WO2024021766A1 - 超薄接地散热组件及测试基座 - Google Patents

超薄接地散热组件及测试基座 Download PDF

Info

Publication number
WO2024021766A1
WO2024021766A1 PCT/CN2023/093452 CN2023093452W WO2024021766A1 WO 2024021766 A1 WO2024021766 A1 WO 2024021766A1 CN 2023093452 W CN2023093452 W CN 2023093452W WO 2024021766 A1 WO2024021766 A1 WO 2024021766A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
test
chip
elastic piece
support body
Prior art date
Application number
PCT/CN2023/093452
Other languages
English (en)
French (fr)
Inventor
钱晓晨
蔡泓羿
Original Assignee
苏州和林微纳科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州和林微纳科技股份有限公司 filed Critical 苏州和林微纳科技股份有限公司
Publication of WO2024021766A1 publication Critical patent/WO2024021766A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0064Earth or grounding circuit

Definitions

  • the invention relates to an ultra-thin grounded heat dissipation component and a test base suitable for QFN chips or QFP chips.
  • 5G chips have begun to become popular in electronic products. At present, our country has become the world's largest chip demander, but the vast majority of high-end chips rely on imports. Most of the common radio frequency chip packaging forms in 5G chips are QFN chips. More and more QFN chip testing bottlenecks focus on the signal loss of RF radio frequency testing. At present, test bases using spring probes can no longer meet the transmission requirements of radio frequency signals due to their long electrical links.
  • the first structure a solid grounded heat sink block, as shown in Figures 1 and 2.
  • the solid grounded heat sink block 1' is made of metal, and its upper and lower sides are flat or have protrusions.
  • the solid grounded heat sink has a monolithic structure, and the chip size tolerance is large.
  • the chip heat dissipation ground pad at the bottom of the chip to be tested is poorly flat, it cannot be tightly fitted, resulting in a contact surface
  • the thermal resistance is large, and it has the disadvantages of low heat conduction efficiency and poor grounding effect.
  • the second structure a two-piece grounded heat sink with a spring probe, as shown in Figures 3 and 4.
  • the two-piece grounded heat sink consists of an upper grounded heat sink 1'' and a lower grounded heat sink 2'. 'Composed, the upper grounded heat sink block 1'' and the lower grounded heat sink block 2'' are provided with cavities 3'' arranged in an array, and each cavity 3'' is equipped with a spring probe 4''.
  • the shortcomings of this two-piece grounded heat sink are: the upper grounded heat sink 1'' and the lower grounded heat sink 2'' are two-piece structures. After compression, the height cannot be very thin, resulting in large thermal resistance at the contact surface and poor heat conduction efficiency. Low.
  • the purpose of the present invention is to provide an ultra-thin grounded heat dissipation component and test base that reduces the height of the ground heat dissipation block, ensures contact yield, improves heat conduction efficiency, and is suitable for QFN chip or QFP chip testing requirements.
  • an ultra-thin grounded heat dissipation component including a metal grounded heat dissipation block.
  • the metal grounded heat dissipation block is provided with several hollow cavities, and each hollow cavity is provided with There is a support body, and a "several"-shaped gap is formed between the support body and the hollow cavity.
  • a spring piece is provided in the "several"-shaped gap, and the top of the spring piece protrudes from the upper end surface of the metal grounding heat dissipation block.
  • the pins at both ends of the elastic piece protrude from the lower end surface of the metal ground heat sink block.
  • the side walls of the hollow cavity have steps.
  • one support body is provided, and one support body passes through the plurality of hollow cavities.
  • one support body passes through all the hollow cavities, compared with having one support body in each hollow cavity, the installation is convenient and fast.
  • the side walls of the hollow cavity on both sides are provided with corresponding transverse grooves.
  • Each of the transverse grooves starts from the back of the metal ground heat dissipation block and extends in the thickness direction.
  • Both sides of the support body The ends are inserted into their corresponding transverse grooves.
  • the surface of the metal ground heat dissipation block is provided with a conductive plating layer.
  • the support body is made of silicone rubber, fluorine rubber, isobutadiene rubber or silicone.
  • the temperature tolerance range of silicone rubber is -70°C to 200°C
  • the temperature tolerance range of fluorine rubber is -10°C to 230°C
  • the temperature tolerance range of isobutyl rubber is -30°C to 120°C.
  • clamping strips are integrally formed around the metal ground heat dissipation block. Use the setting of the clamp strip to stably install it on the test socket.
  • the beneficial effect of the ultra-thin grounded heat sink assembly of the present invention is that it integrates a two-piece ground heat sink block with a spring probe and a solid ground heat sink block.
  • This application uses a single-piece metal ground heat sink block, which can significantly reduce the height of the ground heat sink block.
  • the overall thickness is thinner, which improves the heat conduction efficiency; at the same time, a spring piece is installed in the "several" shaped gap formed between the support body and the hollow cavity, and the spring piece is in a natural state
  • the top of the chip protrudes from the upper end of the metal ground heat sink, and the pins at both ends protrude from the lower end of the metal ground heat sink.
  • a test base includes a test circuit board and a test socket.
  • the test socket is installed on the upper surface of the test circuit board. It also includes the above-mentioned ultra-thin ground heat dissipation component.
  • the ultra-thin ground heat dissipation component is limited to the test socket.
  • the elastic piece is compressed. The pins at both ends of the compressed elastic piece are close to the upper surface of the test circuit board, and the top is close to the chip heat dissipation ground at the bottom of the chip to be tested. pad.
  • a clamping slot is provided on the inside of the test socket, and clamping strips are integrally formed around the metal grounding heat dissipation block.
  • the metal grounding heat dissipation block is limited on the test socket through the engagement of the clamping strip and the clamping slot. . Use the cooperation of the card slot and the clamp strip to limit and fix the metal grounding heat sink block.
  • the chip to be tested is a QFN chip or a QFP chip.
  • QFN is a leadless quad flat package
  • QFP is a four-side pin flat package.
  • the test base uses the above-mentioned ultra-thin grounded heat sink component, the height is reduced by using a single-piece metal ground heat sink block, and elastic pieces protruding from the upper and lower end surfaces of the metal ground heat sink block are installed in the "several"-shaped gap.
  • Figure 1 is a perspective view of a solid grounded heat sink in the prior art.
  • Figure 2 is a cross-sectional view of a solid grounded heat sink in the prior art.
  • Figure 3 is a perspective view of a two-piece grounded heat sink with a spring probe in the prior art.
  • Figure 4 is a cross-sectional view of a two-piece grounded heat sink with a spring probe in the prior art.
  • Figure 5 is a perspective view of the front of the ultra-thin grounded heat dissipation component of this embodiment.
  • Figure 6 is an isometric perspective view of a cross-section of the ultra-thin grounded heat dissipation component of this embodiment.
  • Figure 7 is a perspective view of the back of the ultra-thin grounded heat dissipation component of this embodiment.
  • Figure 8 is a cross-sectional view of the metal ground heat dissipation block in the ultra-thin ground heat dissipation assembly of this embodiment.
  • Figure 9 is a cross-sectional view after installing the elastic piece in Figure 8.
  • Figure 10 is a cross-sectional view of the test base in this embodiment.
  • an ultra-thin grounded heat dissipation component in this embodiment includes a metal grounded heat dissipation block 1 and a support 3.
  • the metal grounded heat dissipation block 1 is a monolithic laminate structure.
  • the heat dissipation block 1 is provided with several hollow cavities 2 arranged in an array.
  • the side wall of each hollow cavity 2 has a step.
  • a support body 3 passes through several hollow cavities 2.
  • the support body 3 is connected to the hollow cavity.
  • a "several"-shaped gap 4 is formed between the bodies 2, and a spring piece 5 is provided in the "several"-shaped gap 4.
  • the middle part of the spring piece 5 is wound around the top of the support body 3, and the pins 5b at both ends of the spring piece 5 are along the steps.
  • the support body 3 in this embodiment is made of high-temperature resistant rubber or silicone.
  • the high-temperature resistant rubber can be silicone rubber, fluorine rubber, isobutadiene rubber, etc. Among them, the temperature tolerance range of silicone rubber is -70°C to 200°C, the temperature tolerance range of fluorine rubber is -10°C to 230°C, and the temperature tolerance range of isobutyl rubber is -30°C to 120°C.
  • corresponding horizontal grooves 6 are provided on the side walls of the hollow cavity 2 on both sides.
  • Each horizontal groove 6 starts from the back of the metal ground heat dissipation block 1 and extends along the thickness direction. Both ends of the support body 3 are inserted into corresponding transverse grooves 6 respectively.
  • the surface of the metal ground heat sink 1 in this embodiment is provided with a conductive plating layer to prevent metal oxidation and reduce contact resistance.
  • the metal ground heat dissipation block 1 is integrally formed with clamping strips 7 around it for use with the test socket.
  • This ultra-thin grounded heat dissipation component needs to be used with a test socket. Install the test socket on the test circuit board, and put the QFN chip or QFP chip into the test socket. The pins at both ends of the shrapnel 5 5b contacts the test circuit board and is forced to move upward.
  • the elastic piece 5 generates downward rebound force due to the deformation, so that the pins 5b at both ends of the elastic piece 5 are close to the upper surface of the test circuit board; at the same time, the top 5a of the elastic piece 5 is affected by the QFN chip or The downward pressure of the QFP chip then generates an upward rebound force, causing the top 5a of the elastic piece 5 to be close to the chip heat dissipation ground pad at the bottom of the QFN chip or QFP chip. At this time, the chip heat dissipation ground pad can achieve good conduction and heat conduction with the lower test circuit board through the elastic piece 5 and the metal ground heat dissipation block 1.
  • the metal ground heat sink 1 in this embodiment has a single-piece structure, it is not an ordinary two-piece ground heat sink with a spring probe, which effectively reduces the overall height and is suitable for testing non-spring probe terminals with low compression heights. Test the grounded heat sink in the socket. Its monolithic structure also avoids the thermal resistance generated by the contact surfaces of the upper grounded heat sink 1'' and the lower grounded heat sink 2'' in the original design, enabling better heat conduction performance.
  • the chip heat dissipation ground pad 10a can still be tightly adhered by the rebound force generated by the compression deformation of the elastic piece 5 Test the lower circuit board to achieve good conduction.
  • a test base in this embodiment includes a test circuit board 8, a test socket 9, and an ultra-thin grounded heat dissipation component.
  • the test socket 9 is installed on the upper surface of the test circuit board 8.
  • the ultra-thin grounded heat dissipation component The component is the ultra-thin grounded heat dissipation component of the above-mentioned embodiment 1.
  • the ultra-thin grounded heat dissipation component is limited on the test socket 9; when the chip 10 to be tested is placed in the test socket 9 and pressed down, the elastic piece 5 is compressed, and the compressed elastic piece
  • the pins 5b at both ends of 5 are close to the upper surface of the test circuit board 8, and the top 5a is close to the chip heat dissipation ground pad 10a at the bottom of the chip 10 under test.
  • the chip 10 to be tested is a QFN chip or a QFP chip.
  • a clamping slot 9a is provided on the inside of the test socket 9, and a clamping strip 7 is integrally formed around the metal ground heat dissipation block 1.
  • the metal grounding heat dissipation block 1 is limited in position by the engagement of the clamping strip 7 and the clamping slot 9a.
  • the working principle of the test base in this embodiment is that after the QFN chip or QFP chip to be tested is placed in the test socket 9, the chip cooling ground pad 10a at the bottom of the QFN chip or QFP chip presses down the top 5a of the elastic piece 5.
  • the top 5a of the elastic piece 5 is not in the middle of the elastic piece 5, and the top 5a of the elastic piece 5 deforms downward, generating an upward rebound force, so that the top 5a of the elastic piece 5 is close to the chip heat dissipation ground pad 10a; at the same time, the tubes at both ends of the elastic piece 5
  • the pin 5b contacts the test circuit board 8 and is forced to move upward.
  • the deformation of the elastic piece 5 generates a downward rebound force, so that the pins 5b at both ends of the elastic piece 5 are close to the upper surface of the test circuit board 8.
  • the chip heat dissipation ground pad 10a at the bottom of the QFN chip or QFP chip achieves good conduction, grounding and heat conduction with the lower test circuit board 8 through the elastic piece 5 and the metal ground heat dissipation block 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明公开了一种超薄接地散热组件及测试基座,包括金属接地散热块(1),所述金属接地散热块(1)上设置有若干个中空腔体(2),每个所述中空腔体(2)内设置有支撑体(3),所述支撑体(3)与中空腔体(2)之间形成"几"字型间隙(4),所述"几"字型间隙(4)内设置有弹片(5),所述弹片(5)的顶部突出所述金属接地散热块(1)上端面,所述弹片(5)两端的管脚(5b)突出金属接地散热块(1)下端面。本发明降低了接地散热块高度,提高了接触良率、热传导效率。

Description

超薄接地散热组件及测试基座 技术领域
本发明涉及一种适用于QFN芯片或QFP芯片的超薄接地散热组件及测试基座。
背景技术
随着科技发展及5G时代的到来,电子产品中5G芯片也开始普及。目前我国已成为世界最大的芯片需求国,但是绝大多数高端芯片都依赖进口。5G芯片中常见的射频芯片封装形式大多为QFN芯片,越来越多的QFN芯片测试瓶颈,集中在RF射频测试的信号损耗上。目前,采用弹簧探针的测试基座由于电链路较长,已经满足不了射频信号的传输要求。
现有QFN芯片及QFP芯片测试插座中常规的接地散热块有两种结构。
第一种结构:实心接地散热块,如附图1和附图2所示,该实心接地散热块1'采用金属材质,其上下面均为平面或带有凸起。
该实心接地散热块的优点是:结构简单、加工便利。
该实心接地散热块的缺点是:实心接地散热块为单片式结构,芯片尺寸公差大,当待测芯片底部的芯片散热接地垫平面度较差时,无法做到紧密贴合,导致接触面热阻大,具有热传导效率低、接地效果不佳的缺点。
第二种结构:带弹簧探针的两片式接地散热块,如附图3和附图4所示,该两片式接地散热块由上接地散热块1''、下接地散热块2''构成,上接地散热块1''、下接地散热块2''配套的设置有呈阵列排布的腔体3'',每个腔体3''内装入弹簧探针4''。
该两片式接地散热块的优点是:待测芯片底部的芯片散热接地垫通过自带的弹簧探针4''设置,能较好的连接至底部的测试电路板。
技术问题
该两片式接地散热块的缺点是:上接地散热块1''、下接地散热块2''为两片式结构,压缩后高度无法做到很薄,导致接触面热阻大,热传导效率低。
技术解决方案
为克服上述缺点,本发明的目的在于提供一种降低接地散热块高度、保证接触良率、提升热传导效率、适用于QFN芯片或QFP芯片测试要求的超薄接地散热组件及测试基座。
为了达到以上目的,本发明采用的技术方案是:一种超薄接地散热组件,包括金属接地散热块,所述金属接地散热块上设置有若干个中空腔体,每个所述中空腔体内设置有支撑体,所述支撑体与中空腔体之间形成“几”字型间隙,所述“几”字型间隙内设置有弹片,所述弹片的顶部突出所述金属接地散热块上端面,所述弹片两端的管脚突出金属接地散热块下端面。
优选地,所述中空腔体的侧壁具有阶梯。
优选地,所述支撑体设置有一根,一根所述支撑体穿过所述若干个中空腔体。由一根支撑体穿过所有的若干个中空腔体,相较于在每个中空腔体内均设置有一根支撑体而言,具有安装方便、快捷的效果。
优选地,位于两侧的中空腔体的侧壁上设置有相互对应的横槽,每个所述横槽均起始于金属接地散热块的背面且沿厚度方向延伸,所述支撑体的两端分别塞入与其对应的横槽。安装支撑体时,支撑体两端沿着金属接地散热块背面两侧的横槽,滑至支撑体安装位。
优选地,所述金属接地散热块的表面设置有导电镀层。 
优选地,所述支撑体采用硅橡胶、氟橡胶、异丁橡胶或硅胶材质。硅橡胶的温度承受范围为-70℃至200℃、氟橡胶的温度承受范围为-10℃至230℃、异丁橡胶的温度承受范围为-30℃至120℃。
优选地,所述金属接地散热块的四周一体成型有卡条。利用卡条的设置,使其能稳定的安装在测试插座上。
本发明超薄接地散热组件的有益效果是:整合了带弹簧探针的两片式接地散热块与实心接地散热块,本申请采用单片式的金属接地散热块,可明显降低接地散热块高度,相较于两片式接地散热块而言,整体变薄,提高了热传导效率;同时,在支撑体与中空腔体之间形成的“几”字型间隙内安装弹片,处于自然状态的弹片的顶部突出金属接地散热块上端面,两端的管脚突出金属接地散热块下端面,一旦待测芯片放入测试插座且下压后,弹片受压缩,受压缩的弹片两端的管脚紧贴测试电路板上表面,其顶部紧贴待测芯片底部的芯片散热接地垫,利用弹片形成了良好的导通。解决了现有技术中实心接地散热块的热传导效率低、接地效果不佳的问题,以及两片式接地散热块的接触面热阻大、热传导效率低的问题。本申请提高了热传导效率,能配合超短探针或非弹簧测试端子使用,满足了QFN芯片或QFP芯片的测试要求,增加了芯片的测试通过率。
一种测试基座,包括测试电路板、测试插座,所述测试插座安装在测试电路板的上表面,还包括上述的超薄接地散热组件,所述超薄接地散热组件被限位在测试插座上;当待测芯片放入测试插座且下压后,所述弹片受压缩,受压缩的所述弹片两端的管脚紧贴测试电路板上表面、顶部紧贴待测芯片底部的芯片散热接地垫。
优选地,所述测试插座的内侧设置有卡槽,所述金属接地散热块的四周一体成型有卡条,所述金属接地散热块通过卡条与卡槽的卡合被限位在测试插座上。利用卡槽和卡条的配合,实现对金属接地散热块的限位及固定。
优选地,所述待测芯片为QFN芯片或QFP芯片。QFN为无引线四方扁平封装,QFP为四侧引脚扁平封装。
有益效果
由于该测试基座采用了上述的超薄接地散热组件,利用单片式的金属接地散热块降低了高度,在“几”字型间隙内安装突出金属接地散热块上端面及下端面的弹片,一旦待测芯片放入测试插座且下压后,弹片两端的管脚紧贴测试电路板上表面,弹片的顶部紧贴待测芯片底部的芯片散热接地垫,利用弹片形成了良好的导通。因此,解决了现有技术中实心接地散热块的热传导效率低、接地效果不佳的问题,以及两片式接地散热块的接触面热阻大、热传导效率低的问题。本申请提高了热传导效率,能配合超短探针或非弹簧测试端子使用,满足了QFN芯片或QFP芯片测试的要求,增加了芯片的测试通过率。
附图说明
图1为现有技术中实心接地散热块的立体图。
图2为现有技术中实心接地散热块的剖面图。
图3为现有技术中带弹簧探针的两片式接地散热块的立体图。
图4为现有技术中带弹簧探针的两片式接地散热块的剖面图。
图5为本实施例超薄接地散热组件正面的立体图。
图6为本实施例超薄接地散热组件剖面的等轴侧立体图。
图7为本实施例超薄接地散热组件背面的立体图。
图8为本实施例超薄接地散热组件中金属接地散热块的剖视图。
图9为在图8中安装弹片后的剖视图。
图10为本实施例测试基座的剖视图。
图中:1'-实心接地散热块;1''-上接地散热块;2''-下接地散热块;3''-腔体;4''-弹簧探针;1-金属接地散热块;2-中空腔体;3-支撑体;4-“几”字型间隙;5-弹片;5a-顶部;5b-管脚;6-横槽;7-卡条;8-测试电路板;9-测试插座;9a-卡槽;10-待测芯片;10a-芯片散热接地垫。
本发明的实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例
参见附图5-9所示,本实施例的一种超薄接地散热组件,包括金属接地散热块1、一根支撑体3,金属接地散热块1为单片式的层板结构,金属接地散热块1上设置有呈阵列排布的若干个中空腔体2,每个中空腔体2的侧壁具有阶梯,一根支撑体3穿过若干个中空腔体2,支撑体3与中空腔体2之间形成“几”字型间隙4,“几”字型间隙4内设置有弹片5,弹片5的中部绕设在支撑体3的顶部,弹片5两端的管脚5b则沿着阶梯从中空腔体2伸出,中空腔体2内壁无绝缘介质,当弹片5处于自然状态时,即弹片5未被待测芯片压缩时,弹片5的顶部5a突出金属接地散热块1的上端面,弹片5两端的管脚5b突出金属接地散热块1的下端面。
本实施例中的支撑体3采用耐高温橡胶或硅胶材质,耐高温橡胶可以选择硅橡胶、氟橡胶、异丁橡胶等。其中,硅橡胶的温度承受范围为-70℃至200℃,氟橡胶的温度承受范围为-10℃至230℃,异丁橡胶的温度承受范围为-30℃至120℃。
为了利于安装支撑体3,位于两侧的中空腔体2的侧壁上设置有相互对应的横槽6,每个横槽6均起始于金属接地散热块1的背面且沿厚度方向延伸,支撑体3的两端分别塞入与其对应的横槽6。安装时,先在若干个中空腔体2内均安装弹片5,再将支撑体3沿着金属接地散热块1背面的两个横槽6滑至安装位置,迫使弹片5的管脚5b和顶部5a均突出中空腔体2。
本实施例中的金属接地散热块1的表面设置有导电镀层,防止金属氧化,并降低接触电阻。
如图1所示,金属接地散热块1的四周一体成型有卡条7,用以与测试插座配合使用。
超薄接地散热组件的工作原理:此超薄接地散热组件需配合测试插座使用,将测试插座安装在测试电路板上,并将QFN芯片或QFP芯片放入测试插座后,弹片5两端的管脚5b接触测试电路板并被迫向上位移,弹片5由于发生形变产生向下的回弹力,使得弹片5两端的管脚5b紧贴测试电路板上表面;同时,弹片5的顶部5a受到QFN芯片或QFP芯片的下压,继而产生向上的回弹力,使得弹片5的顶部5a紧贴QFN芯片或QFP芯片底部的芯片散热接地垫。此时,芯片散热接地垫可通过弹片5及金属接地散热块1与下部的测试电路板实现良好导通和热量传导。
由于本实施例金属接地散热块1为单片式结构,非普通的带弹簧探针的两片式接地散热块,有效降低了整体高度,适合作为测试压缩高度较低的非弹簧探针端子的测试插座中的接地散热块。其单片式结构还避免了原有设计中上接地散热块1''、下接地散热块2''接触面产生的热阻,能够达到更好的热传导性能。通过本实施例中的弹片5,即使在芯片制造工艺较差、芯片散热接地垫10a平面度有一定高低偏差的情况下,芯片散热接地垫10a也可通过弹片5压缩形变产生的回弹力紧贴下部的测试电路板,以达到良好导通。
实施例
参见附图10所示,本实施例的一种测试基座,包括测试电路板8、测试插座9,超薄接地散热组件,测试插座9安装在测试电路板8的上表面,超薄接地散热组件为上述实施一的超薄接地散热组件,超薄接地散热组件被限位在测试插座9上;当待测芯片10放入测试插座9且下压后,弹片5受压缩,受压缩的弹片5两端的管脚5b紧贴测试电路板8上表面、顶部5a紧贴待测芯片10底部的芯片散热接地垫10a。其中,待测芯片10为QFN芯片或QFP芯片。
本实施例中的测试插座9的内侧设置有卡槽9a,金属接地散热块1的四周一体成型有卡条7,金属接地散热块1通过卡条7与卡槽9a的卡合被限位在测试插座9上。
本实施例测试基座的工作原理是,待测试的QFN芯片或QFP芯片放入测试插座9后,QFN芯片或QFP芯片底部的芯片散热接地垫10a下压弹片5的顶部5a,本实施例中弹片5的顶部5a未弹片5的中部,弹片5的顶部5a向下发生形变,产生向上的回弹力,使得弹片5的顶部5a紧贴芯片散热接地垫10a;与此同时,弹片5两端的管脚5b接触测试电路板8并被迫向上位移,弹片5由于发生形变产生向下的回弹力,使得弹片5两端的管脚5b紧贴测试电路板8上表面。此时,QFN芯片或QFP芯片底部的芯片散热接地垫10a通过弹片5及金属接地散热块1与下部的测试电路板8实现了良好的导通接地及热量传导。
工业实用性
以上实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所做的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (9)

  1. 一种测试基座,包括测试电路板(8)、测试插座(9),所述测试插座(9)安装在测试电路板(8)的上表面,其特征在于:
    还包括超薄接地散热组件,所述超薄接地散热组件被限位在测试插座(9)上;
    所述超薄接地散热组件包括金属接地散热块(1),所述金属接地散热块(1)上设置有若干个中空腔体(2),每个所述中空腔体(2)内设置有支撑体(3),所述支撑体(3)与中空腔体(2)之间形成“几”字型间隙(4),所述“几”字型间隙(4)内设置有弹片(5),所述弹片(5)的中部绕设在支撑体(3)的顶部,所述弹片(5)两端的管脚(5b)从中空腔体(2)伸出,所述弹片(5)未被待测芯片压缩时,所述弹片(5)的顶部(5a)突出所述金属接地散热块(1)上端面,所述弹片(5)两端的管脚(5b)突出金属接地散热块(1)下端面;
    当待测芯片(10)放入测试插座(9)且下压后,所述弹片(5)受压缩,受压缩的所述弹片(5)两端的管脚(5b)紧贴测试电路板(8)上表面、顶部(5a)紧贴待测芯片(10)底部的芯片散热接地垫(10a)。
  2. 根据权利要求1所述的测试基座,其特征在于:所述中空腔体(2)的侧壁具有阶梯。
  3. 根据权利要求1所述的测试基座,其特征在于:所述支撑体(3)设置有一根,一根所述支撑体(3)穿过所述若干个中空腔体(2)。
  4. 根据权利要求3所述的测试基座,其特征在于:位于两侧的中空腔体(2)的侧壁上设置有相互对应的横槽(6),每个所述横槽(6)均起始于金属接地散热块(1)的背面且沿厚度方向延伸,所述支撑体(3)的两端分别塞入与其对应的横槽(6)。 
  5. 根据权利要求1所述的测试基座,其特征在于:所述金属接地散热块(1)的表面设置有导电镀层。
  6. 根据权利要求1所述的测试基座,其特征在于:所述支撑体(3)采用硅橡胶、氟橡胶、异丁橡胶或硅胶材质。
  7. 根据权利要求1所述的测试基座,其特征在于:所述金属接地散热块(1)的四周一体成型有卡条(7)。
  8. 根据权利要求1所述的一种测试基座,其特征在于:所述测试插座(9)的内侧设置有卡槽(9a),所述金属接地散热块(1)的四周一体成型有卡条(7),所述金属接地散热块(1)通过卡条(7)与卡槽(9a)的卡合被限位在测试插座(9)上。
  9. 根据权利要求1所述的一种测试基座,其特征在于:所述待测芯片(10)为QFN芯片或QFP芯片。
PCT/CN2023/093452 2022-07-28 2023-05-11 超薄接地散热组件及测试基座 WO2024021766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210897059.X 2022-07-28
CN202210897059.XA CN115003139B (zh) 2022-07-28 2022-07-28 超薄接地散热组件及测试基座

Publications (1)

Publication Number Publication Date
WO2024021766A1 true WO2024021766A1 (zh) 2024-02-01

Family

ID=83022498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093452 WO2024021766A1 (zh) 2022-07-28 2023-05-11 超薄接地散热组件及测试基座

Country Status (2)

Country Link
CN (1) CN115003139B (zh)
WO (1) WO2024021766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003139B (zh) * 2022-07-28 2022-11-04 苏州和林微纳科技股份有限公司 超薄接地散热组件及测试基座

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712890A (ja) * 1993-06-23 1995-01-17 Nec Corp 半導体集積回路試験用ソケット
KR20120037592A (ko) * 2010-10-12 2012-04-20 주식회사 오킨스전자 발열 패키지용 테스트 소켓 어셈블리
CN109884507A (zh) * 2019-03-20 2019-06-14 苏州和林微纳科技有限公司 Qfn芯片用高频测试座
CN115003139A (zh) * 2022-07-28 2022-09-02 苏州和林微纳科技股份有限公司 超薄接地散热组件及测试基座

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148116A (zh) * 2010-02-04 2011-08-10 乐金电子(天津)电器有限公司 磁控管的散热片
CN102196706A (zh) * 2010-03-08 2011-09-21 富准精密工业(深圳)有限公司 散热装置
US9425114B2 (en) * 2014-03-28 2016-08-23 Oracle International Corporation Flip chip packages

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712890A (ja) * 1993-06-23 1995-01-17 Nec Corp 半導体集積回路試験用ソケット
KR20120037592A (ko) * 2010-10-12 2012-04-20 주식회사 오킨스전자 발열 패키지용 테스트 소켓 어셈블리
CN109884507A (zh) * 2019-03-20 2019-06-14 苏州和林微纳科技有限公司 Qfn芯片用高频测试座
CN115003139A (zh) * 2022-07-28 2022-09-02 苏州和林微纳科技股份有限公司 超薄接地散热组件及测试基座

Also Published As

Publication number Publication date
CN115003139B (zh) 2022-11-04
CN115003139A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US7589972B2 (en) Electrical connector with clip mechanism
WO2024021766A1 (zh) 超薄接地散热组件及测试基座
US20070099443A1 (en) Memory modules and methods for manufacturing memory modules
TW200536206A (en) Electrical contact
US6957964B2 (en) Conductive terminal and electrical connector applying the conductive terminal
TWI754814B (zh) 電連接器
CN217546598U (zh) 一种bga芯片测试装置
US6814587B2 (en) Electrical connector with contacts having cooperating contacting portions
US7651367B2 (en) Electrical connector with pressed push arms each having an upwardly tapered guiding face with an edge behind a ledge of an inner surface of a side wall of the housing
US7234946B2 (en) Land grid array socket
JPS59132152A (ja) セルフロツクコンタクト
TW202127744A (zh) 電連接器及其製造方法
US6299459B1 (en) compressible conductive interface
WO2022001214A1 (zh) 一种连接器母座、连接器及电子设备
TWM288016U (en) Land grid array socket
CN216217697U (zh) 转接装置
US7189093B2 (en) Socket connector for carrying integrated circuit package
US20050196982A1 (en) Land grid array connector with reliable securing blocks
JP3732437B2 (ja) 電気的接続治具及びこれを用いた半導体装置の特性測定装置
CN109193222B (zh) 电连接器
US6165001A (en) Electrical connector
CN220543062U (zh) 老化测试支撑板及老化测试设备
JP2972634B2 (ja) Icソケット
CN215301237U (zh) 一种便捷组装式电源线路板
CN216310074U (zh) 芯片插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844981

Country of ref document: EP

Kind code of ref document: A1