WO2024021879A1 - 一种带渐变条状格栅的反射型扁平流道及流量计系统 - Google Patents

一种带渐变条状格栅的反射型扁平流道及流量计系统 Download PDF

Info

Publication number
WO2024021879A1
WO2024021879A1 PCT/CN2023/098591 CN2023098591W WO2024021879A1 WO 2024021879 A1 WO2024021879 A1 WO 2024021879A1 CN 2023098591 W CN2023098591 W CN 2023098591W WO 2024021879 A1 WO2024021879 A1 WO 2024021879A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
strip
flat flow
ultrasonic
ultrasonic sensors
Prior art date
Application number
PCT/CN2023/098591
Other languages
English (en)
French (fr)
Inventor
韩仁礼
汝岩
申屠晓俊
金峰
金礼聪
Original Assignee
杭州思筑智能设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州思筑智能设备有限公司 filed Critical 杭州思筑智能设备有限公司
Publication of WO2024021879A1 publication Critical patent/WO2024021879A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus

Definitions

  • the invention relates to the technical field of measuring instruments, and in particular to a reflective flat flow channel with a gradient strip grid and a flow meter system.
  • the flow meters used in domestic natural gas measurement and transmission and distribution management are mainly Roots meters and turbine meters. Both of these measuring instruments are mechanical measuring instruments. It is difficult to get rid of the inherent weaknesses of mechanical instruments, such as the quality of natural gas. High requirements, easy to get stuck, frequent maintenance and high maintenance costs. At the same time, as the diameter of natural gas transmission pipelines increases, the volume, weight and price of the two mechanical measuring instruments will increase significantly. These weaknesses seriously restrict the natural gas supply. Metering and pipeline network transmission and distribution management are developing in the direction of "accuracy, stability, intelligence, and efficiency.”
  • the current flow meter flow channel design is mostly based on circular cross-section flow channels, and there are also designs of flat flow channels with rectangular cross-sections.
  • the flat channel has a smaller fixed size, which can limit the size of the large vortex; at the same time, when the flow rate is constant, the Reynolds number of the flat channel fluid is The higher the coefficient, the easier it is to enter the turbulent flow zone. therefore flat The flow channel is due to the stability of the flow regime.
  • the Chinese patent document with publication number CN105043474A discloses a new flow channel structure for an ultrasonic flow meter, which includes a measurement flow channel body and two ultrasonic transducers.
  • the measurement flow channel body is a cuboid, and the two ultrasonic transducers
  • the ultrasonic transducer is simultaneously disposed on the front side or the rear side of the measuring flow channel body in the horizontal direction.
  • the Chinese patent document with publication number CN110285861A discloses an ultrasonic flow meter. It includes a fluid chamber, an ultrasonic sensor and a data and data acquisition and processing device; the fluid chamber is a long through-tube, and the two ends of the pipe are compressed and deformed from a circular pipe to the center of the pipe to form a rectangular pipe; the ultrasonic sensor is installed in the rectangular pipe in the fluid cavity on the side wall, and is connected to the data acquisition and processing device.
  • the flat flow channel has problems such as signal weakening and distortion in practical applications, which limits its application scope.
  • the applicant designed a strip-shaped grid structure to solve the signal superposition problem.
  • the strip-shaped grid structure cannot be directly applied to the reflective flow channel.
  • the invention provides a reflective flat flow channel with a gradient strip grating, which can effectively solve the problem that the flat flow channel using a conventional strip grating cannot be applied to the reflective flow channel, and helps the flow meter system to realize Accurate measurement of gas flow.
  • a reflective flat flow channel with a gradient strip grille is rectangular, and the length L of the cross section is greater than the height H.
  • the flat flow channel is arranged at a central position in the up and down direction of one of the side walls.
  • the angle between the axes of the two ultrasonic sensors and the flow direction of the flat flow channel is ⁇ .
  • the extension lines of the axes of the two ultrasonic sensors intersect on the other side wall, and the plane determined by the axes of the two ultrasonic sensors is perpendicular to the side wall;
  • the flat flow channel is provided with multiple strip grids with gradient heights along the flow direction on the upper and lower inner walls.
  • grid the height of the strip grid closest to the ultrasonic sensor is not less than D is the effective radiation surface size of the ultrasonic sensor; along the direction away from the ultrasonic sensor, the height of the strip grilles gradually decreases, so that the outer edges of all strip grilles form the beam shape of the ultrasonic sensor.
  • the reflective flat flow channel of the present invention while ensuring sufficient signal propagation channels and a large signal reflection surface, allows the ultrasonic signal to enter the adjacent strip grid as little as possible during the propagation process from the transmitting sensor to the effective reflection surface. Between the gratings, during the propagation process from the reflective surface to the receiving sensor, it enters between adjacent strip gratings and forms a reflection, but will return along the direction of incidence to the strip gratings, ultimately weakening/eliminating the ultrasonic signal at the receiving end and Superposition of target signals.
  • the flat flow channel is on the upper and lower inner wall surfaces, the spacing between two adjacent strip grilles is d, and the height difference between two adjacent strip grilles is not less than ⁇ is the angle between the outer edge tangent of the ultrasonic beam at the location of the strip grille and the horizontal plane.
  • the ratio of the length L to the height H of the cross section is not less than 3.
  • the angle ⁇ between the axes of the two ultrasonic sensors and the flow direction of the flat flow channel is 30° to 60°.
  • the thickness t of the strip grating is less than half the wavelength ⁇ of the ultrasonic wave emitted by the ultrasonic sensor, and is used to prevent the ultrasonic signal from being effectively reflected at the top of the strip grating and reaching the ultrasonic sensor at the receiving end.
  • the top of the strip grating can be designed into another shape that can prevent the ultrasonic signal from reaching the receiving end sensor after being reflected by the top of the grating.
  • the length of the strip grating runs through the entire flat flow channel, and its shape is rectangular, or it can also be in a zigzag, wavy, or other shapes, as long as it can effectively block the reflected ultrasonic signal to prevent it from reaching the receiving sensor. That’s it.
  • the present invention also provides another reflective flat flow channel with a gradient strip grating.
  • the cross section of the flat flow channel is rectangular, and the length of the cross section is L>height H. ;
  • the flat flow channels are respectively arranged with one chip at the center of the upper and lower directions of the two side walls. ultrasonic sensor;
  • the angle between the axes of the two ultrasonic sensors and the flow direction of the flat flow channel is ⁇ , the extension lines of the axes of the two ultrasonic sensors are parallel to each other, and the plane determined by the axes of the two ultrasonic sensors is perpendicular to the side wall; one of the ultrasonic sensors The axis extension line of the ultrasonic sensor coincides with the axis extension line of another ultrasonic sensor after two reflections from the two side walls;
  • Each set of strip gratings includes multiple strip gratings with varying heights arranged on the upper and lower inner walls of the flat flow channel along the flow direction.
  • the height of the strip grating closest to the corresponding ultrasonic sensor is not less than D is the effective radiation surface size of the ultrasonic sensor; along the direction away from the ultrasonic sensor, the height of the strip grilles gradually decreases, so that the outer edges of all strip grilles form the beam shape of the ultrasonic sensor.
  • the boundary area may not be provided with a grille, or a transition grille may be provided, that is, two sets of strip grilles are connected through multiple transition grilles provided in the boundary area.
  • the invention also provides a flow meter system, including a measuring flow channel, which is composed of the above-mentioned reflective flat flow channel with a gradient strip grating; wherein the measuring flow channel is composed of a flat flow channel It consists of channels, or is composed of multiple flat flow channels superimposed.
  • the flowmeter system also includes a temperature sensor and a pressure sensor, which are used to complete the conversion of gas operating condition flow to standard condition flow.
  • the present invention has the following beneficial effects:
  • the present invention uses carefully designed gradient strip grilles to prevent the problem that conventional strip grilles cannot effectively block non-target signals that can reach the receiving sensor when used in reflective flow channels. At the same time, with the help of the rectification of the strip grilles, function, allowing the ultrasonic flowmeter using the above-mentioned flat pipe to achieve higher metering performance.
  • the present invention uses the smaller fixed size of the flat flow channel to limit the size of the eddy current in the flow channel. To reduce the impact of eddy currents on ultrasonic signals; in addition, because the reflection type has a larger sound path than the through-beam type, it is conducive to improving the accurate measurement of small flow rates.
  • the flow meter system uses the above-mentioned flat flow channel, which can effectively improve the measurement accuracy and the measurement ability of small flow rates.
  • Figure 1 is a schematic diagram of the problems existing in conventional strip grille design in reflective sound channel design
  • Figure 2 is a schematic diagram of the problems that exist when the ultrasonic trap structure is applied to the reflective flat flow channel;
  • Figure 3 is a schematic diagram of the problems that exist when a shallow strip grid structure is applied to a reflective flat flow channel
  • Figure 4 is a schematic diagram of the abnormal superposition of ultrasonic signals when using conventional strip grilles
  • Figure 5 is a schematic diagram of the reflective flat flow channel structure and parameters using a gradient strip grille
  • Figure 6 is a schematic cross-sectional view of a flat flow channel using a gradient strip grille
  • Figure 7 is a schematic diagram illustrating the principle of signal blocking by the gradient strip grille
  • Figure 8 is a schematic diagram of the superposition of three reflective flat flow channels with gradient strip grilles.
  • the principle of using ultrasonic waves to measure gas flow is the ultrasonic transit time method, that is, using the (downstream) acceleration and (countercurrent) deceleration effects of the fluid on the ultrasonic signal, through respectively Measure the propagation time of ultrasonic waves in the downstream and counter-flow directions, and then use the difference between the two to calculate the medium flow rate, and finally obtain the medium flow rate.
  • the ultrasonic transit time method that is, using the (downstream) acceleration and (countercurrent) deceleration effects of the fluid on the ultrasonic signal, through respectively Measure the propagation time of ultrasonic waves in the downstream and counter-flow directions, and then use the difference between the two to calculate the medium flow rate, and finally obtain the medium flow rate.
  • each strip grille in the reflective sound channel, in the conventional strip grille design, can be used as a reflective surface to reflect stray ultrasonic signals to the receiving end sensor and combine them with the target signal. form an overlay.
  • Figure 2 shows a schematic diagram of the problems when the ultrasonic trap structure is applied to the reflective flat flow channel, which will lead to abnormal signal reflection and superposition.
  • Figure 3 shows the problems that exist when a shallow strip grid structure is applied to a reflective flat flow channel, which can lead to abnormal signal reflection and superposition.
  • FIG 4 is a schematic diagram of the signal superposition principle when conventional grille design is applied to reflective sound channel design.
  • f 1 (t) is the target signal
  • f 2 (t) is the target signal
  • f 3 (t) is the signal arriving at the receiving end after reflection from the conventional strip grid design (i.e. along the abnormal path in Figure 1 propagated signal). It can be seen that there will be multiple signals along abnormal paths arriving at the receiving end and superimposed with the target signal, thereby affecting the quality of the target signal.
  • the depth of the strip grid can be infinitely increased to form an "ultrasonic black hole" from which the ultrasonic signal can hardly escape. This can solve the above problems, but it will reduce the flatness ratio of the flow channel, which in turn will Reducing the flow pattern constraint ability of the flat flow channel is difficult in practical applications.
  • the present invention proposes a design method for a reflective flat flow channel with a gradient strip grille, which specifically solves the problems faced when the conventional strip grille design is applied to a reflective sound channel.
  • the cross-section of the flat flow channel is a rectangle.
  • the length of the rectangle is L and the height is H.
  • Two ultrasonic sensors are placed in the middle of the up and down direction of one of the side walls.
  • the two sensors SA and SB are The axis extension line intersects on the other side wall and the plane where the two sensor axes are located is perpendicular to the side wall; the angle between the two sensor axes and the longitudinal axis of the flow channel (gas flow direction) is ⁇ , theoretically ⁇ 90°, that is Yes; place strip grilles on the upper and lower walls of the flow channel according to the following preferred principles:
  • the strip grilles are arranged along the longitudinal axis of the flow channel (fluid flow direction);
  • the height of the strip grille gradually changes. The rule is that the closer to the sensor, the higher the height;
  • the layout spacing of the strip grilles is d, the height of the current strip grilles is h, and the height of the current strip grilles is h.
  • the angle between the tangent to the approximate outer edge of the ultrasonic sensor beam and the plane where the sensor axis is located is ⁇ , then the height of the grid far away from the sensor among the two grids adjacent to the current sensor is not less than The height of the grille close to the sensor is no greater than
  • D is the sensor radiation surface size.
  • FIG. 6 it is a schematic cross-sectional view of a flat flow channel using a gradient strip grille.
  • the connection line between the top of the gradient strip grille designed according to the above principles approximately coincides with the outer edge of the ultrasonic beam used. This can prevent the ultrasonic signal from being reflected from the transmitter to the sensor as much as possible. When propagating between surfaces, it enters the concave structure between adjacent grids.
  • the ultrasonic signal when the ultrasonic signal is reflected by the other side wall of the side wall where the ultrasonic sensor is located and then propagates in the direction of the receiving sensor, part of it will enter the concave structure formed by the adjacent strip grid and the flow channel wall. , but because among the two adjacent strip grilles, the height of the grille close to the receiving end is at least higher than the height of the grille far away from the receiving end. According to geometric knowledge, the ultrasonic signal must be emitted along the incident direction and cannot propagate directly to the receiving sensor side.
  • the top width t of the gradient strip grating should be much smaller than the ultrasonic wavelength to prevent the ultrasonic wave from effectively reflecting at the top of the grating; or the top of the strip grating should be designed in such a way that it cannot effectively reflect the ultrasonic signal to the receiving end. other shapes.
  • the distance d between the gradient strip gratings should not be close to or even smaller than the ultrasonic wavelength, otherwise the reflection effect of adjacent gratings on the ultrasonic signals entering them will be weakened or even ineffective.
  • the length of the deep strip grid preferably runs through the entire flow channel, which solves the problem of signal reflection and superposition and plays a role in stabilizing the flow state. However, its length does not have to run through the entire flow channel, as long as it can generate ultrasonic signals. Effective blocking is enough.
  • the shape of the strip grille is preferably a straight rectangular strip, but it is not limited to this state. It can also be a zigzag shape, a wavy shape, or other shapes, as long as it can effectively block the reflected ultrasonic light. Just avoid the acoustic signal from reaching the receiving sensor.
  • the number of flow channels can be one or multiple to achieve the working condition flow measurement of the gas medium
  • the flowmeter system also includes the collection of medium temperature and pressure to complete the conversion of gas working condition flow to standard condition flow.
  • FIG 8 it is a superimposed diagram of three reflective flat flow channels with gradient strip grilles. Note that in the illustration, the three sets of sensors are all arranged on the same side. Practical applications are not limited to this, and the angles between the axes of the three sets of sensors and the longitudinal axis of the flow channel are not necessarily consistent. Furthermore, the width and height of different flow channels do not necessarily need to be consistent.
  • the target signal only reflects once, but the actual target signal can have multiple reflections.
  • the basic principle that should be followed at this time is: the closer to the sensor, the higher the gradient grille and ensure that the signal reflection surface is large enough.
  • the height and spacing of the gradient grating are consistent with the design method in the primary reflective flow channel.
  • the boundary area between two adjacent sets of strip gratings may not be provided with a grating, or a transition grating may be set, that is, two sets of strips.
  • the grids are connected by multiple transition grids arranged in the boundary areas.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明公开了一种带渐变条状格栅的反射型扁平流道及流量计系统,扁平流道的横截面为长方形,扁平流道在其中一个侧壁的上下方向居中位置布设有两颗超声波传感器;两颗超声波传感器的轴线与扁平流道的流向夹角均为Φ,两颗超声波传感器的轴线延长线在另一个侧壁上相交,且两颗超声波传感器的轴线所确定的平面与侧壁垂直;扁平流道在上下内壁面上沿流向分别布设有多个高度渐变的条状格栅,最靠近超声波传感器一侧的条状格栅高度不小于(I),D为超声波传感器的有效辐射面尺寸;沿远离超声波传感器方向,条状格栅高度逐步降低。本发明能够有效解决使用常规条状格栅的扁平流道无法应用于反射型流道的问题,有助于流量计系统实现气体流量的精确测量。

Description

一种带渐变条状格栅的反射型扁平流道及流量计系统 技术领域
本发明涉及计量仪表技术领域,尤其是涉及一种带渐变条状格栅的反射型扁平流道及流量计系统。
背景技术
由于人们对环境的关注度越来越高,天然气作为清洁环保的绿色能源得到了越来越广泛的关注及应用,天然气行业在未来很长时间内都将得到快速发展。为了适应天然气行业的发展需求,特别是燃气公司对天然气计量及管网输配管理的发展需求,在信息化技术的发展背景下,超声波气体流量计已经逐步在天然气计量及输配管理中发挥越来越大的作用。
目前,国内应用于天然气计量及输配管理的流量计主要为罗茨表和涡轮表,这两种计量仪表均属于机械式计量仪表,难以摆脱机械式仪表固有的弱点,例如,对天然气的质量要求高,容易卡住,维护频繁且维护成本较高,同时随着天然气输送管路口径的增大,两种机械式计量仪表的体积、重量和价格会大幅度攀升,这些弱点严重制约了天然气计量及管网输配管理向着“精确、稳定、智能、高效”的方向发展。
为了克服机械式计量仪表的缺点,现有技术中出现了超声波流量计。当前的流量计流道设计多以截面为圆形的流道为主,也出现了截面为长方形的扁平流道的设计。在通流面积一定的情况下,相较于圆形流道,扁平流道具有更小的定型尺寸,可以限制大涡流的尺寸;同时,在流量一定的情况下,扁平化流道流体的雷诺系数更高,更容易进入紊流区。因此扁平 流道由于对流态的稳定。
如公开号为CN105043474A的中国专利文献公开了一种用于超声波流量计的新型流道结构,包括测量流道本体及两个超声波换能器,所述测量流道本体为长方体,所述两个超声波换能器同时设置于所述测量流道本体水平方向上的前侧或者后侧。
公开号为CN110285861A的中国专利文献公开了一种超声波流量计。包括流体腔、超声波传感器和数据和数据采集处理装置;流体腔为贯通的长管,管道两端由圆形的管道向管道中心压缩变形成一个长方形管道;超声波传感器设置于流体腔内的长方形管道侧壁上,且和数据采集处理装置数据连接。
但是,由于超声波信号在扁平流道存在信号反射、叠加问题,导致扁平流道在实际的应用中存在信号削弱、畸变等问题,限制了其应用范围。对于对射型流道,申请人设计条状格栅结构来解决信号叠加问题,然而该条状格栅结构并不能直接应用于反射型流道。
发明内容
本发明提供了一种带渐变条状格栅的反射型扁平流道,能够有效解决使用常规条状格栅的扁平流道无法应用于反射型流道的问题,有助于流量计系统实现对气体流量的精确测量。
一种带渐变条状格栅的反射型扁平流道,所述扁平流道的横截面为长方形,横截面的长度L>高度H;扁平流道在其中一个侧壁的上下方向居中位置布设有两颗超声波传感器;
两颗超声波传感器的轴线与扁平流道的流向夹角均为Φ,两颗超声波传感器的轴线延长线在另一个侧壁上相交,且两颗超声波传感器的轴线所确定的平面与侧壁垂直;
扁平流道在上下内壁面上沿流向分别布设有多个高度渐变的条状格 栅,最靠近超声波传感器一侧的条状格栅高度不小于D为超声波传感器的有效辐射面尺寸;沿着远离超声波传感器方向,条状格栅的高度逐步降低,使所有条状格栅的外沿构成超声波传感器波束形状。
本发明的反射型扁平流道,在保证有充足的信号传播通道和较大的信号反射面的同时,使得超声波信号在发射传感器到有效反射面传播过程中尽可能少的进入相邻条状格栅之间,在反射面到接收传感器传播过程中进入到相邻条状格栅之间后形成反射但会沿着入射到条状格栅的方向返回,最终减弱/消除超声波信号在接收端与目标信号的叠加。
优选地,扁平流道在上下内壁面上,相邻两个条状格栅的布设间距为d,相邻两个条状格栅的高度差不小于β为条状格栅所在位置超声波波束外沿切线与水平面的夹角。
优选地,横截面的长度L与高度H的比值不小于3。
优选地,两个超声波传感器的轴线与扁平流道的流向夹角Φ为30°~60°。
所述条状格栅的厚度t小于超声波传感器发射的超声波波长λ的一半,用于防止超声波信号在条状格栅的顶端发生有效反射而到达接收端的超声波传感器。
或者,将条状格栅顶端设计成能够防止超声波信号经格栅顶部反射后到达接收端传感器的其他形状。
优选地,所述条状格栅的长度贯穿整个扁平流道,其外形采用长方形,或者也可以采用折线形、波浪形等其它形状,只要能够有效遮挡经反射的超声波信号以避免其到达接收传感器即可。
针对目标信号发生两次反射的情形,本发明还提供了另一种带渐变条状格栅的反射型扁平流道,所述扁平流道的横截面为长方形,横截面的长度L>高度H;扁平流道在两个侧壁的上下方向居中位置分别布设有一颗 超声波传感器;
两颗超声波传感器的轴线与扁平流道的流向夹角均为Φ,两颗超声波传感器的轴线延长线相互平行,且两颗超声波传感器的轴线所确定的平面与侧壁垂直;其中一颗超声波传感器的轴线延长线经过两个侧壁的两次反射后与另一颗超声波传感器的轴线延长线重合;
将两颗超声波传感器之间的流道沿流向划分出4/9和5/9之间的区域作为分界区域,在分界区域的前后分别设置两套条状格栅;
每套条状格栅中均包含设置在扁平流道在上下内壁面上沿流向分别布设的多个高度渐变的条状格栅,最靠近对应超声波传感器一侧的条状格栅高度不小于D为超声波传感器的有效辐射面尺寸;沿着远离超声波传感器方向,条状格栅的高度逐步降低,使所有条状格栅的外沿构成超声波传感器波束形状。
在实际应用中,分界区域可以不设置格栅,或者设置过渡格栅,即两套条状格栅之间通过设置在分界区域的多个过渡格栅相连接。
本发明还提供了一种流量计系统,包括测量流道,所述的测量流道由上述带渐变条状格栅的反射型扁平流道组成;其中,所述的测量流道由一个扁平流道组成,或者由多个扁平流道叠加而成。
所述的流量计系统还包括温度传感器和压力传感器,用于完成气体工况流量到标况流量的转换。
与现有技术相比,本发明具有以下有益效果:
1、本发明利用精心设计的渐变条状格栅,能够防止常规条状格栅应用于反射型流道时无法有效遮挡能够到达接收传感器的非目标信号的问题,同时借助条状格栅的整流作用,使得使用上述扁平管道的超声波流量计能够实现更高的计量性能。
2、本发明借助扁平流道较小的定型尺寸对流道内涡流尺寸的限制, 以降低涡流对超声波信号的影响;此外,由于相较于对射型,反射型声程较大,有利于提高微小流量的精确计量。流量计系统使用上述扁平流道,可以有效的改善计量精度及对微小流量的计量能力。
附图说明
图1为常规条状格栅设计在反射型声道设计中存在的问题示意图;
图2为超声波陷阱结构应用于反射型扁平流道时存在的问题示意图;
图3为浅条状格栅结构应用于反射型扁平流道时存在的问题示意图;
图4为使用常规条状格栅时超声波信号异常叠加问题示意图;
图5为使用渐变条状格栅的反射型扁平流道结构及参数示意图;
图6为使用渐变条状格栅的扁平流道截面示意图;
图7为渐变条状格栅信号遮挡原理说明示意图;
图8为三个带渐变条状格栅的反射型扁平流道叠加示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
作为理论基础,对使用超声波测量气体流量的原理做简要描述如下:使用超声波测量气体流量的原理为超声波时差法,即使用流体对超声波信号的(顺流)加速、(逆流)减速作用,通过分别测量超声波在顺流及逆流方向传播的时间,继而利用两者差值关系来计算介质流速,最终获得介质流量。也就是说,如何准确的识别超声波信号并精确计算超声波信号传播时间,为是否能够精确计量的关键;所有影响超声波信号稳定传播的因素都将影响计量精度。
对于对射型声道,可以采用常规的条状格栅遮挡、延时、衰减及偏移非目标信号,但是,在反射型声道设计中依然面临着异常的信号叠加问题。
如图1所示,在反射型声道中,常规的条状格栅设计中,每一条条状格栅都可以作为反射面,将杂散的超声波信号反射至接收端传感器,并与目标信号形成叠加。图2展示了超声波陷阱结构应用于反射型扁平流道时存在的问题示意图,会导致信号异常反射、叠加。图3展示了浅条状格栅结构应用于反射型扁平流道时存在的问题,会导致信号异常反射、叠加。
图4为常规格栅设计应用于反射型声道设计时信号叠加原理的示意图。其中,f1(t)为目标信号,f2(t)、f3(t)、fn(t)为经常规条状格栅设计反射后到达接收端的信号(即图1中沿异常路径传播的信号)。可见,会有多个沿异常路径的信号到达接收端并与目标信号叠加,进而影响目标信号质量。
理论上,在超声波陷阱结构的设计中,可以无限增加条状格栅深度,形成一个超声波信号几乎无法逃离的“超声波黑洞”,以此来解决上述问题,但是会降低流道的扁平比,继而降低扁平流道的流态约束能力,实际应用中有困难。
对此,本发明提出了带渐变条状格栅的反射型扁平流道的设计方法,针对性的解决常规条状格栅设计应用于反射型声道时面临的问题。
如图5所示,扁平流道的横截面为长方形,长方形的长为L,高为H;两个超声波传感器布放于其中一个侧壁的上下方向居中位置上,两颗传感器SA、SB的轴线延长线在另一个侧壁上相交且两颗传感器轴线所在的平面与侧壁垂直;两个传感器轴线与流道纵向(气体流动方向)轴线夹角均为Φ,理论上Φ≠90°即可;在流道的上下壁上按照以下优选原则布放条状格栅:
a、条状格栅沿流道纵向(流体流动方向)轴线方向布放;
b、条状格栅高度渐变,规律是越靠近传感器则高度越高;
c、条状格栅的布放间距为d,当前条状格栅的高度为h,在当前格栅 处超声波传感器波束的近似外沿的切线与传感器轴线所在平面的夹角为β,则与当前传感器相邻的两条格栅中远离传感器的格栅高度为不小于靠近传感器的格栅高度为不大于
d、在保证目标信号有足够的传输通道的基础上,最高的格栅高度越高越好,可优选其中D为传感器辐射面尺寸。
如图6所示,为使用渐变条状格栅的扁平流道截面示意图。按上述原则设计的渐变条状格栅的顶端(远离其所在的流道壁的一端)连线与所使用的超声波波束的外沿近似重合,这样可以尽可能的防止超声波信号在发射传感器到反射面之间传播时进入相邻格栅之间的凹型结构中。
如图7所示,当超声波信号经超声波传感器所在侧壁的另一个侧壁反射后向接收传感器方向传播时,会有一部分进入相邻的条状格栅与流道壁一起形成的凹型结构中,但由于相邻的两个条状格栅中,靠近接收端的格栅高度比远离接收端的格栅高度最少高则根据几何知识可得超声波信号一定会沿入射方向射出,而无法直接向接收传感器一侧传播。
同样需注意,渐变条状格栅的顶部宽度t应远远小于超声波波长,以防止超声波在格栅顶端形成有效反射;或者将条状格栅顶端设计成其他不能将超声波信号有效反射至接收端的其他形状。
还需注意,渐变条状格栅的间距d不宜接近甚至小于超声波波长,否则相邻格栅对进入其中的超声波信号的反射作用将被削弱甚至无效。
此外,深条状格栅的长度优选的贯穿整个流道,在解决信号反射、叠加问题同时起到流态稳定的作用,但其长度也并非必须贯穿整个流道,只要能够实现对超声波信号产生有效的遮挡即可。
条状格栅形状优选的为平直的长方形条状,但并不仅限于这一种状态,也可以是折线形、波浪形等其他形状,只要能够有效遮挡经反射的超 声波信号以避免其到达接收传感器即可。
将按照上述扁平流道设计方法设计的扁平流道应用于流量计系统,流道数量可以为一个,也可以为多个,以实现气体介质的工况流量测量;
流量计系统中还包括介质温度及压力的采集,用以完成气体工况流量到标况流量的转换。
如图8所示,是三个带渐变条状格栅的反射型扁平流道的叠加示意图。注意,图例中三组传感器都布置在同一侧,实际应用中并不限于此,且三组传感器轴线与流道纵向轴线的夹角也不一定一致。进一步的,不同的流道其宽度和高度也不一定要保持一致。
此外,示例中给出的反射型流道中,目标信号仅发生了一次反射,实际目标信号可以有多次反射。此时应遵守的基本原则是:越靠近传感器则渐变格栅越高并保证信号反射面足够大。此外,渐变格栅的高度及间距与一次反射型流道中的设计方法一致,相邻的两套条状格栅之间的分界区域可以不设置格栅,或者设置过渡格栅,即两套条状格栅之间通过设置在分界区域的多个过渡格栅相连接。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种带渐变条状格栅的反射型扁平流道,其特征在于,所述扁平流道的横截面为长方形,横截面的长度L>高度H;扁平流道在其中一个侧壁的上下方向居中位置布设有两颗超声波传感器;
    两颗超声波传感器的轴线与扁平流道的流向夹角均为Φ,两颗超声波传感器的轴线延长线在另一个侧壁上相交,且两颗超声波传感器的轴线所确定的平面与侧壁垂直;
    扁平流道在上下内壁面上沿流向分别布设有多个高度渐变的条状格栅,最靠近超声波传感器一侧的条状格栅高度不小于D为超声波传感器的有效辐射面尺寸;沿着远离超声波传感器方向,条状格栅的高度逐步降低,使所有条状格栅的外沿构成超声波传感器波束形状。
  2. 根据权利要求1所述的带渐变条状格栅的反射型扁平流道,其特征在于,扁平流道在上下内壁面上,相邻两个条状格栅的布设间距为d,相邻两个条状格栅的高度差不小于β为条状格栅所在位置超声波波束外沿切线与水平面的夹角。
  3. 根据权利要求1所述的带渐变条状格栅的反射型扁平流道,其特征在于,横截面的长度L与高度H的比值不小于3。
  4. 根据权利要求1所述的带渐变条状格栅的反射型扁平流道,其特征在于,两个超声波传感器的轴线与扁平流道的流向夹角Φ为30°~60°。
  5. 根据权利要求1所述的带渐变条状格栅的反射型扁平流道,其特征在于,所述条状格栅的厚度t小于超声波传感器发射的超声波波长λ的一半,用于防止超声波信号在条状格栅的顶端发生有效反射而到达接收端的超声波传感器。
  6. 根据权利要求1所述的带渐变条状格栅的反射型扁平流道,其特征在于,所述条状格栅的长度贯穿整个扁平流道,其外形采用长方形、折线形或者波浪形。
  7. 一种带渐变条状格栅的反射型扁平流道,其特征在于,所述扁平流道的横截面为长方形,横截面的长度L>高度H;扁平流道在两个侧壁的上下方向居中位置分别布设有一颗超声波传感器;
    两颗超声波传感器的轴线与扁平流道的流向夹角均为Φ,两颗超声波传感器的轴线延长线相互平行,且两颗超声波传感器的轴线所确定的平面与侧壁垂直;其中一颗超声波传感器的轴线延长线经过两个侧壁的两次反射后与另一颗超声波传感器的轴线延长线重合;
    将两颗超声波传感器之间的流道沿流向划分出4/9和5/9之间的区域作为分界区域,在分界区域的前后分别设置两套条状格栅;
    每套条状格栅中均包含设置在扁平流道在上下内壁面上沿流向分别布设的多个高度渐变的条状格栅,最靠近对应超声波传感器一侧的条状格栅高度不小于D为超声波传感器的有效辐射面尺寸;沿着远离超声波传感器方向,条状格栅的高度逐步降低,使所有条状格栅的外沿构成超声波传感器波束形状。
  8. 根据权利要求7所述的带渐变条状格栅的反射型扁平流道,其特征在于,两套条状格栅之间通过设置在分界区域的多个过渡格栅相连接。
  9. 一种流量计系统,包括测量流道,其特征在于,所述的测量流道由权利要求1~8任一所述的带渐变条状格栅的反射型扁平流道组成;其中,所述的测量流道由一个扁平流道组成,或者由多个扁平流道叠加而成。
  10. 根据权利要求9所述的流量计系统,其特征在于,所述的流量计系统还包括温度传感器和压力传感器,用于完成气体工况流量到标况流量的转换。
PCT/CN2023/098591 2022-07-27 2023-06-06 一种带渐变条状格栅的反射型扁平流道及流量计系统 WO2024021879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210892825.3A CN115265684B (zh) 2022-07-27 2022-07-27 一种带渐变条状格栅的反射型扁平流道及流量计系统
CN202210892825.3 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024021879A1 true WO2024021879A1 (zh) 2024-02-01

Family

ID=83771126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098591 WO2024021879A1 (zh) 2022-07-27 2023-06-06 一种带渐变条状格栅的反射型扁平流道及流量计系统

Country Status (2)

Country Link
CN (1) CN115265684B (zh)
WO (1) WO2024021879A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265684B (zh) * 2022-07-27 2024-03-15 杭州思筑智能设备有限公司 一种带渐变条状格栅的反射型扁平流道及流量计系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229469A (zh) * 1997-04-18 1999-09-22 松下电器产业株式会社 超声流量计
JP2005207772A (ja) * 2004-01-20 2005-08-04 Aichi Tokei Denki Co Ltd 超音波流量計
JP2006017639A (ja) * 2004-07-02 2006-01-19 Ricoh Elemex Corp 超音波流量計
JP2010117201A (ja) * 2008-11-12 2010-05-27 Yazaki Corp 流量計
JP2012053028A (ja) * 2010-08-02 2012-03-15 Denso Corp 流量センサおよびその製造方法
JP2012063187A (ja) * 2010-09-15 2012-03-29 Panasonic Corp 超音波流量計
US20180188086A1 (en) * 2015-06-30 2018-07-05 Panasonic Intellectual Property Management Co., Ltd. Measurement unit and flow rate meter
CN212363310U (zh) * 2020-09-16 2021-01-15 天津万众科技股份有限公司 一种文丘里流量计
CN112534213A (zh) * 2018-08-08 2021-03-19 松下知识产权经营株式会社 超声波流量计
CN212843792U (zh) * 2020-04-26 2021-03-30 江苏杰创流量仪表有限公司 一种基于物联网的电磁流量计
CN113418573A (zh) * 2021-06-18 2021-09-21 重庆市山城燃气设备有限公司 层流式气体测量流道、流量计、流量测量方法和系统
CN115265684A (zh) * 2022-07-27 2022-11-01 杭州思筑智能设备有限公司 一种带渐变条状格栅的反射型扁平流道及流量计系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570315B2 (ja) * 1999-12-07 2004-09-29 株式会社村田製作所 超音波式流量計およびそれを用いたガスメータ
JP4053219B2 (ja) * 2000-07-28 2008-02-27 バブコック日立株式会社 整流構造体を有する排ガス処理装置
JP3985801B2 (ja) * 2004-04-28 2007-10-03 株式会社デンソー 空気流量測定装置
PL2888560T3 (pl) * 2012-08-22 2023-08-21 Apator Miitors Aps Kompaktowy przepływomierz ultradźwiękowy
CN205352483U (zh) * 2016-02-03 2016-06-29 成都顺天道环保科技有限公司 整流型气体超声波流量测量装置
KR101961409B1 (ko) * 2018-02-01 2019-03-22 (주)네드 열선 풍속계의 저항체 제조장치 및 그 저항체 제조방법
JP2020106427A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 物理量計測装置
CN114563052A (zh) * 2022-03-07 2022-05-31 功尊仪表(浙江)有限公司 一种气体超声流量计
CN114543909A (zh) * 2022-03-15 2022-05-27 杭州思筑智能设备有限公司 一种内置整流器多声道反射式超声波流量计及流量计算方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229469A (zh) * 1997-04-18 1999-09-22 松下电器产业株式会社 超声流量计
JP2005207772A (ja) * 2004-01-20 2005-08-04 Aichi Tokei Denki Co Ltd 超音波流量計
JP2006017639A (ja) * 2004-07-02 2006-01-19 Ricoh Elemex Corp 超音波流量計
JP2010117201A (ja) * 2008-11-12 2010-05-27 Yazaki Corp 流量計
JP2012053028A (ja) * 2010-08-02 2012-03-15 Denso Corp 流量センサおよびその製造方法
JP2012063187A (ja) * 2010-09-15 2012-03-29 Panasonic Corp 超音波流量計
US20180188086A1 (en) * 2015-06-30 2018-07-05 Panasonic Intellectual Property Management Co., Ltd. Measurement unit and flow rate meter
CN112534213A (zh) * 2018-08-08 2021-03-19 松下知识产权经营株式会社 超声波流量计
CN212843792U (zh) * 2020-04-26 2021-03-30 江苏杰创流量仪表有限公司 一种基于物联网的电磁流量计
CN212363310U (zh) * 2020-09-16 2021-01-15 天津万众科技股份有限公司 一种文丘里流量计
CN113418573A (zh) * 2021-06-18 2021-09-21 重庆市山城燃气设备有限公司 层流式气体测量流道、流量计、流量测量方法和系统
CN115265684A (zh) * 2022-07-27 2022-11-01 杭州思筑智能设备有限公司 一种带渐变条状格栅的反射型扁平流道及流量计系统

Also Published As

Publication number Publication date
CN115265684B (zh) 2024-03-15
CN115265684A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
EP3268701B1 (en) Hybrid sensing ultrasonic flowmeter
WO2024021879A1 (zh) 一种带渐变条状格栅的反射型扁平流道及流量计系统
CN102713529B (zh) 超声传感器、流量计和方法
WO2024021880A1 (zh) 一种带超声波陷阱结构的扁平流道及流量计系统
EP1742024B1 (en) Ultrasonic flowmeter with triangular cross section
CN103575378A (zh) 超声楔以及用于确定其中的声速的方法
WO2024021881A1 (zh) 一种带条状格栅的扁平流道及流量计系统
EP3683553B1 (en) Gas flow metering gas chamber and gas flow meter
JP2010117201A (ja) 流量計
Johari et al. Direct measurement of circulation using ultrasound
CN102095889B (zh) 三通道超声时差流速测量方法
RU154441U1 (ru) Датчик ультразвукового расходомера
CN115655394B (zh) 一种新型超声波气体流量计单元和应用该计量单元的燃气表
Treenuson et al. Accurate flowrate measurement on the double bent pipe using ultrasonic velocity profile method
JP2008298560A (ja) 超音波流量計及び流量計測方法
CN209745338U (zh) 一种超声水表用测量管
JP2935944B2 (ja) 超音波流量計ユニット
Ramadas et al. Finite element modelling study to explore the possibilities of ultrasonic gas flow measurement in wet-gas applications
JP4165240B2 (ja) 超音波流量計
KR101119998B1 (ko) 다회선 외벽부착식 초음파 트랜스듀서
US11415442B2 (en) Ultrasonic flow tube having a plurality of outer pipes surrounding a center pipe positioned between an inlet wall and an outlet wall having transducers therein
CN217520538U (zh) 一种无前直管段的超声流量计
KR100993617B1 (ko) 외벽부착식 초음파 다회선 유량계
WO2017078559A1 (ru) Датчик ультразвукового расходомера
Shu et al. The Influence of Disturbed Flow Field on the Measurement Accuracy of U-shaped Ultrasonic Flowmeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845092

Country of ref document: EP

Kind code of ref document: A1