WO2024024653A1 - 繊維強化熱可塑性樹脂組成物及び樹脂金属複合体 - Google Patents

繊維強化熱可塑性樹脂組成物及び樹脂金属複合体 Download PDF

Info

Publication number
WO2024024653A1
WO2024024653A1 PCT/JP2023/026715 JP2023026715W WO2024024653A1 WO 2024024653 A1 WO2024024653 A1 WO 2024024653A1 JP 2023026715 W JP2023026715 W JP 2023026715W WO 2024024653 A1 WO2024024653 A1 WO 2024024653A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
mass
fiber
parts
Prior art date
Application number
PCT/JP2023/026715
Other languages
English (en)
French (fr)
Inventor
友里 水野
直人 大久保
一尋 仲田
一帆 酒井
幹貴 土屋
平祐 ▲高▼橋
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024024653A1 publication Critical patent/WO2024024653A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene

Definitions

  • the present invention relates to a fiber-reinforced thermoplastic resin composition and a reflow-resistant resin material made of the resin composition, and more particularly to a syndiotactic polystyrene resin composition and a reflow-resistant resin material made of the resin composition.
  • the present invention also relates to a resin-metal composite, and more particularly, to a resin-metal composite containing a syndiotactic polystyrene resin composition and a metal member.
  • styrenic polymers with a syndiotactic structure have excellent mechanical strength, heat resistance, electrical properties, water absorption dimensional stability, chemical resistance, etc., and are expected to have many uses.
  • the excellent chemical resistance, heat resistance, electrical properties, and water absorption dimensional stability of styrenic polymers with a syndiotactic structure are used for electronic devices, automotive and electrical components, transformers and coil power modules, relays, and sensors. etc., is attracting attention.
  • Patent Document 1 mainly contains a styrene polymer having a syndiotactic structure, various polymers, a thermoplastic resin and/or a rubbery elastic body, a fiber reinforcing agent, and an organic filler or an inorganic filler.
  • a thermoplastic resin composition is disclosed.
  • Cited Document 2 states that the amount of heat absorption obtained by differential scanning calorimetry in the range of 175 to 260°C is taken as 100% when the temperature is raised at a rate of 20°C/min.
  • a styrenic resin having a syndiotactic structure is disclosed in which the proportion of heat is less than 30%.
  • Cited Document 3 discloses an insert molded product having an insert member made of metal or the like and a resin composition containing a polyarylene sulfide resin, an inorganic filler, and an olefin copolymer.
  • Patent Document 4 discloses an insert having an insert member made of metal or the like and a resin composition containing a polyarylene sulfide resin, a fibrous inorganic filler, a non-fibrous inorganic filler, and an olefin copolymer.
  • a molded body is disclosed.
  • Patent Document 5 discloses an insert molded product obtained by insert molding a resin composition containing a polyarylene sulfide resin, a fibrous reinforcing agent having a flat cross-sectional shape, and a thermoplastic elastom, and a metal or the like. ing.
  • Patent Document 1 discloses a thermoplastic resin composition containing a styrenic polymer having a specific syndiotactic structure, and is said to have excellent mechanical strength. However, in the reflow soldering process, resin members constituting substrates, connectors, etc. are exposed to high temperatures, so when the thermoplastic resin composition of Patent Document 1 is used for resin members, "reflow resistance" In this respect, it was still not sufficient. Further, Patent Document 2 discloses a styrenic polymer having a syndiotactic structure, in which the amount of endotherm required under specific conditions is a specific ratio.
  • Patent Document 2 also discloses specific resin compositions, and these compositions are also applicable to surface mount technology (SMT) in the field of recent electronic devices and automotive electrical components. As a resin member, it could not be said to be sufficient, especially from the viewpoint of heat resistance.
  • SMT surface mount technology
  • the first object of the present invention is to provide a fiber-reinforced thermoplastic resin composition and a reflow-resistant resin material made of the resin composition, which has excellent heat resistance and dimensional stability at high temperatures. .
  • Patent Document 3 three types of inorganic fillers in the form of plates, fibers, and granules are used in polyarylene sulfide resin together with an olefin copolymer. It is disclosed that even when the weld portion (weld portion) is formed to coincide with the stress concentration portion, both heat shock resistance and low warpage can be achieved.
  • the examination of the difference in expansion coefficient between the metal member and the resin member in the insert molded product and the examination of the physical properties of the parallel flow weld part are insufficient, and in particular, the heat resistance of the parallel flow weld part is insufficient. I could't say it was shocking enough.
  • Patent Document 4 discloses a resin composition in which a fibrous inorganic filler having a predetermined diameter ratio and a non-fibrous inorganic filler are combined in a predetermined ratio as an inorganic filler to be blended into a polyarylene sulfide resin. It is disclosed that the heat shock resistance of an insert molded product can be improved by using the above.
  • Patent Document 5 by using a resin composition mainly composed of polyarylene sulfide resin, which is blended with a flat fibrous reinforcing agent having a specific cross-sectional shape and a thermoplastic elastomer, it is possible to improve mechanical properties. It is disclosed that heat shock resistance can be improved without deterioration.
  • Patent Documents 4 and 5 there is insufficient study on the difference in expansion coefficient between the metal member and the resin member in the insert molded product, and there is no study on the physical properties of the weld portion. It could not be said that the heat shock resistance was sufficient.
  • a second object of the present invention is to provide a resin-metal composite that has excellent heat shock resistance.
  • thermoplastic resin composition containing a styrenic polymer having a specific syndiotactic structure, a rubber-like elastic body, and a crystal nucleating agent, and a glass fiber having a flat cross section. It has been discovered that the first problem can be solved by using a fiber-reinforced thermoplastic resin composition containing the following. That is, the first invention relates to the following [1] to [13].
  • thermoplastic resin composition comprising a thermoplastic resin composition (T) and a glass fiber (G) having a flat cross section, wherein the thermoplastic resin composition (T) has a weight average 100 parts by mass of a styrenic resin composition (S) consisting of 83 to 100 parts by mass of a styrenic polymer (A) having a syndiotactic structure with a molecular weight of less than 230,000 and 0 to 17 parts by mass of a rubbery elastic body (B) and 0.6 to 2.0 parts by mass of the crystal nucleating agent (C), the content of the glass fiber (G) relative to the total of the thermoplastic resin composition (T) and the glass fiber (G).
  • S styrenic resin composition
  • a fiber-reinforced thermoplastic resin composition is 33.0 to 65.0% by mass, a fiber-reinforced thermoplastic resin composition.
  • the deflection temperature under load of the test piece made of the fiber-reinforced thermoplastic resin composition measured in accordance with Method A of ISO75-1, 2 (2020) is 255°C or higher, [1] to [6] The fiber-reinforced thermoplastic resin composition according to any one of the above.
  • a reflow-resistant resin material comprising the fiber-reinforced thermoplastic resin composition according to any one of [1] to [7].
  • a resin-metal composite comprising the molded body for reflow soldering according to [9] and a metal member.
  • the connector according to [11] which is used in a reflow soldering process.
  • the connector according to [11] which is used in a surface mounting reflow soldering process.
  • the present inventors have found that a resin-metal composite including a resin member made of a reinforced thermoplastic resin composition and a metal member is provided.
  • the second problem is solved by using a resin-metal composite in which the difference between I found out what to do. That is, the second present invention relates to the following [14] to [25].
  • a resin-metal composite comprising a resin member made of a reinforced thermoplastic resin composition containing a thermoplastic resin composition (T2) and a glass filler (G2), and a metal member, the TD of the resin member being The difference between the coefficient of linear expansion (CTE TD ) of the metal member and the coefficient of linear expansion (CTE M ) of the metal member (CTE TD - CTE M ) is 6.0 ⁇ 10 ⁇ 5 /°C or less, and the reinforced thermoplastic resin composition A resin-metal composite having a bending fracture strain of 1.15% or more in a parallel flow weld test piece.
  • the thermoplastic resin composition (T2) contains 75 to 94 parts by mass of a styrenic polymer (A) having a syndiotactic structure with a weight average molecular weight of less than 230,000 and 6 parts by mass of a rubbery elastic body (B).
  • the resin-metal composite according to [14] comprising a styrenic resin composition (S2) of ⁇ 25 parts by mass.
  • the resin-metal composite according to [16] wherein the glass fiber having a flat cross section has a shape ratio of 3.5 to 4.5.
  • thermoplastic resin composition (T2) further contains 0.6 to 2.0 parts by mass of a crystal nucleating agent (C) based on 100 parts by mass of the styrenic resin composition (S2).
  • thermoplastic resin composition (T2) further contains 0.1 to 15.0 parts by mass of modified polyphenylene ether (D) based on 100 parts by mass of the styrene resin composition (S2). The resin metal composite according to any one of [15] to [21].
  • thermoplastic resin composition (T2) further contains 0.05 to 3.0 parts by mass of a mold release agent (F) based on 100 parts by mass of the styrene resin composition (S2). The resin metal composite according to any one of [15] to [22].
  • thermoplastic resin composition and a reflow-resistant resin material made of the resin composition, which have excellent heat resistance and dimensional stability at high temperatures.
  • FIG. 2 is a schematic cross-sectional view of a mold for a parallel flow weld test piece made of a reinforced thermoplastic resin composition according to the second aspect of the present invention. It is a schematic plan view of the cavity part of the metal mold
  • CTETD linear expansion coefficient of TD
  • FIG. 2 is a schematic diagram of a test piece for evaluating the heat shock resistance of the resin-metal composite of the second invention.
  • FIG. 2 is a schematic cross-sectional view of a test piece for evaluating the heat shock resistance of the resin-metal composite of the second invention. It is a schematic diagram of the mold of the test piece for evaluating the heat shock resistance of the resin-metal composite of the second invention.
  • the first fiber-reinforced thermoplastic resin composition of the present invention is a fiber-reinforced thermoplastic resin composition comprising a thermoplastic resin composition (T) and a glass fiber (G) having a flat cross section,
  • the thermoplastic resin composition (T) contains 83 to 100 parts by mass of a styrenic polymer (A) having a syndiotactic structure with a weight average molecular weight of less than 230,000 and 0 to 17 parts by mass of a rubber-like elastic body (B).
  • a styrenic resin composition S
  • C crystal nucleating agent
  • T thermoplastic resin composition
  • G glass fiber
  • the content of the glass fiber (G) relative to the total of is 33.0 to 65.0% by mass.
  • thermoplastic resin composition (T) contains 83 to 100 parts by mass of a styrenic polymer (A) having a syndiotactic structure with a weight average molecular weight of less than 230,000 and 0 to 17 parts by mass of a rubber-like elastic body (B). 100 parts by mass of a styrenic resin composition (S) consisting of the following, and 0.6 to 2.0 parts by mass of a crystal nucleating agent (C).
  • the styrenic resin composition (S) consists of 83 to 100 parts by mass of a styrenic polymer (A) having a syndiotactic structure and 0 to 17 parts by mass of a rubbery elastic body (B).
  • the styrenic polymer (A) having a syndiotactic structure is a styrenic resin having a highly syndiotactic structure.
  • syndiotactic means that the phenyl rings in adjacent styrene units are arranged alternately with respect to the plane formed by the main chain of the polymer block (hereinafter referred to as syndiotacticity). This means that a high percentage of Tacticity can be quantitatively identified by nuclear magnetic resonance method ( 13C -NMR method) using carbon isotope.
  • the abundance ratio of a plurality of consecutive structural units for example, two consecutive monomer units as a dyad, three monomer units as a triad, and five monomer units as a pentad, can be determined.
  • styrenic resin having a highly syndiotactic structure means usually 75 mol% or more of racemic dyad (r), preferably 85 mol% or more of racemic pentad (rrr), or racemic pentad (rrrr).
  • styrenic polymers such as poly(vinyl benzoate), hydrogenated polymers or mixtures thereof, or copolymers having these as main components.
  • poly(hydrocarbon-substituted styrene) examples include poly(methylstyrene), poly(ethylstyrene), poly(isopropylstyrene), poly(tert-butylstyrene), poly(phenylstyrene), poly(vinylnaphthalene), and poly( (vinylstyrene), etc.
  • poly(halogenated styrene) include poly(chlorostyrene), poly(bromostyrene), and poly(fluorostyrene), and examples of poly(halogenated alkylstyrene) include poly(chloromethylstyrene).
  • poly(alkoxystyrene) examples include poly(methoxystyrene) and poly(ethoxystyrene).
  • Comonomer components of the copolymer containing the above structural units include, in addition to the monomers of the styrene polymer, olefin monomers such as ethylene, propylene, butene, hexene and octene; diene monomers such as butadiene and isoprene; cyclic olefin monomers , cyclic diene monomers, methyl methacrylate, maleic anhydride, and polar vinyl monomers such as acrylonitrile.
  • olefin monomers such as ethylene, propylene, butene, hexene and octene
  • diene monomers such as butadiene and isoprene
  • cyclic olefin monomers cyclic diene monomers, methyl methacrylate, maleic anhydride, and polar vinyl monomers such as acrylonitrile.
  • Copolymers suitably used as SPS (A) include copolymers of styrene and p-methylstyrene, copolymers of styrene and p-tert-butylstyrene, and copolymers of styrene and divinylbenzene.
  • a copolymer of styrene and p-methylstyrene is preferred.
  • polystyrene poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tert-butylstyrene), poly(p-chlorostyrene), poly(m-chlorostyrene), styrene), poly(p-fluorostyrene), and a copolymer of styrene and p-methylstyrene, including polystyrene, poly(p-methylstyrene), poly(m-methylstyrene), and styrene.
  • one or more selected from copolymers of styrene and p-methylstyrene are more preferred, polystyrene and copolymers of styrene and p-methylstyrene are even more preferred, and polystyrene is most preferred.
  • SPS (A) preferably has a melt flow rate (MFR) of 8 g/10 minutes or more, more preferably 10 g/10 minutes or more when measured under the conditions of a temperature of 300 ° C. and a load of 1.2 kg, More preferably, it is 13 g/10 minutes or more, preferably 50 g/10 minutes or less, and more preferably 35 g/10 minutes or less. If the MFR value of SPS (A) is 8 g/10 minutes or more, there is no problem with the fluidity of the resin during molding, and if it is 50 g/10 minutes or less, preferably 35 g/10 minutes or less, it is sufficient. A molded article with strength can be obtained.
  • MFR melt flow rate
  • the weight average molecular weight of SPS (A) is less than 230,000. Since the weight average molecular weight of SPS (A) is less than 230,000, the heat resistance and dimensional stability at high temperatures of the fiber-reinforced thermoplastic resin composition of the first invention can be improved. The fluidity of the fiber-reinforced thermoplastic resin composition can be ensured, and the resulting molded product can have sufficient strength.
  • the weight average molecular weight of SPS (A) is preferably less than 200,000, preferably less than 190,000, from the viewpoint of improving heat resistance and dimensional stability at high temperatures, and fluidity of the resin during molding. More preferably less than 000.
  • the weight average molecular weight of SPS (A) is preferably 10,000 or more, more preferably 50,000 or more, from the viewpoint of improving heat resistance and dimensional stability at high temperatures, and the strength of the molded product obtained. More preferably 100,000 or more.
  • the weight average molecular weight refers to the GPC device manufactured by Tosoh Corporation (HLC-8321GPC/HT) and the GPC column manufactured by Tosoh Corporation (GMHHR-H(S)HTC/HT), unless otherwise specified. The value was measured by gel permeation chromatography at 145°C using 1,2,4-trichlorobenzene as the eluent, and was converted using a standard polystyrene calibration curve.
  • methods for adjusting the weight average molecular weight of SPS (A) include a method of appropriately selecting the type, amount used, and polymerization temperature of each catalyst component, and a method of introducing hydrogen.
  • the content of the styrenic polymer (A) having a syndiotactic structure in 100 parts by mass of the styrenic resin composition (S) is 83 to 100 parts by mass.
  • the resulting fiber-reinforced thermoplastic resin composition can have good heat resistance and dimensional stability at high temperatures.
  • the content of the styrenic polymer (A) having a syndiotactic structure in 100 parts by mass of the styrenic resin composition (S) is preferably 85 to 99 parts by mass, more preferably 86 to 98 parts by mass. The amount is more preferably 88 to 96 parts by mass.
  • SPS (A) is produced by using a titanium compound and a condensation product of water and trialkylaluminium (aluminoxane) as a catalyst, for example, in an inert hydrocarbon solvent or in the absence of a solvent. It can be produced by polymerizing a monomer corresponding to the polymer (for example, Japanese Patent Application Laid-Open No. 2009-068022).
  • the fiber-reinforced thermoplastic resin composition of the first invention may or may not contain a rubbery elastic body (B).
  • a rubbery elastic body (B) By containing the rubbery elastic body (B) in the fiber-reinforced thermoplastic resin composition of the first aspect of the present invention, toughness can be improved while maintaining dimensional stability.
  • the rubber-like elastic body (B) is not limited as long as it is an elastomer containing a structural unit derived from styrene, but is preferably a styrene-diene block copolymer, a hydrogenated styrene-diene block copolymer, or a styrene-diene random block copolymer. It is at least one selected from the group consisting of copolymers, hydrogenated styrene-diene random copolymers, and styrene-olefin random copolymers.
  • examples of dienes copolymerized with styrene include butadiene and isoprene, and examples of olefins copolymerized with styrene include ethylene, propylene, and butylene.
  • the rubber-like elastic body (B) is more preferably a styrene-butadiene block copolymer (SBR), a hydrogenated styrene-butadiene block copolymer (SEB), a styrene-butadiene-styrene block copolymer (SBS), hydrogen Added styrene-butadiene-styrene block copolymer (SEBS), styrene-isoprene block copolymer (SIR), hydrogenated styrene-isoprene block copolymer (SEP), styrene-isoprene-styrene block copolymer (SIS) , hydrogenated styrene-isoprene-styrene block copolymer (SEPS), styrene-butadiene random copolymer, hydrogenated styrene-butadiene random copolymer,
  • SBS Polymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SIR styrene-isoprene block copolymer
  • SEP hydrogenated styrene-isoprene block copolymer
  • SIS block copolymers
  • SEPS hydrogenated styrene-isoprene-styrene block copolymers
  • SEPS styrene-butadiene-styrene block copolymers
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-isoprene-styrene block copolymer
  • SIS hydrogenated styrene-isoprene-styrene block copolymer
  • SEBS hydrogenated styrene-isoprene-styrene block copolymer
  • SEBS hydrogenated styrene-isoprene-styrene block copolymer
  • SEBS hydrogenated styrene-isoprene-styrene block copoly
  • Mass ratio of the structural units derived from styrene and the total structural units derived from dienes, hydrogenated dienes, and olefins, which constitute the rubbery elastic body (B) [(styrene)/(dienes, hydrogenated dienes, olefins) )] is preferably 20/80 to 70/30, more preferably 25/75 to 60/40, still more preferably 25/75 to 45/55.
  • the styrene content of the rubbery elastic body (B) is preferably in the range of 25 to 60% by mass, more preferably in the range of 25 to 45%.
  • the content of the rubbery elastic body (B) in 100 parts by mass of the styrene resin composition (S) is 0 to 17 parts by mass.
  • the amount of the rubbery elastic body (B) is 17 parts by mass or less, the resulting fiber-reinforced thermoplastic resin composition can have good toughness while maintaining heat resistance and dimensional stability at high temperatures.
  • the content of the rubbery elastic body (B) in 100 parts by mass of the styrene resin composition (S) is preferably 1 to 15 parts by mass, more preferably 2 to 14 parts by mass, and even more preferably 4 parts by mass. ⁇ 12 parts by mass.
  • thermoplastic resin composition (T) contains a crystal nucleating agent (C).
  • the crystallization temperature can be increased, a wide range of temperature conditions for crystallization can be set, and productivity can be improved.
  • the crystal nucleating agent is preferably one or more selected from the group consisting of inorganic crystallization nucleating agents and organic crystallizing nucleating agents. Among these, organic crystallization nucleating agents are preferred. Examples of organic crystallization nucleating agents include alkali metal salts of organic carboxylic acids, alkaline earth metal salts of organic carboxylic acids, organic compounds of phosphoric acid or phosphorous acid and their metal salts, phthalocyanine derivatives, sorbitol derivatives, etc. Can be mentioned.
  • Metal salts of carboxylic acids including [2,2'-methylenebis(4,6-di-tert-butylphenyl)]]lithium, [phosphoric acid[2,2'-methylenebis(4,6-di-tert-butylphenyl)]]potassium, phosphorus Sodium bis(4-tert-butylphenyl) acid, sodium methylene(2,4-tert-butylphenyl) phosphate, aluminum bis(4,6',6,6'-tetra-tert-butyl-2,2 Select metal salts of phosphoric acid such as '-methylene diphenyl phosphate) hydroxide, [2,2'-methylenebis(4,6-di-ter
  • the content of the crystal nucleating agent (C) is 0.6 to 2.0 parts by mass based on 100 parts by mass of the styrene resin composition (S).
  • the content of the crystal nucleating agent (C) is 0.6 parts by mass or more, the crystallization temperature of the resulting fiber-reinforced thermoplastic resin composition can be increased. Therefore, it is possible to set a wide range of temperature conditions for crystallization of the fiber-reinforced thermoplastic resin composition, so it is possible to select conditions that shorten the molding cycle, which improves production when used as a reflow-resistant resin material. You can improve your sexuality.
  • the content of the crystal nucleating agent (C) with respect to 100 parts by mass of the styrene resin composition (S) is 2.0 parts by mass or less, which is sufficient for crystallization of the fiber-reinforced thermoplastic resin composition as a reflow-resistant resin material. temperature can be obtained.
  • the content of the crystal nucleating agent (C) relative to 100 parts by mass of the styrene resin composition (S) is preferably 0.7 to 1.8 parts by mass, more preferably 0.8 to 1.5 parts by mass.
  • the total content of the styrenic resin composition (S) and the crystal nucleating agent (C) in 100% by mass of the thermoplastic resin composition (T) is preferably 80% by mass or more, more preferably 90% by mass or more, and further It is preferably 95% by mass or more, and preferably 100% by mass or less.
  • the thermoplastic resin composition (T) contains modified polyphenylene ether (D). Since the thermoplastic resin composition (T) contains the modified polyphenylene ether (D), the fiber-reinforced thermoplastic resin composition increases the interfacial strength between the thermoplastic resin composition (T) and the glass fiber (G) described below. It can increase the strength of things.
  • the content of the modified polyphenylene ether (D) is preferably 0.1 to 5.0 parts by mass, and 0.1 to 5.0 parts by mass, based on 100 parts by mass of the styrene resin composition (S). It is more preferably 3 to 4.0 parts by weight, even more preferably 0.5 to 3.5 parts by weight, and even more preferably 1.0 to 3.0 parts by weight.
  • the modified polyphenylene ether (D) used in the first invention is compatible with SPS (A), improves compatibility with other components, and is capable of reacting with glass fiber (G). Preferably, it has a polar group. In this way, modified polyphenylene ether (D) is blended for the purpose of improving the compatibility between SPS (A) and other components, especially glass fiber (G), and improving the interfacial strength between each component. . More specifically, the modified polyphenylene ether (D) is preferably acid-modified polyphenylene ether.
  • the polar group that can react with glass fiber (G) refers to a functional group that can react with the polar group that glass fiber (G) has.
  • Specific examples include acid anhydride groups, carboxylic acid groups, carboxylic acid ester groups, carboxylic acid halide groups, carboxylic acid amide groups, carboxylic acid bases, sulfonic acid groups, sulfonic acid ester groups, sulfonic acid chloride groups, and sulfonic acid groups.
  • Examples include an amide group, a sulfonic acid group, an epoxy group, an amino group, an imide group, an oxazoline group, and a carboxylic acid group is preferred.
  • modified polyphenylene ether (D) fumaric acid-modified polyphenylene ether and maleic anhydride-modified polyphenylene ether are preferred, and fumaric acid-modified polyphenylene ether is more preferred.
  • the amount of modification (modifier content) of the modified polyphenylene ether (D) is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, even more preferably 0.3 to 10% by mass. It is mass %, and even more preferably 0.5 to 5.0 mass %. When the amount of modification is within the above range, a styrenic resin composition and a molded article having good strength and heat resistance can be obtained.
  • the amount of modification (modifier content) of the modified polyphenylene ether can be determined by the neutralization titer measured in accordance with JIS K 0070-1992.
  • polyphenylene ethers examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2,3-dimethyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6 -chloromethyl-1,4-phenylene ether), poly(2-methyl-6-hydroxyethyl-1,4-phenylene ether), poly(2-methyl-6-n-butyl-1,4-phenylene ether) , poly(2-ethyl-6-isopropyl-1,4-phenylene ether), poly(2-ethyl-6-n-propyl-1,4-phenylene ether), poly(2,3,6-trimethyl-1 , 4-phenylene ether), poly[2-(4'-methylphenyl)-1,4-phenylene ether], poly(2-bromo-6-phenyl-1,4-phenylene ether), poly(2-methyl -6-phenyl-1,4-phenylene ether), poly(2-phenyl-1,4
  • modifiers used for modifying polyphenylene ether include compounds having an ethylenic double bond and a polar group in the same molecule, such as maleic anhydride, maleic acid, fumaric acid, and maleic esters. , fumaric ester, maleimide and its N-substituted product, maleate, fumaric acid salt, acrylic acid, acrylic ester, acrylic amide, acrylate, methacrylic acid, methacrylic ester, methacrylic amide, methacrylate, Examples include glycidyl methacrylate. Among these, maleic anhydride, fumaric acid and glycidyl methacrylate are particularly preferably used, and fumaric acid is more preferably used. The above various modifiers may be used alone or in combination of two or more.
  • the modified polyphenylene ether (D) is obtained by reacting the polyphenylene ether with a modifier.
  • a modifier There are no particular limitations on the method of modification, and known methods can be used. Preferred modification methods include melt modification and solution modification, and among these, melt modification is more preferred because it provides a higher amount of modification and has high productivity. That is, the modified polyphenylene ether (D) is preferably a modified polyphenylene ether produced by melt modification or a modified polyphenylene ether produced by solution modification, and more preferably a modified polyphenylene ether produced by melt modification.
  • Melt modification is a method of obtaining modified polyphenylene ether by melt-kneading polyphenylene ether and a modifier in the presence or absence of a radical generator, and specifically, a method for obtaining modified polyphenylene ether using a roll mill, a Banbury mixer, This is a method of melt-kneading and reacting using an extruder or the like at a temperature in the range of 150 to 350°C. Specifically, there is a method in which polyphenylene ether, a modifier, and an optional radical generator are uniformly dry-blended at room temperature, and then a melt reaction is carried out in the range of 300 to 350°C, which is substantially the kneading temperature of polyphenylene ether. preferable. If it is 300°C or higher, the melt viscosity can be maintained appropriately, and if it is 350°C or lower, decomposition of polyphenylene ether can be suppressed.
  • the amount of the modifier used in melt modification is preferably 0.1 to 22 parts by mass, more preferably 0.2 to 17 parts by mass, and even more preferably 0.3 parts by mass, based on 100 parts by mass of polyphenylene ether.
  • the amount is preferably from 1 to 12 parts by weight, and even more preferably from 0.5 to 7.0 parts by weight.
  • the amount of the modifier used is within the above range, a styrenic resin composition and a molded article having good strength and heat resistance can be obtained.
  • the radical generator used for melt modification preferably has a temperature of 300°C or higher at which it exhibits a half-life of 1 minute, and specific examples include 2,3-dimethyl-2,3-diphenylbutane, 2,3-diethyl -2,3-diphenylbutane, 2,3-diethyl-2,3-diphenylhexane, 2,3-dimethyl-2,3-di(p-methylphenyl)butane, etc., among which half-life 1 2,3-dimethyl-2,3-diphenylbutane having a temperature of 330° C. per minute is preferably used.
  • the proportion of the radical generator to be used is preferably selected in the range of 0.1 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, based on 100 parts by weight of polyphenylene ether. If it is 0.1 parts by mass or more, a high modification effect can be obtained, and if it is 3 parts by mass or less, polyphenylene ether can be efficiently modified, and insoluble components are hardly generated.
  • thermoplastic resin composition (T) further contains an antioxidant (E) from the viewpoint of heat resistance.
  • an antioxidant (E) it is preferable to use one or more selected from phenolic compounds, phosphorus compounds, and sulfur compounds, and from the viewpoint of heat resistance, phenolic compounds are more preferable.
  • phenolic antioxidants include 2,6-di-tert-butyl-4-methylphenol, 2,6-diphenyl-4-methoxyphenol, and 2,2'-methylenebis(6-tert-butyl- 4-methylphenol), 2,2'-methylenebis[4-methyl-6-( ⁇ -methylcyclohexyl)phenol], 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane , 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(4-methyl-6-nonylphenol), 1,1,3-tris(5-tert-butyl-4- Hydroxy-2-methylphenyl)butane, 2,2-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercaptobutane, ethylene glycol-bis[3,3-bis( 3-tert-butyl-4-hydroxyphenyl)butyrate],
  • phosphorus-based antioxidants include monophosphites and diphosphites such as tris(2,4-di-tert-butylphenyl) phosphite and tris(mono- and di-nonylphenyl) phosphite.
  • sulfur-based antioxidants examples include 2,2-bis ⁇ [3-(dodecylthio)-1-oxopropoxy]methyl ⁇ propane-1,3-diylbis[3-(dodecylthio)propinate], di(tridecyl)3, Examples include 3'-thiodipropinate and 3,3'-thiodipropinate.
  • the content of the antioxidant (E) relative to 100 parts by mass of the styrenic resin composition (S) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more. It is preferably 0.15 parts by mass or more, and more preferably 0.15 parts by mass or more. Further, it is preferably 2.0 parts by mass or less, more preferably 1.0 parts by mass or less, and even more preferably 0.7 parts by mass or less. If the amount of antioxidant is within the above range, the heat discoloration resistance during processing will be good, long-term heat resistance can be obtained, and the bleeding of the antioxidant can be suppressed, which may adversely affect the appearance. do not have.
  • the thermoplastic resin composition (T) preferably further contains a mold release agent (F) from the viewpoint of improving heat resistance and dimensional stability at high temperatures.
  • the mold release agent (F) can be arbitrarily selected from known ones such as polyethylene wax, silicone oil, and long-chain carboxylic acids.
  • the content of the mold release agent (F) is preferably 0.05 to 3.0 parts by mass, and preferably 0.1 to 3.0 parts by mass, based on 100 parts by mass of the styrene resin composition (S). It is more preferably 2.0 parts by mass, even more preferably 0.1 to 1.0 parts by mass, and even more preferably 0.1 to 0.5 parts by mass.
  • the first fiber-reinforced thermoplastic resin composition of the present invention contains glass fibers (G) having a flat cross section.
  • heat resistance and dimensional stability at high temperatures can be improved.
  • the glass fiber (G) has a flat cross section perpendicular to the fiber axis.
  • the flat shape refers to a shape in which the irregular shape ratio of the glass fiber (G) is greater than 1.
  • the irregularity ratio refers to the ratio of the major axis to the minor axis of a cross section perpendicular to the fiber axis of the glass fiber (G), that is, the major axis/breadth axis.
  • the major axis is the straight line distance between two points on the outer edge of the cross section that is the longest in a cross section perpendicular to the fiber axis
  • the short axis is the distance between the straight line that intersects perpendicularly to the major axis and the outer edge of the cross section. It is the straight line distance between two points where they intersect. Note that both the straight line serving as the long axis and the straight line serving as the short axis pass through the center of gravity of the cross section.
  • the reason why heat resistance and dimensional stability at high temperatures can be improved by having a flat cross section of the glass fiber (G) is that when the cross section of the glass fiber (G) is flat, extrusion
  • the resin generated by the rotation of the screw in the kneading machine is easily oriented in the flow direction (MD), suppressing breakage of glass fibers, and increasing the aspect ratio of the fibers in the direction perpendicular to the flow direction (TD). It is presumed that the effect of suppressing contraction can be obtained by the influence.
  • the profile ratio of the glass fiber (G) is preferably 2 to 6, more preferably 3 to 5, and 3.5 to 4 from the viewpoint of improving both heat resistance and dimensional stability at high temperatures. More preferably, it is .5.
  • the short axis is preferably 3 ⁇ m to 10 ⁇ m, more preferably 5 ⁇ m to 8 ⁇ m.
  • the long axis and short axis of the glass fibers are both number averages, and are calculated as the number average by measuring 50 or more arbitrarily selected glass fibers by performing image analysis using a digital microscope.
  • the fiber diameter of the glass fiber (G) is preferably 10 ⁇ m or more, more preferably 10.5 ⁇ m or more, even more preferably 11 ⁇ m or more, from the viewpoint of improving dimensional stability at high temperatures. It is even more preferable that it is 12 ⁇ m or more. Further, the fiber diameter of the glass fiber (G) is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, from the viewpoint of ensuring fluidity of the fiber-reinforced thermoplastic resin composition during molding. In addition, in the first invention, the fiber diameter of the glass fiber (G) means the diameter of a circle obtained by converting a cross section perpendicular to the fiber axis into a circle having the same area as the area of the cross section. There is. The fiber diameter of glass fibers is a number average, and is calculated by measuring 50 or more arbitrarily selected glass fibers by performing image analysis using a digital microscope.
  • the fiber length of the glass fiber (G) used in the fiber-reinforced thermoplastic resin composition of the first invention is 1 to 50 mm from the viewpoint of ensuring fluidity and handling of the fiber-reinforced thermoplastic resin composition during molding. It is preferably 1.5 to 15 mm, even more preferably 2 to 8 mm. Further, the fiber length of the glass fiber (G) contained in the fiber-reinforced thermoplastic resin composition is preferably 300 to 600 ⁇ m due to breakage during extrusion and kneading.
  • the fiber length of glass fibers is a number average, and is calculated by measuring 50 or more arbitrarily selected glass fibers by performing image analysis using a digital microscope.
  • the glass fiber (G) is preferably surface-treated with a coupling agent in order to improve its adhesion with the SPS (A), and is preferably treated with a silane-based coupling agent or a titanium-based coupling agent. It is more preferable that the resin be treated with a silane coupling agent, and even more preferable that it be treated with a silane coupling agent from the viewpoint of compatibility with the resin component.
  • silane coupling agents include triethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(1,1- Epoxycyclohexyl)ethyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -amino
  • ⁇ -aminopropyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyl Aminosilanes such as trimethoxysilane and epoxysilanes are preferred.
  • titanium-based coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraisopropyl bis(dioctyl phosphite) titanate, and tetraoctyl bis(ditridecyl phosphite).
  • phyto) titanate tetra(1,1-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyl titanate , isopropyl dimethacrylylisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri(dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, isopropyl tri(N-amidoethyl, aminoethyl) titanate, dicumylphenyloxyacetate titanate, diiso Examples include stearoyl ethylene titanate. Among these, isopropyl tri(N-amidoethyl, aminoethyl) titanate is preferred
  • the content of glass fiber (G) in the fiber-reinforced thermoplastic resin composition of the first invention is 33% by mass of the total of 100% by mass of the thermoplastic resin composition (T) and glass fiber (G). It is .0 mass % or more and 65.0 mass % or less.
  • a glass fiber (G) content of 33.0% by mass or more heat resistance and dimensional stability at high temperatures are improved, and the toughness required for reflow soldering molded bodies or reflow soldering connectors is improved. can be obtained.
  • the fluidity of the fiber-reinforced thermoplastic resin composition during molding can be ensured, and the tensile strain at break becomes 1.0% or more, making it easy to reflow. It is possible to obtain the toughness required for a molded body for soldering or a connector for reflow soldering.
  • the content of glass fiber (G) in the fiber-reinforced thermoplastic resin composition is preferably 33.0% by mass or more and 65.0% by mass or less, more preferably 35.0% by mass or more and 58.0% by mass or less. Preferably, 38.0% by mass or more and 55.0% by mass or less is even more preferred.
  • any other components may be added to the fiber-reinforced thermoplastic resin composition of the first invention as long as they do not impede the object of the first invention.
  • Other components include optional components such as colorants, crosslinking agents, crosslinking aids, dispersants, plasticizers, antifouling agents, ultraviolet absorbers, light stabilizers, flame retardants, flame retardant aids, and antistatic agents. It can contain agents, etc.
  • the colorant may be arbitrarily selected from known colorants such as carbon black, inorganic colorants, and organic colorants.
  • the inorganic colorant include inorganic pigments
  • examples of the organic colorant include organic pigments, organic dyes, and the like.
  • examples of inorganic pigments include titanium dioxide, iron oxide, nickel titanium yellow, zinc sulfide, barium sulfate, and ultramarine blue.
  • the organic pigment is at least one selected from the group consisting of monoazo pigments, perylene pigments, quinacridone pigments, and phthalocyanine pigments.
  • organic pigments include monoazo pigments such as Pigment Yellow 183 and Pigment Yellow 150, perylene pigments such as Pigment Red 178 and Pigment Red 149, Pigment Violet 19, and Pigment Red. 122, Pigment Red 209, Pigment Red 202, Pigment Examples include quinacridone pigments such as Pigment Orange 48 and Pigment Orange 49, and phthalocyanine pigments such as Pigment Blue 15, Pigment Blue 16, Pigment Green 7 and Pigment Green 36.
  • Dispersants include methylene bisstearamide, polyacrylic acid, sodium polyacrylate, sodium carboxylate, ammonium polyacrylate, polyacrylic acid copolymer, sodium polycarboxylate, carboxylic acid copolymer, and sulfone. Any known copolymers such as acidic copolymers can be selected and used.
  • ⁇ Ultraviolet absorber As ultraviolet absorbers, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylthyl)phenol, 2-(2H-benzotriazol-2-yl)-4-(1 , 1,3,3-tetramethylbutyl)phenol, 2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], 2-(2H -benzotriazol-2-yl)-p-cresol, 2-(5-chloro-2H-benzotriazol-2-yl)-6-tert-butyl-4-methylphenol, 2-(4,6-diphenyl-1,3 ,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol,2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1
  • Light stabilizer examples include tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)butane-1,2,3,4-tetracarboxylate, tetrakis(2,2,6,6-tetramethyl-4- piperidyl) butane-1,2,3,4-tetracarboxylate, 1,2,3,4-butanetetracarboxylic acid, tetramethyl ester, reaction products with 1,2 ,2,6,6-pentamethyl-4-piperidinol and ⁇ , ⁇ ⁇ ', ⁇ '-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 1,2,3,4-butanetetracarboxylic acid, tetramethyl ester, reaction products with 2, 2,6,6-tetramethyl-4-piperidinol and ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-2,4,8,10-
  • Flame retardants include brominated polystyrene, ethylene bis(pentabromophenyl), ethylene bis(tetrabromophthalimide), pentabromobenzyl polyacrylate, tetrabromobisphenol A, condensed phosphate, ammonium polyphosphate, phosphinate, and Any known materials such as phosphate, melamine cyanurate, magnesium hydroxide, and boehmite can be used.
  • the flame retardant aid can be arbitrarily selected from known ones, such as diantimony trioxide, sodium antimonate, diantimony pentoxide, zinc borate, and hydrotalcite.
  • the deflection temperature under load is preferably 255°C or higher, more preferably 258°C or higher, even more preferably 260°C or higher, and even more preferably 262°C or higher.
  • the deflection temperature under load is determined by the content of glass fiber (G), the irregular shape ratio of glass fiber (G), and the mass ratio of the structural units derived from styrene and the sum of other structural units constituting the rubber-like elastic body (B). , the content of the rubber-like elastic body (B), etc. can be adjusted.
  • the deflection temperature under load is measured by a method based on method A of ISO 527-1, 2 (2020), and can be measured by the method described in Examples.
  • the MD reflow treatment shrinkage rate is preferably 0.10% or less, more preferably 0.08% or less. Further, the reflow treatment shrinkage rate of the TD is preferably 0.20% or less, more preferably 0.16% or less. Furthermore, the anisotropy (TD/MD) of the reflow treatment shrinkage rate is preferably 4.5 or less, more preferably 3.0 or less, even more preferably 2.2 or less, and 1 .8 or less is even more preferable. If the reflow treatment shrinkage rate in each direction and the anisotropy of the reflow treatment shrinkage rate are within the above ranges, it can be said that the dimensional stability at high temperatures is high.
  • a connector using the fiber-reinforced thermoplastic resin composition of the first invention When a connector using the fiber-reinforced thermoplastic resin composition of the first invention is used in a reflow soldering process, it has high dimensional stability at high temperatures, so dimensional changes and warping of the connector can be suppressed. In addition to preventing poor fitting with the wire harness connector, it is possible to suppress changes in the distance between the solder paste application portion of the board and the metal terminals of the connector, thereby preventing bonding defects.
  • the reflow treatment shrinkage rate in each direction and the anisotropy of the reflow treatment shrinkage rate can be adjusted by, for example, the content of the glass fiber (G) and the irregular shape ratio of the glass fiber (G).
  • the anisotropy of reflow treatment shrinkage rate refers to the dimensional change in MD of a test piece (MD reflow treatment shrinkage rate) and the TD dimensional change (TD/MD) before and after reflow soldering treatment. It is determined as the ratio (reflow processing shrinkage ratio of TD/reflow processing shrinkage ratio of MD) to the reflow processing shrinkage ratio of TD).
  • MD is the flow direction of the resin during molding
  • TD means the direction perpendicular to the flow direction.
  • the reflow treatment shrinkage rate in each direction in the first aspect of the present invention is measured using a test piece by the method described in the Examples.
  • test piece can be processed and measured in accordance with IEC60068-2-58 as described in the Examples.
  • test piece used for measuring the reflow treatment shrinkage rate in each direction for example, a square plate test piece measuring 80 mm x 80 mm x 2 mm thick can be used.
  • the SFL (Spiral Flow Length) when molded in a spiral flow mold with a channel thickness of 1 mm and a width of 10 mm and an injection pressure setting of 100 MPa is 100 mm.
  • the length is preferably at least 130 mm, more preferably at least 140 mm, even more preferably at least 150 mm.
  • the SFL is 100 mm or more, sufficient fluidity of the fiber-reinforced thermoplastic resin composition during molding can be ensured. Further, it is preferable that the SFL is 185 mm or less.
  • SFL can be adjusted, for example, by the content of glass fiber (G) and the weight average molecular weight of the styrenic polymer (A) having a syndiotactic structure.
  • SFL can be measured by the method described in Examples.
  • the tensile stress at break is preferably 110 MPa or more, more preferably 120 MPa or more, and even more preferably 130 MPa or more. Further, the tensile strain at break is preferably 1.0% or more, more preferably 1.2% or more, even more preferably 1.3% or more, and even more preferably 1.4% or more. When the tensile stress at break is 110 MPa or more and the tensile strain at break is 1.0% or more, the molded product obtained can have sufficient toughness.
  • the tensile breaking stress and the tensile breaking strain are, for example, the content of glass fiber (G), the mass ratio of the structural units derived from styrene and the sum of other structural units constituting the rubber-like elastic body (B), the rubber-like It can be adjusted by adjusting the content of the elastic body (B).
  • the tensile stress at break and the tensile strain at break can be measured by a method compliant with ISO 527-1, 2:2019, and can be measured by the method described in Examples.
  • the crystallization temperature is preferably 246°C or higher.
  • productivity can be improved when manufacturing a molded article using the fiber-reinforced thermoplastic resin composition of the first invention as a reflow-resistant resin material.
  • the crystallization temperature can be adjusted, for example, by the content and type of the crystal nucleating agent (C).
  • the crystallization temperature can be measured by the method described in Examples.
  • the first fiber-reinforced thermoplastic resin composition of the present invention comprises a styrenic resin having a syndiotactic structure (A), a rubbery elastic body (B), a crystal nucleating agent (C), and a glass fiber (G), If necessary, the modified polyphenylene ether (D), antioxidant (E), mold release agent (F), and other components are blended and kneaded to obtain a composition.
  • Blending and kneading are carried out by pre-mixing using commonly used equipment such as a ribbon blender, drum tumbler, Henschel mixer, etc., and then using a Banbury mixer, single screw extruder, twin screw extruder, multi-screw extruder, etc. This can be done by a method using Konida or the like.
  • the melt-kneaded fiber-reinforced thermoplastic resin composition of the first invention is preferably stored in the form of pellets and used as a reflow-resistant resin material.
  • reflow resistance means having sufficient reflow heat resistance to withstand the reflow soldering process, and reflow heat resistance depends on the deflection temperature under load and the above-mentioned reflow treatment shrinkage rate.
  • the first reflow-resistant resin material of the present invention is made of the above-mentioned fiber-reinforced thermoplastic resin composition.
  • the reflow-resistant resin material of the first invention is a fiber-reinforced thermoplastic resin composition containing a thermoplastic resin composition (T) and a glass fiber (G) having a flat cross section
  • the thermoplastic resin composition (T) contains 83 to 100 parts by mass of a styrenic polymer (A) having a syndiotactic structure with a weight average molecular weight of less than 230,000 and 0 to 17 parts by mass of a rubber-like elastic body (B).
  • the fiber-reinforced thermoplastic resin composition includes a fiber-reinforced thermoplastic resin composition in which the content of the glass fiber (G) is 33.0 to 65.0% by mass based on the total amount of.
  • the reflow soldering process involves filling holes (through holes) formed in the metal circuit part of a printed circuit board with solder paste, passing metal terminals such as connectors through the holes, and then heating and soldering in a reflow oven.
  • IMT Insertion Mount Technology
  • SMT Surface Mount Technology
  • surface mounting in particular involves soldering by placing metal terminals such as connectors on solder paste applied to the surface of a printed circuit board. Poor bonding may occur due to changes in the distance between metal terminals such as connectors and connectors.
  • the reflow-resistant resin material of the first aspect of the present invention is made of the above-mentioned fiber-reinforced thermoplastic resin composition, it has excellent heat resistance and dimensional stability at high temperatures. Therefore, the reflow-resistant resin material of the first aspect of the present invention can be suitably used in a reflow soldering process, and particularly has excellent dimensional stability in a reflow soldering process by surface mounting. Furthermore, it is more suitable to use the reflow-resistant resin material of the first aspect of the present invention as part of printed circuit boards, connectors, etc., since it is possible to suppress dimensional changes therein and prevent adhesion defects.
  • the reflow-resistant resin material of the first invention may contain other thermoplastic resins, etc., within a range that does not impair the effects of the first invention, but the reflow-resistant resin material of the first invention
  • the resin material consists essentially of the fiber reinforced thermoplastic resin composition described above.
  • the content of the above-mentioned fiber-reinforced thermoplastic resin composition in the reflow-resistant resin material of the first invention is preferably 90% by mass or more, more preferably 95% by mass or more. , more preferably 99% by mass or more.
  • the upper limit is not limited as long as it is 100% by mass or less, preferably 100% by mass, and may consist only of the above-mentioned fiber-reinforced thermoplastic resin composition.
  • the reflow-resistant resin material of the first invention has excellent heat resistance and dimensional stability at high temperatures, and therefore can be suitably used for molding a molded article.
  • the shape of the molded product is not particularly limited, and examples thereof include injection molded products, extrusion molded products, etc.
  • the resin member made of the reflow-resistant resin material of the first invention can be reflow-resistant. Since it can be suitably used in a soldering process, the reflow-resistant resin material of the first aspect of the present invention can be particularly suitably used for reflow soldering molded bodies and connectors.
  • the molded article for reflow soldering according to the first aspect of the present invention is made of the above-mentioned reflow-resistant resin material. Therefore, as mentioned above, it has excellent heat resistance and dimensional stability at high temperatures, so it is particularly suitable for use as a resin-metal composite consisting of the molded article for reflow soldering of the first aspect of the present invention and a metal member. Can be done.
  • the first resin-metal composite of the present invention is composed of the above-mentioned molded body for reflow soldering and a metal member.
  • the connector of the first aspect of the present invention is made of the resin-metal composite.
  • the molded article for reflow soldering, the resin-metal composite, and the connector of the first invention have excellent heat resistance and dimensional stability at high temperatures.
  • the metal member of the resin-metal composite of the first aspect of the present invention it is preferable to use at least one member selected from the group consisting of aluminum, stainless steel, copper, titanium, and alloys thereof. These metals can be selected depending on the intended use and physical properties, and it is more preferable to use copper or a copper alloy.
  • the shape of the metal member is not particularly limited as long as it can be joined to the molded body for reflow soldering, and may be, for example, flat, curved, rod-like, cylindrical, block-like, or the like. A structure made of a combination of these may also be used.
  • the shape of the joint surface of the metal member to be joined to the molded body for reflow soldering of the first aspect of the present invention is not particularly limited, and examples include a flat surface and a curved surface. On the other hand, in order to maintain bonding strength, it is more preferable to have a shape that makes stress concentration difficult.
  • the pins of the chip components of the connector of the first aspect of the present invention are passed through holes (through-holes) formed in the joint portion of the printed circuit board, and the pins are inserted into the holes.
  • the reflow soldering process is performed by "insertion mounting", in which the soldering is performed by heating in a reflow oven, or by applying solder paste to the bonding area on the printed circuit board where there are no holes, and performing the above-mentioned process.
  • a reflow soldering process using "surface mounting" in which the connector of the present invention is mounted and then heated and soldered in a reflow oven can be selected as appropriate.
  • the molded article for reflow soldering of the first aspect of the present invention has excellent heat resistance and dimensional stability at high temperatures. It is possible to prevent stress from being applied unevenly to one part, making it difficult for the joint to break.
  • the resin-metal composite consisting of a molded body for reflow soldering and a metal member according to the first aspect of the present invention, and the connector made of the resin-metal composite, are particularly suitable for the molded body in the reflow soldering process by "surface mounting.” It is possible to suppress misalignment and stress concentration at the bonded portion due to dimensional changes, and prevent adhesion failure. Therefore, the resin-metal composite of the first aspect of the present invention is preferably used in a reflow soldering process, and more preferably used in a surface mounting reflow soldering process.
  • the molded article for reflow soldering of the first invention has excellent heat resistance and dimensional stability at high temperatures, and therefore, the resin-metal composite of the first invention and the first invention
  • the connector of the invention can also be used in a low-silver-lead-free reflow soldering process using a low-silver-lead-free solder with a reduced amount of added silver that lowers the melting point of the lead-free solder.
  • the second resin-metal composite of the present invention is a resin-metal composite comprising a resin member made of a reinforced thermoplastic resin composition containing a thermoplastic resin composition (T2) and a glass filler (G2), and a metal member. and the difference (CTE TD - CTE M ) between the coefficient of linear expansion in TD (CTE TD ) of the resin member and the coefficient of linear expansion (CTE M ) of the metal member is 6.0 ⁇ 10 ⁇ 5 /°C or less .
  • the bending failure strain in a parallel flow weld test piece made of the reinforced thermoplastic resin composition (hereinafter also referred to as "bending failure strain of parallel flow weld”) is 1.15% or more.
  • the coefficient of linear expansion of a resin molded body reinforced with fibers etc. differs greatly between the flow direction (MD) of the resin during molding and the direction perpendicular to the resin flow (TD). It has a larger coefficient of linear expansion than MD.
  • the difference between the linear expansion coefficient of the resin member in the TD and the linear expansion coefficient of the metal member is the difference between the linear expansion coefficient in the MD and the linear expansion coefficient of the metal member.
  • This is particularly large compared to the difference in linear expansion coefficient of the member.
  • the present inventors set the difference (CTE TD - CTE M ) between the coefficient of linear expansion of the TD of the resin member (CTE TD ) and the coefficient of linear expansion (CTE M ) of the metal member to a certain value. It has been found that heat shock resistance can be improved by reducing the value below this range.
  • a parallel flow weld is a weld that is formed in a part where the flow direction of the resin runs in parallel during molding, and during a heat shock test (or when the environmental temperature changes), the flow direction of the resin member is It is considered that this material is easily affected by the expansion and contraction of TD.
  • parallel flow welds where the resin flow directions run parallel and merge during molding, are greatly affected by the expansion and contraction of the TD. Since the coefficient of linear expansion of the TD of the resin member is larger than that of the MD, it is thought that parallel flow welding of the resin-metal composite causes greater strain with the metal member, making the resin member more likely to be damaged. .
  • the second present invention reduces the difference (CTE TD - CTE M ) between the coefficient of linear expansion in TD (CTE TD ) of the resin member and the coefficient of linear expansion ( CTE M ) of the metal member to 6.0 ⁇ 10 -
  • CTE TD coefficient of linear expansion in TD
  • CTE M coefficient of linear expansion of the metal member
  • the difference (CTE TD - CTE M ) between the coefficient of linear expansion in TD of the resin member (CTE TD ) and the coefficient of linear expansion ( CTE M ) of the metal member is 6.0 ⁇ 10 ⁇ 5 /°C or less, preferably 5.9 ⁇ 10 ⁇ 5 /°C or less.
  • CTE TD - CTE M is 6.0 ⁇ 10 ⁇ 5 /° C. or less, strain between the resin member and the metal member can be reduced, and heat shock resistance can be increased.
  • the lower limit of CTE TD - CTE M is not particularly limited, but from the viewpoint of reducing the strain between the resin member and the metal member and suppressing the destruction of the resin metal composite, it is preferably 0/°C or higher. Yes, and more preferably 1.5 ⁇ 10 ⁇ 5 /°C or more, even more preferably from the viewpoint of achieving both the heat shock resistance of the resin metal composite and the elongation at break, moldability, and kneading stability of the resin member. is 2.0 ⁇ 10 ⁇ 5 /°C or more, more preferably 2.5 ⁇ 10 ⁇ 5 /°C or more.
  • the linear expansion coefficient can be measured by the method described in Examples.
  • the linear expansion coefficient (CTE TD ) of the resin member depends on the combination with the metal member, from the viewpoint of reducing CTE TD - CTE M and improving the heat shock resistance of the resin metal composite, it is preferably 8. It is 5 ⁇ 10 ⁇ 5 /°C or less, more preferably 8.0 ⁇ 10 ⁇ 5 /°C or less.
  • the lower limit of CTE TD is not particularly limited, but from the viewpoint of reducing strain between the resin member and metal member and suppressing destruction of the resin-metal composite, it is preferably 2.0 ⁇ 10 ⁇ 5 /°C or more. It is.
  • the linear expansion coefficient of TD (CTE TD ) of the resin member can be adjusted by the type and content of the glass filler (G2) contained in the resin member.
  • the present inventors have found that by using glass fiber or glass flakes having a flat cross section as the glass filler (G2) in the resin member, the CTE TD tends to be reduced. Furthermore, it has been found that by increasing the content of glass filler (G2) in the resin member, the CTE TD tends to become smaller.
  • the coefficient of linear expansion (CTE M ) of the metal member is not particularly limited, but is preferably 0.5 ⁇ 10 ⁇ 5 to 3.0 ⁇ 10 ⁇ 5 /°C, more preferably 1.0 ⁇ 10 ⁇ 5 ⁇ 2.8 ⁇ 10 ⁇ 5 /°C, more preferably 1.5 ⁇ 10 ⁇ 5 – 2.5 ⁇ 10 ⁇ 5 /°C.
  • the coefficient of linear expansion (CTE M ) of a metal member can be adjusted depending on the type of metal used for the metal member.
  • the bending failure strain in the parallel flow weld test piece made of the reinforced thermoplastic resin composition is 1.15% or more, Preferably it is 1.20% or more.
  • the bending fracture strain of the parallel flow weld is 1.15% or more, stress between the resin member and the metal member can be relaxed, and heat shock resistance can be improved.
  • the upper limit of the bending fracture strain of the parallel flow weld is not particularly limited, but from the viewpoint of achieving both the heat shock resistance of the resin metal composite and the elastic modulus and heat resistance of the resin member, 2. 00% or less.
  • the bending strain at break of the parallel flow weld can be adjusted by adjusting the contents of the rubber-like elastic body (B) and the mold release agent (F) contained in the resin member. By increasing the content of the rubber-like elastic body (B) contained in the resin member, the bending fracture strain of the parallel flow weld tends to increase.
  • the bending fracture strain of a parallel flow weld can be derived using a test piece obtained from a molded article for measurement in which a parallel flow weld made of a reinforced thermoplastic resin composition is formed. Measured using a parallel flow weld test piece made of a reinforced thermoplastic resin composition with a width of 10 mm, a length of 80 mm, and a thickness of 2 mm, cut out at a position 50 to 60 mm in MD from the gate part of the measurement molded body. . Specifically, the measurement is performed using a test piece cut out from the cutout part 11 of the test piece for measuring the bending fracture strain of parallel flow weld from the measurement molded body 1 shown in FIG.
  • the measurement molded body 1 is produced by a measurement molded body mold 2 shown in FIGS. 2 and 3.
  • the mold 2 is provided with a partition wall 25, as shown in FIG.
  • the reinforced thermoplastic resin composition introduced from the resin input port 24 is divided into flow paths A and B and flows within the cavity 23 by the partition wall 25 .
  • the reinforced thermoplastic resin composition that has flowed separately into channels A and B merges at a resin merging section 26 within the cavity 23, forming a weld section.
  • a counterflow weld is formed in the weld portion near the partition wall 25, since the flows of the resins that merge are opposite to each other.
  • the bending rupture strain of the parallel flow weld is measured in accordance with ISO178:2010 using a parallel flow weld test piece made of the above-mentioned reinforced thermoplastic resin composition. is measured by the method described in Examples.
  • the resin member is made of a reinforced thermoplastic resin composition containing a thermoplastic resin composition (T2) and a glass filler (G2).
  • thermoplastic resin composition (T2) includes 75 to 94 parts by mass of a styrenic polymer (A) having a syndiotactic structure and a weight average molecular weight of less than 230,000; It is preferable to include a styrene resin composition (S2) consisting of 6 to 25 parts by mass of the rubbery elastic body (B).
  • the styrenic polymer (A) having syndiotactic structure is a styrenic resin having a highly syndiotactic structure. , those similar to SPS (A) exemplified in the above-mentioned first invention are preferred.
  • SPS (A) includes polystyrene, poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tert-butylstyrene), poly(p-chlorostyrene), poly(m-chlorostyrene) , poly(p-fluorostyrene), and a copolymer of styrene and p-methylstyrene.
  • One or more types selected from copolymers with methylstyrene are more preferred, polystyrene and copolymers of styrene and p-methylstyrene are even more preferred, and polystyrene is most preferred.
  • SPS (A) preferably has a melt flow rate (MFR) of 8 g/10 minutes or more, more preferably 10 g/10 minutes or more when measured at a temperature of 300°C and a load of 1.2 kg. More preferably, it is 13 g/10 minutes or more, preferably 50 g/10 minutes or less, and more preferably 35 g/10 minutes or less. If the MFR value of SPS (A) is 8 g/10 minutes or more, there is no problem with the fluidity of the resin during molding of the resin metal composite, and if it is 50 g/10 minutes or less, the resin metal composite can have sufficient strength and can improve heat shock resistance.
  • MFR melt flow rate
  • the weight average molecular weight of SPS (A) is preferably less than 230,000, more preferably less than 200,000, and still more preferably less than 190,000. , more preferably less than 185,000, more preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more. If the weight average molecular weight of SPS (A) is less than 230,000, there will be no problem with the fluidity of the resin during molding of the resin metal composite, and if it is 10,000 or more, the strength of the resin metal composite will be improved. can be made sufficient, and heat shock resistance can be increased. Examples of the method for adjusting the weight average molecular weight of SPS (A) include the same method as for SPS (A) exemplified in the above-mentioned first invention.
  • the content of SPS (A) in 100 parts by mass of the styrene resin composition (S2) is preferably 75 to 94 parts by mass, more preferably 77 to 93 parts by mass, and still more preferably 78 to 92 parts by mass. parts, and even more preferably 79 to 91 parts by mass.
  • the content of SPS (A) is within the above range, the heat shock resistance of the resin-metal composite can be increased.
  • SPS (A) can be produced by polymerizing styrene monomer etc. in the same manner as the method exemplified in the first invention described above.
  • thermoplastic resin composition (T2) contains the rubber-like elastic body (B), so that the toughness of the resin member can be improved, especially in parallel flow welds.
  • the bending strain at break can be increased, and the heat shock resistance of the resin-metal composite can be improved.
  • the rubber-like elastic body (B) is preferably the same as the rubber-like elastic body (B) exemplified in the first invention described above.
  • the rubber-like elastic body (B) is more preferably a styrene-butadiene block copolymer (SBR), a hydrogenated styrene-butadiene block copolymer (SEB), a styrene-butadiene-styrene block copolymer (SBS), hydrogen Added styrene-butadiene-styrene block copolymer (SEBS), styrene-isoprene block copolymer (SIR), hydrogenated styrene-isoprene block copolymer (SEP), styrene-isoprene-styrene block copolymer (SIS) , hydrogenated styrene-isoprene-styrene block copolymer (SEPS
  • SBS hydrogenated styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SIR hydrogenated styrene-isoprene block copolymer
  • SEP hydrogenated styrene-isoprene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • SBS hydrogenated styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SIS hydrogenated styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-
  • Mass ratio of the structural units derived from styrene and the total structural units derived from dienes, hydrogenated dienes, and olefins, which constitute the rubbery elastic body (B) [(styrene)/(dienes, hydrogenated dienes, olefins) )] is preferably 20/80 to 70/30, more preferably 25/75 to 60/40, even more preferably 25/75 to 45/55.
  • the styrene content of the rubbery elastic body (B) is preferably in the range of 25 to 60% by mass, more preferably in the range of 25 to 45%.
  • the content of the rubbery elastic body (B) in 100 parts by mass of the styrene resin composition (S2) is preferably 6 to 25 parts by mass, more preferably 7 to 20 parts by mass, and even more preferably 8 to 15 parts by mass. Parts by weight, more preferably 8 to 12 parts by weight.
  • the content of the rubber-like elastic body (B) is within the above range, the heat shock resistance of the resin-metal composite can be increased.
  • the thermoplastic resin composition (T2) preferably further contains a crystal nucleating agent (C).
  • the crystallization temperature can be increased, a wide range of temperature conditions for crystallization can be set, and productivity can be improved.
  • the content of the crystal nucleating agent (C) is preferably 0.6 to 2.0 parts by mass, more preferably 0.7 to 1.8 parts by mass, and 0.6 to 2.0 parts by mass, more preferably 0.7 to 1.8 parts by mass. More preferably 8 to 1.5 parts by mass.
  • the content of the crystal nucleating agent (C) is 0.6 parts by mass or more, it is possible to set a wide range of temperature conditions for crystallization, and productivity can be improved. Further, by setting the amount to 2.0 parts by mass or less, the amount of gas components generated during molding can be suppressed, and a good appearance can be obtained.
  • the crystal nucleating agent (C) is preferably the same as the crystal nucleating agent (C) exemplified in the first invention described above. Among these, from the viewpoint of increasing the crystallization temperature, it is preferable to use a lithium salt of an organic compound of phosphoric acid or phosphorous acid; It is more preferable to use lithium (butylphenyl)]].
  • the thermoplastic resin composition (T2) preferably further contains modified polyphenylene ether (D).
  • the modified polyphenylene ether (D) in the thermoplastic resin composition (T2), the interfacial strength between the thermoplastic resin composition (T2) and the glass filler (G) described below can be increased, so that the structure of the resin part As a result, the heat shock resistance of the resin-metal composite can be improved.
  • the content of the modified polyphenylene ether (D) is preferably 0.1 to 15.0 parts by mass, based on 100 parts by mass of the styrene resin composition (S2).
  • thermoplastic resin composition (T2) More preferably 0.1 to 10.0 parts by weight, still more preferably 0.1 to 6.0 parts by weight.
  • D modified polyphenylene ether
  • T2 thermoplastic resin composition
  • G glass filler
  • the modified polyphenylene ether (D) used in the resin-metal composite of the second invention has compatibility with SPS (A) and improves compatibility with other components. ) It is preferable to have a polar group that can react with. In this way, modified polyphenylene ether (D) is blended for the purpose of improving the compatibility between SPS (A) and other components, especially glass filler (G2), and improving the interfacial strength between each component. . More specifically, the modified polyphenylene ether (D) is preferably acid-modified polyphenylene ether.
  • the polar group that can react with the glass filler (G2) refers to a functional group that can react with the polar group that the glass filler (G2) has, and specific examples include the functional groups exemplified in the first invention described above. Those similar to the above are preferred, and carboxylic acid groups are more preferred.
  • the modified polyphenylene ether (D) fumaric acid-modified polyphenylene ether and maleic anhydride-modified polyphenylene ether are preferred, and fumaric acid-modified polyphenylene ether is more preferred.
  • the amount of modification (modifier content) of the modified polyphenylene ether (D) is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, even more preferably 0.3 to 10% by mass. It is mass %, and even more preferably 0.5 to 5.0 mass %.
  • the amount of modification is within the above range, the strength of the interface between the thermoplastic resin composition (T2) and the glass filler (G2) described below can be increased, so that the strength of the resin part as a structure can be increased.
  • examples of the polyphenylene ether those similar to the polyphenylene ethers exemplified in the first invention described above are preferred.
  • examples of the modifier used for modifying polyphenylene ether include compounds having an ethylenic double bond and a polar group in the same molecule, and specifically, the compounds exemplified in the first invention described above may be mentioned.
  • the same modifiers as the modifiers can be mentioned, and maleic anhydride, fumaric acid, and glycidyl methacrylate are particularly preferably used, and fumaric acid is more preferably used.
  • the above various modifiers may be used alone or in combination of two or more.
  • the modified polyphenylene ether (D) is obtained by reacting the polyphenylene ether with a modifier.
  • a modifier there is no particular restriction on the method of modification, and methods similar to those exemplified in the first invention described above may be used, preferably melt modification and solution modification, and more preferably melt modification. That is, the modified polyphenylene ether (D) is preferably a modified polyphenylene ether produced by melt modification or a modified polyphenylene ether produced by solution modification, and more preferably a modified polyphenylene ether produced by melt modification.
  • the various specific conditions for melt modification are preferably the same various conditions as those for melt modification exemplified in the first invention described above.
  • thermoplastic resin composition (T2) further contains an antioxidant (E) from the viewpoint of heat resistance.
  • an antioxidant (E) it is preferable to use one or more selected from phenolic compounds, phosphorus compounds, and sulfur compounds, and from the viewpoint of heat resistance, phenolic compounds are more preferable.
  • phenolic antioxidants include those similar to the phenolic antioxidants exemplified in the first invention, particularly pentaerythritol tetrakis ⁇ 3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionate ⁇ is preferred.
  • phosphorus-based antioxidants include monophosphites and diphosphites such as tris(2,4-di-tert-butylphenyl) phosphite and tris(mono- and di-nonylphenyl) phosphite.
  • sulfur-based antioxidants examples include 2,2-bis ⁇ [3-(dodecylthio)-1-oxopropoxy]methyl ⁇ propane-1,3-diylbis[3-(dodecylthio)propinate], di(tridecyl)3, Examples include 3'-thiodipropinate and 3,3'-thiodipropinate.
  • the content of the antioxidant (E) with respect to 100 parts by mass of the styrenic resin composition (S2) is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more. It is preferably 0.15 parts by mass or more, and more preferably 0.15 parts by mass or more. Further, it is preferably 2.0 parts by mass or less, more preferably 1.0 parts by mass or less, and even more preferably 0.7 parts by mass or less. If the amount of antioxidant is within the above range, the heat discoloration resistance during processing will be good, long-term heat resistance can be obtained, and bleeding of the antioxidant can be suppressed, which may adversely affect the appearance. do not have.
  • the thermoplastic resin composition (T2) further contains a mold release agent (F).
  • the mold release agent (F) can be arbitrarily selected from known ones such as polyethylene wax, silicone oil, and long-chain carboxylic acids.
  • the content of the mold release agent (F) is preferably 0.05 to 3.0 parts by mass, and preferably 0.1 to 3.0 parts by mass, based on 100 parts by mass of the styrene resin composition (S2). It is more preferably 2.0 parts by weight, even more preferably 0.1 to 1.5 parts by weight, even more preferably 0.1 to 1.0 parts by weight.
  • the reinforced thermoplastic resin composition contains the glass filler (G2), thereby reducing CTE TD and CTE TD - CTE M , thereby improving the heat shock resistance of the resin metal composite. can be improved.
  • the glass filler (G2) is preferably one or more types selected from glass fibers and glass flakes having a flat cross section. When the glass filler (G2) is one or more selected from glass fibers and glass flakes having a flat cross section, the coefficient of linear expansion of the resin member can be easily reduced.
  • the glass filler (G2) selected from the above it is possible to effectively reduce not only the linear expansion coefficient of MD but also the linear expansion coefficient of TD ( CTE TD ) . It is preferable because it can make it smaller and improve the heat shock resistance of the resin-metal composite.
  • the flat shape refers to a shape in which the shape ratio of the glass fibers is greater than 1.
  • the irregular shape ratio refers to the ratio of the major axis to the minor axis of a cross section perpendicular to the fiber axis of a glass fiber having a flat cross section, that is, major axis/breadth axis.
  • the major axis is the straight line distance of the part that passes through the center of gravity and is the longest distance between two points on the outer edge of the cross section in a cross section perpendicular to the fiber axis
  • the minor axis is the straight line distance that passes through the center of gravity and is the longest distance between two points on the outer edge of the cross section. This is the straight-line distance between two points where a straight line perpendicular to and the outer edge of the cross section intersect.
  • the shape ratio of the glass fiber having a flat cross section is preferably 2.0 to 6.0 from the viewpoint of reducing CTE TD - CTE M and improving the heat shock resistance of the resin metal composite. It is more preferably from 3.0 to 5.0, and even more preferably from 3.5 to 4.5. Further, the short axis is preferably 3 ⁇ m to 10 ⁇ m, more preferably 5 ⁇ m to 8 ⁇ m.
  • the long axis and short axis of the glass fibers are both number averages, and are calculated as the number average by measuring 50 or more arbitrarily selected glass fibers by performing image analysis using a digital microscope.
  • the fiber diameter of the glass fiber having a flat cross section is preferably 10 ⁇ m or more, and 10.5 ⁇ m or more from the viewpoint of reducing CTE TD - CTE M and improving the heat shock resistance of the resin metal composite. It is more preferable that it is, it is still more preferable that it is 11 ⁇ m or more, and even more preferably that it is 12 ⁇ m or more. Further, the fiber diameter of the glass fiber having a flat cross section is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, from the viewpoint of ensuring fluidity of the reinforced thermoplastic resin composition during molding.
  • the fiber diameter of a glass fiber having a flat cross section means the diameter of a circle obtained by converting a cross section perpendicular to the fiber axis into a circle having the same area as the cross section.
  • the fiber diameter of glass fibers is a number average, and is calculated by measuring 50 or more arbitrarily selected glass fibers by performing image analysis using a digital microscope.
  • the fiber length of the glass fiber having a flat cross section is preferably 1 to 50 mm, and preferably 1.5 to 15 mm, from the viewpoint of ensuring fluidity and handling of the reinforced thermoplastic resin composition during molding. is more preferable, and even more preferably 2 to 8 mm. Further, it is preferable that the fiber length of the glass fiber having a flat cross section is 300 to 600 ⁇ m in the resin composition pellet due to breakage during extrusion and kneading.
  • the fiber length of glass fibers is a number average, and is calculated by measuring 50 or more arbitrarily selected glass fibers by performing image analysis using a digital microscope.
  • the glass flakes are preferably scaly particles. Note that the term "scaly” refers to a flat particle shape with an average thickness smaller than the average breadth.
  • CTE TD can be made small, so CTE TD - CTE M can be made small, and the heat shock resistance of the resin-metal composite can be improved.
  • the aspect ratio between the average major axis and the average minor axis (average major axis/average minor axis) of the glass flakes is preferably 3 from the viewpoint of reducing CTE TD - CTE M and improving the heat shock resistance of the resin metal composite. It is .0 or less, more preferably 2.0 or less, still more preferably 1.6 or less. Further, the aspect ratio between the average major axis and the average thickness of the glass flakes (average major axis/average thickness) is preferably set from the viewpoint of reducing CTE TD - CTE M and improving the heat shock resistance of the resin metal composite. It is 5 or more, more preferably 10 or more, even more preferably 30 or more.
  • the average major axis of the glass flakes is preferably 1000 ⁇ m or less, more preferably 1 to 500 ⁇ m, and even more preferably 1 to 200 ⁇ m, from the viewpoint of ensuring fluidity and handling of the reinforced thermoplastic resin composition during molding. be. Further, the average minor axis of the glass flakes is preferably 1000 ⁇ m or less, more preferably 1 to 500 ⁇ m, even more preferably 1 ⁇ 200 ⁇ m.
  • the average major axis, average minor axis, and average thickness of the glass flakes are all number averages, and are measured by performing image analysis using a digital microscope on 50 or more arbitrarily selected glass flakes. Calculated.
  • the glass filler (G2) is preferably surface-treated with a coupling agent in order to improve its adhesion with the SPS (A), and is preferably treated with a silane-based coupling agent or a titanium-based coupling agent. It is more preferable that the resin be treated with a silane coupling agent, and even more preferable that it be treated with a silane coupling agent from the viewpoint of compatibility with the resin component.
  • silane coupling agents include those similar to the silane coupling agents exemplified in the first invention described above, such as ⁇ -aminopropyltrimethoxysilane, N- ⁇ -(aminoethyl )- ⁇ -Aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and other aminosilanes and epoxysilanes are preferred.
  • titanium-based coupling agent include those similar to the titanium-based coupling agents exemplified in the first invention described above, and isopropyl tri(N-amidoethyl, aminoethyl) titanate is preferred.
  • the content of the glass filler (G2) in the reinforced thermoplastic resin composition in the second invention is preferably within 100% by mass of the total of the thermoplastic resin composition (T2) and the glass filler (G2).
  • the amount is 20.0 to 65.0% by weight, more preferably 23.0 to 55.0% by weight, and even more preferably 25.0 to 45.0% by weight.
  • CTE TD can be reduced
  • CTE TD - CTE M can be reduced
  • the heat shock resistance of the resin metal composite can be improved.
  • the content of the glass filler (G2) is 65.0% by mass or less, fluidity of the reinforced thermoplastic resin composition during molding can be ensured.
  • any other components may be added to the reinforced thermoplastic resin composition in the second aspect of the present invention as long as they do not impede the object of the present invention.
  • Other components include optional components such as colorants, crosslinking agents, crosslinking aids, dispersants, plasticizers, antifouling agents, ultraviolet absorbers, light stabilizers, flame retardants, flame retardant aids, and antistatic agents. It can contain agents, etc. Specific examples of colorants, dispersants, ultraviolet absorbers, light stabilizers, flame retardants, and flame retardant aids include the colorants, dispersants, ultraviolet absorbers, and light stabilizers exemplified in the first invention described above. and the same as flame retardants, flame retardants and flame retardant aids.
  • the reinforced thermoplastic resin composition includes a styrenic resin (A) having a syndiotactic structure, a rubbery elastic body (B), and a glass filler (G2), as necessary. Accordingly, the above crystal nucleating agent (C), modified polyphenylene ether (D), antioxidant (E), mold release agent (F) and other components are blended and kneaded to obtain a composition.
  • Blending and kneading are carried out by pre-mixing using commonly used equipment such as a ribbon blender, drum tumbler, Henschel mixer, etc., and then using a Banbury mixer, single screw extruder, twin screw extruder, multi-screw extruder, etc. This can be done by a method using Konida or the like.
  • the metal member of the resin-metal composite of the second invention is preferably at least one member selected from the group consisting of aluminum, stainless steel, copper, titanium, and alloys thereof; More preferably, at least one of the following is more preferable. These metals can be selected depending on the intended use and physical properties, and it is more preferable to use copper or a copper alloy.
  • the shape of the metal member is not particularly limited, and may be, for example, a flat plate, a curved plate, a rod, a cylinder, a block, or the like. A structure made of a combination of these may be used.
  • the resin-metal composite of the second aspect of the present invention is resistant to damage such as cracking even when exposed alternately to high-temperature environments and low-temperature environments, and has excellent durability, so-called heat shock resistance. Therefore, for example, parts that integrate dissimilar materials such as metal and resin are exposed to alternating high-temperature and low-temperature environments, mainly in the fields of electronics and electrical machinery, automobiles, and home appliances. It can be used in harsh environments such as As for the operating temperature range, for example, it can be used in a high temperature environment of 110°C or more and 150°C or less, and a low temperature environment of -50°C or more and -30°C or less, with a temperature difference of 140°C or more, or even 160°C or more.
  • the resin-metal composite of the second invention is used for terminal blocks and busbar members used in control circuit wiring of automotive lithium-ion batteries, electric vehicles, etc., panels such as switchboards, distribution boards, and control boards. It can be used as a terminal block and bus bar member used inside a box, a terminal block and bus bar member used inside a relay box for electric wires used in a large machine, a solenoid valve, etc.
  • the raw materials used in the examples and comparative examples are as follows.
  • ⁇ SPS-13 Syndiotactic polystyrene resin, weight average molecular weight: 180,000, MFR: 13 g/10 min, manufactured by Idemitsu Kosan Co., Ltd.
  • SPS-09 Syndiotactic polystyrene resin, weight average molecular weight: 200,000, MFR: 9 g/10 min, manufactured by Idemitsu Kosan Co., Ltd.
  • SPS-06 Syndiotactic Chic polystyrene resin, weight average molecular weight: 230,000 to 250,000, MFR: 6 g/10 min, manufactured by Idemitsu Kosan Co., Ltd.
  • ⁇ NA-11 ADEKA STAB NA-11, Sodium-2,2'-methylenebis(4,6-di-tert-butylphenyl) phosphate, manufactured by ADEKA Co., Ltd.
  • D Modified polyphenylene ether
  • E Modified polyphenylene ether
  • E Modified polyphenylene ether
  • E Modified polyphenylene ether
  • E Modified polyphenylene ether
  • E Modified polyphenylene ether
  • E ⁇ Antioxidant
  • Irganox1010 Irganox1010, pentaerythritol tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]
  • BASF Corporation ⁇ Release agent (F)> ⁇ KF-53: Methylphenyl silicone oil, manufactured by Shin-Etsu Silicone Co., Ltd.
  • ⁇ 3J-820 CSG 3J-820, cross section: flat shape , fiber diameter: 10.5 ⁇ m (breadth diameter: 5 ⁇ m, irregularity ratio: 4), fiber length: 3 mm, manufactured by Nitto Boseki Co., Ltd., T-249-FGF: ECS 03 T-249-FGF, cross section: flat shape (short Diameter: 7 ⁇ m, irregularity ratio: 4), fiber length: 3 mm, manufactured by Nippon Electric Glass Co., Ltd.
  • Examples 1-1 to 1-14, Comparative Examples 1-1 to 1-11 Manufacture of fiber reinforced thermoplastic resin composition
  • Each component other than glass fiber (G) was blended in the proportions shown in Tables 1 and 2, and dry blended using a Henschel mixer.
  • the glass fibers (G) were side-fed at a screw rotation speed of 220 rpm and a barrel temperature of 270 to 290°C at the ratios listed in Tables 1 and 2. While doing so, the resin composition was kneaded to produce pellets.
  • the obtained pellets were dried at 120° C. for 5 hours using a hot air dryer to obtain pellets of a fiber-reinforced thermoplastic resin composition. Evaluation was performed using the obtained pellets of the fiber-reinforced thermoplastic resin composition.
  • SFL Spiral Flow Length
  • the SFL (unit: mm) of the obtained fiber-reinforced thermoplastic resin composition was measured using an injection molding machine MD100Xi2.7 (manufactured by Niigata Machine Techno Co., Ltd.).
  • the injection conditions during the measurement were a cylinder temperature of 290° C., a mold temperature of 150° C., an injection pressure setting of 100 MPa, and an Archimedean spiral-shaped spiral flow mold with a channel thickness of 1 mm and width of 10 mm was used.
  • the time during which the peak temperature exceeds 260°C and 255°C was set to 25 seconds, and the reflow process was performed. Measure the dimensional changes in the resin flow direction (MD) and the direction perpendicular to the resin flow direction (TD) of the test piece before and after reflow treatment, and calculate the reflow treatment shrinkage rate in MD and the reflow treatment shrinkage rate in TD. I asked for it. Further, the anisotropy of the reflow shrinkage rate (TD/MD) was determined from the MD reflow process shrinkage rate and the TD reflow process shrinkage rate from the following formula.
  • Crystallization Temperature Crystallization temperature was measured using differential scanning calorimetry DSC8500 (manufactured by PerkinElmer, Inc.). The obtained pellets of the fiber-reinforced thermoplastic resin composition were sealed in an aluminum pan, heated from room temperature to 300°C at a rate of 20°C/min under a nitrogen gas atmosphere, held at 300°C for 1 minute, and then heated. The temperature at the top of the crystallization peak measured by lowering the temperature to room temperature at a rate of 20° C./min was defined as the crystallization temperature. The higher the crystallization temperature is, the wider the temperature conditions for crystallization can be set, and the productivity can be improved. The results are shown in Tables 1 and 2.
  • the fiber-reinforced thermoplastic resin composition of the first invention has excellent heat resistance and dimensional stability at high temperatures. For this reason, the fiber-reinforced thermoplastic resin composition of the present invention can be particularly suitably used as a reflow-resistant resin material.
  • Example of the resin metal composite of the second invention Examples 2-1 to 2-6, Comparative Examples 2-1 to 2-10
  • Each component other than the glass filler (G2) was blended in the proportions shown in Tables 3 and 4, and dry blended using a Henschel mixer.
  • the glass filler (G2) was side-fed at a screw rotation speed of 250 rpm and a barrel temperature of 290° C. at the ratios shown in Tables 3 and 4.
  • pellets were produced.
  • the obtained pellets were dried at 120° C. for 5 hours using a hot air dryer to obtain pellets of a reinforced thermoplastic resin composition. Evaluation was performed using pellets of the obtained reinforced thermoplastic resin composition.
  • the size of the test piece was 4 mm x 4 mm x 10 mm.
  • CTE TD coefficient of linear expansion in TD
  • TMA7100 thermomechanical analyzer (manufactured by Hitachi High-Tech Corporation)
  • TMA7100 Thermomechanical analyzer (manufactured by Hitachi High-Tech Corporation, TMA7100)
  • TMA7100 Thermomechanical analyzer (manufactured by Hitachi High-Tech Corporation, TMA7100)
  • ⁇ Measurement mode Compression ⁇ Measurement temperature: -60 to 270°C
  • Heating temperature 5°C/min
  • ⁇ Evaluation range -40 to 120°C
  • CTE M Coefficient of linear expansion of metal members
  • the coefficient of linear expansion (CTE M ) of the metal member was measured in accordance with JIS Z2285:2003. Note that the linear expansion coefficient (CTE M ) of the metal member (made of stainless steel (SUS304)) used in the example was 1.73 ⁇ 10 ⁇ 5 /°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

熱可塑性樹脂組成物(T)と扁平形状の断面を有するガラス繊維(G)とを含む繊維強化熱可塑性樹脂組成物であって、熱可塑性樹脂組成物(T)が、特定の構成を有するスチレン系樹脂組成物(S)100質量部及び結晶核剤(C)0.6~2.0質量部を含み、熱可塑性樹脂組成物(T)とガラス繊維(G)との合計に対する前記ガラス繊維(G)含有量が33.0~65.0質量%である、繊維強化熱可塑性樹脂組成物、並びに、熱可塑性樹脂組成物(T2)とガラスフィラー(G2)とを含む強化熱可塑性樹脂組成物からなる樹脂部材と、金属部材を含む、樹脂金属複合体であって、樹脂部材のTDの線膨張係数と金属部材の線膨張係数の差が6.0×10-5/℃以下であり、強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみが1.15%以上である、樹脂金属複合体。

Description

繊維強化熱可塑性樹脂組成物及び樹脂金属複合体
 本発明は、繊維強化熱可塑性樹脂組成物及び該樹脂組成物からなる耐リフロー性樹脂材料に関し、詳しくはシンジオタクチックポリスチレン樹脂組成物及び該樹脂組成物からなる耐リフロー性樹脂材料に関する。
 また、本発明は、樹脂金属複合体に関し、詳しくは、シンジオタクチックポリスチレン樹脂組成物及び金属部材を含む樹脂金属複合体に関する。
 従来、電子部品や電装部品を基板等に実装させる方法として、所定の場所に予めはんだペーストが点着された部材上に電子部品等を仮固定した後、この部材を赤外線、熱風等の手段により加熱してはんだを溶融させて電子部品等を固定する方法であるリフロー法が採用されている。リフロー法は基板表面における電子部品等の実装密度を向上させることができる。
 近年、電子機器分野や自動車の電装部品分野における表面実装技術の発展に伴って、実装密度に優れるリフロー法が普及しつつある。また、昨今の環境に対する意識の高まりから鉛フリーリフローはんだが主流となっているが、銀の価格高騰により鉛フリーはんだ融点を低下させる銀の添加量を低減した、低銀鉛フリーはんだが注目されている。ここで、電子部品を固定させる基板やコネクタ、ハウジング等に用いる樹脂には、低銀鉛フリーリフローはんだ工程に耐える耐熱性が要求される。
 低銀鉛フリーリフローはんだ付け工程に対応できる耐熱性を持つ樹脂としては、実用上は液晶ポリマー、ポリフェニレンサルフィド及び芳香族ポリアミド等が挙げられる。しかし、比重の大きさや、吸水による寸法安定性に劣る等の理由から、電子機器や自動車の電装部品用途において必ずしも適してはいない。
 シンジオタクチック構造を有するスチレン系重合体が優れた機械的強度、耐熱性、電気特性、吸水寸法安定性及び耐薬品性等を有することは既に知られていて、多くの用途が期待されている。中でも、シンジオタクチック構造を有するスチレン系重合体の優れた耐薬品性、耐熱性、電気特性及び吸水寸法安定性を活かして、電子機器、車載・電装部品、トランス・コイルパワーモジュール、リレー、センサー等において注目を集めている。
 例えば、特許文献1には、主としてシンジオタクチック構造を有するスチレン重合体、種々の重合体、熱可塑性樹脂及び/又はゴム状弾性体、繊維強化剤、並びに有機充填剤又は無機充填剤を含む、熱可塑性樹脂組成物が開示されている。
 また、引用文献2には、示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満である、シンジオタクチック構造を有するスチレン系樹脂が開示されている。
 また、電子・電気機械分野、自動車分野、家庭電化製品分野を中心に、異種材料である金属と樹脂とを一体化させる技術が開発されている。前記の各分野の製品は、使用状況や使用環境により、高温環境下と低温環境下とに交互に曝されるような、過酷な環境下で用いられること場合が多い。そのため、前記の各分野で用いられる材料としては、高温環境下と低温環境下とに交互の曝されても、割れ等の破損が発生しない、耐久性、いわゆる耐ヒートショック性が求められる。
 例えば引用文献3には、金属等のインサート部材と、ポリアリーレンサルファイド系樹脂、無機充填剤及びオレフィン系共重合体を含有する樹脂組成物とを有するインサート成形品が開示されている。
 また、特許文献4には、金属等のインサート部材と、ポリアリーレンサルファイド系樹脂、繊維状無機充填剤、非繊維状無機充填剤、及びオレフィン系共重合体を含有する樹脂組成物とを有するインサート成形体が開示されている。
 また、特許文献5には、ポリアリーレンサルファイド樹脂、扁平な断面形状を有する繊維状強化剤及び熱可塑性エラストを配合した樹脂組成物と、金属等とをインサート成形してなるインサート成形品が開示されている。
特開2004-155928号公報 国際公開第2019/107526号 国際公開第2019/208706号 特開2020-109135号公報 特開2005-161693号公報
 特許文献1では特定のシンジオタクチック構造を有するスチレン系重合体を含む熱可塑性樹脂組成物を開示し、機械的強度に優れるとしている。しかしながら、リフローはんだ付け工程では基板やコネクタなどを構成する樹脂部材が高温に晒されることとなることから、特許文献1の熱可塑性樹脂組成物を樹脂部材に用いた場合では、「耐リフロー性」の面では未だ十分とはいえなかった。
 また、特許文献2では特定の条件下で求められる吸熱量が特定の割合である、シンジオタクチック構造を有するスチレン系重合体を開示している。しかしながら、リフローはんだ付け工程では樹脂部材が高温に晒されることとなることから、樹脂部材の変形が起こりやすく、十分な性能を発揮できない場合があった。そのため、単に特定の熱的特性を有する特許文献2のシンジオタクチック構造を有するスチレン系樹脂のみでは、リフローはんだ付け工程の面では、実用性が十分とはいえない。また、特許文献2では特定の樹脂組成物についても開示されているが、これらの組成物においても近年の電子機器分野や自動車の電装部品分野における表面実装技術(SMT:Surface mount technology)に適用する樹脂部材としては、特に耐熱性の面から十分とはいえなかった。
 本発明における第一の課題は、優れた耐熱性及び高温下における寸法安定性を有する、繊維強化熱可塑性樹脂組成物及び該樹脂組成物からなる耐リフロー性樹脂材料を提供することを目的とする。
 また、特許文献3では、ポリアリーレンサルファイド系樹脂に、オレフィン共重合体と共に、板状、繊維状、及び分粒状の3種類の無機充填剤を併用することで、樹脂部材のウエルド部(対向流ウエルド部)が応力集中部に一致するように形成された場合でも、耐ヒートショック性及び低反り性を両立できることが開示されている。しかしながら、特許文献3では、インサート成形品における金属部材と樹脂部材との膨張係数の違いによる検討、及び並走流ウエルド部の物性の検討は不十分であり、特に並走流ウエルド部における耐ヒートショック性が十分とは言えなかった。
 特許文献4では、ポリアリーレンサルファイド系樹脂に配合する無機充填剤として、所定の異径比を有する繊維状無機充填剤と非繊維状無機充填剤とを所定の割合で組み合わせて配合した樹脂組成物を用いることによって、インサート成形品の耐ヒートショック性を優れたものにできることが開示されている。また、特許文献5では、ポリアリーレンサルファイド系樹脂を主体とし、これに特定の断面形状を有する扁平な繊維状強化剤と熱可塑性エラストマーを配合した樹脂組成物を用いることにより、機械的物性の大きな低下なしに、耐ヒートショック性を改良できる旨が開示されている。しかしながら、特許文献4及び5では、インサート成形品における金属部材と樹脂部材との膨張係数の違いによる検討が不十分であり、また、ウエルド部における物性の検討がなされておらず、該ウエルド部における耐ヒートショック性が十分とは言えなかった。
 本発明における第二の課題は、優れた耐ヒートショック性を有する、樹脂金属複合体を提供することを目的とする。
 本発明者らは鋭意検討の結果、特定のシンジオタクチック構造を有するスチレン系重合体とゴム状弾性体と結晶核剤とを含む熱可塑性樹脂組成物と、扁平形状の断面を有するガラス繊維とを含む繊維強化熱可塑性樹脂組成物を用いることにより、前記第一の課題を解決することを見出した。すなわち、第一の本発明は以下の[1]~[13]に関する。
[1]熱可塑性樹脂組成物(T)と扁平形状の断面を有するガラス繊維(G)とを含む繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂組成物(T)が、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)83~100質量部及びゴム状弾性体(B)0~17質量部からなるスチレン系樹脂組成物(S)100質量部、並びに結晶核剤(C)0.6~2.0質量部を含み、前記熱可塑性樹脂組成物(T)と前記ガラス繊維(G)との合計に対する前記ガラス繊維(G)の含有量が33.0~65.0質量%である、繊維強化熱可塑性樹脂組成物。
[2]更に、変性ポリフェニレンエーテル(D)を、前記スチレン系樹脂組成物(S)100質量部に対して、0.1~5.0質量部含む、[1]に記載の繊維強化熱可塑性樹脂組成物。
[3]前記スチレン系重合体(A)の重量平均分子量が200,000未満である、[1]又は[2]に記載の繊維強化熱可塑性樹脂組成物。
[4]前記ガラス繊維(G)の異形比が3.5~4.5である、[1]~[3]のいずれかに記載の繊維強化熱可塑性樹脂組成物。
[5]前記ガラス繊維(G)の繊維径が10μm以上である、[1]~[4]のいずれかに記載の繊維強化熱可塑性樹脂組成物。
[6]前記繊維強化熱可塑性樹脂組成物からなる試験片をIEC60068-2-58に準拠して処理し、測定した、TDのリフロー処理収縮率が0.20%以下であり、リフロー処理収縮率の異方性(TD/MD)が4.5以下である、[1]~[5]のいずれかに記載の繊維強化熱可塑性樹脂組成物。
[7]前記繊維強化熱可塑性樹脂組成物からなる試験片のISO75-1,2(2020)のA法に準拠して測定した荷重たわみ温度が255℃以上となる、[1]~[6]のいずれかに記載の繊維強化熱可塑性樹脂組成物。
[8][1]~[7]のいずれかに記載の繊維強化熱可塑性樹脂組成物からなる、耐リフロー性樹脂材料。
[9][8]に記載の耐リフロー性樹脂材料からなる、リフローはんだ付け用成形体。
[10][9]に記載のリフローはんだ付け用成形体と金属部材からなる、樹脂金属複合体。
[11][10]に記載の樹脂金属複合体からなる、コネクタ。
[12]リフローはんだ付け工程に用いる、[11]に記載のコネクタ。
[13]表面実装によるリフローはんだ付け工程に用いる、[11]に記載のコネクタ。
 また、本発明者らは鋭意検討の結果、強化熱可塑性樹脂組成物からなる樹脂部材と金属部材を含む樹脂金属複合体であって、樹脂部材のTDの線膨張係数と金属部材の線膨張係数の差が一定の範囲以下で、強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみが特定の値以上である樹脂金属複合体を用いることにより、前記第二の課題を解決することを見出した。すなわち、第二の本発明は以下の[14]~[25]に関する。
[14]熱可塑性樹脂組成物(T2)とガラスフィラー(G2)とを含む強化熱可塑性樹脂組成物からなる樹脂部材と、金属部材を含む、樹脂金属複合体であって、前記樹脂部材のTDの線膨張係数(CTETD)と前記金属部材の線膨張係数(CTE)の差(CTETD-CTE)が6.0×10-5/℃以下であり、前記強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみが1.15%以上である、樹脂金属複合体。
[15]前記熱可塑性樹脂組成物(T2)が、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)75~94質量部及びゴム状弾性体(B)6~25質量部からなるスチレン系樹脂組成物(S2)を含む、[14]に記載の樹脂金属複合体。
[16]前記ガラスフィラー(G2)が、扁平形状の断面を有するガラス繊維及びガラスフレークから選ばれる1種以上である、[14]又は[15]に記載の樹脂金属複合体。
[17]前記扁平形状の断面を有するガラス繊維の異形比が3.5~4.5である、[16]に記載の樹脂金属複合体。
[18]前記扁平形状の断面を有するガラス繊維の繊維径が10μm以上である、[16]又は[17]に記載の樹脂金属複合体。
[19]前記ガラスフレークが、鱗片状粒子である、[16]~[18]のいずれかに記載の樹脂金属複合体。
[20]前記熱可塑性樹脂組成物(T2)と前記ガラスフィラー(G2)との合計に対する前記ガラスフィラー(G2)の含有量が20.0~65.0質量%である、[14]~[19]のいずれかに記載の樹脂金属複合体。
[21]熱可塑性樹脂組成物(T2)が、更に、結晶核剤(C)を、前記スチレン系樹脂組成物(S2)100質量部に対して、0.6~2.0質量部含む、[15]~[20]のいずれかに記載の樹脂金属複合体。
[22]熱可塑性樹脂組成物(T2)が、更に、変性ポリフェニレンエーテル(D)を、前記スチレン系樹脂組成物(S2)100質量部に対して、0.1~15.0質量部含む、[15]~[21]のいずれかに記載の樹脂金属複合体。
[23]熱可塑性樹脂組成物(T2)が、更に、離型剤(F)を、前記スチレン系樹脂組成物(S2)100質量部に対して、0.05~3.0質量部含む、[15]~[22]のいずれかに記載の樹脂金属複合体。
[24]前記スチレン系重合体(A)の重量平均分子量が200,000未満である、[15]~[23]のいずれかに記載の樹脂金属複合体。
[25]前記金属部材が、アルミニウム、ステンレス鋼、銅、チタン及びこれらの合金からなる群から選択される少なくとも1種である、[14]~[24]のいずれかに記載の樹脂金属複合体。
 第一の本発明によれば、優れた耐熱性及び高温下における寸法安定性を有する、繊維強化熱可塑性樹脂組成物及び該樹脂組成物からなる耐リフロー性樹脂材料を得ることができる。
 第二の本発明によれば、優れた耐ヒートショック性を有する、樹脂金属複合体を提供することを得ることができる。
第二の本発明における強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみを測定するための試験片の切り出し部を示す概略図である。 第二の本発明における強化熱可塑性樹脂組成物からなる並走流ウエルド試験片の金型の概略断面図である。 第二の本発明における強化熱可塑性樹脂組成物からなる並走流ウエルド試験片の金型のキャビティ部を金型上部側から見た、概略平面図である。 第二の本発明における樹脂部材のTDの線膨張係数(CTETD)を測定するための試験片の切り出し部を示す概略図である。 第二の本発明の樹脂金属複合体の耐ヒートショック性を評価するための試験片の概略図である。 第二の本発明の樹脂金属複合体の耐ヒートショック性を評価するための試験片の概略断面図である。 第二の本発明の樹脂金属複合体の耐ヒートショック性を評価するための試験片の金型の概略図である。
[第一の本発明の繊維強化熱可塑性樹脂組成物]
 第一の本発明の繊維強化熱可塑性樹脂組成物は、熱可塑性樹脂組成物(T)と扁平形状の断面を有するガラス繊維(G)とを含む繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂組成物(T)が、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)83~100質量部及びゴム状弾性体(B)0~17質量部からなるスチレン系樹脂組成物(S)100質量部、並びに結晶核剤(C)0.6~2.0質量部を含み、前記熱可塑性樹脂組成物(T)と前記ガラス繊維(G)との合計に対する前記ガラス繊維(G)の含有量は33.0~65.0質量%である。
 以下、各項目について、詳細に説明する。
<熱可塑性樹脂組成物(T)>
 熱可塑性樹脂組成物(T)は、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)83~100質量部及びゴム状弾性体(B)0~17質量部からなるスチレン系樹脂組成物(S)100質量部、並びに結晶核剤(C)0.6~2.0質量部を含む。
<スチレン系樹脂組成物(S)>
 スチレン系樹脂組成物(S)は、シンジオタクチック構造を有するスチレン系重合体(A)83~100質量部及びゴム状弾性体(B)0~17質量部からなる。
<シンジオタクチック構造を有するスチレン系重合体(A)>
 シンジオタクチック構造を有するスチレン系重合体(A)(以下、SPS(A)ともいう)は、高度なシンジオタクチック構造を有するスチレン系樹脂である。本明細書において「シンジオタクチック」とは、隣り合うスチレン単位におけるフェニル環が、重合体ブロックの主鎖によって形成される平面に対して交互に配置(以下において、シンジオタクティシティと記載する)されている割合が高いことを意味する。
 タクティシティは、同位体炭素による核磁気共鳴法(13C-NMR法)により定量同定できる。13C-NMR法により、連続する複数の構成単位、例えば連続した2つのモノマーユニットをダイアッド、3つのモノマーユニットをトリアッド、5つのモノマーユニットをペンタッドとしてその存在割合を定量することができる。
 第一の本発明において、「高度なシンジオタクチック構造を有するスチレン系樹脂」とは、ラセミダイアッド(r)で通常75モル%以上、好ましくは85モル%以上、又はラセミペンタッド(rrrr)で通常30モル%以上、好ましくは50モル%以上のシンジオタクティシティを有するポリスチレン、ポリ(炭化水素置換スチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)等のスチレン系重合体、これらの水素化重合体もしくは混合物、又はこれらを主成分とする共重合体を意味する。
 ポリ(炭化水素置換スチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(tert-ブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)及びポリ(ビニルスチレン)等を挙げることができる。ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)及びポリ(フルオロスチレン)等を、ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等を挙げることができる。ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)及びポリ(エトキシスチレン)等が挙げられる。
 前記の構成単位を含む共重合体のコモノマー成分としては、前記スチレン系重合体のモノマーの他、エチレン、プロピレン、ブテン、ヘキセン及びオクテン等のオレフィンモノマー;ブタジエン、イソプレン等のジエンモノマー;環状オレフィンモノマー、環状ジエンモノマー、メタクリル酸メチル、無水マレイン酸及びアクリロニトリル等の極性ビニルモノマーが挙げられる。
 SPS(A)として、好適に用いられる共重合体としては、スチレンとp-メチルスチレンとの共重合体、スチレンとp-tert-ブチルスチレンとの共重合体、スチレンとジビニルベンゼンとの共重合体等が挙げられ、スチレンとp-メチルスチレンとの共重合体が好ましい。
 前記SPS(A)の中では、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、スチレンとp-メチルスチレンとの共重合体から選ばれる1種以上が好ましく、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、スチレンとp-メチルスチレンとの共重合体から選ばれる1種以上がより好ましく、ポリスチレン、スチレンとp-メチルスチレンとの共重合体が更に好ましく、ポリスチレンが最も好ましい。
 SPS(A)は、温度300℃、荷重1.2kgの条件下でメルトフローレート(MFR)測定を行った場合に、好ましくは8g/10分以上、より好ましくは10g/10分以上であり、更に好ましくは13g/10分以上であり、好ましくは50g/10分以下、より好ましくは35g/10分以下である。SPS(A)の前記MFR値が8g/10分以上であれば、成形時の樹脂の流動性に問題がなく、また、50g/10分以下、好ましくは35g/10分以下であれば十分な強度を有する成形品を得ることができる。
 第一の本発明においてSPS(A)の重量平均分子量は、230,000未満である。SPS(A)の重量平均分子量が230,000未満であることにより、第一の本発明の、繊維強化熱可塑性樹脂組成物の耐熱性及び高温下における寸法安定性を向上でき、更に、成形時の繊維強化熱可塑性樹脂組成物の流動性を確保でき、また、得られる成形品の強度を十分にすることができる。
 SPS(A)の重量平均分子量は、耐熱性及び高温下における寸法安定性の向上並びに、成形時の樹脂の流動性の観点から、200,000未満が好ましく、190,000未満が好ましく、185,000未満がより好ましい。また、SPS(A)の重量平均分子量は、耐熱性及び高温下における寸法安定性の向上並びに、得られる成形品の強度の観点から、10,000以上が好ましく、50,000以上がより好ましく、100,000以上が更に好ましい。
 本明細書において、重量平均分子量とは、特段の記載がない限り、東ソー株式会社製GPC装置(HLC-8321GPC/HT)、東ソー株式会社製GPCカラム(GMHHR-H(S)HTC/HT)を用い、溶離液として1,2,4-トリクロロベンゼンを用いて145℃でゲル浸透クロマトグラフィー測定法により測定し、標準ポリスチレンの検量線を用いて換算した値である。
 SPS(A)の重量平均分子量の調節方法としては、各触媒成分の種類、使用量、重合温度を適宜選択する方法及び水素を導入する方法等が挙げられる。
 スチレン系樹脂組成物(S)100質量部中のシンジオタクチック構造を有するスチレン系重合体(A)の含有量は、83~100質量部である。シンジオタクチック構造を有するスチレン系重合体(A)の含有量が83質量部以上であることで、得られる繊維強化熱可塑性樹脂組成物の耐熱性及び高温下における寸法安定性を良好にできる。スチレン系樹脂組成物(S)100質量部中のシンジオタクチック構造を有するスチレン系重合体(A)の含有量は、好ましくは85~99質量部であり、より好ましくは86~98質量部であり、更に好ましくは88~96質量部である。
 SPS(A)は、例えば不活性炭化水素溶媒中又は溶媒の不存在下で、チタン化合物、及び水とトリアルキルアルミニウムの縮合生成物(アルミノキサン)を触媒として、スチレン系単量体(上記スチレン系重合体に対応する単量体)を重合することにより製造することができる(例えば、特開2009-068022号公報)。
<ゴム状弾性体(B)>
 第一の本発明の繊維強化熱可塑性樹脂組成物は、ゴム状弾性体(B)を含有してもよいし、しなくてもよい。
 第一の本発明の繊維強化熱可塑性樹脂組成物がゴム状弾性体(B)を含有することで、寸法安定性を維持しつつ、靭性を向上させることができる。
 ゴム状弾性体(B)は、スチレンに由来する構成単位を含むエラストマーであれば制限はないが、好ましくはスチレン-ジエンブロック共重合体、水素添加スチレン-ジエンブロック共重合体、スチレン-ジエンランダム共重合体、水素添加スチレン-ジエンランダム共重合体、及びスチレン-オレフィンランダム共重合体からなる群より選ばれる少なくとも1種である。ここで、スチレンと共重合されるジエンとしては、ブタジエン及びイソプレンが挙げられ、スチレンと共重合されるオレフィンとしては、エチレン、プロピレン及びブチレンが挙げられる。
 ゴム状弾性体(B)は、より好ましくはスチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエンランダム共重合体、水素添加スチレン-ブタジエンランダム共重合体、スチレン-エチレン-プロピレンランダム共重合体、及びスチレン-エチレン-ブチレンランダム共重合体からなる群より選ばれる少なくとも1種であり、更に好ましくはスチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、及び水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)からなる群より選ばれる少なくとも1種であり、より更に好ましくはスチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、及び水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)からなる群より選ばれる少なくとも1種であり、より更に好ましくは水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、及びスチレン-イソプレン-スチレンブロック共重合体(SIS)、及び水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)からなる群より選ばれる少なくとも1種であり、より更に好ましくは水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)である。
 ゴム状弾性体(B)を構成する、スチレンに由来する構成単位と、ジエン、水素添加ジエン及びオレフィンに由来する構成単位の合計との質量比[(スチレン)/(ジエン、水素添加ジエン、オレフィン)]は、好ましくは20/80~70/30であり、より好ましくは25/75~60/40、更に好ましくは25/75~45/55である。ゴム状弾性体(B)のスチレン含有量として25~60質量%の範囲であることが好ましく、25~45%の範囲であることがより好ましい。
 このような質量比とすることで、SPS(A)との相溶性を高め、耐熱性及び高温下における寸法安定性を維持しつつ、靭性を向上させることができる。
 スチレン系樹脂組成物(S)100質量部中のゴム状弾性体(B)の含有量は、0~17質量部である。ゴム状弾性体(B)の量が17質量部以下であることで、得られる繊維強化熱可塑性樹脂組成物の耐熱性と高温下における寸法安定性を維持しつつ靭性を良好にできる。
 スチレン系樹脂組成物(S)100質量部中のゴム状弾性体(B)の含有量は、好ましくは1~15質量部であり、より好ましくは2~14質量部であり、更に好ましくは4~12質量部である。
<結晶核剤(C)>
 熱可塑性樹脂組成物(T)は、結晶核剤(C)を含有する。熱可塑性樹脂組成物(T)が結晶核剤(C)を含有することで、結晶化温度を高くでき、結晶化のための温度条件の幅広い設定を可能とし、生産性を向上できる。
 結晶核剤としては、好ましくは無機系の結晶化核剤及び有機系の結晶化核剤からなる群より選ばれる1種以上である。中でも有機系の結晶化核剤が好ましい。
 有機系の結晶化核剤としては、例えば、有機カルボン酸アルカリ金属塩、有機カルボン酸アルカリ土類金属塩、リン酸又は亜リン酸の有機化合物及びそれらの金属塩、フタロシアニン誘導体、ソルビトール誘導体などが挙げられる。
 更に具体的には、例えば、アルミニウムジ(p-tert-ブチルベンゾエート)、安息香酸のナトリウム塩、p-tert-ブチル安息香酸のヒドロキシアルミニウム塩、ヒドロキシ-ジ(p-tert-ブチル安息香酸)アルミニウムをはじめとするカルボン酸の金属塩、メチレンビス(2,4-ジ-tert-ブチルフェノール)ホスフェートナトリウム、ナトリウム-2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)ホスフェート、[リン酸[2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)]]リチウム、[リン酸[2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)]]カリウム、リン酸ビス(4-tert-ブチルフェニル)ナトリウム、リン酸メチレン(2,4-tert-ブチルフェニル)ナトリウム、アルミニウム=ビス(4,6’,6,6’-テトラ-tert-ブチル-2,2’-メチレンジフェニル=ホスファート)=ヒドロキシドをはじめとするリン酸の金属塩、[リン酸[2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)]]アンモニウム等を選択して用いることができる。また、これらを含む複合体も用いることができる。これらの中でも、結晶化温度を高くする観点から、リン酸又は亜リン酸の有機化合物のリチウム塩を用いることが好ましく、[リン酸[2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)]]リチウムを用いることがより好ましい。
 熱可塑性樹脂組成物(T)において、スチレン系樹脂組成物(S)100質量部に対する、結晶核剤(C)の含有量は、0.6~2.0質量部である。結晶核剤(C)の含有量が0.6質量部以上であることにより、得られる繊維強化熱可塑性樹脂組成物の結晶化温度を高くすることができる。そのため、繊維強化熱可塑性樹脂組成物が結晶化するための温度条件を幅広く設定することができるため、成形サイクルを短くする条件を選択することができ、耐リフロー性樹脂材料として用いた際の生産性を向上できる。また、スチレン系樹脂組成物(S)100質量部に対する結晶核剤(C)の含有量が2.0質量部以下で、耐リフロー性樹脂材料として十分な繊維強化熱可塑性樹脂組成物の結晶化温度を得ることができる。
 スチレン系樹脂組成物(S)100質量部に対する、結晶核剤(C)の含有量は、0.7~1.8質量部が好ましく、0.8~1.5質量部が更に好ましい。
 熱可塑性樹脂組成物(T)100質量%中におけるスチレン系樹脂組成物(S)及び結晶核剤(C)の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上であり、また、好ましくは100質量%以下である。
<変性ポリフェニレンエーテル(D)>
 熱可塑性樹脂組成物(T)は、変性ポリフェニレンエーテル(D)を含む。熱可塑性樹脂組成物(T)が変性ポリフェニレンエーテル(D)を含むことにより、熱可塑性樹脂組成物(T)と後述のガラス繊維(G)との界面強度を高めるため、繊維強化熱可塑性樹脂組成物の強度を高めることができる。熱可塑性樹脂組成物(T)において、変性ポリフェニレンエーテル(D)の含有量は、スチレン系樹脂組成物(S)100質量部に対して、0.1~5.0質量部が好ましく、0.3~4.0質量部がより好ましく、0.5~3.5質量部が更に好ましく、1.0~3.0質量部がより更に好ましい。
 第一の本発明に用いられる変性ポリフェニレンエーテル(D)は、SPS(A)と相溶性を有し、その他の成分との相溶性を向上させるものであり、ガラス繊維(G)と反応可能な極性基を有することが好ましい。
 このように変性ポリフェニレンエーテル(D)はSPS(A)と、その他の成分、特にガラス繊維(G)との相溶性を向上させ、各成分間の界面強度を向上させることを目的として配合される。より具体的には、変性ポリフェニレンエーテル(D)は酸変性ポリフェニレンエーテルが好ましい。
 ガラス繊維(G)と反応可能な極性基とは、ガラス繊維(G)が有する極性基と反応しうる官能基を指す。具体例としては、酸無水物基、カルボン酸基、カルボン酸エステル基、カルボン酸ハライド基、カルボン酸アミド基、カルボン酸塩基、スルホン酸基、スルホン酸エステル基、スルホン酸塩化物基、スルホン酸アミド基、スルホン酸塩基、エポキシ基、アミノ基、イミド基、オキサゾリン基等が挙げられ、カルボン酸基が好ましい。
 変性ポリフェニレンエーテル(D)としては、フマル酸変性ポリフェニレンエーテル及び無水マレイン酸変性ポリフェニレンエーテルが好ましく、フマル酸変性ポリフェニレンエーテルがより好ましい。
 変性ポリフェニレンエーテル(D)の変性量(変性剤含有量)は、好ましくは0.1~20質量%であり、より好ましくは0.2~15質量%であり、更に好ましくは0.3~10質量%であり、より更に好ましくは0.5~5.0質量%である。変性量が前記範囲であると良好な強度と耐熱性を有するスチレン系樹脂組成物及び成形体を得ることができる。
 変性ポリフェニレンエーテルの変性量(変性剤含有量)は、JIS K 0070-1992に準拠して測定された中和滴定量によって求めることができる。
 ポリフェニレンエーテルの例としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2,3-ジメチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-クロロメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-n-ブチル-1,4-フェニレンエーテル)、ポリ(2-エチル-6-イソプロピル-1,4-フェニレンエーテル)、ポリ(2-エチル-6-n-プロピル-1,4-フェニレンエーテル)、ポリ(2,3,6-トリメチル-1,4-フェニレンエーテル)、ポリ〔2-(4’-メチルフェニル)-1,4-フェニレンエーテル〕、ポリ(2-ブロモ-6-フェニル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2-フェニル-1,4-フェニレンエーテル)、ポリ(2-クロロ-1,4-フェニレンエーテル)、ポリ(2-メチル-1,4-フェニレンエーテル)、ポリ(2-クロロ-6-エチル-1,4-フェニレンエーテル)、ポリ(2-クロロ-6-ブロモ-1,4-フェニレンエーテル)、ポリ(2,6-ジ-n-プロピル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-イソプロピル-1,4-フェニレンエーテル)、ポリ(2-クロロ-6-メチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2,6-ジブロモ-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、ポリ(2,6-ジエチル-1,4-フェニレンエーテル)等が挙げられ、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)が好ましい。
 ポリフェニレンエーテルの変性に用いられる変性剤としては、同一分子内にエチレン性二重結合と極性基とを有する化合物が挙げられ、具体的には例えば無水マレイン酸、マレイン酸、フマル酸、マレイン酸エステル、フマル酸エステル、マレイミド及びそのN置換体、マレイン酸塩、フマル酸塩、アクリル酸、アクリル酸エステル、アクリル酸アミド、アクリル酸塩、メタクリル酸、メタクリル酸エステル、メタクリル酸アミド、メタクリル酸塩、グリシジルメタクリレートなどが挙げられる。これらのうち特に無水マレイン酸、フマル酸及びグリシジルメタクリレートが好ましく用いられ、フマル酸がより好ましく用いられる。上記各種の変性剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 変性ポリフェニレンエーテル(D)は、前記ポリフェニレンエーテルと変性剤とを反応させることにより得られる。変性の方法に特に制限はなく、公知の方法を用いることができる。
 好ましい変性方法として、溶融変性及び溶液変性が挙げられ、なかでもより高い変性量が得られること、生産性が高いことから、より好ましくは溶融変性である。すなわち、前記変性ポリフェニレンエーテル(D)は、好ましくは溶融変性によって製造された変性ポリフェニレンエーテル又は溶液変性によって製造された変性ポリフェニレンエーテルであり、より好ましくは溶融変性によって製造された変性ポリフェニレンエーテルである。
 溶融変性は、ラジカル発生剤の存在下あるいは不存在下で、ポリフェニレンエーテルと、変性剤とを、溶融混練することにより、変性ポリフェニレンエーテルを得る方法であり、具体的には、ロールミル、バンバリーミキサー、押出機などを用いて150~350℃の範囲の温度において溶融混練して反応させる方法である。
 具体的には、ポリフェニレンエーテル、変性剤、及び任意のラジカル発生剤を室温で均一にドライブレンドした後、実質的にポリフェニレンエーテルの混練温度である300~350℃の範囲で溶融反応を行う方法が好ましい。300℃以上であれば、溶融粘度を適切に維持することができ、350℃以下であれば、ポリフェニレンエーテルの分解を抑制することができる。
 溶融変性における変性剤の使用量は、ポリフェニレンエーテル100質量部に対して、好ましくは0.1~22質量部であり、より好ましくは0.2~17質量部であり、更に好ましくは0.3~12質量部であり、より更に好ましくは0.5~7.0質量部である。変性剤の使用量が前記範囲であると良好な強度と耐熱性を有するスチレン系樹脂組成物及び成形体を得ることができる。
 溶融変性に用いられるラジカル発生剤は、半減期1分間を示す温度が300℃以上のものが好ましく、具体的には、例えば2,3-ジメチル-2,3-ジフェニルブタン、2,3-ジエチル-2,3-ジフェニルブタン、2,3-ジエチル-2,3-ジフェニルヘキサン、2,3-ジメチル-2,3-ジ(p-メチルフェニル)ブタン等が挙げられ、なかでも、半減期1分間を示す温度が330℃である2,3-ジメチル-2,3-ジフェニルブタンが好適に用いられる。
 ラジカル発生剤の使用割合は、ポリフェニレンエーテル100質量部に対して、好ましくは0.1~3質量部、より好ましくは0.5~2質量部の範囲で選定される。0.1質量部以上であれば高い変性効果が得られ、3質量部以下であれば、効率よくポリフェニレンエーテルを変性することができ、不溶成分も生じにくい。
<酸化防止剤(E)>
 熱可塑性樹脂組成物(T)は、耐熱性の観点から、更に酸化防止剤(E)を含むことが好ましい。酸化防止剤(E)は、フェノール系化合物、リン系化合物及びイオウ系化合物より選ばれる1種以上を用いることが好ましく、耐熱性の観点から、フェノール系化合物がより好ましい。
 フェノール系酸化防止剤の具体例としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジフェニル-4-メトキシフェノール、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、2,2’-メチレンビス〔4-メチル-6-(α-メチルシクロヘキシル)フェノール〕、1,1-ビス(5-tert-ブチル-4-ヒドロキシ-2-メチルフェニル)ブタン、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-メチレンビス(4-メチル-6-ノニルフェノール)、1,1,3-トリス(5-tert-ブチル-4-ヒドロキシ-2-メチルフェニル)ブタン、2,2-ビス(5-tert-ブチル-4-ヒドロキシ-2-メチルフェニル)-4-n-ドデシルメルカプトブタン、エチレングリコール-ビス〔3,3-ビス(3-tert-ブチル-4-ヒドロキシフェニル)ブチレート〕、1,1-ビス(3,5-ジメチル-2-ヒドロキシフェニル)-3-(n-ドデシルチオ)-ブタン、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2,2-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)マロン酸ジオクタデシルエステル、n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)プロピオネート、ペンタエリスリトールテトラキス{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート}等が挙げられる。特に、ペンタエリスリトールテトラキス{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート}が好ましい。
 リン系酸化防止剤としては、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(モノ及びジ-ノニルフェニル)ホスファイト等のモノホスファイトやジホスファイト等が挙げられる。
 硫黄系酸化防止剤としては、2,2-ビス{[3-(ドデシルチオ)-1-オキソプロポキシ]メチル}プロパン-1,3-ジイルビス[3-(ドデシルチオ)プロピネート]、ジ(トリデシル)3,3’-チオジプロピネート、3,3’-チオジプロピネート等が挙げられる。
 熱可塑性樹脂組成物(T)において、スチレン系樹脂組成物(S)100質量部に対する酸化防止剤(E)の含有量は、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.15質量部以上が更に好ましい。また、2.0質量部以下が好ましく、1.0質量部以下がより好ましく、0.7質量部以下が更に好ましい。酸化防止剤の量が前記の範囲であれば、加工時の耐熱変色性が良好となり、更に長期耐熱性を得ることができ、酸化防止剤のブリードも抑制することができ、外観に悪影響を与えない。
<離型剤(F)>
 熱可塑性樹脂組成物(T)は、耐熱性及び高温下における寸法安定性を向上させる観点から、更に離型剤(F)を含むことが好ましい。離型剤(F)としては、ポリエチレンワックス、シリコーンオイル、長鎖カルボン酸等公知のものから任意に選択して用いることができる。
 熱可塑性樹脂組成物(T)において、スチレン系樹脂組成物(S)100質量部に対する、離型剤(F)の含有量は、0.05~3.0質量部が好ましく、0.1~2.0質量部がより好ましく、0.1~1.0質量部が更に好ましく、0.1~0.5質量部が更に好ましい。
<ガラス繊維(G)>
 第一の本発明の繊維強化熱可塑性樹脂組成物は、扁平形状の断面を有するガラス繊維(G)を含有する。第一の本発明の繊維強化熱可塑性樹脂組成物がガラス繊維(G)を含有することで、耐熱性及び高温下における寸法安定性を向上させることができる。
 第一の本発明において、ガラス繊維(G)は、繊維軸に垂直な断面が扁平形状である。扁平形状とは、ガラス繊維(G)の異形比が1より大きい形状を指す。第一の本発明において異形比とは、ガラス繊維(G)の繊維軸に垂直な断面の長径と短径の比、すなわち、長径/短径を指す。また、長径とは、繊維軸に垂直な断面において、断面の外縁上の2点間の距離が最長となる部分の直線距離であり、短径とは長径と垂直に交わる直線と断面の外縁とが交わった2点間の直線距離である。なお、前記の長径となる直線及び短径となる直線は共に断面の重心を通る。
 ガラス繊維(G)の断面が扁平形状であることにより、繊維強化熱可塑性樹脂組成物の耐熱性を向上させることができるとともに、高温下における寸法安定性を向上させることができる。
 理論に拘束されないが、ガラス繊維(G)の断面が扁平形状であることにより耐熱性及び高温下における寸法安定性を向上できる理由は、ガラス繊維(G)の断面が扁平形状である場合、押出混練機のスクリュー回転により発生する樹脂の流れ方向(MD)へ配向しやすくなり、ガラス繊維の折損が抑制されるとともに、流れ方向に対して垂直な方向(TD)における繊維のアスペクト比が大きくなる影響で収縮を抑制する効果が得られるものと推測される。ガラス繊維(G)の異形比は、耐熱性及び高温下における寸法安定性を共に向上させる観点から、2~6であることが好ましく、3~5であることがより好ましく、3.5~4.5であることが更に好ましい。短径は3μm~10μmであることが好ましく、5μm~8μmであることがより好ましい。
 ガラス繊維の長径及び短径は、いずれも数平均であり、50個以上の任意に選択したガラス繊維について、デジタルマイクロスコープによる画像解析を行うことにより測定し、数平均として算出される。
 ガラス繊維(G)の繊維径は、高温下における寸法安定性を向上させる観点から、10μm以上であることが好ましく、10.5μm以上であることがより好ましく、11μm以上であることが更に好ましく、12μm以上であることがより更に好ましい。また、ガラス繊維(G)の繊維径は、成形時の繊維強化熱可塑性樹脂組成物の流動性の確保の観点から、20μm以下が好ましく、18μm以下がより好ましい。
 尚、第一の本発明においてガラス繊維(G)の繊維径とは、繊維軸に垂直な断面をその断面の面積と同じ面積を有する円に換算することで得られる円の直径を意味している。
 ガラス繊維の繊維径は数平均であり、50個以上の任意に選択したガラス繊維について、デジタルマイクロスコープによる画像解析を行うことにより測定し、算出される。
 第一の本発明の繊維強化熱可塑性樹脂組成物に用いるガラス繊維(G)の繊維長は、成形時の繊維強化熱可塑性樹脂組成物の流動性の確保及びハンドリングの観点から、1~50mmであることが好ましく、1.5~15mmであることがより好ましく、2~8mmであることがより更に好ましい。また、繊維強化熱可塑性樹脂組成物中に含まれるガラス繊維(G)の繊維長は、押出混練時の折損等により300~600μmとなることが好ましい。
 ガラス繊維の繊維長は数平均であり、50個以上の任意に選択したガラス繊維について、デジタルマイクロスコープによる画像解析を行うことにより測定し、算出される。
 ガラス繊維(G)は、SPS(A)との接着性を高めるために、カップリング剤で表面処理を施されていることが好ましく、シラン系カップリング剤又はチタン系カップリング剤により処理されていることがより好ましく、シラン系カップリング剤で処理されていることが樹脂成分との相溶性の観点から更に好ましい。
 シラン系カップリング剤の具体例としては、トリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(1,1-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピル-トリス(2-メトキシ-エトキシ)シラン、N-メチル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-4,5-ジヒドロイミダゾールプロピルトリエトキシシラン、ヘキサメチルジシラザン、N,N-ビス(トリメチルシリル)ウレア、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン等が挙げられる。これらの中でも、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のアミノシラン、エポキシシランが好ましい。
 チタン系カップリング剤の具体例としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(1,1-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミドエチル,アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネートなどが挙げられる。これらの中でも、イソプロピルトリ(N-アミドエチル,アミノエチル)チタネートが好ましい。
 第一の本発明の繊維強化熱可塑性樹脂組成物中のガラス繊維(G)の含有量は、熱可塑性樹脂組成物(T)とガラス繊維(G)との合計100質量%中のうち、33.0質量%以上65.0質量%以下である。ガラス繊維(G)の含有量が33.0質量%以上であることにより、耐熱性及び高温下における寸法安定性を向上させるとともに、リフローはんだ付け用成形体又はリフローはんだ付け用コネクタに必要な靭性を得ることができる。ガラス繊維(G)の含有量が65.0質量%以下であることにより、成形時の繊維強化熱可塑性樹脂組成物の流動性を確保できるとともに、引張破断ひずみが1.0%以上となり、リフローはんだ付け用成形体又はリフローはんだ付け用コネクタに必要な靭性を得ることができる。
 繊維強化熱可塑性樹脂組成物中のガラス繊維(G)の含有量は、好ましくは33.0質量%以上65.0質量%以下が好ましく、35.0質量%以上58.0質量%以下がより好ましく、38.0質量%以上55.0質量%以下が更により好ましい。
<その他の成分>
 第一の本発明の繊維強化熱可塑性樹脂組成物には、第一の本発明の目的を阻害しない範囲で任意のその他の成分を添加することができる。
 その他の成分としては、任意の成分である、色剤、架橋剤、架橋助剤、分散剤、可塑剤、防汚剤、紫外線吸収剤、光安定剤、難燃剤、難燃助剤及び帯電防止剤等を含むことができる。
≪色剤≫
 色剤としては、カーボンブラック、無機着色剤、有機着色剤等、公知のものから任意に選択して用いることができる。無機着色剤としては、無機顔料が挙げられ、有機着色剤としては、有機顔料、及び有機染料等が挙げられる。無機顔料は、二酸化チタン、酸化鉄、ニッケルチタンイエロー、硫化亜鉛、硫酸バリウム、群青が挙げられる。有機顔料は、モノアゾ顔料、ペリレン顔料、キナクリドン顔料、及びフタロシアニン顔料からなる群より選ばれる少なくとも1種である。有機顔料の好適な具体例として、Pigment Yellow 183及びPigment Yellow 150等のモノアゾ顔料、Pigment Red 178及びPigment Red 149等のペリレン顔料、Pigment Violet 19、Pigment Red 122、Pigment Red 209、Pigment Red 202、Pigment Orange 48及びPigment Orange 49等のキナクリドン顔料、並びにPigment Blue 15、Pigment Blue 16、Pigment Green 7及びPigment Green 36等のフタロシアニン顔料が挙げられる。
≪分散剤≫
 分散剤としては、メチレンビスステアリン酸アマイド、ポリアクリル酸、ポリアクリル酸ナトリウム、カルボン酸ナトリウム、ポリアクリル酸アンモニウム、ポリアクリル酸系共重合体、ポリカルボン酸ナトリウム、カルボン酸系共重合体、スルホン酸系共重合体等、公知のものから任意に選択して用いることができる。
≪紫外線吸収剤≫
 紫外線吸収剤としては、2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol、2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol、2,2’-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol]、2-(2H-benzotriazol-2-yl)-p-cresol、2-(5-chloro-2H-benzotriazol-2-yl)-6-tert-butyl-4-methylphenol、2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol、2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine、[2-hydroxy-4-(octyloxy)phenyl](phenyl)methanone等、公知のものから任意に選択して用いることができる。
≪光安定剤≫
 光安定剤としては、tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)butane-1,2,3,4-tetracarboxylate、tetrakis(2,2,6,6-tetramethyl-4-piperidyl)butane-1,2,3,4-tetracarboxylate、1,2,3,4-butanetetracarboxylic acid, tetramethyl ester, reaction products with 1,2,2,6,6-pentamethyl-4-piperidinol and β,β,β’,β’-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol、1,2,3,4-butanetetracarboxylic acid, tetramethyl ester, reaction products with 2,2,6,6-tetramethyl-4-piperidinol and β,β,β’,β’-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol、bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate、bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate、bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate、1,2,2,6,6-pentamethyl-4-piperidyl methacrylate、2,2,6,6-tetramethyl-4-piperidyl methacrylate、2,2,6,6-tetramethylpiperidin-4-yl hexadecanoate,2,2,6,6-tetramethylpiperidin-4-yl octadecanoate等、公知のものから任意に選択して用いることができる。
≪難燃剤≫
 難燃剤としては、臭素化ポリスチレン、エチレンビス(ペンタブロモフェニル)、エチレンビス(テトラブロモフタルイミド)、ペンタブロモベンジルポリアクリレート、テトラブロモビスフェノールA、縮合リン酸エステル、ポリリン酸アンモニウム、フォスフィン酸塩、亜リン酸塩、メラミンシアヌレート、水酸化マグネシウム、ベーマイト等、公知のものから任意に選択して用いることができる。
≪難燃助剤≫
 難燃助剤としては、三酸化二アンチモン、アンチモン酸ソーダ、五酸化二アンチモン、ホウ酸亜鉛、ハイドロタルサイト等、公知のものから任意に選択して用いることができる。
[繊維強化熱可塑性樹脂組成物の物性]
 第一の本発明の繊維強化熱可塑性樹脂組成物において、荷重たわみ温度は、255℃以上が好ましく、258℃以上がより好ましく、260℃以上が更に好ましく、262℃以上がより更に好ましい。荷重たわみ温度が255℃以上であることにより、得られる成形体の耐熱性を十分にすることができる。
 荷重たわみ温度は、ガラス繊維(G)の含有量、ガラス繊維(G)の異形比、ゴム状弾性体(B)を構成するスチレンに由来する構成単位と他の構成単位の合計との質量比、ゴム状弾性体(B)の含有量等により調整することができる。
 第一の本発明において、荷重たわみ温度は、ISO 527-1,2(2020)のA法に準拠した方法で測定され、実施例に記載の方法で測定することができる。
 第一の本発明の繊維強化熱可塑性樹脂組成物において、MDのリフロー処理収縮率は0.10%以下であることが好ましく、0.08%以下であることが更に好ましい。また、TDのリフロー処理収縮率は、0.20%以下であることが好ましく、0.16%以下であることがより好ましい。更に、リフロー処理収縮率の異方性(TD/MD)は、4.5以下であることが好ましく、3.0以下であることがより好ましく、2.2以下であることが更に好ましく、1.8以下が更により好ましい。
 各方向のリフロー処理収縮率とリフロー処理収縮率の異方性が上記の範囲内にあれば、高温下における寸法安定性が高いといえる。第一の本発明の繊維強化熱可塑性樹脂組成物を用いたコネクタをリフローはんだ付け工程に用いる場合、高温下における寸法安定性が高いことから、コネクタの寸法変化や反りを抑制することができ、ワイヤーハーネスコネクタとの嵌合不良を防止するとともに、基板のはんだペースト塗布部とコネクタの金属端子間距離の変化を抑制し接合不良を防止することができる。
 各方向のリフロー処理収縮率及びリフロー処理収縮率の異方性は、例えば、ガラス繊維(G)の含有量、ガラス繊維(G)の異形比により調整することができる。
 第一の本発明において、リフロー処理収縮率の異方性(TD/MD)とは、リフローはんだ処理前後における、試験片のMDの寸法変化(MDのリフロー処理収縮率)とTDの寸法変化(TDのリフロー処理収縮率)との比(TDのリフロー処理収縮率/MDのリフロー処理収縮率)として求められる。MDとは成形時の樹脂の流れ方向であり、TDとは流れ方向に対して垂直な方向を意味する。
 また、第一の本発明における各方向のリフロー処理収縮率は、実施例に記載の方法により、試験片を用いて測定される。当該試験片は、実施例に記載の通りにIEC60068-2-58に準拠して処理し、測定を行うことができる。各方向のリフロー処理収縮率の測定に用いる試験片としては、例えば、80mm×80mm×厚さ2mmの角板の試験片を用いることができる。
 第一の本発明の繊維強化熱可塑性樹脂組成物において、流路厚み1mm、幅10mmのスパイラルフロー金型で、射出圧力設定100MPaとして成形した際のSFL(流動長、Spiral Flow Length)は、100mm以上が好ましく、130mm以上がより好ましく、140mm以上が更に好ましく、150mm以上がより更に好ましい。SFLが100mm以上であることにより、成形時の繊維強化熱可塑性樹脂組成物の流動性を十分に確保することができる。また、SFLが185mm以下であることが好ましい。
SFLは、例えば、ガラス繊維(G)の含有量や、シンジオタクチック構造を有するスチレン系重合体(A)の重量平均分子量により調整することができる。
 なお、第一の本発明において、SFLは、実施例に記載の方法で測定することができる。
 第一の本発明の繊維強化熱可塑性樹脂組成物において、引張破断応力は、110MPa以上が好ましく、120MPa以上がより好ましく、130MPa以上が更に好ましい。
 また、引張破断ひずみは、1.0%以上が好ましく、1.2%以上がより好ましく、1.3%以上が更に好ましく、1.4%以上がより更に好ましい。
 引張破断応力が110MPa以上かつ引張破断ひずみが1.0%以上であることにより、得られる成形体の靭性を十分にすることができる。
 引張破断応力及び引張破断ひずみは、例えば、ガラス繊維(G)の含有量、ゴム状弾性体(B)を構成するスチレンに由来する構成単位と他の構成単位の合計との質量比、ゴム状弾性体(B)の含有量などにより調整することができる。
 なお、第一の本発明において、引張破断応力及び引張破断ひずみは、ISO 527-1,2:2019に準拠した方法で測定することができ、実施例に記載の方法で測定することができる。
 第一の本発明の繊維強化熱可塑性樹脂組成物において、結晶化温度は、246℃以上であることが好ましい。結晶化温度が上記の範囲内であることにより、第一の本発明の繊維強化熱可塑性樹脂組成物を耐リフロー性樹脂材料として用いて成形体を製造する際の生産性を向上できる。
 結晶化温度は、例えば、結晶核剤(C)の含有量及びその種類によって調整することができる。
 なお、第一の本発明において、結晶化温度は実施例に記載の方法で測定することができる。
[繊維強化熱可塑性樹脂組成物の製造]
 第一の本発明の繊維強化熱可塑性樹脂組成物は、シンジオタクチック構造を有するスチレン系樹脂(A)、ゴム状弾性体(B)、結晶核剤(C)及びガラス繊維(G)と、必要に応じて上記変性ポリフェニレンエーテル(D)、酸化防止剤(E)、離型剤(F)及びその他成分とを配合・混練して組成物を得る。
 配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー、ヘンシェルミキサーなどで予備混合して、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機及びコニーダ等を用いる方法で行うことができる。
 溶融混練した第一の本発明の繊維強化熱可塑性樹脂組成物は、ペレット状にして保管し、耐リフロー性樹脂材料として用いることが好ましい。
[耐リフロー性樹脂材料]
 第一の本発明において耐リフロー性とは、リフローはんだ付け工程に耐えうる十分なリフロー耐熱性を有することを意味しており、リフロー耐熱性は、荷重たわみ温度、及び上述のリフロー処理収縮率により評価することができる。
 第一の本発明の耐リフロー性樹脂材料は、上述の繊維強化熱可塑性樹脂組成物からなる。すなわち、第一の本発明の耐リフロー性樹脂材料は、熱可塑性樹脂組成物(T)と扁平形状の断面を有するガラス繊維(G)とを含む繊維強化熱可塑性樹脂組成物であって、前記熱可塑性樹脂組成物(T)が、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)83~100質量部及びゴム状弾性体(B)0~17質量部からなるスチレン系樹脂組成物(S)100質量部、並びに結晶核剤(C)0.6~2.0質量部を含み、前記熱可塑性樹脂組成物(T)と前記ガラス繊維(G)との合計に対する前記ガラス繊維(G)の含有量が33.0~65.0質量%である、繊維強化熱可塑性樹脂組成物を含む。
 リフローはんだ付け工程としては、プリント基板の金属回路部分に形成した孔(スルーホール)に、はんだペーストを充填させ、そこにコネクタ等の金属端子を貫通させた後、リフロー炉で加熱しはんだ付けを行うスルーホールリフローを代表とする「挿入実装(IMT:Insertion Mount Technology)」、及び、プリント基板上の金属回路部分に、はんだペーストを塗布し、その上にコネクタ等の金属端子を載せた後、リフロー炉で加熱しはんだ付けを行う「表面実装(SMT:Surface Mount Technology)」等が挙げられる。
 このうち、特に表面実装は、プリント基板表面に塗布したはんだペーストにコネクタ等の金属端子を載せることではんだ付けを行うことから、高温下においてプリント基板やコネクタ等の寸法の変化により、プリント基板表面とコネクタ等の金属端子間距離の変化等の理由より、接合不良が生じる場合があった。
 一方で、第一の本発明の耐リフロー性樹脂材料は、上述の繊維強化熱可塑性樹脂組成物からなるため、耐熱性及び高温下における寸法安定性に優れる。
 したがって、第一の本発明の耐リフロー性樹脂材料は、リフローはんだ付け工程において好適に用いることができ、特に、表面実装によるリフローはんだ付け工程における寸法安定性に優れる。また、第一の本発明の耐リフロー性樹脂材料を、プリント基板やコネクタ等の一部として用いることでそれらの寸法変化を抑制し、接着不良を防ぐことができるため、より好適である。
 第一の本発明の耐リフロー性樹脂材料には、第一の本発明の効果を損なわない範囲で、他の熱可塑性樹脂等を含んでいてもよいが、第一の本発明の耐リフロー性樹脂材料は、実質的に上述の繊維強化熱可塑性樹脂組成物からなる。具体的には、第一の本発明の耐リフロー性樹脂材料における、上述の繊維強化熱可塑性樹脂組成物の含有量は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、更に好ましくは99質量%以上である。上限には制限はなく、100質量%以下であればよく、100質量%であることが好ましく、上述の繊維強化熱可塑性樹脂組成物のみからなっていてもよい。
 第一の本発明の耐リフロー性樹脂材料は、上記の通り、優れた耐熱性及び高温下における寸法安定性を有することから、成形体の成形に好適に用いることができる。成形体の形状は特に限定されず、例えば、射出成形品,押出成形品体等を挙げることができるが、第一の本発明の耐リフロー性樹脂材料からなる樹脂部材は、上述の通り、リフローはんだ付け工程に好適に用いることができることから、第一の本発明の耐リフロー性樹脂材料はリフローはんだ付け用成形体及びコネクタに特に好適に用いることができる。
 第一の本発明のリフローはんだ付け用成形体は、上述の耐リフロー性樹脂材料からなるものである。したがって、上述の通り、優れた耐熱性及び高温下における寸法安定性を有するため、特に第一の本発明のリフローはんだ付け用成形体と金属部材とからなる、樹脂金属複合体として好適に用いることができる。
 第一の本発明の樹脂金属複合体は、上述のリフローはんだ付け用成形体と金属部材とからなるものである。
 また、第一の本発明のコネクタは、前記樹脂金属複合体からなるものである。
 第一の本発明のリフローはんだ付け用成形体、樹脂金属複合体及びコネクタは、上述の通り、優れた耐熱性及び高温下における寸法安定性を有することから、第一の本発明のリフローはんだ付け用成形体、樹脂金属複合体及びコネクタをリフローはんだ付け工程に用いる際に、基板との間の接合強度を向上することができるため、接合面の一方又は端部に応力が偏ってかかる場合にも接合部分が破壊し難くすることができる。
 第一の本発明の樹脂金属複合体の金属部材としては、アルミニウム、ステンレス鋼、銅、チタン及びこれらの合金からなる群から選択される少なくとも1種を用いることが好ましい。これらの金属は、目的の用途、物性に応じて選択することが可能であり、銅又は銅合金を用いることがより好ましい。
 金属部材の形状は、上記リフローはんだ付け用成形体と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。これらの組み合わせからなる構造体であってもよい。第一の本発明のリフローはんだ付け用成形体と接合する金属部材の接合部表面の形状は、特に限定されず、平面や曲面等が挙げられる。一方、接合強度を維持するには、応力集中しにくい形状とすることがより好ましい。
[リフローはんだ付け工程]
 第一の本発明のリフローはんだ付け工程としては、上述の第一の本発明のコネクタのチップ部品のピンを、プリント基板の接合部分に形成した孔(スルーホール)に通し、当該孔の部分にリフロー用材料を充填した後、リフロー炉で加熱しはんだ付けを行う、「挿入実装」によるリフローはんだ付け工程、又は、孔が存在しないプリント基板上の接合部分にはんだペーストを塗布し、上述した第一の本発明のコネクタを載せた後、リフロー炉で加熱しはんだ付けを行う、「表面実装」によるリフローはんだ付け工程を、適宜選択することができる。
 第一の本発明のリフローはんだ付け用成形体は、上述の通り、優れた耐熱性及び高温下における寸法安定性を有するため、樹脂金属複合体とした場合に樹脂部材と金属部材の接合面の一部に応力が偏ってかかることを抑制でき、接合部分が破壊し難い。そのため、第一の本発明のリフローはんだ付け用成形体と金属部材からなる樹脂金属複合体や、当該樹脂金属複合体からなるコネクタは、特に「表面実装」によるリフローはんだ付け工程において、成形体の寸法変化が生じることによる接合部分のずれや応力集中を抑制し、接着不良を防ぐことができる。
 したがって、第一の本発明の樹脂金属複合体は、リフローはんだ付け工程に用いることが好ましく、表面実装によるリフローはんだ付け工程に用いることがより好ましい。
 更に、第一の本発明のリフローはんだ付け用成形体は、上述の通り、優れた耐熱性及び高温下における寸法安定性を有するため、第一の本発明の樹脂金属複合体及び第一の本発明のコネクタは、鉛フリーはんだの融点を低下させる銀の添加量を低減した低銀鉛フリーはんだを用いる、低銀鉛フリーリフローはんだ工程にも用いることができる。
[第二の本発明の樹脂金属複合体]
 第二の本発明の樹脂金属複合体は、熱可塑性樹脂組成物(T2)とガラスフィラー(G2)とを含む強化熱可塑性樹脂組成物からなる樹脂部材と、金属部材を含む、樹脂金属複合体であって、前記樹脂部材のTDの線膨張係数(CTETD)と前記金属部材の線膨張係数(CTE)の差(CTETD-CTE)が6.0×10-5/℃以下であり、前記強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみ(以下、「並走流ウエルドの曲げ破断ひずみ」とも言う)が1.15%以上である。
 一般に、樹脂金属複合体において、温度変化が大きい環境下に曝さられると、樹脂部材の線膨張係数と金属部材の線膨張係数との差が大きい場合、樹脂部材と金属部材との間で、ひずみが大きくなり、割れ等の破損が発生し易くなる。つまり耐ヒートショック性が十分でない樹脂金属複合体となる。
 通常、繊維等で強化された樹脂の成形体の線膨張係数は、成形時の樹脂の流れ方向(MD)と、樹脂の流れと垂直の方向(TD)とで大きく異なり、TDの方が、MDよりも、線膨張係数が大きい。そのため、樹脂金属複合体において、樹脂部材と金属部材との線膨張係数を比較した時、樹脂部材のTDの線膨張係数と金属部材の線膨張係数との差が、MDの線膨張係数と金属部材の線膨張係数との差に比べ特に大きくなる。その結果、樹脂金属複合体が温度変化の大きい環境下に曝された場合、TDのひずみが特に大きくなり、割れ等の発生が生じ易くなると考えられる。
 そこで、本発明者らは、樹脂金属複合体において、樹脂部材のTDの線膨張係数(CTETD)と前記金属部材の線膨張係数(CTE)の差(CTETD-CTE)を一定の範囲以下に小さくすることによって、耐ヒートショック性が向上することを見出した。
 一方、CTETD-CTEを一定の範囲以下に小さくしたとしても、温度変化が大きい環境下に曝さられた際に、破損が発生する場合があることが確認された。本発明者らは、鋭意検討の結果、特に並走流ウエルドが耐ヒートショック性に関与していることを見出し、CTETD-CTEを一定の範囲以下に小さくすると共に、並走流ウエルドの曲げ破断ひずみを特定の値以上とすることで優れた耐ヒートショック性が得られることを見出した。
 第二の本発明の樹脂金属複合体において、CTETD-CTEを一定の範囲以下に小さくすると共に、並走流ウエルドの曲げ破断ひずみを特定値以上とすることで優れた耐ヒートショック性が得られる理由は定かではないが、発明者らは以下のように推測している。
 ウエルドは樹脂が合流した箇所に形成され、他の箇所と比べて脆弱であることが知られており、その形成過程により、対向流ウエルドと並走流ウエルドに分けられる。対向流ウエルドは、成形時に樹脂の流動方向が対向している部分に形成されるウエルドであり、ヒートショック試験時においては(もしくは、環境温度の変化時においては)、樹脂部材のMDの膨張収縮の影響を受けやすいと考えられる。一方で、並走流ウエルドは、成形時に樹脂の流動方向が並走している部分に形成されるウエルドであり、ヒートショック試験時においては(もしくは、環境温度の変化時においては)、樹脂部材のTDの膨張収縮の影響を受けやすいと考えられる。
 樹脂金属複合体において、成形時に樹脂の流動方向が並走して合流した並走流ウエルドは、TDの膨張収縮の影響を大きく受けることになる。樹脂部材のTDの線膨張係数は、MDの線膨張係数に比べ大きいため、樹脂金属複合体の並走流ウエルドで、金属部材とのひずみが大きくなり樹脂部材が破損しやすくなるものと考えられる。CTETD-CTEを6.0×10-5/℃以下の範囲とし、更に並走流ウエルドの曲げ破断ひずみを1.15%以上の範囲とすることで、温度変化が大きい環境に曝さられた際にも、樹脂金属複合体は、樹脂部材と金属部材との間のひずみに耐えられるので、破損しやすい並走流ウエルドにかかる応力が緩和され、その結果、優れた耐ヒートショック性を有する樹脂金属複合体が得られたものと考えられる。
 以上の通り、第二の本発明は、樹脂部材のTDの線膨張係数(CTETD)と金属部材の線膨張係数(CTE)の差(CTETD-CTE)を6.0×10-5/℃以下の範囲とし、強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみを1.15%以上の範囲とすることで、耐ヒートショック性に優れるものとなる。
 以下、各項目について、詳細に説明する。
〔線膨張係数〕
 第二の本発明の樹脂金属複合体において、樹脂部材のTDの線膨張係数(CTETD)と金属部材の線膨張係数(CTE)の差(CTETD-CTE)は、6.0×10-5/℃以下であり、好ましくは5.9×10-5/℃以下である。CTETD-CTEが6.0×10-5/℃以下であることにより、樹脂部材と金属部材との間のひずみを小さくでき、耐ヒートショック性を高くできる。
 また、CTETD-CTEの下限については特に限定はされないが、樹脂部材と金属部材との間のひずみを小さくし、樹脂金属複合体の破壊を抑制する観点から、好ましくは0/℃以上であり、更に、樹脂金属複合体の耐ヒートショック性と、樹脂部材の破断伸びや成形性、混練安定性との両立の観点から、より好ましくは1.5×10-5/℃以上、更に好ましくは2.0×10-5/℃以上、より更に好ましくは2.5×10-5/℃以上である。
 第二の本発明において、線膨張係数は、実施例に記載の方法で測定できる。
 樹脂部材のTDの線膨張係数(CTETD)は、金属部材との組み合わせによるものの、CTETD-CTEを小さくし、樹脂金属複合体の耐ヒートショック性を向上させる観点から、好ましくは8.5×10-5/℃以下であり、より好ましくは8.0×10-5/℃以下である。CTETDの下限については特に限定はされないが、樹脂部材と金属部材との間のひずみを小さくし、樹脂金属複合体の破壊を抑制する観点から、好ましくは2.0×10-5/℃以上である。
 樹脂部材のTDの線膨張係数(CTETD)は、樹脂部材に含まれるガラスフィラー(G2)の種類及び含有量等によって、調整することができる。本発明者らは、樹脂部材中のガラスフィラー(G2)として、扁平形状の断面を有するガラス繊維やガラスフレークとすることにより、CTETDが小さくなる傾向があることを見出した。また、樹脂部材中のガラスフィラー(G2)の含有量を増加させることで、CTETDが小さくなる傾向にあることを見出した。
 金属部材の線膨張係数(CTE)は、特に限定はされないが、好ましくは0.5×10-5~3.0×10-5/℃であり、より好ましくは1.0×10-5~2.8×10-5/℃であり、更に好ましくは1.5×10-5~2.5×10-5/℃である。
 金属部材の線膨張係数(CTE)は、金属部材に用いられる金属の種類等により、調整することができる。
〔強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみ〕
 第二の本発明の樹脂金属複合体において、強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみ(並走流ウエルドの曲げ破断ひずみ)は、1.15%以上であり、好ましくは1.20%以上である。並走流ウエルドの曲げ破断ひずみが1.15%以上であることにより、樹脂部材と金属部材との間の応力を緩和することができ、耐ヒートショック性を向上できる。
 また、並走流ウエルドの曲げ破断ひずみの上限については特に限定はされないが、樹脂金属複合体の耐ヒートショック性と、樹脂部材の弾性率や耐熱性との両立の観点から、好ましくは2.00%以下である。
 並走流ウエルドの曲げ破断ひずみは、樹脂部材に含まれるゴム状弾性体(B)及び離型剤(F)の含有量等により、調整することができる。樹脂部材に含まれるゴム状弾性体(B)の含有量を増加させることで、並走流ウエルドの曲げ破断ひずみが大きくなる傾向がある。
 第二の本発明において、並走流ウエルドの曲げ破断ひずみは、強化熱可塑性樹脂組成物からなる並走流ウエルドが形成された測定用成形体から得られる試験片を用いて導くことが出来る。測定用成形体のゲート部よりMDに50~60mmの位置で切り出された、幅10mm、長さ80mm、厚さ2mmの、強化熱可塑性樹脂組成物からなる並走流ウエルド試験片により測定される。具体的には、図1で示す、測定用成形体1から、並走流ウエルドの曲げ破断ひずみ測定用試験片の切り出し部11より切り出された試験片を用いて測定される。
 測定用成形体1は、図2及び図3で示す、測定用成形体の金型2により作製される。金型2は、図3に示すように、隔壁25を設置している。隔壁25により、樹脂投入口24より投入された強化熱可塑性樹脂組成物は、流路A及びBに分かれてキャビティ23内を流れる。そして、流路A及びBに分かれて流れた強化熱可塑性樹脂組成物は、キャビティ23内の樹脂合流部26で合流し、ウエルド部が形成される。この時、隔壁25付近のウエルド部は、合流する樹脂の流れが対向しているため、対向流ウエルドが形成されている。一方で、隔壁25から離れた位置、より具体的には、隔壁25からMDに50mmより遠い位置では、合流する樹脂の流れが並走しているため、並走流ウエルドが形成されている。
 よって、第二の本発明における強化熱可塑性樹脂組成物からなる並走流ウエルド試験片は、並走流ウエルドを有するため、第二の本発明で目的とする並走流ウエルド部の曲げ破断ひずみを測定することができる。
 第二の本発明において、並走流ウエルドの曲げ破断ひずみは、上述の強化熱可塑性樹脂組成物からなる並走流ウエルド試験片を用いて、ISO178:2010に準拠していて測定され、具体的には実施例に記載の方法により測定される。
〔樹脂部材〕
 第二の本発明の樹脂金属複合体において、樹脂部材は、熱可塑性樹脂組成物(T2)とガラスフィラー(G2)とを含む強化熱可塑性樹脂組成物からなる。
<熱可塑性樹脂組成物(T2)>
 第二の本発明の樹脂金属複合体において、熱可塑性樹脂組成物(T2)は、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)75~94質量部及びゴム状弾性体(B)6~25質量部からなるスチレン系樹脂組成物(S2)を含むことが好ましい。
<シンジオタクチック構造を有するスチレン系重合体(A)>
 第二の本発明の樹脂金属複合体において、シンジオタクチック構造を有するスチレン系重合体(A)(以下、SPS(A)ともいう)は、高度なシンジオタクチック構造を有するスチレン系樹脂であり、上述の第一の本発明において例示されたSPS(A)と同様のものが好ましい。
 SPS(A)としては、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、スチレンとp-メチルスチレンとの共重合体から選ばれる1種以上が好ましく、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、スチレンとp-メチルスチレンとの共重合体から選ばれる1種以上がより好ましく、ポリスチレン、スチレンとp-メチルスチレンとの共重合体が更に好ましく、ポリスチレンが最も好ましい。
 SPS(A)は、温度300℃、荷重1.2kgの条件下でメルトフローレート(MFR)測定を行った場合に、好ましくは8g/10分以上であり、より好ましくは10g/10分以上であり、更に好ましくは13g/10分以上であり、好ましくは50g/10分以下であり、より好ましくは35g/10分以下である。SPS(A)の前記MFR値が8g/10分以上であれば、樹脂金属複合体の成形時の樹脂の流動性に問題がなく、また、50g/10分以下であれば、樹脂金属複合体の強度を十分なものとでき、耐ヒートショック性を高くすることができる。
 第二の本発明の樹脂金属複合体において、SPS(A)の重量平均分子量は、好ましくは230,000未満であり、より好ましくは200,000未満であり、更に好ましくは190,000未満であり、より更に好ましくは185,000未満であり、また、好ましくは10,000以上であり、より好ましくは50,000以上であり、更に好ましくは100,000以上である。SPS(A)の重量平均分子量が230,000未満であれば、樹脂金属複合体の成形時の樹脂の流動性に問題がなく、また、10,000以上であれば、樹脂金属複合体の強度を十分なものとでき、耐ヒートショック性を高くすることができる。
 SPS(A)の重量平均分子量の調節方法としては、上述の第一の本発明において例示されたSPS(A)と同様の方法等が挙げられる。
 スチレン系樹脂組成物(S2)100質量部中のSPS(A)の含有量は、好ましくは75~94質量部であり、より好ましくは77~93質量部であり、更に好ましくは78~92質量部であり、より更に好ましくは79~91質量部である。SPS(A)の含有量が上記範囲内であることで、樹脂金属複合体の耐ヒートショック性を高くできる。
 SPS(A)は、上述の第一の本発明において例示された方法と同様に、スチレン単量体等を重合することにより製造することができる、
<ゴム状弾性体(B)>
 第二の本発明の樹脂金属複合体において、熱可塑性樹脂組成物(T2)がゴム状弾性体(B)を含有することで、樹脂部材の靭性を向上させることができ、特に並走流ウエルドの曲げ破断ひずみを大きくすることができ、樹脂金属複合体の耐ヒートショック性を高めることができる。
 ゴム状弾性体(B)としては、上述の第一の本発明において例示されたゴム状弾性体(B)と同様のものが好ましい。
 ゴム状弾性体(B)は、より好ましくはスチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエンランダム共重合体、水素添加スチレン-ブタジエンランダム共重合体、スチレン-エチレン-プロピレンランダム共重合体、及びスチレン-エチレン-ブチレンランダム共重合体からなる群より選ばれる少なくとも一種であり、更に好ましくはスチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、及び水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)からなる群より選ばれる少なくとも一種であり、より更に好ましくはスチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、及び水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)からなる群より選ばれる少なくとも一種であり、より更に好ましくは水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、及びスチレン-イソプレン-スチレンブロック共重合体(SIS)、及び水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)からなる群より選ばれる少なくとも一種であり、より更に好ましくは水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)である。
 ゴム状弾性体(B)を構成する、スチレンに由来する構成単位と、ジエン、水素添加ジエン及びオレフィンに由来する構成単位の合計との質量比[(スチレン)/(ジエン、水素添加ジエン、オレフィン)]は、好ましくは20/80~70/30であり、より好ましくは25/75~60/40、更に好ましくは25/75~45/55である。ゴム状弾性体(B)のスチレン含有量として25~60質量%の範囲であることが好ましく、25~45%の範囲であることがより好ましい。
 このような質量比とすることで、SPS(A)との相溶性を高め、樹脂金属複合体の耐ヒートショック性を向上できる。
 スチレン系樹脂組成物(S2)100質量部中のゴム状弾性体(B)の含有量は、好ましくは6~25質量部、より好ましくは7~20質量部であり、更に好ましくは8~15質量部であり、より更に好ましくは8~12質量部である。ゴム状弾性体(B)の含有量が上記範囲内であることで、樹脂金属複合体の耐ヒートショック性を高くできる。
<結晶核剤(C)>
 第二の本発明の樹脂金属複合体において、熱可塑性樹脂組成物(T2)は、更に、結晶核剤(C)を含有することが好ましい。熱可塑性樹脂組成物(T2)が結晶核剤(C)を含有することで、結晶化温度を高くでき、結晶化のための温度条件の幅広い設定を可能とし、生産性を向上できる。
 また、熱可塑性樹脂組成物(T2)において、結晶核剤(C)の含有量は、0.6~2.0質量部が好ましく、0.7~1.8質量部がより好ましく、0.8~1.5質量部が更に好ましい。結晶核剤(C)の含有量が0.6質量部以上であることにより、結晶化のための温度条件の幅広い設定を可能とし、生産性を向上できる。また、2.0質量部以下であることにより、成形時に、発生するガス成分量を抑えることができ、良好な外観を得ることができる。
 結晶核剤(C)としては、上述の第一の本発明において例示された結晶核剤(C)と同様のものが好ましい。これらの中でも、結晶化温度を高くする観点から、リン酸又は亜リン酸の有機化合物のリチウム塩を用いることが好ましく、[リン酸[2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)]]リチウムを用いることがより好ましい。
<変性ポリフェニレンエーテル(D)>
 第二の本発明の樹脂金属複合体において、熱可塑性樹脂組成物(T2)は、更に、変性ポリフェニレンエーテル(D)を含むことが好ましい。熱可塑性樹脂組成物(T2)が変性ポリフェニレンエーテル(D)を含むことにより、熱可塑性樹脂組成物(T2)と後述のガラスフィラー(G)との界面強度を高くできるため、樹脂部の構造体としての強度が高くなり、樹脂金属複合体の耐ヒートショック性を高めることができる。
 また、熱可塑性樹脂組成物(T2)において、変性ポリフェニレンエーテル(D)の含有量は、スチレン系樹脂組成物(S2)100質量部に対して、好ましくは0.1~15.0質量部、より好ましくは0.1~10.0質量部、更に好ましくは0.1~6.0質量部である。変性ポリフェニレンエーテル(D)の含有量が0.1質量部以上であることにより、熱可塑性樹脂組成物(T2)と後述のガラスフィラー(G)との界面強度を高くできるため、樹脂部の構造体としての強度が高くなり、樹脂金属複合体の耐ヒートショック性を高めることができる。また、15質量部以下であることにより、十分な結晶化度を確保でき、耐熱性や剛性を確保し易くできる。
 第二の本発明の樹脂金属複合体に用いられる変性ポリフェニレンエーテル(D)は、SPS(A)と相溶性を有し、その他の成分との相溶性を向上させるものであり、ガラスフィラー(G2)と反応可能な極性基を有することが好ましい。
 このように変性ポリフェニレンエーテル(D)はSPS(A)と、その他の成分、特にガラスフィラー(G2)との相溶性を向上させ、各成分間の界面強度を向上させることを目的として配合される。より具体的には、変性ポリフェニレンエーテル(D)は酸変性ポリフェニレンエーテルが好ましい。
 ガラスフィラー(G2)と反応可能な極性基とは、ガラスフィラー(G2)が有する極性基と反応しうる官能基を指し、具体例としては、上述の第一の本発明において例示された官能基と同様のものが好ましく、カルボン酸基がより好ましい。
 変性ポリフェニレンエーテル(D)としては、フマル酸変性ポリフェニレンエーテル及び無水マレイン酸変性ポリフェニレンエーテルが好ましく、フマル酸変性ポリフェニレンエーテルがより好ましい。
 変性ポリフェニレンエーテル(D)の変性量(変性剤含有量)は、好ましくは0.1~20質量%であり、より好ましくは0.2~15質量%であり、更に好ましくは0.3~10質量%であり、より更に好ましくは0.5~5.0質量%である。変性量が前記範囲であることで、熱可塑性樹脂組成物(T2)と後述のガラスフィラー(G2)との界面強度を高くできるため、樹脂部の構造体としての強度を高くすることができる。
 ポリフェニレンエーテルの例としては、上述の第一の本発明において例示されたポリフェニレンエーテルと同様のものが好ましい。
 また、ポリフェニレンエーテルの変性に用いられる変性剤としては、同一分子内にエチレン性二重結合と極性基とを有する化合物が挙げられ、具体的には、上述の第一の本発明において例示された変性剤と同様のものが挙げられ、特に無水マレイン酸、フマル酸及びグリシジルメタクリレートが好ましく用いられ、フマル酸がより好ましく用いられる。上記各種の変性剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 変性ポリフェニレンエーテル(D)は、前記ポリフェニレンエーテルと変性剤とを反応させることにより得られる。変性の方法に特に制限はなく、上述の第一の本発明において例示された変性方法と同様の方法が挙げられ、好ましくは溶融変性及び溶液変性が挙げられ、より好ましくは溶融変性である。すなわち、前記変性ポリフェニレンエーテル(D)は、好ましくは溶融変性によって製造された変性ポリフェニレンエーテル又は溶液変性によって製造された変性ポリフェニレンエーテルであり、より好ましくは溶融変性によって製造された変性ポリフェニレンエーテルである。
 また、溶融変性の具体的な各種条件は、上述の第一の本発明において例示された溶融変性と同様の各種条件であることが好ましい。
<酸化防止剤(E)>
 熱可塑性樹脂組成物(T2)は、耐熱性の観点から、更に酸化防止剤(E)を含むことが好ましい。酸化防止剤(E)は、フェノール系化合物、リン系化合物及びイオウ系化合物より選ばれる1種以上を用いることが好ましく、耐熱性の観点から、フェノール系化合物がより好ましい。
 フェノール系酸化防止剤の具体例としては、上述の第一の本発明において例示されたフェノール系酸化防止剤と同様のものが挙げられ、特に、ペンタエリスリトールテトラキス{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート}が好ましい。
 リン系酸化防止剤としては、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(モノ及びジ-ノニルフェニル)ホスファイト等のモノホスファイトやジホスファイト等が挙げられる。
 硫黄系酸化防止剤としては、2,2-ビス{[3-(ドデシルチオ)-1-オキソプロポキシ]メチル}プロパン-1,3-ジイルビス[3-(ドデシルチオ)プロピネート]、ジ(トリデシル)3,3’-チオジプロピネート、3,3’-チオジプロピネート等が挙げられる。
 熱可塑性樹脂組成物(T2)において、スチレン系樹脂組成物(S2)100質量部に対する酸化防止剤(E)の含有量は、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.15質量部以上が更に好ましい。また、2.0質量部以下が好ましく、1.0質量部以下がより好ましく、0.7質量部以下が更に好ましい。酸化防止剤の量が前記の範囲であれば、加工時の耐熱変色性が良好となり、更に長期耐熱性を得ることができ、酸化防止剤のブリードも抑制することができ、外観に悪影響を与えない。
<離型剤(F)>
 熱可塑性樹脂組成物(T2)は、更に離型剤(F)を含むことが好ましい。
 離型剤(F)としては、ポリエチレンワックス、シリコーンオイル、長鎖カルボン酸等公知のものから任意に選択して用いることができる。
 熱可塑性樹脂組成物(T2)において、スチレン系樹脂組成物(S2)100質量部に対する、離型剤(F)の含有量は、0.05~3.0質量部が好ましく、0.1~2.0質量部がより好ましく、0.1~1.5質量部が更に好ましく、0.1~1.0質量部が更に好ましい。
<ガラスフィラー(G2)>
 第二の本発明において、強化熱可塑性樹脂組成物がガラスフィラー(G2)を含有することで、CTETDを小さくし、CTETD-CTEを小さくでき、樹脂金属複合体の耐ヒートショック性を向上させることができる。
 本発明において、ガラスフィラー(G2)は、扁平形状の断面を有するガラス繊維及びガラスフレークから選ばれる1種以上であることが好ましい。ガラスフィラー(G2)が、扁平形状の断面を有するガラス繊維及びガラスフレークから選ばれる1種以上であることにより、樹脂部材の線膨張係数を低減し易くできる。特に、上記から選ばれるガラスフィラー(G2)を用いることにより、MDの線膨張係数だけでなく、TDの線膨張係数(CTETD)も効果的に小さくすることができるため、CTETD-CTEを小さくでき、樹脂金属複合体の耐ヒートショック性を向上させることができるため、好ましい。
(扁平形状の断面を有するガラス繊維)
 扁平形状の断面を有するガラス繊維において、扁平形状とは、ガラス繊維の異形比が1より大きい形状を指す。本発明において異形比とは、扁平形状の断面を有するガラス繊維の繊維軸に垂直な断面の長径と短径の比、すなわち、長径/短径を指す。また、長径とは、繊維軸に垂直な断面において、重心を通り、且つ断面の外縁上の2点間の距離が最長となる部分の直線距離であり、短径とは重点を通り、且つ長径と垂直に交わる直線と断面の外縁とが交わった2点間の直線距離である。
 扁平形状の断面を有するガラス繊維を用いることにより、CTETDを小さくすることができるため、CTETD-CTEを小さくでき、樹脂金属複合体の耐ヒートショック性を向上させることができる。
 扁平形状の断面を有するガラス繊維の異形比は、CTETD-CTEを小さくし、樹脂金属複合体の耐ヒートショック性を向上させる観点から、2.0~6.0であることが好ましく、3.0~5.0であることがより好ましく、3.5~4.5であることが更に好ましい。また、短径は3μm~10μmであることが好ましく、5μm~8μmであることがより好ましい。
 ガラス繊維の長径及び短径は、いずれも数平均であり、50個以上の任意に選択したガラス繊維について、デジタルマイクロスコープによる画像解析を行うことにより測定し、数平均として算出される。
 扁平形状の断面を有するガラス繊維の繊維径は、CTETD-CTEを小さくし、樹脂金属複合体の耐ヒートショック性を向上させる観点から、10μm以上であることが好ましく、10.5μm以上であることがより好ましく、11μm以上であることが更に好ましく、12μm以上であることがより更に好ましい。また、扁平形状の断面を有するガラス繊維の繊維径は、成形時の強化熱可塑性樹脂組成物の流動性の確保の観点から、20μm以下が好ましく、18μm以下がより好ましい。
 尚、本発明において扁平形状の断面を有するガラス繊維の繊維径とは、繊維軸に垂直な断面をその断面の面積と同じ面積を有する円に換算することで得られる円の直径を意味している。 ガラス繊維の繊維径は数平均であり、50個以上の任意に選択したガラス繊維について、デジタルマイクロスコープによる画像解析を行うことにより測定し、算出される。
 扁平形状の断面を有するガラス繊維の繊維長は、成形時の強化熱可塑性樹脂組成物の流動性の確保及びハンドリングの観点から、1~50mmであることが好ましく、1.5~15mmであることがより好ましく、2~8mmであることがより更に好ましい。また、扁平形状の断面を有するガラス繊維の繊維長は、押出混練時の折損等により、樹脂組成物ペレット中に、300~600μmとなった状態で含まれていることが好ましい。
 ガラス繊維の繊維長は数平均であり、50個以上の任意に選択したガラス繊維について、デジタルマイクロスコープによる画像解析を行うことにより測定し、算出される。
(ガラスフレーク)
 ガラスフレークとしては、鱗片状粒子であることが好ましい。なお、鱗片状とは、平均短径に比べて、平均厚さが小さい扁平状の粒子形状のことを言う。
 ガラスフレークを用いることにより、CTETDを小さくすることができるため、CTETD-CTEを小さくでき、樹脂金属複合体の耐ヒートショック性を向上させることができる。
 ガラスフレークの平均長径と平均短径とのアスペクト比(平均長径/平均短径)は、CTETD-CTEを小さくし、樹脂金属複合体の耐ヒートショック性を向上させる観点から、好ましくは3.0以下、より好ましくは2.0以下、更に好ましくは1.6以下である。
 また、ガラスフレークの平均長径と平均厚さとのアスペクト比(平均長径/平均厚さ)は、CTETD-CTEを小さくし、樹脂金属複合体の耐ヒートショック性を向上させる観点から、好ましくは5以上、より好ましくは10以上、更に好ましくは30以上である。
 ガラスフレークの平均長径は、成形時の強化熱可塑性樹脂組成物の流動性の確保及びハンドリングの観点から、好ましくは1000μm以下であり、より好ましくは1~500μmであり、更に好ましくは1~200μmである。また、ガラスフレークの平均短径は、成形時の強化熱可塑性樹脂組成物の流動性の確保及びハンドリングの観点から、好ましくは1000μm以下であり、より好ましくは1~500μmであり、更に好ましくは1~200μmである。
 なお、上記ガラスフレークの平均長径、平均短径及び平均厚さは、いずれも数平均であり、50個以上の任意に選択したガラスフレークについて、デジタルマイクロスコープによる画像解析を行うことにより測定し、算出される。
 ガラスフィラー(G2)は、SPS(A)との接着性を高めるために、カップリング剤で表面処理を施されていることが好ましく、シラン系カップリング剤又はチタン系カップリング剤により処理されていることがより好ましく、シラン系カップリング剤で処理されていることが樹脂成分との相溶性の観点から更に好ましい。
 シラン系カップリング剤の具体例としては、上述の第一の本発明において例示されたシラン系カップリング剤と同様のものが挙げられ、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のアミノシラン、エポキシシランが好ましい。
 チタン系カップリング剤の具体例としては、上述の第一の本発明において例示されたチタン系カップリング剤と同様のものが挙げられ、イソプロピルトリ(N-アミドエチル,アミノエチル)チタネートが好ましい。
 第二の本発明における強化熱可塑性樹脂組成物中のガラスフィラー(G2)の含有量は、熱可塑性樹脂組成物(T2)とガラスフィラー(G2)との合計100質量%中のうち、好ましくは20.0~65.0質量%であり、より好ましくは、23.0~55.0質量%が更に好ましくは25.0~45.0質量%である。ガラスフィラー(G2)の含有量が20.0質量%以上であることにより、CTETDを小さくし、CTETD-CTEを小さくでき、樹脂金属複合体の耐ヒートショック性を向上させることができる。ガラスフィラー(G2)の含有量が65.0質量%以下であることにより、成形時の強化熱可塑性樹脂組成物の流動性を確保できる。
<その他の成分>
 第二の本発明における強化熱可塑性樹脂組成物には、本発明の目的を阻害しない範囲で任意のその他の成分を添加することができる。
 その他の成分としては、任意の成分である、色剤、架橋剤、架橋助剤、分散剤、可塑剤、防汚剤、紫外線吸収剤、光安定剤、難燃剤、難燃助剤及び帯電防止剤等を含むことができる。
 色材、分散剤、紫外線吸収剤、光安定剤、難燃剤及び難燃助剤の具体例としては、上述の第一の本発明において例示された色材、分散剤、紫外線吸収剤、光安定剤、難燃剤及び難燃助剤と同様のものが挙げられる。
(強化熱可塑性樹脂組成物の製造)
 第二の本発明の樹脂金属複合体において、強化熱可塑性樹脂組成物は、シンジオタクチック構造を有するスチレン系樹脂(A)、ゴム状弾性体(B)及びガラスフィラー(G2)と、必要に応じて上記の結晶核剤(C)変性ポリフェニレンエーテル(D)、酸化防止剤(E)、離型剤(F)及びその他成分とを配合・混練して組成物を得る。
 配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー、ヘンシェルミキサーなどで予備混合して、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機及びコニーダ等を用いる方法で行うことができる。
<金属部材>
 第二の本発明の樹脂金属複合体の金属部材としては、アルミニウム、ステンレス鋼、銅、チタン及びこれらの合金からなる群から選択される少なくとも1種が好ましく、アルミニウム、ステンレス鋼及び銅から選択される少なくとも1種がより好ましい。これらの金属は、目的の用途、物性に応じて選択することが可能であり、銅又は銅合金を用いることがより好ましい。金属部材の形状は、特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。これらの組み合わせからなる構造体であってもよい。
<用途>
 第二の本発明の樹脂金属複合体は、高温環境下と低温環境下とに交互に曝されても、割れ等の破損が発生しにくく、耐久性、いわゆる耐ヒートショック性に優れる。そのため、例えば、電子・電気機械分野、自動車分野、家庭電化製品分野を中心に、異種材料である金属と樹脂とを一体化させた部品として、高温環境下と低温環境下とに交互の曝されるような、過酷な環境下で用いることが出来る。使用温度領域としては、例えば、高温環境として110℃以上150℃以下、低温環境として-50℃以上-30℃以下の温度域にて使用でき、温度の差が140℃以上、更には160℃以上で変化する環境下においても使用することが出来る。第二の本発明の樹脂金属複合体は、具体的には、車載向けリチウムイオンバッテリーや電気自動車等の制御回路配線に用いられる端子台及びバスバー部材、配電盤、分電盤、制御盤等の盤内に用いられる端子台及びバスバー部材、大型機械に用いられる電線等の中継ボックス内に用いられる端子台及びバスバー部材、ソレノイドバルブ等として用いることが出来る。
 本発明を実施例により更に具体的に説明するが、本発明はこれらに何ら制限されるものではない。
 実施例及び比較例で用いた原料は次の通りである。
<SPS(シンジオタクチックポリスチレン)(A)>
・SPS-30:シンジオタクチックポリスチレン樹脂、重量平均分子量:150,000、MFR:30g/10分、出光興産株式会社製
・SPS-13:シンジオタクチックポリスチレン樹脂、重量平均分子量:180,000、MFR:13g/10分、出光興産株式会社製
・SPS-09:シンジオタクチックポリスチレン樹脂、重量平均分子量:200,000、MFR:9g/10分、出光興産株式会社製
・SPS-06:シンジオタクチックポリスチレン樹脂、重量平均分子量:230,000~250,000、MFR:6g/10分、出光興産株式会社製
<ゴム状弾性体(B)>
・SEPTON8006:SEPTON8006、水素添加スチレン-ブタジエン-スチレンブロック共重合体、スチレン含有量33%、株式会社クラレ製
<結晶核剤(C)>
・NA-70:アデカスタブ NA-70、[リン酸[2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)]]リチウム、株式会社ADEKA製
・NA-11:アデカスタブ NA-11、ナトリウム-2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)ホスフェート、株式会社ADEKA製
<変性ポリフェニレンエーテル(D)>
・フマル酸変性ポリフェニレンエーテル、出光興産株式会社製、変性量1.5質量%
<酸化防止剤(E)>
・酸化防止剤、Irganox1010:Irganox1010、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF株式会社製
<離型剤(F)>
・KF-53:メチルフェニルシリコーンオイル,信越シリコーン社製
<扁平形状の断面を有するガラス繊維(G)(ガラスフィラー(G2))>
・3PA-820:CSG 3PA-820、断面:扁平形状(短径:7μm、異形比:4)、繊維長:3mm、日東紡績株式会社製
・3J-820:CSG 3J-820、断面:扁平形状、繊維径:10.5μm(短径:5μm、異形比:4)、繊維長:3mm、日東紡績株式会社製
・T-249-FGF:ECS 03 T-249-FGF、断面:扁平形状(短径:7μm、異形比:4)、繊維長:3mm、日本電気硝子株式会社製
<扁平形状の断面を有しないガラス繊維>
・T-249H:ECS 03 T-249H、断面:真円、繊維径:10.5μm、繊維長:3mm、日本電気硝子株式会社製
<ガラスフレーク(ガラスフィラー(G2))>
・REFG315: フレカ REFG-315、平均長径:160μm、平均短径:160μm、平均厚さ:5μm、アスペクト比(平均長径/平均短径):1、アスペクト比:(平均長径/平均厚さ):32、日本板硝子株式会社製
[第一の本発明の繊維強化熱可塑性樹脂組成物の実施例]
実施例1-1~1-14、比較例1-1~1-11
(繊維強化熱可塑性樹脂組成物の製造)
 ガラス繊維(G)以外の各成分を表1及び2に記載する割合で配合し、ヘンシェルミキサーでドライブレンドした。続いて、二軸スクリュー押出機TEM37SS(芝浦機械株式会社製)を用いて、スクリュー回転数220rpm、バレル温度270~290℃で、ガラス繊維(G)を表1及び2に記載する割合でサイドフィードしながら樹脂組成物を混練し、ペレットを作製した。得られたペレットを、熱風乾燥機を用いて120℃で5時間乾燥し、繊維強化熱可塑性樹脂組成物のペレットを得た。得られた繊維強化熱可塑性樹脂組成物のペレットを用いて評価を行った。
(1)SFL(流動長、Spiral Flow Length)
 得られた前記繊維強化熱可塑性樹脂組成物のSFL(単位:mm)を、射出成形機MD100Xi2.7(株式会社ニイガタマシンテクノ製)を用いて測定した。測定時の射出条件は、シリンダー温度290℃、金型温度150℃、射出圧力設定100MPaとし、流路厚み1mm、幅10mm、アルキメデス螺旋形状のスパイラルフロー金型を用いた。SFLの値が大きいほど、流動性が良好であることを示す。結果を表1及び表2に示す。
(2)引張試験
 射出成形機SH100A(住友重機械工業株式会社製)を用い、樹脂温度290℃、金型表面温度150℃で、得られた繊維強化熱可塑性樹脂組成物のペレットからなる厚さ4mmのダンベル状試験片を作製した。ここでダンベル状試験片は、JIS K7139:2009に準拠した多目的試験片(タイプA1)を作製した。得られたダンベル状試験片を用い、ISO 527-1,2:2019に準拠して引張破断応力及び引張破断ひずみを測定した。引張破断応力及び引張破断ひずみが共に高いほど靭性が良好である事を示す。結果を表1及び表2に示す。
(3)リフロー耐熱性
 射出成形機MD100Xi2.7(株式会社ニイガタマシンテクノ製)を用い、樹脂温度290℃、金型表面温度150℃で、得られた繊維強化熱可塑性樹脂組成物のペレットからなる80mm×80mm×厚さ2mmの角板試験片を作製した。
 作製した角板試験片のはんだ耐熱性を、リフロー炉UNI-5016F(日本アントム株式会社製)を用いて、IEC60068-2-58(2015年、第4版)に準拠したリフロー法により求めた。前記リフロー法のリフロー温度プロファイルにおいてピーク温度260℃、255℃を超えている時間を25秒に設定し、リフロー処理を行った。
 リフロー処理前後の試験片の、樹脂の流動方向(MD)と樹脂の流動方向に対して垂直な方向(TD)の寸法変化を測定し、MDのリフロー処理収縮率とTDのリフロー処理収縮率を求めた。更に、MDのリフロー処理収縮率とTDのリフロー処理収縮率から、リフロー処理収縮率の異方性(TD/MD)を下記の式から求めた。各方向のリフロー処理収縮率が小さくかつリフロー処理収縮率の異方性の値が1に近いほど、リフロー耐熱性が良好であることを示す。結果を表1及び表2に示す。尚、表1及び表2中のリフロー処理収縮率の異方性(TD/MD)の値は、四捨五入して数値を丸める前のMDのリフロー処理収縮率及びTDのリフロー処理収縮率の値に基いて計算されたものである。
  (リフロー処理収縮率の異方性)=(TDのリフロー処理収縮率/MDのリフロー処理収縮率))
(4)荷重たわみ温度
 射出成形機SH100A(住友重機械工業株式会社製)を用い、樹脂温度290℃、金型表面温度150℃で、得られた繊維強化熱可塑性樹脂組成物からなる80mm×10mm×厚さ4mmの短冊試験片を作製した。
 得られた短冊試験片を用いて、ISO75-1,2:2020に準拠し、荷重たわみ温度(荷重1.8MPa)を測定した。荷重たわみ温度が高いほど耐熱性が良好である事を示す。結果を表1及び表2に示す。
(5)結晶化温度
 示差走査熱量測定DSC8500(PerkinElmer,Inc.製)を用い、結晶化温度を測定した。得られた繊維強化熱可塑性樹脂組成物のペレットをアルミパンに封入し、窒素ガス雰囲気下で室温から300℃に20℃/分の速度で昇温し、300℃で1分間保持し、その後に20℃/分の速度で室温まで降温して測定される結晶化ピークにおけるピークトップの温度を結晶化温度とした。結晶化温度が高いほど、結晶化のための温度条件の幅広い設定を可能とし、生産性を向上できる。結果を表1及び表2に示す。
 繊維強化熱可塑性樹脂組成物の評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果から、第一の本発明の繊維強化熱可塑性樹脂組成物は、優れた耐熱性及び高温下における寸法安定性を有することが分かる。このことから、本発明の繊維強化熱可塑性樹脂組成物は、特に耐リフロー性樹脂材料として、好適に用いることができる。
[第二の本発明の樹脂金属複合体の実施例]
実施例2-1~2-6、比較例2-1~2-10
 ガラスフィラー(G2)以外の各成分を表3及び表4に記載する割合で配合し、ヘンシェルミキサーでドライブレンドした。続いて、二軸スクリュー押出機TEM37SS(芝浦機械株式会社製)を用いて、スクリュー回転数250rpm、バレル温度290℃で、ガラスフィラー(G2)を表3及び表4に記載する割合でサイドフィードしながら樹脂組成物を混練し、ペレットを作製した。得られたペレットを、熱風乾燥機を用いて120℃で5時間乾燥し、強化熱可塑性樹脂組成物のペレットを得た。得られた強化熱可塑性樹脂組成物のペレットを用いて評価を行った。
(1)線膨張係数
(1-1)樹脂部材のTDの線膨張係数(CTETD
 射出成型機SE100-EV(住友重機械工業株式会社製)を用い、シリンダー温度290℃、金型温度150℃で、得られた強化熱可塑性樹脂組成物のペレットからなる厚さ4mmのダンベル状試験片を作製した。ここでダンベル状試験片は、JIS K7139:2009に準拠した多目的試験片(タイプA1)を作製した。得られたダンベル型引張試験片から、図4のTDの線膨張係数(CTETD)測定用試験片の切り出し部32の位置で、試験片を切り出した。試験片の大きさは、4mm×4mm×10mmとした。
 得られた試験片を用い、熱機械分析装置(株式会社日立ハイテク製、TMA7100)で、下記の測定条件で、樹脂部材のTDの線膨張係数(CTETD)を測定した。
≪測定条件≫
・試験装置:熱機械分析装置(株式会社日立ハイテク製、TMA7100)
・測定モード:圧縮
・測定温度:-60~270℃
・昇温温度:5℃/min
・評価領域:-40~120℃
(1-2)金属部材の線膨張係数(CTE
 金属部材の線膨張係数(CTE)は、JIS Z2285:2003に準拠し測定を行った。なお、実施例で用いた金属部材(ステンレス(SUS304)製)の線膨張係数(CTE)は、1.73×10-5/℃であった。
(2)強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみ
(試験片の作成)
 射出成型機SE100-EV(住友重機械工業株式会社製)を用い、図2及び3で示す形状の金型で、シリンダー温度290℃、金型温度150℃で、図1で示す測定用成形体1を作製した。測定用成形体1の厚さは、2mmとした。
 得られた試験用成形体から、図1に示すように、流路Aのゲート部13A及び流路Bのゲート部13Bから、MDに50~60mmの位置において、幅10mm、長さ80mm、厚さ2mmの、並走流ウエルドの曲げ破断ひずみ測定用試験片を切り出した。
 得られた並走流ウエルドの曲げ破断ひずみ測定用試験片を用い、ISO178:2010に準拠して、下記の測定条件で曲げ試験を行い、強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみを測定した。この時試験片は、中央部分(図1の並走流ウエルド部12の箇所)が、圧子に押されるように設置をした。
≪測定条件≫
・支点間距離を30mm
・支点半径を2mm
・圧子半径を5mm
・試験速度を1mm/min
(3)耐ヒートショック性
 射出成型機SE50-EV(住友重機械工業株式会社製)を用い、図7に示すように、金型のキャビティ内に、金属部材(ステンレス(SUS304)製、大きさ:6mm×6mm×103mm)をセットし、シリンダー温度290℃、金型温度150℃で、耐ヒートショック性評価用試験片を作製した。耐ヒートショック性評価用試験片において、樹脂部材は、図5に示す通り、半径10mm、長さ85mmの形状で、金属部材に被覆した。また、図6に示す断面において、樹脂部材の最小肉厚は、0.76mmであった。耐ヒートショック性評価用試験片の樹脂部材において、ゲート部と反対側の長手方向において、ウエルドラインが存在した。
 得られた耐ヒートショック性評価用試験片を用いて、小型冷熱衝撃装置TES-12-A(エスペック株式会社製)で、下記の測定条件でヒートショック試験を行った。3個の耐ヒートショック性評価用試験片において、ウエルドラインにおける割れが発生するサイクル数の最小値を測定し、下記の評価基準に基づいて、耐ヒートショック性を評価した。
≪測定条件≫
・1サイクルの条件:-40℃で45分 → 120℃で45分
≪評価基準≫
A:割れが発生するサイクル数の最小値が、250サイクルより大きい。
B:割れが発生するサイクル数の最小値が、200サイクルより大きく250サイクル以下。
C:割れが発生するサイクル数の最小値が、100サイクルより大きく200サイクル以下。
D:割れが発生するサイクル数の最小値が、100サイクル以下
 樹脂金属複合体の評価結果を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
 表3及び表4の結果から、第二の本発明の樹脂金属複合体は、優れた耐ヒートショック性を有することがわかる。
1:並走流ウエルドの曲げ破断ひずみ測定用成形体
11:試験片の切り出し部
12:並走流ウエルド部
13A:流路Aのゲート部
13B:流路Bのゲート部
2:並走流ウエルドの曲げ破断ひずみ測定用成形体の金型
21:金型上部
22:金型下部
23:キャビティ
24:樹脂投入口
25:隔壁
26:樹脂合流部
31:ダンベル状試験片
32:TDの線膨張係数(CTETD)測定用試験片の切り出し部
4:耐ヒートショック性評価用試験片
41:樹脂部材
42:金属部材
43:ゲート部
44:ウエルドラインの位置
5:耐ヒートショック評価用試験片の金型
51:キャビティ
52:樹脂投入口

Claims (25)

  1.  熱可塑性樹脂組成物(T)と扁平形状の断面を有するガラス繊維(G)とを含む繊維強化熱可塑性樹脂組成物であって、
     前記熱可塑性樹脂組成物(T)が、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)83~100質量部及びゴム状弾性体(B)0~17質量部からなるスチレン系樹脂組成物(S)100質量部、並びに結晶核剤(C)0.6~2.0質量部を含み、
     前記熱可塑性樹脂組成物(T)と前記ガラス繊維(G)との合計に対する前記ガラス繊維(G)の含有量が33.0~65.0質量%である、繊維強化熱可塑性樹脂組成物。
  2.  更に、変性ポリフェニレンエーテル(D)を、前記スチレン系樹脂組成物(S)100質量部に対して、0.1~5.0質量部含む、請求項1に記載の繊維強化熱可塑性樹脂組成物。
  3.  前記スチレン系重合体(A)の重量平均分子量が200,000未満である、請求項1又は2に記載の繊維強化熱可塑性樹脂組成物。
  4.  前記ガラス繊維(G)の異形比が3.5~4.5である、請求項1~3のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  5.  前記ガラス繊維(G)の繊維径が10μm以上である、請求項1~4のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  6.  前記繊維強化熱可塑性樹脂組成物からなる試験片をIEC60068-2-58に準拠して処理し、測定した、TDのリフロー処理収縮率が0.20%以下であり、リフロー処理収縮率の異方性(TD/MD)が4.5以下である、請求項1~5のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  7.  前記繊維強化熱可塑性樹脂組成物からなる試験片のISO75-1,2(2020)のA法に準拠して測定した荷重たわみ温度が255℃以上となる、請求項1~6のいずれかに記載の繊維強化熱可塑性樹脂組成物。
  8.  請求項1~7のいずれかに記載の繊維強化熱可塑性樹脂組成物からなる、耐リフロー性樹脂材料。
  9.  請求項8に記載の耐リフロー性樹脂材料からなる、リフローはんだ付け用成形体。
  10.  請求項9に記載のリフローはんだ付け用成形体と金属部材からなる、樹脂金属複合体。
  11.  請求項10に記載の樹脂金属複合体からなる、コネクタ。
  12.  リフローはんだ付け工程に用いる、請求項11に記載のコネクタ。
  13.  表面実装によるリフローはんだ付け工程に用いる、請求項11に記載のコネクタ。
  14.  熱可塑性樹脂組成物(T2)とガラスフィラー(G2)とを含む強化熱可塑性樹脂組成物からなる樹脂部材と、
     金属部材を含む、樹脂金属複合体であって、
     前記樹脂部材のTDの線膨張係数(CTETD)と前記金属部材の線膨張係数(CTE)の差(CTETD-CTE)が6.0×10-5/℃以下であり、
     前記強化熱可塑性樹脂組成物からなる並走流ウエルド試験片における曲げ破断ひずみが1.15%以上である、樹脂金属複合体。
  15.  前記熱可塑性樹脂組成物(T2)が、重量平均分子量が230,000未満のシンジオタクチック構造を有するスチレン系重合体(A)75~94質量部及びゴム状弾性体(B)6~25質量部からなるスチレン系樹脂組成物(S2)を含む、請求項14に記載の樹脂金属複合体。
  16.  前記ガラスフィラー(G2)が、扁平形状の断面を有するガラス繊維及びガラスフレークから選ばれる1種以上である、請求項14又は15に記載の樹脂金属複合体。
  17.  前記扁平形状の断面を有するガラス繊維の異形比が3.5~4.5である、請求項16に記載の樹脂金属複合体。
  18.  前記扁平形状の断面を有するガラス繊維の繊維径が10μm以上である、請求項16又は17に記載の樹脂金属複合体。
  19.  前記ガラスフレークが、鱗片状粒子である、請求項16~18のいずれかに記載の樹脂金属複合体。
  20.  前記熱可塑性樹脂組成物(T2)と前記ガラスフィラー(G2)との合計に対する前記ガラスフィラー(G2)の含有量が20.0~65.0質量%である、請求項14~19のいずれかに記載の樹脂金属複合体。
  21.  熱可塑性樹脂組成物(T2)が、更に、結晶核剤(C)を、前記スチレン系樹脂組成物(S2)100質量部に対して、0.6~2.0質量部含む、請求項15~20のいずれかに記載の樹脂金属複合体。
  22.  熱可塑性樹脂組成物(T2)が、更に、変性ポリフェニレンエーテル(D)を、前記スチレン系樹脂組成物(S2)100質量部に対して、0.1~15.0質量部含む、請求項15~21のいずれかに記載の樹脂金属複合体。
  23.  熱可塑性樹脂組成物(T2)が、更に、離型剤(F)を、前記スチレン系樹脂組成物(S2)100質量部に対して、0.05~3.0質量部含む、請求項15~22のいずれかに記載の樹脂金属複合体。
  24.  前記スチレン系重合体(A)の重量平均分子量が200,000未満である、請求項15~23のいずれかに記載の樹脂金属複合体。
  25.  前記金属部材が、アルミニウム、ステンレス鋼、銅、チタン及びこれらの合金からなる群から選択される少なくとも1種である、請求項14~24のいずれかに記載の樹脂金属複合体。
PCT/JP2023/026715 2022-07-26 2023-07-21 繊維強化熱可塑性樹脂組成物及び樹脂金属複合体 WO2024024653A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022118878 2022-07-26
JP2022-118878 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024653A1 true WO2024024653A1 (ja) 2024-02-01

Family

ID=89706476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026715 WO2024024653A1 (ja) 2022-07-26 2023-07-21 繊維強化熱可塑性樹脂組成物及び樹脂金属複合体

Country Status (2)

Country Link
TW (1) TW202413521A (ja)
WO (1) WO2024024653A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167240A (ja) * 1989-11-28 1991-07-19 Idemitsu Kosan Co Ltd スタンパブルシート
JP2000040421A (ja) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd 電子部品
JP2004155928A (ja) * 2002-11-07 2004-06-03 Idemitsu Petrochem Co Ltd 熱可塑性樹脂組成物及びその成形体
WO2008132972A1 (ja) * 2007-04-20 2008-11-06 Idemitsu Kosan Co., Ltd. 電子タグ封止用樹脂組成物、樹脂封止電子タグ及びその製造方法
JP2017039280A (ja) * 2015-08-20 2017-02-23 大成プラス株式会社 金属とポリスチレン樹脂との複合体
WO2019107526A1 (ja) * 2017-12-01 2019-06-06 出光興産株式会社 スチレン系樹脂、スチレン系樹脂組成物及びその成形品、並びにスチレン系樹脂の製造方法
WO2020004596A1 (ja) * 2018-06-29 2020-01-02 出光興産株式会社 樹脂金属複合体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167240A (ja) * 1989-11-28 1991-07-19 Idemitsu Kosan Co Ltd スタンパブルシート
JP2000040421A (ja) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd 電子部品
JP2004155928A (ja) * 2002-11-07 2004-06-03 Idemitsu Petrochem Co Ltd 熱可塑性樹脂組成物及びその成形体
WO2008132972A1 (ja) * 2007-04-20 2008-11-06 Idemitsu Kosan Co., Ltd. 電子タグ封止用樹脂組成物、樹脂封止電子タグ及びその製造方法
JP2017039280A (ja) * 2015-08-20 2017-02-23 大成プラス株式会社 金属とポリスチレン樹脂との複合体
WO2019107526A1 (ja) * 2017-12-01 2019-06-06 出光興産株式会社 スチレン系樹脂、スチレン系樹脂組成物及びその成形品、並びにスチレン系樹脂の製造方法
WO2020004596A1 (ja) * 2018-06-29 2020-01-02 出光興産株式会社 樹脂金属複合体及びその製造方法

Also Published As

Publication number Publication date
TW202413521A (zh) 2024-04-01

Similar Documents

Publication Publication Date Title
CN110325578B (zh) 具有可激光活化的金属化合物的激光可镀覆热塑性组合物和由其成形的制品
CN112020535B (zh) 具有良好介电特性的导热热塑性组合物和其成型制品
JP5761998B2 (ja) 難燃性ポリアミド組成物
JP2011517112A (ja) 結合性が改良された回路材料およびその製造方法と製造物品
KR20100044276A (ko) 난연성 폴리아마이드 조성물
JP7335879B2 (ja) 樹脂金属複合体及びその製造方法
JP2008075049A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP5265979B2 (ja) 高電圧絶縁材料部品用樹脂組成物およびその成形品
CN106433086B (zh) 刚性高且冲击强度高的阻燃聚苯醚树脂组合物
JP2020109135A (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
KR20230135058A (ko) 스타이렌계 수지 조성물
WO2024024653A1 (ja) 繊維強化熱可塑性樹脂組成物及び樹脂金属複合体
EP0787762A1 (en) Plated molding and process for preparing plated moldings
WO2023182464A1 (ja) シンジオタクチックポリスチレン低誘電シート成形体
JP5264790B2 (ja) 熱可塑性樹脂組成物及び成形品
JP7139027B2 (ja) 樹脂金属複合体及びその製造方法
JP7249777B2 (ja) ポリスチレン系樹脂組成物
KR20230118575A (ko) 열경화성 수지 조성물의 상용성 평가 방법, 열경화성 수지 조성물, 프리프레그, 수지 필름, 적층판, 다층 프린트 배선판 및 반도체 패키지
KR20230164095A (ko) 폴리아미드 조성물
JP7447113B2 (ja) スチレン系樹脂組成物
JP2018062608A (ja) 樹脂組成物
JP2020105502A (ja) ポリアリーレンサルファイド系樹脂組成物及びその成形品
US12122913B2 (en) Polystyrene resin composition
WO2024190428A1 (ja) 熱可塑性樹脂組成物、成形体及び通信機器用部品
JP2024128857A (ja) 難燃レーザーダイレクトストラクチャリング用樹脂組成物、樹脂成形品及び高周波アンテナ関連部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024537660

Country of ref document: JP

Kind code of ref document: A