.
  • a supported operation stick a tilt detection section that detects a tilting operation on the operation stick, a rough movement operation detection section that detects an operation instruction by an examiner to coarsely move the optometry unit, and a control section.
  • a fine movement step in which, when a tilting operation is detected by the tilting detection unit, the control unit slightly moves the position of the optometry unit by controlling the drive unit according to the detected tilting operation; a coarse movement step of coarsely moving the position of the optometric unit by controlling the drive unit in accordance with the detected operation instruction when the coarse movement operation detection unit detects a coarse movement operation instruction; If the tilting operation of the operating stick satisfies a predetermined fine movement disabling condition, a fine movement disabling step of stopping fine movement control of the optometry unit in the fine movement step is executed regardless of the tilting operation of the operating stick.
  • the relative position between the eye to be examined and the optometry unit is efficiently adjusted.
  • the ophthalmologic apparatus exemplified in the present disclosure includes an optometry unit, a drive section, an operation stick, a tilt detection section, a coarse movement operation detection section, and a control section.
  • the optometry unit is a unit for testing a subject's eye.
  • the drive unit moves the relative position of the optometry unit with respect to the eye to be examined.
  • the operating rod is supported so as to be tiltable in any direction.
  • the tilt detection unit detects a tilt operation on the operation stick.
  • the coarse movement operation detection unit detects an instruction by the examiner to coarsely move the optometry unit.
  • the control unit executes a fine movement step, a coarse movement step, and a fine movement invalidation step.
  • the control section finely moves the position of the optometry unit by controlling the drive section according to the detected tilting operation.
  • the control unit coarsely moves the position of the optometry unit by controlling the drive unit according to the detected operation instruction.
  • the control unit stops the fine movement control of the optometry unit in the fine movement step, regardless of the tilting operation of the operation stick, when the tilting operation of the operation stick satisfies a predetermined fine movement disabling condition.
  • fine movement means moving the optometry unit smaller (or slower) than during coarse movement in order to finely adjust the relative position between the subject's eye and the optometry unit.
  • Coarse movement means moving the optometry unit more (or faster) than during fine movement in order to roughly adjust the relative position between the subject's eye and the optometry unit.
  • the examiner can adjust the position of the optometry unit by tilting the operation stick so that the disabling condition is satisfied.
  • the tilting position of the operation stick can be adjusted to any position within the tilting range. Thereafter, the examiner can smoothly restart the fine adjustment of the optometry unit by tilting the operation stick so that the disabling condition is not satisfied.
  • the ophthalmological apparatus According to the ophthalmological apparatus according to the present disclosure, even if the movement distance of the optometry unit due to fine movement is insufficient, the position of the operation stick is adjusted and the fine movement is performed without making a rough position adjustment using coarse movement. Adjustments can be continued. Therefore, the relative position between the eye to be examined and the optometry unit can be adjusted more efficiently.
  • the technology exemplified in this disclosure is for performing an examination of an eye to be examined (e.g., photographing the eye to be examined, measuring ocular characteristics of the eye to be examined, observing the eye to be examined (including observation for surgery or treatment, etc.)) It can be applied to various ophthalmological devices.
  • ophthalmological devices that take images of the eye to be examined include OCT devices, laser scanning ophthalmoscopy devices (SLO), fundus cameras, goniometric devices, corneal endothelial cell imaging devices (CEM), and the like.
  • Examples of ophthalmological devices that measure ocular characteristics of an eye to be examined include an eye refractive power measuring device, a corneal shape measuring device, an axial length measuring device, and an intraocular pressure measuring device. Further, the technology exemplified in the present disclosure may be adopted in an ophthalmological apparatus such as a photocoagulation device, a YAG laser surgical device, a slit lamp, etc., for performing surgery or treatment on tissues of a subject's eye while observing the subject's eye.
  • an ophthalmological apparatus such as a photocoagulation device, a YAG laser surgical device, a slit lamp, etc.
  • control unit may slightly move the optometry unit in the same direction as the tilting direction of the operation stick so that the tilt angle of the operation stick is proportional to the moving distance of the optometry unit.
  • the control unit may slightly move the optometry unit in response to the tilting operation of the operation stick so that the tilted position of the operation stick corresponds to the position of the optometry unit.
  • an ophthalmological device may include a coarse movement operation section (e.g., a switch, a button, etc.) for receiving coarse movement operation instructions from an examiner, either as part of the operation stick or in a position separate from the operation stick. Good too.
  • the control unit may coarsely move the optometry unit in a direction according to the detection result when it is detected that the coarse movement operation unit has been operated.
  • the ophthalmologic apparatus may detect whether the tilting range of the operation stick exceeds a predetermined range for fine movement.
  • the control unit may coarsely move the optometry unit in a direction corresponding to the direction in which the operating stick is tilted, when it is detected that the tilting range of the operating stick exceeds a predetermined range.
  • the control unit may be able to obtain the tilting speed of the operation stick.
  • the control unit determines that the fine movement disabling condition is satisfied when the tilting speed of the operation stick exceeds the threshold, and stops the fine movement control of the optometry unit in the fine movement step regardless of the tilting operation of the operation stick. You may let them.
  • the examiner can adjust the tilting position of the operating stick to any position within the tilting range by simply tilting the operating stick quickly, while maintaining the position of the optometry unit. After the examiner has adjusted the tilting position of the operating stick to an arbitrary position, the examiner can restart the fine adjustment of the optometry unit by simply tilting the operating stick slowly.
  • the examiner when the examiner operates the operation stick to slightly move the optometry unit, the operation stick is usually tilted slowly, so it is less likely that the examiner will not be able to move the optometry unit even though he or she wants to make the slightest movement. . Therefore, the examiner can smoothly adjust the tilted position of the operation stick and subsequently restart the fine movement adjustment of the optometry unit, without impairing the feeling of operating the operation stick during fine adjustment.
  • the control unit may be able to obtain the tilting speed of the operation stick.
  • the fine movement disabling step when the tilting speed of the operation stick exceeds a threshold value and the tilting direction of the operation stick approaches the center of the tilting range (that is, the direction away from the limit of the tilting range), It may be determined that the fine movement invalidation condition is satisfied, and the fine movement control of the optometry unit in the fine movement step may be stopped regardless of the tilting operation of the operating stick.
  • the examiner simply tilts the operation stick quickly toward the center of the tilting range, and while maintaining the position of the optometric unit, moves the operation stick to any position within the tilting range (tilting range can be adjusted to a position that moves away from the limit.
  • the examiner can restart the fine adjustment of the optometry unit by simply tilting the operating stick slowly.
  • the examiner can also quickly adjust the position of the optometry unit, albeit with a slight movement, by quickly tilting the operation stick in a direction away from the center of the tilting range. Therefore, the examiner can not only smoothly adjust the tilting position of the operation stick and subsequently restart fine movement adjustment of the optometry unit, but also widen the range in which the speed of the fine movement of the optometry unit can be changed.
  • the tilting speed threshold for the control unit to determine whether the micro-movement invalidation condition is satisfied may be set according to an instruction input by the user.
  • the user can more appropriately adjust the relative position between the eye to be examined and the optometry unit by setting the threshold value of his/her preference.
  • the ophthalmologic apparatus may include a detection unit that detects that the operating stick is being pushed downward or that the operating stick is being pulled upward. If a tilting operation is performed while the operation stick is pushed downward or pulled upward, the control unit determines that the micro-movement invalidation condition is met and stops micro-movement control of the optometry unit. You may let them. In this case, the examiner can perform both fine movement adjustment of the optometry unit and adjustment of the tilted position of the operation stick without taking his hand off the operation stick. Further, the ophthalmologic apparatus may include an invalidation button that instructs to invalidate microtremors.
  • the control unit may determine that the fine movement disabling condition is satisfied and stop the fine movement control of the optometry unit when the operation stick is tilted while the invalidation button is operated.
  • the examiner can easily switch between fine movement adjustment of the optometry unit and adjustment of the tilted position of the operation stick simply by operating the invalidation button.
  • the invalidation button may be provided on the operation stick.
  • the examiner can easily switch between fine movement adjustment of the optometry unit and adjustment of the tilted position of the operation stick without taking his hand off the operation stick.
  • the disabling button is provided at a different position from the operating stick, the relative position between the eye to be examined and the optometry unit can be adjusted more easily than in the past.
  • FIG. 2 is a right side view showing the appearance of the ophthalmologic apparatus 1.
  • FIG. 1 is a diagram showing an optical system and a control system of an ophthalmologic apparatus 1.
  • FIG. 3 is an external view of a joystick 80.
  • FIG. FIG. 8 is a longitudinal cross-sectional view of a joystick 80. It is a flowchart of the relative position adjustment process which the ophthalmologic apparatus 1 of 1st Embodiment performs. It is a flowchart of the relative position adjustment process which the ophthalmologic apparatus 1 of 2nd Embodiment performs.
  • the ophthalmological apparatus 1 of the present embodiment examines the eye E to be examined in a state where the relative position with respect to the eye E to be examined is adjusted to an appropriate position (for example, with the examination axis aligned with the eye E to be examined). .
  • the ophthalmological apparatus 1 illustrated in this embodiment is an eye refractive power measurement apparatus that measures the eye refractive power of the eye E to be examined.
  • the ophthalmological device 1 is a device that performs a test different from the measurement of eye refractive power (for example, an OCT device, a laser scanning ophthalmoscope (SLO), a fundus camera, a goniometer, a corneal endothelial cell imaging device (CEM), etc.). ), a corneal curvature measuring device, an intraocular pressure measuring device, an axial length measuring device, etc.).
  • OCT device for example, an OCT device, a laser scanning ophthalmoscope (SLO), a fundus camera, a goniometer, a corneal endothelial cell imaging device (CEM), etc.
  • CEM corneal endothelial cell imaging device
  • the optical axis direction of the light used for inspection is referred to as the Z-axis direction (front-back direction)
  • the horizontal direction perpendicular to the Z-axis direction is referred to as the X-axis direction (left-right direction)
  • the direction perpendicular to both the Z-axis and the X-axis. is the Y-axis direction (vertical direction).
  • the ophthalmologic apparatus 1 of this embodiment includes a base 5, a face support 9, a housing 3, an optometry unit 2, a joystick 80, a drive section 4, a control section 70, a display section 100, and the like.
  • the base 5 supports the entire ophthalmologic apparatus 1 (for example, the face support section 9 and the housing 3).
  • the face support section 9 supports the subject's face.
  • the face support section 9 of this embodiment includes a chin rest on which the chin of the subject is placed, and a forehead rest on which the forehead of the subject is placed.
  • the face support part 9 of this embodiment is provided in the base 5, the face support part 9 may be provided independently from the base 5.
  • the housing 3 is supported by a base 5 and includes various components of the ophthalmological apparatus 1 (for example, the optometry unit 2, the drive section 4, the control section 70, etc.).
  • the optometry unit 2 examines the eye E to be examined.
  • the optometry unit 2 may include a configuration (an optical system in this embodiment) for testing at least one of the eye refractive power, corneal curvature, and intraocular pressure of the eye E to be examined, for example. Further, the optometry unit 2 may include an optical system for photographing the tissue of the eye to be examined.
  • the drive unit 4 moves the relative position between the eye E and the optometric unit 2 by moving the optometric unit 2 in the up, down, left, right, front and rear directions (three-dimensional direction) with respect to the base 5.
  • the drive unit 4 may move the relative position between the eye E and the optometric unit 2 by moving the face support unit 9 together with the optometric unit 2 or instead of the optometric unit 2.
  • the joystick 80 is arranged on the side of the housing 3 opposite to the side where the subject is located (that is, the side where the examiner is located).
  • the joystick 80 is operated by the examiner in order to input an instruction to move the optometry unit 2, an instruction to start performing an examination, and the like. Details of the joystick 80 will be described later.
  • the control unit 70 manages various controls in the ophthalmologic apparatus 1 (for example, drive control of the drive unit 4, etc.).
  • the display unit 100 displays various images (for example, an observation image of the eye E, measurement results, etc.).
  • a touch panel is provided on the surface of the display unit 100.
  • the touch panel is used as one of the operating units operated by the examiner to input various instructions.
  • the display section 8 may be provided independently of the housing 3.
  • the optometry unit 2 and the control section 70 will be described.
  • the optometry unit 2 of this embodiment includes an optical system for measuring the eye refractive power of the eye to be examined.
  • the optometry unit 2 of this embodiment includes a measurement optical system 20, a fixation target presentation optical system 40, an index projection optical system 50, and an observation optical system (imaging optical system) 60.
  • the measurement optical system 20 includes a projection optical system (light projecting optical system) 20A and a light receiving optical system 20B.
  • the projection optical system 20A projects a light beam onto the fundus of the eye E to be examined via the pupil of the eye E to be examined.
  • the light-receiving optical system 20B takes out a ring-shaped reflected light beam from the fundus through the periphery of the pupil, and photographs a ring-shaped fundus reflection image that is mainly used for measuring refractive power.
  • the projection optical system 20A includes a measurement light source 21, a relay lens 22, a hall mirror 23, and an objective lens 24 on the optical axis L1.
  • the measurement light source 21 projects a spot-shaped light source image onto the fundus of the eye via the optical members from the relay lens 22 to the objective lens 24 and the center of the pupil of the eye E to be examined.
  • the measurement light source 21 is moved in the direction of the optical axis L1 by the moving mechanism 33.
  • the hall mirror 23 is provided with an opening that allows the light beam from the measurement light source 21 to pass through the relay lens 22.
  • the hall mirror 23 is arranged at a position optically conjugate with the pupil of the eye E to be examined.
  • the light receiving optical system 20B shares the hall mirror 23 and the objective lens 24 with the projection optical system 20A. Further, the light receiving optical system 20B includes a relay lens 26, a total reflection mirror 27, a light receiving aperture 28, a collimator lens 29, a ring lens 30, and a photographing element 32 on the optical axis L2 in the reflection direction of the hall mirror 23.
  • the light receiving aperture 28, the collimator lens 29, the ring lens 30, and the photographing element 32 are moved in the direction of the optical axis L2 by the moving mechanism 33 together with the measurement light source 21 of the projection optical system 20A.
  • the light receiving aperture 28 and the photographing element 32 are also placed at a position optically conjugate with the fundus of the eye.
  • the ring lens 30 is an optical element for shaping the fundus reflected light guided from the objective lens 24 via the collimator lens 29 into a ring shape.
  • the ring lens 30 has a ring-shaped lens portion and a light shielding portion.
  • the ring lens 30 is arranged at a position optically conjugate with the pupil of the eye E.
  • the photographing element 32 receives ring-shaped fundus reflected light (hereinafter referred to as a "ring image”) via the ring lens 30.
  • the photographing element 32 outputs image information of the received ring image to the control unit 70 .
  • the control unit 70 displays the ring image on the display unit 100 and calculates the refractive power based on the ring image.
  • a dichroic mirror 39 is arranged between the objective lens 24 and the eye E to be examined.
  • the dichroic mirror 39 transmits the light emitted from the light source 21 and the fundus reflected light according to the light from the light source 21, while being exposed to the light flux from the fixation target presentation optical system 40 (details will be described later). Lead to optometry. Further, the dichroic mirror 39 reflects the anterior segment reflected light from the target projection optical system 50 (details will be described later) and guides it to the observation optical system 60.
  • the target projection optical system 50 is placed in front of the eye E to be examined.
  • the index projection optical system 50 mainly projects an index used for positioning (alignment) of the optical system with respect to the eye E to be examined onto the anterior segment of the eye E to be examined.
  • the index projection optical system 50 projects an index used for positioning the optical system with respect to the eye E to be examined in at least one of the XY direction and the Z direction onto the anterior segment of the eye.
  • the ophthalmological apparatus 1 can also perform alignment by detecting a characteristic part in the anterior segment image without using the target projection optical system 50.
  • the target projection optical system 50 of this embodiment includes a ring target projection section 51 and a target projection section 52.
  • the ring index projection unit 51 projects a ring index (so-called Mayer ring) onto the cornea of the eye E by projecting diffused light onto the cornea.
  • the ring index projection unit 51 is also used as an anterior segment illumination for illuminating the anterior segment of the eye E to be examined.
  • the index projection unit 52 projects an infinity index onto the cornea of the eye E by projecting parallel light onto the cornea.
  • the fixation target presenting optical system 40 includes a light source 41, a fixation target 42, a relay lens 43, and a reflection mirror 46 on the optical axis L4.
  • the fixation target 42 is used to make the subject's eye E fixate during objective refractive power measurement. For example, by illuminating the fixation target 42 with the light source 41, light for causing the eye E to fixate is projected onto the eye E to be examined.
  • the light source 41 and the fixation target 42 are integrally moved in the direction of the optical axis L4 by the drive mechanism 48. By moving the light source 41 and the fixation target 42, the presentation position (presentation distance) of the fixation target is changed. As a result, a mist is applied to the eye E to be examined, and the refractive power is measured.
  • the observation optical system 60 includes a photographing lens 61 and a photographing element 62 on the optical axis L3 in the reflection direction of the half mirror 63.
  • the imaging element 62 is arranged at a position optically conjugate with the anterior segment of the eye E to be examined.
  • the photographing element 62 photographs the anterior segment of the eye illuminated by the ring index projection section 51.
  • the output from the imaging element 62 is input to the control section 70.
  • the anterior segment image of the subject's eye E photographed by the imaging element 62 is displayed on the display unit 100 (see FIG. 2).
  • the photographing element 62 photographs an alignment index image (in this embodiment, a ring index and an infinity index) formed on the cornea of the eye E by the index projection optical system 50.
  • the control unit 70 can detect the alignment index image based on the photographing result of the photographing element 62.
  • the control unit 70 can determine whether the alignment state is appropriate based on the position where the alignment index image is detected.
  • the control unit 70 manages various controls of the ophthalmological apparatus 1 (for example, drive control of the drive unit 4, etc.).
  • the control unit 70 includes a CPU 71, a ROM 72, a RAM 73, and the like.
  • the CPU 71 is a controller that performs control.
  • the ROM 72 stores an ophthalmologic device control program for controlling the ophthalmologic device 1, initial values, and the like.
  • the RAM 73 temporarily stores various information.
  • the control section 70 is connected to the optometry unit 2, the drive section 4, the display section 100, the joystick 80, and the storage section (for example, nonvolatile memory) 74.
  • the storage unit 74 is a non-transitory storage medium that can retain stored contents even if the power supply is cut off. For example, a hard disk drive, a removable USB memory, or the like can be used as the storage unit 74.
  • the joystick 80 of this embodiment will be described with reference to FIGS. 3 and 4.
  • the joystick 80 is operated by the examiner to input an instruction to move the optometric unit 2 (in this embodiment, an instruction to slightly move it) to the ophthalmological apparatus 1 .
  • the control unit 70 outputs a signal according to the content of the operation.
  • the joystick 80 is provided on the base 5 of the ophthalmological apparatus 1 (see FIG. 1).
  • the joystick 80 of this embodiment includes an operation rod 81, a tilt detection section 82 (see FIG. 4), a coarse movement operation section 83, a coarse movement operation detection section 84 (see FIG. 4), a measurement button 86, and a rotary dial 88. .
  • the operating rod 81 is a substantially rod-shaped member that is held by the examiner. As shown in FIG. 4, the operating rod 81 is tiltably supported by a tilting mechanism 90 provided on the base 5. As shown in FIG. The operation stick 81 of this embodiment can be tilted in any direction within a predetermined tilting range. When the tilting angle of the operation stick 81 reaches the limit of the tilting range, the operation stick 81 can no longer be tilted.
  • the examiner moves the optometry unit 2 in the direction corresponding to the tilting direction of the operation stick 81 among the XZ directions by tilting the operation stick 81 within the tilting range in the direction in which the optometry unit 2 is desired to be moved (in this implementation). It is possible to input an operation instruction for making a slight movement (in the form of a slight movement).
  • the tilting detection unit 82 detects a tilting operation on the operation stick 81 and outputs a signal corresponding to the detected tilting operation.
  • a stick controller or the like can be used as the tilt detection section 82.
  • the tilt detection unit 82 is connected to the operating rod 81 below the tilting mechanism 90, and detects the tilting direction and amount (tilting angle) of the operating rod 81. Further, the control unit 70 can obtain the tilting speed of the operation stick 81 by calculating the amount of change per unit time in the tilting amount detected by the tilting detection unit 82.
  • the coarse movement operation section 83 is operated by the examiner to input an instruction to coarsely move the optometry unit 2 into the ophthalmological apparatus 1 .
  • the coarse movement operation section 83 of this embodiment is provided on the operation stick 81. Therefore, the examiner can operate the coarse movement operation section 83 without taking his hand off the operation stick 81.
  • the coarse movement operation section 83 of this embodiment is provided above the operation stick 81. Therefore, the examiner can operate the coarse movement operation section 83 with his fingers while holding the operation stick 81.
  • the coarse movement operation section 83 may be provided at a different position from the operation stick 81.
  • the coarse movement operation section 83 of this embodiment is an annular switch (for example, a tactile switch, etc.) provided on the upper part of the operation rod 81 in a state in which each section of the front, rear, left, and right sides can be pushed.
  • the coarse movement operation section 83 of this embodiment includes tactile switches at each of the front, rear, left, and right positions.
  • the coarse movement operation detection unit 84 detects that each of the front, rear, left, and right parts of the coarse movement operation unit 83 is pressed, and outputs a signal according to the detection result.
  • the coarse movement operation section 83 of this embodiment is provided with a direction confirmation section 85 for the examiner to confirm the front, back, left, and right directions.
  • the direction confirmation unit 85 allows the examiner to grasp the front, rear, left, and right directions of the coarse movement operation unit 83 using at least one of a sense of touch and vision.
  • the measurement button 86 is operated by the examiner in order to input an instruction to start the examination of the subject's eye E by the optometry unit 2.
  • the measurement button 86 of this embodiment is provided at the upper part of the operation rod 81 (at the center surrounded by the annular coarse movement operation section 83).
  • a measurement start detection section 87 is connected to the measurement button 86 .
  • the measurement start detection section 87 detects that the measurement button 86 has been operated, and outputs a measurement start signal to the control section 70 .
  • the rotary dial 88 is operated by the examiner to input an instruction to the ophthalmological apparatus 1 to move the optometry unit 2 in the vertical direction (Y direction).
  • the rotary dial 88 of this embodiment is provided on the side surface of the operation stick 81 over the circumferential direction.
  • the rotation of the rotary dial 88 is detected by a rotation detecting section (eg, an encoder, etc.) 89.
  • a rotation detecting section eg, an encoder, etc.
  • the relative position adjustment process executed by the ophthalmologic apparatus 1 of the first embodiment will be described.
  • the relative position adjustment process the relative position between the eye E and the optometry unit 2 is adjusted by controlling the driving of the drive unit 4 according to the operation instruction input by the examiner and moving the position of the optometry unit 2. adjust.
  • the control unit 70 (CPU 71) of the ophthalmologic apparatus 1 executes the relative position adjustment process illustrated in FIG. 5 in accordance with the ophthalmologic apparatus control program stored in the storage device (for example, ROM 72, etc.).
  • the control unit 70 determines whether the operation of the rotary dial 88 is detected by the rotation detection unit 89 (S1). If the operation of the rotary dial 88 is not detected (S1: NO), the control section 70 determines whether the operation of the coarse operation section 83 has been detected by the coarse operation detection section 84 (S4). If the operation of the coarse movement operation section 83 is not detected (S4: NO), the control section 70 determines whether the tilting operation of the operation stick 81 has been detected by the tilting detection section 82 (S82). If no operation is detected in S1, S4, or S7 (S7: NO), the process returns to S1, and the processes in S1 to S7 are repeated.
  • the control unit 70 drives the rotary dial 88 according to the operation direction (rotation direction) and the operation amount (rotation amount) of the rotary dial 88 detected by the rotation detection unit 89.
  • the position of the optometry unit 2 in the vertical direction (Y direction) is moved in the direction corresponding to the operation direction by a distance corresponding to the operation amount (S2).
  • the process moves to S4.
  • the ophthalmological apparatus 1 moves the face supporting part 9 up and down in accordance with the operation of the rotary dial 88 together with the optometry unit 2 or separately from the optometry unit 2, so that the eye E and the optometry unit 2 can be adjusted. The relative position between them may be adjusted.
  • the control section 70 detects the operation direction and operation amount of the coarse operation section 83 detected by the coarse operation detection section 84 (for example, the operation of a switch).
  • the position of the optometry unit 2 in the front-rear, left-right directions (XZ directions) is coarsely moved in the direction corresponding to the operation direction (S5).
  • the process moves to S7.
  • coarse movement means moving the optometry unit 2 more (or faster) than during fine movement in order to roughly adjust the relative position between the eye E and the optometry unit 2.
  • the control unit 70 determines whether the tilting operation of the operating stick 81 satisfies a predetermined fine movement invalidation condition (S8, S9).
  • the fine movement invalidation condition is a condition for stopping (invalidating) the fine movement control of the optometry unit 2 even if the operation stick 81 is tilted.
  • the control unit 70 acquires the tilting speed of the operation stick 81 (S8). As described above, the control unit 70 can obtain the tilting speed of the operation stick 81 by calculating the amount of change per unit time in the tilting amount detected by the tilting detection unit 82.
  • the control unit 70 determines whether the tilting speed of the operation stick 81 exceeds a set threshold (S9).
  • a set threshold S9
  • the control unit 70 drives the drive unit 4 according to the tilting direction and tilting amount of the operation stick 81 detected by the tilting detection unit 82.
  • the position of the optometry unit 2 is slightly moved in a direction corresponding to the tilting direction by a distance corresponding to the tilting amount (S12). After that, the process returns to S1.
  • fine movement means moving the optometry unit 2 smaller (or more slowly) than during coarse movement in order to finely adjust the relative position between the eye E and the optometry unit 2.
  • the specific method of fine movement control in S12 can be changed as appropriate.
  • the control unit 70 may slightly move the optometric unit 2 in a direction corresponding to the tilting direction of the operating stick 81 so that the tilting angle (tilting amount) of the operating stick 81 is proportional to the moving distance of the optometric unit 2.
  • the control unit 70 may slightly move the optometry unit 2 in accordance with the tilting operation of the operation stick 81 so that the tilted position of the operation stick 81 corresponds to the position of the optometry unit 2.
  • the control unit 70 performs fine movement control of the optometry unit 2 (S12) regardless of the detected tilting operation of the operation stick 81. ) is stopped (that is, the fine movement control is disabled), and the process returns to S1 as it is. Therefore, the examiner can adjust the tilted position of the operating rod 81 to any position within the tilting range by simply tilting the operating rod 81 while maintaining the position of the optometry unit 2. After adjusting the tilting position of the operation stick 81 to an arbitrary position, the examiner can restart the fine movement adjustment (S12) of the optometry unit by simply tilting the operation stick 81 slowly.
  • the examiner when the examiner operates the operation stick 81 to slightly move the optometry unit 2, the operation stick 81 is normally tilted slowly, so even if the examiner wants to slightly move the optometry unit 2, the operation stick 81 is not moved slightly. Problems are also less likely to occur. Therefore, the examiner can smoothly adjust the tilted position of the operation stick 81 and then restart the fine movement adjustment of the optometry unit 2 without impairing the feeling of operating the operation stick 81 during fine adjustment. can.
  • control unit 70 sets a tilting speed threshold for determining whether the micromotion invalidation condition is satisfied in accordance with an instruction input by a user (for example, an examiner, etc.). . Therefore, the user can more appropriately adjust the relative position between the eye E and the optometry unit 2 by setting the threshold of his or her preference.
  • the threshold value may be set according to an instruction input by the user.
  • the control unit 70 determines whether the tilting operation of the operating stick 81 satisfies a predetermined fine movement invalidation condition (S8 to S10). Specifically, the control unit 70 acquires the tilting speed of the operating stick 81 (S8), and determines whether the acquired tilting speed of the operating stick 81 exceeds a set threshold (S9).
  • the control unit 70 drives the drive unit 4 according to the tilting direction and tilting amount of the operation stick 81 detected by the tilting detection unit 82.
  • the position of the optometry unit 2 is slightly moved in a direction corresponding to the tilting direction by a distance corresponding to the tilting amount (S12). After that, the process returns to S1.
  • the control unit 70 causes the tilting direction of the operation stick 81 to approach the center side of the tilting range (in this embodiment, the tiltable range). It is determined whether the tilt direction is the direction (that is, the direction away from the limit of the tilting range) (S10). If the tilting direction of the operation stick 81 is not a direction approaching the center of the tilting range (that is, a direction away from the center of the tilting range toward the limit side) (S10: NO), the control unit 70 controls the operation. Fine movement control of the optometry unit 2 is performed according to the direction and amount of tilt of the rod 81 (S12).
  • the control unit 70 controls the operation of the optometry unit 2 regardless of the detected tilting operation of the operation stick 81.
  • the fine movement control (S12) is stopped (that is, the fine movement control is invalidated), and the process returns to S1. Therefore, by simply tilting the operation stick 81 quickly toward the center of the tilting range, the examiner can change the tilting position of the operation stick 81 to any position within the tilting range ( It can be adjusted to a position that moves away from the limit of the tilting range.
  • the examiner can restart the fine adjustment of the optometry unit 2 by simply tilting the operation stick 81 slowly.
  • the examiner can also quickly adjust the position of the optometry unit 2, albeit with slight movements, by quickly tilting the operation stick 81 in a direction away from the center of the tilting range. Therefore, the examiner can not only smoothly adjust the tilting position of the operation stick 81 and then restart fine movement adjustment of the optometry unit 2, but also widen the range in which the speed of the fine movement of the optometry unit 2 can be changed.
  • the ophthalmologic apparatus 1 of the above embodiment includes a coarse movement operation section 83 on the operation stick 81 for receiving coarse movement operation instructions from the examiner.
  • the coarse movement operation section 83 may be provided at a different position from the operation stick 81.
  • the ophthalmologic apparatus 1 may detect whether the tilted position of the operating rod 81 exceeds a predetermined range for fine movement (for example, a predetermined range within the tiltable range).
  • the control unit 70 may perform fine movement control of the optometry unit 2 in accordance with the tilting operation when the tilting position of the operation stick 81 is within a predetermined range.
  • the control section 70 may coarsely move the optometry unit 2 in a direction corresponding to the direction in which the operation stick 81 is tilted. Even in this case, by stopping the fine movement control when the fine movement invalidation condition is satisfied, it becomes difficult for the optometry unit 2 to move more significantly than expected when switching from fine movement to coarse movement.
  • the ophthalmologic apparatus 1 may include a detection unit that detects that the operation stick 81 is being pushed downward or that the operation stick 81 is being pulled upward. If a tilting operation is performed while the operation stick 81 is pushed downward or pulled upward, the control unit 70 determines that the micro-movement invalidation condition is satisfied, and disables the micro-movement of the optometry unit 2. Control may also be stopped. In this case, the examiner can perform both fine movement adjustment of the optometry unit and adjustment of the tilted position of the operation stick without taking his hand off the operation stick 81. Further, the ophthalmologic apparatus 1 may include an invalidation button that instructs to invalidate microtremors.
  • the control unit 70 may determine that the fine movement invalidation condition is satisfied and stop the fine movement control of the optometry unit 2 when the operation stick 81 is tilted while the invalidation button is operated.
  • the examiner can easily switch between fine movement adjustment of the optometry unit 2 and adjustment of the tilted position of the operating rod 81 by simply operating the invalidation button.
  • the invalidation button may be provided on the operation stick 81.
  • the examiner can easily switch between fine movement adjustment of the optometry unit 2 and adjustment of the tilted position of the operation rod 81 without taking his hand off the operation rod 81.
  • the disabling button is provided at a different position from the operation stick 81, the relative position between the eye E and the optometry unit 2 can be adjusted more easily than in the past.
  • the process of slightly moving the position of the optometry unit 2 in S12 of FIGS. 5 and 6 is an example of a "fine movement step.”
  • the process of roughly moving the position of the optometry unit 2 in S5 of FIGS. 5 and 6 is an example of a “coarse movement step.”
  • the process of stopping the fine movement control of the optometry unit 2 in S8 and S9 of FIG. 5 and S8 to S10 of FIG. 6 when the tilting operation of the operation stick 81 satisfies the fine movement invalidation condition is an example of a "fine movement disabling step". It is.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

制御部は、微動ステップ、粗動ステップ、および微動無効化ステップを実行する。微動ステップでは、制御部は、傾倒検出部によって傾倒操作が検出された場合に、検出された傾倒操作に応じて駆動部を制御することで、検眼ユニットの位置を微動させる。粗動ステップでは、制御部は、粗動操作検出部によって粗動の操作指示が検出された場合に、検出された操作指示に応じて駆動部を制御することで、検眼ユニットの位置を粗動させる。微動無効化ステップでは、制御部は、操作桿の傾倒操作が所定の微動無効条件を満たす場合に、操作桿の傾倒操作に関わらず、微動ステップにおける検眼ユニットの微動制御を停止させる。

Description

眼科装置
 本開示は、被検眼を検査するための眼科装置に関する。
 被検眼を検査するための種々の眼科装置(例えば、眼屈折力測定装置、角膜曲率測定装置、眼圧測定装置、眼底カメラ、OCT装置、レーザ走査型検眼装置(SLO)等)が知られている。多くの眼科装置による被検眼の検査は、被検眼と検眼ユニットの間の相対位置が適正位置に調整された状態で実行される必要がある。
 被検眼と検眼ユニットの間の相対位置を効率良く調整するために、装置の少なくとも一部を微動および粗動させることが可能な眼科装置も知られている。微動とは、相対位置を細かく調整するために、装置の少なくとも一部を小さく(またはゆっくり)移動させることである。粗動とは、相対位置をおおまかに調整するために、装置の少なくとも一部を微動時によりも大きく(または速く)移動させることである。
 例えば、特許文献1に記載の眼科装置は、操作桿が一定の傾倒範囲内で傾倒操作された場合に検眼手段を微動させると共に、操作桿の上部の押しボタンが操作された場合に検眼手段を粗動させる。また、操作桿の傾倒範囲が所定範囲内であれば検眼手段を微動させ、操作桿の傾倒範囲が所定範囲を超えると検眼手段を粗動させる眼科装置等も知られている。
特開2014-23960号公報
 微動と粗動を共に実行可能な眼科装置では、操作桿が傾倒範囲の限界まで傾倒されても、微動による移動距離が不足してしまう場合がある。この場合、従来の眼科装置では、それ以上同じ方向に操作桿による微動調整を行うことができない。従って、検者は、微動を中断して粗動による大まかな位置調整をやり直した後、操作桿を操作して微動による位置調整を再度行う必要があった。この場合、粗動と微動を切り替える手間が生じてしまう場合がある。また、微動から粗動に切り替えた際に、予定よりも大幅に相対位置が移動しすぎてしまう場合もある。よって、従来の眼科装置では、被検眼と検眼ユニットの間の相対位置を調整するための工数を削減することが困難となっていた。この問題は、微動と粗動を共に実行可能な眼科装置では、粗動の指示の入力方法に関わらず共通して発生していた。
 本発明の典型的な目的は、被検眼と検眼ユニットの間の相対位置を効率良く調整することが可能な眼科装置を提供することである。
 本開示における典型的な実施形態が提供する眼科装置は、被検眼を検査するための検眼ユニットと、前記被検眼に対する前記検眼ユニットの相対位置を移動させる駆動部と、任意の方向に傾倒可能に支持される操作桿と、前記操作桿に対する傾倒操作を検出する傾倒検出部と、前記検眼ユニットを粗動させるための検者による操作指示を検出する粗動操作検出部と、制御部と、を備え、前記制御部は、前記傾倒検出部によって傾倒操作が検出された場合に、検出された傾倒操作に応じて前記駆動部を制御することで、前記検眼ユニットの位置を微動させる微動ステップと、前記粗動操作検出部によって粗動の操作指示が検出された場合に、検出された操作指示に応じて前記駆動部を制御することで、前記検眼ユニットの位置を粗動させる粗動ステップと、前記操作桿の傾倒操作が所定の微動無効条件を満たす場合に、前記操作桿の傾倒操作に関わらず、前記微動ステップにおける前記検眼ユニットの微動制御を停止させる微動無効化ステップと、を実行する。
 本開示に係る眼科装置によると、被検眼と検眼ユニットの間の相対位置が効率良く調整される。
 本開示で例示する眼科装置は、検眼ユニット、駆動部、操作桿、傾倒検出部、粗動操作検出部、および制御部を備える。検眼ユニットは、被検眼を検査するためのユニットである。駆動部は、被検眼に対する検眼ユニットの相対位置を移動させる。操作桿は、任意の方向に傾倒可能に支持される。傾倒検出部は、操作桿に対する傾倒操作を検出する。粗動操作検出部は、検眼ユニットを粗動させるための検者による指示を検出する。制御部は、微動ステップ、粗動ステップ、および微動無効化ステップを実行する。微動ステップでは、制御部は、傾倒検出部によって傾倒操作が検出された場合に、検出された傾倒操作に応じて駆動部を制御することで、検眼ユニットの位置を微動させる。粗動ステップでは、制御部は、粗動操作検出部によって粗動の操作指示が検出された場合に、検出された操作指示に応じて駆動部を制御することで、検眼ユニットの位置を粗動させる。微動無効化ステップでは、制御部は、操作桿の傾倒操作が所定の微動無効条件を満たす場合に、操作桿の傾倒操作に関わらず、微動ステップにおける検眼ユニットの微動制御を停止させる。なお、前述のように、微動とは、被検眼と検眼ユニットの間の相対位置を細かく調整するために、検眼ユニットを粗動時よりも小さく(またはゆっくり)移動させることである。粗動とは、被検眼と検眼ユニットの間の相対位置をおおまかに調整するために、検眼ユニットを微動時よりも大きく(または速く)移動させることである。
 本開示に係る眼科装置では、操作桿の傾倒操作が所定の微動無効条件を満たす場合には、操作桿が傾倒されても検眼ユニットの微動制御は実行されず、傾倒操作が無効化される。従って、検者は、操作桿を操作しても微動による検眼ユニットの移動距離が不足する場合等に、無効化条件が満たされるように操作桿の傾倒操作を行うことで、検眼ユニットの位置が保持された状態で、操作桿の傾倒位置を傾倒範囲内の任意の位置に調整することができる。その後、検者は、無効化条件が満たされないように操作桿の傾倒操作を行うことで、検眼ユニットの微動調整を円滑に再開させることができる。つまり、本開示に係る眼科装置によると、微動による検眼ユニットの移動距離が不足する場合等であっても、粗動による大まかな位置調整を経ずに、操作桿の位置を調整したうえで微動調整を継続することができる。よって、被検眼と検眼ユニットの間の相対位置が、より効率良く調整される。
 本開示で例示する技術は、被検眼の検査(例えば、被検眼の撮影、被検眼の眼特性の測定、被検眼の観察(手術または治療のための観察等を含む)等)を実行するための種々の眼科装置に適用できる。例えば、被検眼の撮影を行う眼科装置として、OCT装置、レーザ走査型検眼装置(SLO)、眼底カメラ、隅角撮影装置、および、角膜内皮細胞撮影装置(CEM)等が挙げられる。被検眼の眼特性の測定を行う眼科装置として、眼屈折力測定装置、角膜形状測定装置、眼軸長測定装置、および、眼圧測定装置等が挙げられる。また、被検眼を観察しながら被検眼の組織の手術または治療を行うための光凝固装置、ヤグレーザ手術装置、スリットランプ等の眼科装置に、本開示で例示する技術を採用してもよい。
 微動ステップの具体的な方法は適宜選択できる。例えば、制御部は、操作桿の傾倒角度と検眼ユニットの移動距離が比例するように、操作桿の傾倒方向と同一の方向に検眼ユニットを微動させてもよい。制御部は、操作桿の傾倒位置と、検眼ユニットの位置が対応するように、操作桿の傾倒操作に応じて検眼ユニットを微動させてもよい。
 また、検眼ユニットを粗動させるための検者による操作指示を受け付けるための具体的な方法も、適宜選択できる。例えば、眼科装置は、検者による粗動の操作指示を受け付けるための粗動操作部(例えばスイッチ、ボタン等)を、操作桿の一部、または、操作桿とは別の位置に備えていてもよい。制御部は、粗動操作部が操作されたことが検出された場合に、検出結果に応じた方向に検眼ユニットを粗動させてもよい。また、眼科装置は、操作桿の傾倒範囲が、微動のための所定範囲を超えたか否かを検出してもよい。制御部は、操作桿の傾倒範囲が所定範囲を超えたことが検出された場合に、操作桿が傾倒された方向に応じた方向に検眼ユニットを粗動させてもよい。
 制御部は、操作桿の傾倒速度を取得可能であってもよい。微動無効化ステップでは、制御部は、操作桿の傾倒速度が閾値を超えた場合に微動無効条件が満たされたと判断し、操作桿の傾倒操作に関わらず微動ステップにおける検眼ユニットの微動制御を停止させてもよい。この場合、検者は、操作桿を素早く傾倒させるだけで、検眼ユニットの位置を保持した状態で、操作桿の傾倒位置を傾倒範囲内の任意の位置に調整することができる。検者は、操作桿の傾倒位置を任意の位置に調整した後は、操作桿をゆっくりと傾倒させるだけで、検眼ユニットの微動調整を再開させることができる。また、検者が操作桿を操作して検眼ユニットを微動させる場合には、操作桿は通常ゆっくりと傾倒されるので、検者が検眼ユニットを微動させたいにも関わらず微動されない不具合も生じにくい。よって、検者は、微動調整時の操作桿の操作の感覚を損なうことなく、操作桿の傾倒位置の調整と、その後の検眼ユニットの微動調整の再開を、共に円滑に行うことができる。
 制御部は、操作桿の傾倒速度を取得可能であってもよい。微動無効化ステップでは、制御部は、操作桿の傾倒速度が閾値を超え、且つ、操作桿の傾倒方向が傾倒範囲の中心に近づく方向(つまり、傾倒範囲の限界から遠ざかる方向)である場合に微動無効条件が満たされたと判断し、操作桿の傾倒操作に関わらず微動ステップにおける検眼ユニットの微動制御を停止させてもよい。この場合、検者は、操作桿を傾倒範囲の中心に近づくように素早く傾倒させるだけで、検眼ユニットの位置を保持した状態で、操作桿の傾倒位置を傾倒範囲内の任意の位置(傾倒範囲の限界から遠ざかる位置)に調整することができる。検者は、操作桿の傾倒位置を任意の位置に調整した後は、操作桿をゆっくりと傾倒させるだけで、検眼ユニットの微動調整を再開させることができる。また、検者は、操作桿を傾倒範囲の中心から遠ざかる方向に素早く傾倒させることで、微動ではあるものの素早く検眼ユニットの位置を調整することも可能である。よって、検者は、操作桿の傾倒位置の調整、および、その後の検眼ユニットの微動調整の再開を円滑に実行できることに加えて、検眼ユニットの微動の速度を変更できる幅も広がる。
 微動無効条件が満たされたか否かを制御部が判断するための傾倒速度の閾値は、ユーザによって入力される指示に応じて設定されてもよい。この場合、ユーザは、自分の好みの閾値を設定することで、より適切に被検眼と検眼ユニットの間の相対位置を調整することができる。
 ただし、微動無効条件を変更することも可能である。例えば、眼科装置は、操作桿が下方に押し込まれていること、または、操作桿が上方に引っ張られていることを検出する検出部を備えていてもよい。制御部は、操作桿が下方に押し込まれている状態、または上方に引っ張られている状態で傾倒操作が行われた場合に、微動無効条件が満たされたと判断し、検眼ユニットの微動制御を停止させてもよい。この場合、検者は、操作桿から手を離さずに、検眼ユニットの微動調整と、操作桿の傾倒位置の調整を共に実行することができる。また、眼科装置は、微動の無効化を指示する無効化ボタンを備えていてもよい。制御部は、無効化ボタンが操作された状態で操作桿の傾倒操作が行われた場合に、微動無効条件が満たされたと判断し、検眼ユニットの微動制御を停止させてもよい。この場合、検者は、無効化ボタンを操作するだけで、検眼ユニットの微動調整と、操作桿の傾倒位置の調整を容易に切り替えることができる。なお、無効化ボタンは操作桿に設けられていてもよい。この場合、検者は、操作桿から手を離さずに、検眼ユニットの微動調整と、操作桿の傾倒位置の調整を容易に切り替えることができる。ただし、無効化ボタンが操作桿とは異なる位置に設けられている場合でも、従来に比べて被検眼と検眼ユニットの間の相対位置の調整は容易になる。
眼科装置1の外観を示す右側面図である。 眼科装置1の光学系および制御系を示す図である。 ジョイスティック80の外観図である。 ジョイスティック80の縦断面図である。 第1実施形態の眼科装置1が実行する相対位置調整処理のフローチャートである。 第2実施形態の眼科装置1が実行する相対位置調整処理のフローチャートである。
 以下、本開示に係る典型的な実施形態の1つについて、図面を参照して説明する。本実施形態の眼科装置1は、被検眼Eとの間の相対位置が適正位置に調整された状態で(例えば、被検眼Eに検査軸を一致させた状態で)、被検眼Eを検査する。本実施形態で例示する眼科装置1は、被検眼Eの眼屈折力を測定する眼屈折力測定装置である。ただし、眼科装置1は、眼屈折力の測定とは異なる検査を実行する装置(例えば、OCT装置、レーザ走査型検眼装置(SLO)、眼底カメラ、隅角撮影装置、角膜内皮細胞撮影装置(CEM)、角膜曲率測定装置、眼圧測定装置、または眼軸長測定装置等)であってもよい。以下の説明において、検査に用いられる光の光軸方向をZ軸方向(前後方向)、Z軸方向に垂直な水平方向をX軸方向(左右方向)、Z軸およびX軸に共に垂直な方向をY軸方向(上下方向)とする。
(概略構成)
 図1を参照して、眼科装置1の概略構成について説明する。本実施形態の眼科装置1は、基台5、顔支持部9、筐体3、検眼ユニット2、ジョイスティック80、駆動部4、制御部70、および表示部100等を備える。基台5は、眼科装置1の全体(例えば、顔支持部9および筐体3等)を支持する。顔支持部9は、被検者の顔を支持する。本実施形態の顔支持部9は、被検者の顎が載せられる顎台と、被検者の額が当てられる額当てを備える。なお、本実施形態の顔支持部9は基台5に設けられているが、基台5とは独立して顔支持部9が設けられていてもよい。筐体3は、基台5によって支持されると共に、眼科装置1の各種構成(例えば、検眼ユニット2、駆動部4、および制御部70等)を備える。
 検眼ユニット2は、被検眼Eを検査する。検眼ユニット2は、例えば、被検眼Eの眼屈折力、角膜曲率、および眼圧等の少なくともいずれかの検査を行うための構成(本実施形態では光学系)を備えていてもよい。また、検眼ユニット2は、被検眼の組織を撮影するための光学系を備えていてもよい。駆動部4は、検眼ユニット2を基台5に対して上下左右前後方向(三次元方向)に移動させることで、被検眼Eと検眼ユニット2の間の相対位置を移動させる。なお、駆動部4は、検眼ユニット2と共に、または検眼ユニット2の代わりに顔支持部9を移動させることで、被検眼Eと検眼ユニット2の間の相対位置を移動させてもよい。ジョイスティック80は、筐体3のうち、被検者が位置する側とは反対側(つまり、検者が位置する側)に配置される。ジョイスティック80は、検眼ユニット2を移動させるための指示、および、検査の実行開始指示等を入力するために、検者によって操作される。ジョイスティック80の詳細については後述する。制御部70は、眼科装置1における各種制御(例えば、駆動部4の駆動制御等)を司る。表示部100は、各種画像(例えば、被検眼Eの観察画像、および測定結果等)を表示させる。本実施形態では、表示部100の表面にタッチパネルが設けられている。タッチパネルは、検者が各種指示を入力するために操作する操作部の1つとして用いられる。なお、表示部8は筐体3とは独立して設けられていてもよい。
(検眼ユニット・制御部)
 図2を参照して、検眼ユニット2および制御部70について説明する。前述したように、本実施形態では、眼科装置1が眼屈折力測定装置である場合を例示する。従って、本実施形態の検眼ユニット2は、被検眼の眼屈折力を測定するための光学系を備える。詳細には、本実施形態の検眼ユニット2は、測定光学系20、固視標呈示光学系40、指標投影光学系50、および観察光学系(撮影光学系)60を備える。
 測定光学系20は、投影光学系(投光光学系)20Aと受光光学系20Bを備える。投影光学系20Aは、被検眼Eの瞳孔を介して、被検眼Eの眼底に光束を投影する。受光光学系20Bは、瞳孔周辺部を介して、眼底からの反射光束をリング状に取り出し、主に屈折力の測定に用いるリング状の眼底反射像を撮影する。
 投影光学系20Aは、測定光源21、リレーレンズ22、ホールミラー23、および対物レンズ24を、光軸L1上に備える。測定光源21は、リレーレンズ22から対物レンズ24までの光学部材と、被検眼Eの瞳孔中心部を介して、眼底にスポット状の光源像を投影する。測定光源21は、移動機構33によって光軸L1方向に移動される。ホールミラー23には、リレーレンズ22を介した測定光源21からの光束を通過させる開口が設けられている。ホールミラー23は、被検眼Eの瞳孔と光学的に共役な位置に配置されている。
 受光光学系20Bは、ホールミラー23と対物レンズ24を投影光学系20Aと共用する。また、受光光学系20Bは、リレーレンズ26、全反射ミラー27、受光絞り28、コリメータレンズ29、リングレンズ30、および撮影素子32を、ホールミラー23の反射方向の光軸L2上に備える。受光絞り28、コリメータレンズ29、リングレンズ30、および撮影素子32は、移動機構33によって、投影光学系20Aの測定光源21と一体的に、光軸L2方向に移動される。移動機構33によって光源21が眼底と共役な位置に配置される場合、受光絞り28および撮影素子32も、眼底と光学的に共役な位置に配置される。
 リングレンズ30は、対物レンズ24からコリメータレンズ29を介して導かれる眼底反射光をリング状に成型するための光学素子である。リングレンズ30は、リング状のレンズ部と、遮光部を有している。受光絞り28および撮影素子32が、眼底と光学的に共役な位置に配置される場合、リングレンズ30は、被検眼Eの瞳孔と光学的に共役な位置に配置される。撮影素子32では、リングレンズ30を介したリング状の眼底反射光(以下、「リング像」という)が受光される。撮影素子32は、受光したリング像の画像情報を制御部70に出力する。その結果、制御部70では、表示部100でのリング像の表示、および、リング像に基づく屈折力の算出等が行われる。
 本実施形態では、対物レンズ24と被検眼Eの間にダイクロイックミラー39が配置されている。ダイクロイックミラー39は、光源21から出射された光、および、光源21からの光に応じた眼底反射光を透過する一方で、固視標呈示光学系40(詳細は後述する)からの光束を被検眼に導く。さらに、ダイクロイックミラー39は、指標投影光学系50(詳細は後述する)からの光の前眼部反射光を反射させて、観察光学系60に導く。
 指標投影光学系50は、被検眼Eの前方に配置されている。指標投影光学系50は、主に、被検眼Eに対する光学系の位置合わせ(アライメント)に用いる指標を、被検眼Eの前眼部に投影する。本実施形態では、指標投影光学系50は、被検眼Eに対する光学系のXY方向およびZ方向の少なくともいずれかの位置合わせに用いられる指標を前眼部に投影する。なお、眼科装置1は、指標投影光学系50を用いずに、前眼部画像における特徴部を検出することで位置合わせを行うことも可能である。
 本実施形態の指標投影光学系50は、リング指標投影部51と指標投影部52を備える。リング指標投影部51は、被検眼Eの角膜に拡散光を投影することで、リング指標(所謂マイヤーリング)を角膜に投影する。本実施形態では、リング指標投影部51は、被検眼Eの前眼部を照明する前眼部照明としても用いられる。指標投影部52は、被検眼Eの角膜に平行光を投影することで、無限遠指標を角膜に投影する。
 固視標呈示光学系40は、光源41、固視標42、リレーレンズ43、および反射ミラー46を、光軸L4上に備える。固視標42は、他覚屈折力測定時に被検眼Eを固視させるために使用される。例えば、光源41によって固視標42が照明されることで、被検眼Eを固視させるための光が被検眼Eに投影される。光源41および固視標42は、駆動機構48によって光軸L4の方向に一体的に移動される。光源41および固視標42の移動によって、固視標の呈示位置(呈示距離)が変更される。その結果、被検眼Eに雲霧が掛けられて屈折力が測定される。
 観察光学系60は、撮影レンズ61および撮影素子62を、ハーフミラー63の反射方向の光軸L3上に備える。撮影素子62は、被検眼Eの前眼部と光学的に共役な位置に配置される。撮影素子62は、リング指標投影部51によって照明される前眼部を撮影する。撮影素子62からの出力は制御部70に入力される。その結果、撮影素子62によって撮影される被検眼Eの前眼部画像が表示部100に表示される(図2参照)。また、撮影素子62では、指標投影光学系50によって被検眼Eの角膜に形成されるアライメント指標像(本実施形態では、リング指標および無限遠指標)が撮影される。その結果、制御部70は、撮影素子62の撮影結果に基づいてアライメント指標像を検出することができる。制御部70は、アライメント状態の適否を、アライメント指標像が検出される位置に基づいて判定することができる。
 制御部70は、眼科装置1の各種制御(例えば、駆動部4の駆動制御等)を司る。制御部70は、CPU71、ROM72、およびRAM73等を備える。CPU71は、制御を司るコントローラである。ROM72には、眼科装置1を制御するための眼科装置制御プログラム、および初期値等が記憶されている。RAM73は、各種情報を一時的に記憶する。制御部70は、検眼ユニット2、駆動部4、表示部100、ジョイスティック80、記憶部(例えば不揮発性メモリ等)74と接続されている。記憶部74は、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、または着脱可能なUSBメモリ等を、記憶部74として使用することができる。
(ジョイスティック)
 図3および図4を参照して、本実施形態のジョイスティック80について説明する。ジョイスティック80は、検者が検眼ユニット2の移動指示(本実施形態では、微動させる指示)を眼科装置1に入力するために操作される。ジョイスティック80が操作されると、制御部70は、操作内容に応じた信号を出力する。ジョイスティック80は、眼科装置1の基台5(図1参照)に設けられている。本実施形態のジョイスティック80は、操作桿81、傾倒検出部82(図4参照)、粗動操作部83、粗動操作検出部84(図4参照)、測定ボタン86、および回転ダイヤル88を備える。
 操作桿81は、検者によって把持される略棒状の部材である。図4に示すように、操作桿81は、基台5に設けられた傾倒機構90によって傾倒可能に支持される。本実施形態の操作桿81は、所定の傾倒範囲内で任意の方向に傾倒される。操作桿81の傾倒角度が傾倒範囲の限界に達すると、操作桿81はそれ以上傾倒できなくなる。検者は、検眼ユニット2を移動させたい方向に操作桿81を傾倒範囲内で傾倒させることで、XZ方向のうち、操作桿81の傾倒方向に対応する方向に検眼ユニット2を移動(本実施形態では微動)させるための操作指示を入力することができる。
 傾倒検出部82は、操作桿81に対する傾倒操作を検出し、検出した傾倒操作に応じた信号を出力する。傾倒検出部82には、例えばスティックコントローラ等を用いることができる。傾倒検出部82は、傾倒機構90よりも下方で操作桿81と連結されており、操作桿81の傾倒方向および傾倒量(傾倒角度)を検出する。また、制御部70は、傾倒検出部82によって検出された傾倒量の単位時間当たりの変化量を算出することで、操作桿81の傾倒速度を取得することができる。
 粗動操作部83は、検者が検眼ユニット2を粗動させる指示を眼科装置1に入力するために操作される。一例として、本実施形態の粗動操作部83は操作桿81に設けられている。従って、検者は、操作桿81から手を離さずに粗動操作部83を操作することができる。詳細には、本実施形態の粗動操作部83は、操作桿81の上部に設けられている。従って、検者は、操作桿81を把持しながら指で粗動操作部83を操作することができる。ただし、粗動操作部83は、操作桿81とは異なる位置に設けられていてもよい。一例として、本実施形態の粗動操作部83は、前後左右の各部を押し込むことが可能な状態で操作桿81の上部に設けられた環状のスイッチ(例えば、タクタイルスイッチ等)である。本実施形態の粗動操作部83は、前後左右の各位置にタクタイルスイッチを備えている。
 粗動操作検出部84は、粗動操作部83の前後左右の各部が押し込まれたことを検出し、検出結果に応じた信号を出力する。なお、本実施形態の粗動操作部83には、前後左右方向を検者が確認するための方向確認部85が設けられている。方向確認部85は、触覚および視覚の少なくともいずれかによって、粗動操作部83の前後左右方向を検者に把握させる。
 測定ボタン86は、検眼ユニット2による被検眼Eの検査の開始指示を入力するために、検者によって操作される。本実施形態の測定ボタン86は、操作桿81の上部(環状の粗動操作部83に囲まれた中心部)に設けられている。測定ボタン86には、測定開始検出部87が連結されている。測定開始検出部87は、測定ボタン86が操作されたことを検出し、測定開始信号を制御部70に出力する。
 回転ダイヤル88は、検者が検眼ユニット2を上下方向(Y方向)に移動させる指示を眼科装置1に入力するために操作される。本実施形態の回転ダイヤル88は、操作桿81の側面に周方向に亘って設けられる。回転ダイヤル88の回転は、回転検出部(例えばエンコーダ等)89によって検出される。例えば、回転ダイヤル88が右回りに回転されると、検眼ユニット2を上方向に移動させるための操作信号が出力され、回転ダイヤル88が左回りに回転されると、検眼ユニット2を下方向に移動させるための操作信号が出力される。
(第1実施形態)
 図5を参照して、第1実施形態の眼科装置1が実行する相対位置調整処理について説明する。相対位置調整処理では、検者によって入力された操作指示に応じて駆動部4の駆動を制御し、検眼ユニット2の位置を移動させることで、被検眼Eと検眼ユニット2の間の相対位置を調整する。眼科装置1の制御部70(CPU71)は、電源がオンとされると、記憶装置(例えばROM72等)に記憶された眼科装置制御プログラムに従って、図5に例示する相対位置調整処理を実行する。
 制御部70は、回転ダイヤル88の操作が回転検出部89によって検出されたか否かを判断する(S1)。回転ダイヤル88の操作が検出されていなければ(S1:NO)、制御部70は、粗動操作部83の操作が粗動操作検出部84によって検出されたか否かを判断する(S4)。粗動操作部83の操作が検出されていなければ(S4:NO)、制御部70は、操作桿81の傾倒操作が傾倒検出部82によって検出されたか否かを判断する(S82)。S1,S4,S7でいずれの操作も検出されていなければ(S7:NO)、処理はS1へ戻り、S1~S7の処理が繰り返される。
 回転ダイヤル88の操作が検出されると(S1:YES)、制御部70は、回転検出部89によって検出された回転ダイヤル88の操作方向(回転方向)および操作量(回転量)に応じて駆動部4の駆動を制御することで、検眼ユニット2の上下方向(Y方向)の位置を、操作方向に対応する方向に、操作量に対応する距離だけ移動させる(S2)。その後、処理はS4へ移行する。なお、眼科装置1は、検眼ユニット2と共に、または検眼ユニット2とは別で、顔支持部9を回転ダイヤル88の操作に応じて上下方向に移動させることで、被検眼Eと検眼ユニット2の間の相対位置を調整してもよい。
 粗動操作部83の操作が検出されると(S4:YES)、制御部70は、粗動操作検出部84によって検出された粗動操作部83の操作方向および操作量(例えば、スイッチの操作時間)に応じて駆動部4の駆動を制御することで、検眼ユニット2の前後左右方向(XZ方向)の位置を、操作方向に対応する方向に粗動させる(S5)。その後、処理はS7へ移行する。前述したように、粗動とは、被検眼Eと検眼ユニット2の間の相対位置をおおまかに調整するために、検眼ユニット2を微動時よりも大きく(または速く)移動させることである。
 操作桿81の傾倒操作が検出されると(S7:YES)、制御部70は、操作桿81の傾倒操作が所定の微動無効条件を満たすか否かを判断する(S8,S9)。微動無効条件とは、操作桿81の傾倒操作が行われても検眼ユニット2の微動制御を停止させる(無効化させる)ための条件である。詳細には、第1実施形態では、制御部70は、操作桿81の傾倒速度を取得する(S8)。前述したように、制御部70は、傾倒検出部82によって検出された傾倒量の単位時間当たりの変化量を算出することで、操作桿81の傾倒速度を取得することができる。
 制御部70は、操作桿81の傾倒速度が、設定されている閾値を超えているか否かを判断する(S9)。検者が操作桿81を操作して検眼ユニット2を微動させる場合には、操作桿81は通常ゆっくりと傾倒される。従って、傾倒速度が閾値を超えていない場合には(S9:NO)、制御部70は、傾倒検出部82によって検出された操作桿81の傾倒方向および傾倒量に応じて駆動部4の駆動を制御することで、検眼ユニット2の前後左右方向(XZ方向)の位置を、傾倒方向に対応する方向に、傾倒量に対応する距離だけ微動させる(S12)。その後、処理はS1へ戻る。前述したように、微動とは、被検眼Eと検眼ユニット2の間の相対位置を細かく調整するために、検眼ユニット2を粗動時よりも小さく(またはゆっくりと)移動させることである。なお、S12における微動制御の具体的な方法は適宜変更できる。例えば、制御部70は、操作桿81の傾倒角度(傾倒量)と検眼ユニット2の移動距離が比例するように、操作桿81の傾倒方向に対応する方向に検眼ユニット2を微動させてもよい。制御部70は、操作桿81の傾倒位置と、検眼ユニット2の位置が対応するように、操作桿81の傾倒操作に応じて検眼ユニット2を微動させてもよい。
 一方で、操作桿81の傾倒速度が閾値を超えている場合には(S9:NO)、制御部70は、検出された操作桿81の傾倒操作に関わらず、検眼ユニット2の微動制御(S12)を停止させて(つまり、微動制御を無効化して)、処理はそのままS1へ戻る。従って、検者は、操作桿81を素早く傾倒させるだけで、検眼ユニット2の位置を保持した状態で、操作桿81の傾倒位置を傾倒範囲内の任意の位置に調整することができる。検者は、操作桿81の傾倒位置を任意の位置に調整した後は、操作桿81をゆっくりと傾倒させるだけで、検眼ユニットの微動調整(S12)を再開させることができる。また、検者が操作桿81を操作して検眼ユニット2を微動させる場合には、操作桿81は通常ゆっくりと傾倒されるので、検者が検眼ユニット2を微動させたいにも関わらず微動されない不具合も生じにくい。よって、検者は、微動調整時の操作桿81の操作の感覚を損なうことなく、操作桿81の傾倒位置の調整と、その後の検眼ユニット2の微動調整の再開を、共に円滑に行うことができる。
 なお、本実施形態では、制御部70は、微動無効条件が満たされているか否かを判断するための傾倒速度の閾値を、ユーザ(例えば検者等)によって入力される指示に応じて設定する。従って、ユーザは、自分の好みの閾値を設定することで、より適切に被検眼Eと検眼ユニット2の間の相対位置を調整することができる。なお、以下説明する第2実施形態でも同様に、閾値はユーザによって入力される指示に応じて設定されてもよい。
(第2実施形態)
 図6を参照して、第2実施形態の眼科装置1が実行する相対位置調整処理について説明する。なお、第2実施形態の相対位置調整処理では、微動無効条件を満たすか否かを判断するための具体的な方法(S8~S10)が、第1実施形態の相対位置調整処理と異なるのみである。従って、図6に示す複数のステップのうち、第1実施形態の相対位置調整処理(図5参照)中のステップの同様の処理を適用できるステップについては、第1実施形態の相対位置調整処理と同じステップ番号を付し、その詳細な説明を省略または簡略化する。
 第2実施形態におけるS1~S7の処理には、前述した第1実施形態のS1~S7と同様の処理を適用できる。従って、図6のS1~S7の詳細な説明は省略する。操作桿81の傾倒操作が検出されると(S7:YES)、制御部70は、操作桿81の傾倒操作が所定の微動無効条件を満たすか否かを判断する(S8~S10)。詳細には、制御部70は、操作桿81の傾倒速度を取得し(S8)、取得した操作桿81の傾倒速度が、設定されている閾値を超えているか否かを判断する(S9)。前述したように、検者が操作桿81を操作して検眼ユニット2を微動させる場合には、操作桿81は通常ゆっくりと傾倒される。従って、傾倒速度が閾値を超えていない場合には(S9:NO)、制御部70は、傾倒検出部82によって検出された操作桿81の傾倒方向および傾倒量に応じて駆動部4の駆動を制御することで、検眼ユニット2の前後左右方向(XZ方向)の位置を、傾倒方向に対応する方向に、傾倒量に対応する距離だけ微動させる(S12)。その後、処理はS1へ戻る。
 操作桿81の傾倒速度が閾値を超えている場合には(S9:YES)、制御部70は、操作桿81の傾倒方向が、傾倒範囲(本実施形態では傾倒可能範囲)の中心側に近づく方向(つまり、傾倒範囲の限界から遠ざかる方向)であるか否かを判断する(S10)。操作桿81の傾倒方向が、傾倒範囲の中心側に近づく方向でない場合(つまり、傾倒範囲の中心側から限界側に遠ざかる方向である場合)には(S10:NO)、制御部70は、操作桿81の傾倒方向および傾倒量に応じた検眼ユニット2の微動制御を実行する(S12)。一方で、操作桿81の傾倒方向が、傾倒範囲の中心側に近づく方向であれば(S10:YES)、制御部70は、検出された操作桿81の傾倒操作に関わらず、検眼ユニット2の微動制御(S12)を停止させて(つまり、微動制御を無効化して)、処理はそのままS1へ戻る。従って、検者は、操作桿81を傾倒範囲の中心に近づくように素早く傾倒させるだけで、検眼ユニット2の位置を保持した状態で、操作桿81の傾倒位置を傾倒範囲内の任意の位置(傾倒範囲の限界から遠ざかる位置)に調整することができる。検者は、操作桿81の傾倒位置を任意の位置に調整した後は、操作桿81をゆっくりと傾倒させるだけで、検眼ユニット2の微動調整を再開させることができる。また、検者は、操作桿81を傾倒範囲の中心から遠ざかる方向に素早く傾倒させることで、微動ではあるものの素早く検眼ユニット2の位置を調整することも可能である。よって、検者は、操作桿81の傾倒位置の調整、および、その後の検眼ユニット2の微動調整の再開を円滑に実行できることに加えて、検眼ユニット2の微動の速度を変更できる幅も広がる。
 上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、上記実施形態の眼科装置1は、検者による粗動の操作指示を受け付けるための粗動操作部83を、操作桿81に備える。しかし、粗動操作部83は、操作桿81とは異なる位置に設けられていてもよい。また、眼科装置1は、操作桿81の傾倒位置が、微動のための所定範囲(例えば、傾倒可能範囲内の所定の範囲)を超えたか否かを検出してもよい。制御部70は、操作桿81の傾倒位置が所定範囲内である場合に、傾倒操作に応じて検眼ユニット2の微動制御を行ってもよい。一方で、制御部70は、操作桿81の傾倒位置が所定範囲を超えた場合に、操作桿81が傾倒された方向に対応する方向に、検眼ユニット2を粗動させてもよい。この場合でも、微動無効条件を満たす際に微動制御を停止させることで、微動から粗動に切り替えられた際の想定以上の大幅な検眼ユニット2の移動が生じにくくなる。
 また、微動無効条件を変更することも可能である。例えば、眼科装置1は、操作桿81が下方に押し込まれていること、または、操作桿81が上方に引っ張られていることを検出する検出部を備えていてもよい。制御部70は、操作桿81が下方に押し込まれている状態、または上方に引っ張られている状態で傾倒操作が行われた場合に、微動無効条件が満たされたと判断し、検眼ユニット2の微動制御を停止させてもよい。この場合、検者は、操作桿81から手を離さずに、検眼ユニットの微動調整と、操作桿の傾倒位置の調整を共に実行することができる。また、眼科装置1は、微動の無効化を指示する無効化ボタンを備えていてもよい。制御部70は、無効化ボタンが操作された状態で操作桿81の傾倒操作が行われた場合に、微動無効条件が満たされたと判断し、検眼ユニット2の微動制御を停止させてもよい。この場合、検者は、無効化ボタンを操作するだけで、検眼ユニット2の微動調整と、操作桿81の傾倒位置の調整を容易に切り替えることができる。なお、無効化ボタンは操作桿81に設けられていてもよい。この場合、検者は、操作桿81から手を離さずに、検眼ユニット2の微動調整と、操作桿81の傾倒位置の調整を容易に切り替えることができる。ただし、無効化ボタンが操作桿81とは異なる位置に設けられている場合でも、従来に比べて被検眼Eと検眼ユニット2の間の相対位置の調整は容易になる。
 なお、図5および図6のS12で検眼ユニット2の位置を微動させる処理は、「微動ステップ」の一例である。図5および図6のS5で検眼ユニット2の位置を粗動させる処理は、「粗動ステップ」の一例である。図5のS8,S9、および図6のS8~S10で、操作桿81の傾倒操作が微動無効条件を満たす場合に検眼ユニット2の微動制御を停止させる処理は、「微動無効化ステップ」の一例である。

Claims (3)

  1.  被検眼を検査するための検眼ユニットと、
     前記被検眼に対する前記検眼ユニットの相対位置を移動させる駆動部と、
     任意の方向に傾倒可能に支持される操作桿と、
     前記操作桿に対する傾倒操作を検出する傾倒検出部と、
     前記検眼ユニットを粗動させるための検者による操作指示を検出する粗動操作検出部と、
     制御部と、
     を備え、
     前記制御部は、
     前記傾倒検出部によって傾倒操作が検出された場合に、検出された傾倒操作に応じて前記駆動部を制御することで、前記検眼ユニットの位置を微動させる微動ステップと、
     前記粗動操作検出部によって粗動の操作指示が検出された場合に、検出された操作指示に応じて前記駆動部を制御することで、前記検眼ユニットの位置を粗動させる粗動ステップと、
     前記操作桿の傾倒操作が所定の微動無効条件を満たす場合に、前記操作桿の傾倒操作に関わらず、前記微動ステップにおける前記検眼ユニットの微動制御を停止させる微動無効ステップと、
     を実行することを特徴とする眼科装置。
  2.  請求項1に記載の眼科装置であって、
     前記制御部は、前記操作桿の傾倒速度を取得可能であり、
     前記微動無効化ステップでは、前記操作桿の傾倒速度が閾値を超えた場合に前記微動無効条件が満たされたと判断し、前記操作桿の傾倒操作に関わらず前記微動ステップにおける前記検眼ユニットの微動制御を停止させることを特徴とする眼科装置。
  3.  請求項1に記載の眼科装置であって、
     前記制御部は、前記操作桿の傾倒速度を取得可能であり、
     前記微動無効化ステップでは、前記操作桿の傾倒速度が閾値を超え、且つ、前記操作桿の傾倒方向が傾倒範囲の中心側に近づく方向である場合に前記微動無効条件が満たされたと判断し、前記操作桿の傾倒操作に関わらず前記微動ステップにおける前記検眼ユニットの微動制御を停止させることを特徴とする眼科装置。
PCT/JP2023/027474 2022-07-29 2023-07-27 眼科装置 WO2024024867A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022122321 2022-07-29
JP2022-122321 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024867A1 true WO2024024867A1 (ja) 2024-02-01

Family

ID=89706600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027474 WO2024024867A1 (ja) 2022-07-29 2023-07-27 眼科装置

Country Status (1)

Country Link
WO (1) WO2024024867A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178677A (ja) * 1999-10-15 2001-07-03 Topcon Corp 眼科装置
JP2018126326A (ja) * 2017-02-08 2018-08-16 株式会社トプコン 眼科装置及びその作動方法
JP2021159286A (ja) * 2020-03-31 2021-10-11 株式会社ニデック 眼科装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178677A (ja) * 1999-10-15 2001-07-03 Topcon Corp 眼科装置
JP2018126326A (ja) * 2017-02-08 2018-08-16 株式会社トプコン 眼科装置及びその作動方法
JP2021159286A (ja) * 2020-03-31 2021-10-11 株式会社ニデック 眼科装置

Similar Documents

Publication Publication Date Title
US8205988B2 (en) Stereomicroscope
JP5955193B2 (ja) 眼科装置および眼科装置の制御方法並びにプログラム
US8985773B2 (en) Ophthalmologic apparatus and ophthalmologic control method, and program
JP6641730B2 (ja) 眼科装置、および眼科装置用プログラム
JP6701987B2 (ja) 眼科装置、および眼科装置制御プログラム
JP2009072513A (ja) 眼科装置
WO2024024867A1 (ja) 眼科装置
JP6701988B2 (ja) 眼科装置
JP2018038517A (ja) 眼科装置、及び眼科装置の制御方法
JP4265842B2 (ja) 眼科装置
JP4795002B2 (ja) 眼科測定装置
JP2021159286A (ja) 眼科装置
JP2008073415A (ja) 眼科装置
JPH11276436A (ja) 眼科装置
JP5046814B2 (ja) 眼科装置および眼科装置を用いたオートアライメント方法
JP2024019112A (ja) 眼科装置および操作ユニット
JP2024019111A (ja) 眼科装置および操作ユニット
US20240032786A1 (en) Ophthalmic apparatus and operation unit
JP2009066258A (ja) 眼科装置
WO2016129499A1 (ja) 眼屈折力測定装置
JP7043758B2 (ja) 眼科装置、およびそれに用いるジョイスティック
JP2009066133A (ja) 眼科装置および眼科装置を用いたオートアライメント方法
JP6619158B2 (ja) 眼科装置
CN117462069A (zh) 眼科装置及操作单元
JP2023175113A (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846597

Country of ref document: EP

Kind code of ref document: A1