WO2024021439A1 - 用于控制空调的方法、装置、空调和存储介质 - Google Patents

用于控制空调的方法、装置、空调和存储介质 Download PDF

Info

Publication number
WO2024021439A1
WO2024021439A1 PCT/CN2022/138604 CN2022138604W WO2024021439A1 WO 2024021439 A1 WO2024021439 A1 WO 2024021439A1 CN 2022138604 W CN2022138604 W CN 2022138604W WO 2024021439 A1 WO2024021439 A1 WO 2024021439A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
target opening
air conditioner
heat exchange
heat exchanger
Prior art date
Application number
PCT/CN2022/138604
Other languages
English (en)
French (fr)
Inventor
张心怡
王飞
许文明
李阳
林超
Original Assignee
郑州海尔空调器有限公司
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州海尔空调器有限公司, 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 郑州海尔空调器有限公司
Publication of WO2024021439A1 publication Critical patent/WO2024021439A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of smart home appliances, for example, to a method, device, air conditioner and storage medium for controlling air conditioners.
  • a heat exchanger which includes: a gas collecting pipe; a first heat exchange passage, a first end connected to the first mouth of the gas collecting pipe, and a second end connected to the first diverting element; a second heat exchange passage
  • the heat passage has a first end connected to the second nozzle of the gas collecting pipe and a second end connected to the first diverter element; a third heat exchange passage has a first end connected to the second diverter element and a second end connected to the second diverter element.
  • the first shunt element is connected; the fourth heat exchange passage has a first end connected to the second shunt element, and a second end connected to the third shunt element; a first bypass pipe connected to the first shunt element and the third diverting element; a second bypass line connecting the second diverting element and the gas collecting pipe; a first one-way valve disposed in the first bypass line, and the first
  • the conduction direction of the one-way valve is limited to flow from the third diverting element to the first diverting element; a second one-way valve is provided in the second bypass pipeline, and the second one-way valve
  • the conduction direction is defined as flowing from the second diverter element to the gas collecting pipe; a first control valve is provided in the communication pipeline between the fourth heat exchange passage and the third diverter element.
  • the above-mentioned heat exchanger has a variable flow splitting function, so that the refrigerant flow direction in the heat exchanger can be changed in different operating modes to match the refrigerant flow direction with the operating mode.
  • it can only control the refrigerant flow direction to match the operating mode, but it cannot make the air conditioner operate at optimal conditions.
  • Embodiments of the present disclosure provide a method, a device, an air conditioner, and a storage medium for controlling an air conditioner, so that the air conditioner operates in an optimal state.
  • the air conditioner includes: an outdoor variable split flow heat exchanger; a control valve is provided on at least one heat exchange branch of the outdoor variable split flow heat exchanger; and the method includes: determining the Operation mode; determine the target opening of the control valve according to the operation mode; control the control valve to open to the target opening.
  • the device includes: a processor and a memory storing program instructions, and the processor is configured to execute the aforementioned method for controlling air conditioning when running the program instructions.
  • the air conditioner includes: an outdoor variable split flow heat exchanger, and a control valve is provided on at least one heat exchange branch of the outdoor variable split flow heat exchanger; and also includes: a control valve as mentioned above.
  • Air conditioning unit includes: an outdoor variable split flow heat exchanger, and a control valve is provided on at least one heat exchange branch of the outdoor variable split flow heat exchanger; and also includes: a control valve as mentioned above. Air conditioning unit.
  • the storage medium stores program instructions, and when the program instructions are run, the aforementioned method for controlling air conditioning is executed.
  • the target opening of the control valve is determined based on the operating mode of the air conditioner so that the target opening matches the operating mode. If the target opening of the control valve is different, the amount of refrigerant flowing into the heat exchange branch will be different. In this way, by controlling the flow of refrigerant flowing into the outdoor heat exchanger, the heat exchange performance of the outdoor heat exchanger is matched with the operating mode of the air conditioner, so that the operation of the air conditioner reaches a better state.
  • Figure 1 is a schematic diagram of an air conditioning refrigerant circulation circuit provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a compressor torque and exhaust pressure/return pressure curve provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of another compressor torque and exhaust pressure/return pressure curve provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of a method for controlling air conditioning provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of another method for controlling air conditioning provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of another method for controlling air conditioning provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a device for controlling air conditioning provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another device for controlling air conditioning provided by an embodiment of the present disclosure.
  • Compressor 20. Indoor heat exchanger; 30. Outdoor variable split flow heat exchanger; 31. First liquid distributor; 32. Second liquid distributor; 33. Third liquid distributor; 34. Fourth Liquid separator; 35. First heat exchange branch; 36. Second heat exchange branch; 37. Third heat exchange branch; 38. First bypass pipeline; 381. First one-way valve; 39. Second bypass pipeline; 391, second one-way valve; 40, four-way valve; 50, first main pipe; 51, first electronic expansion valve; 60, second main pipe; 70, control valve.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • an embodiment of the present disclosure provides an air conditioner.
  • the air conditioner includes: a compressor 10, an indoor heat exchanger 20, an outdoor variable split heat exchanger 30 and a four-way valve 40.
  • the compressor 10, the indoor heat exchanger 20, the outdoor variable split heat exchanger 30 and the four-way valve 40 are connected to form a refrigerant circulation loop.
  • the outdoor variable flow split heat exchanger 30 (hereinafter referred to as "outdoor heat exchanger") includes: a first liquid distributor 31, a second liquid distributor 32, a third liquid distributor 33, a fourth liquid distributor 34 and a heat exchanger. Pipeline.
  • the heat exchange pipeline includes: a first heat exchange branch 35 , a second heat exchange branch 36 and a third heat exchange branch 37 .
  • the liquid collection end of the first liquid distributor 31 is connected with the indoor heat exchanger 20 through the first main pipe 50 .
  • the first main pipe 50 is provided with a first electronic expansion valve 51 .
  • the liquid dispensing end of the first liquid separator 31 is connected with the first end of the first heat exchange branch 35 .
  • the liquid dispensing end of the first liquid dispenser 31 is also connected to the liquid collection end of the second liquid dispenser 32 through the first bypass pipe 38 .
  • a first one-way valve 381 is provided on the first bypass line 38 to limit the refrigerant in the first bypass line 38 to only flow from the first dispenser 31 to the second dispenser 32 .
  • the liquid dispensing end of the second liquid separator 32 is connected with the first end of the second heat exchange branch 36 .
  • the liquid dispensing end of the second liquid separator 32 is also connected to the first end of the third heat exchange branch 37 .
  • the second end of the first heat exchange branch 35 is connected with the liquid dispensing end of the third liquid separator 33 .
  • the second end of the second heat exchange branch 36 is connected with the liquid dispensing end of the third liquid distributor 33 .
  • the liquid collecting end of the third liquid dispenser 33 is connected with the liquid dispensing end of the fourth liquid dispenser 34 through the second bypass pipe 39 .
  • a second one-way valve 391 is provided on the second bypass line 39 to limit the refrigerant in the second bypass line 39 to only flow from the third liquid distributor 33 to the fourth liquid distributor 34 .
  • the second end of the third heat exchange branch 37 is connected with the liquid dispensing end of the fourth liquid distributor 34 .
  • the liquid collection end of the fourth liquid dispenser 34 is connected to the four-way valve 40 through the second main pipe 60 .
  • the heat exchange pipeline can include more heat exchange branches and liquid distributors. Please refer to the previous article for specific connection methods, so as to achieve more parallel connection of heat exchange branches in heating mode and more heat exchange branches in cooling mode. Multiple heat exchange branches are connected in series.
  • Existing outdoor unit defrosting methods include shutdown defrost and non-stop defrost.
  • Shutdown defrosting means first stop the compressor and fan motor. The flow direction of the refrigerant is then switched through the four-way valve. That is to say, the air conditioner works in the cooling state (but the outdoor and indoor fan motors do not rotate), so that the high-temperature and high-pressure refrigerant discharged from the compressor enters the outdoor heat exchanger, and the frost on the surface of the outdoor heat exchanger is evaporated and dissipated. Melt to achieve the purpose of defrosting. Most heating and cooling air conditioners use this defrosting method.
  • Non-stop defrosting means that when the air conditioner is in the heating state, part of the high-temperature and high-pressure refrigerant discharged from the compressor flows into the outdoor heat exchanger through the bypass solenoid valve to complete defrosting. Only a small number of heating and cooling air conditioners use this type of defrosting method.
  • the first electronic expansion valve 51 does not have a throttling function. This is because: there are capillary connections between the front and rear nozzles of conventional electronic expansion valves, but the structure of the first electronic expansion valve 51 in this embodiment has changed (the structure of the first electronic expansion valve 51 in this embodiment is not that of this embodiment). Key points, which will not be repeated here), the capillary needs to be removed. And when the opening of the first electronic expansion valve 51 is adjusted to the maximum, the refrigerant flow rate is maximum, so the first electronic expansion valve 51 has no throttling effect. Therefore, the system does not have an evaporator during non-stop defrosting.
  • the abscissa of the coordinate system represents the torque of the compressor 10
  • the ordinate represents the exhaust pressure/return pressure. If the torque of the compressor 10 before shutting down for defrosting is the torque corresponding to point A, the torque may change to the torque corresponding to point B after the bypass solenoid valve is opened. Subsequently, the exhaust temperature remained basically unchanged or even rose slightly. As the return air temperature increases, the torque will change to the torque corresponding to point C. Close the bypass solenoid valve and then restore the torque corresponding to point A. After point B, the moments are greater than those corresponding to point A. The power of the compressor increases. If it lasts for a long time, the exhaust pressure and return pressure will become high, which will lead to damage to the reliability of the compressor 10 .
  • the heat exchange branch provided with the control valve 70 functions as an evaporator. Therefore, the outdoor heat exchanger outlet temperature can be reduced, that is, the return air temperature can be reduced. As shown in Figure 3, the torque of the compressor 10 changes to the torque corresponding to A ⁇ D ⁇ E, which is lower than the original torque corresponding to A ⁇ B ⁇ C. Compressor power is reduced while reliability is improved.
  • a control valve 70 is provided on at least one heat exchange branch.
  • the refrigerant inflow side of the outdoor heat exchanger is the right side of the outdoor heat exchanger in Figure 1. If the air conditioner operates in cooling mode, the refrigerant inflow side of the outdoor heat exchanger is the left side of the outdoor heat exchanger in Figure 1.
  • the heat exchange branch is the uppermost branch.
  • the control valve 70 is provided on the third heat exchange branch 37. This is because if the control valve 70 is arranged in the middle or lower heat exchange branch, it will cause water to flow to the undefrosted part after the upper frost layer melts. The temperature of the undefrosted part is low, which may freeze the defrost water and affect subsequent heating and defrosting.
  • the control valve 70 is installed in the uppermost heat exchange branch, the control valve 70 is controlled to open after the defrosting below is completed. After the frost melts, the defrost water can quickly flow down and leave the outdoor heat exchanger.
  • a control valve 70 is provided on each heat exchange branch on the refrigerant inflow side of the outdoor heat exchanger.
  • control valve 70 is a second electronic expansion valve.
  • an embodiment of the present disclosure provides a method for controlling air conditioning, including:
  • the air conditioner determines its operating mode.
  • the air conditioner determines the target opening of the control valve according to the operating mode.
  • the air conditioning control valve opens to the target opening.
  • the air conditioning processor When the air conditioner is running, determine the operating mode of the air conditioner, such as determining the non-stop defrosting mode, cooling mode or heating mode of the air conditioner. Specifically, when the air conditioning processor receives an instruction, it will parse the instruction to obtain relevant control content. The processor determines the current operating mode through the content obtained from past analysis. Different operating modes correspond to different target openings of the control valve. After the target opening is determined, the control valve is controlled to open to the target opening.
  • the target opening of the control valve is determined based on the operating mode of the air conditioner, so that the target opening matches the operating mode. If the target opening of the control valve is different, the amount of refrigerant flowing into the heat exchange branch will be different. In this way, by controlling the flow of refrigerant flowing into the outdoor heat exchanger, the heat exchange performance of the outdoor heat exchanger is matched with the operating mode of the air conditioner, so that the operation of the air conditioner reaches a better state.
  • an embodiment of the present disclosure provides another method for controlling air conditioning, including:
  • the air conditioner determines its operating mode.
  • S412 After the air conditioner executes S401, when the operating mode is the non-stop defrosting mode or the heating mode, determine the operating frequency of the compressor.
  • the air conditioning control valve opens to the target opening.
  • the operating frequency of the compressor is further determined. Then according to the operating frequency of the compressor, the target opening of the control valve is determined. This is because: when the air conditioner is running in heating mode, the outdoor ambient temperature is generally lower. At this time, frost is likely to form when the outdoor heat exchanger is running for cooling. Therefore, the target opening of the control valve is determined based on the operating frequency of the compressor so that the refrigerant flowing into the outdoor heat exchanger matches the operating frequency of the compressor. Avoid excessive refrigerant flow and increase the risk of frost in the outdoor heat exchanger, thereby ensuring the normal operation of the air conditioner.
  • the outdoor unit runs heating, and the indoor unit also always runs heating.
  • the bypass solenoid valve is turned on, the exhaust temperature and return pressure of the compressor will become higher, which will affect the reliability of the compressor. Therefore, the opening of the control valve is matched with the operating frequency of the compressor, that is, the amount of refrigerant used for defrosting is matched with the operating frequency of the compressor, so as to reduce the exhaust temperature and return air temperature and ensure the reliability of the compressor.
  • the operating mode of the air conditioner is cooling mode or dehumidification mode
  • the maximum opening of the control valve is determined as the target opening so that as much refrigerant as possible flows into the outdoor heat exchanger. In this way, the indoor cooling/dehumidification effect is ensured to be optimal.
  • step S422 when the operating mode of the air conditioner is the heating mode, the target opening of the control valve is determined based on the operating frequency, including:
  • S is the target opening of the control valve
  • F is the operating frequency of the compressor
  • a and b are constants.
  • the control valve only plays a fine-tuning role in refrigerant flow.
  • the specific function is to increase the amount of refrigerant in the branch where the control valve is located, so that the refrigerant flow can be distributed evenly.
  • the target opening of the control valve is calculated according to the above formula (1).
  • a 1.2 ⁇ 1.8
  • b 200 ⁇ 300.
  • step S422 when the operating mode of the air conditioner is the non-stop defrosting mode, determine the target opening of the control valve according to the operating frequency, including:
  • the air conditioner determines the initial target opening of the control valve based on the operating frequency.
  • the air conditioner determines the maximum opening of the control valve as the final target opening.
  • the control valve when the first electronic expansion valve is fully open, the control valve is the only throttling component.
  • the operating mode of the air conditioner is non-stop defrosting mode, first determine the initial target opening of the control valve based on the operating frequency of the air conditioner. The greater the operating frequency, the greater the initial target opening. Specifically, the initial target opening is calculated according to formula (2).
  • S is the initial target opening of the control valve
  • F is the operating frequency of the compressor
  • c is a constant.
  • c 100 ⁇ 150.
  • the target opening of the control valve is different, the amount of refrigerant flowing into the heat exchange branch will be different.
  • the amount of refrigerant will affect the heat exchange performance of the outdoor heat exchanger, which in turn affects the exhaust temperature and return air temperature of the compressor.
  • the opening of the control valve adaptively increases/decreases.
  • the uppermost heat exchange branch still functions as an evaporator to reduce the outdoor heat exchanger outlet temperature, that is, to reduce the return air temperature. This reduces the overall power of the compressor and improves the reliability of the compressor.
  • the maximum opening of the control valve is determined as the final target opening of the control valve.
  • the purpose of controlling the control valve to fully open is to remove the frost from the uppermost heat exchange branch.
  • the first preset time length is 1 to 2 minutes.
  • the outdoor heat exchanger outlet temperature Ta can also be detected. If Ta ⁇ T and it lasts for the first preset time, then determine the final target opening of the control valve as the maximum opening of the control valve. Among them, T is the temperature threshold, which can take a value of 3 to 5°C. In this way, on the basis that the opening of the control valve is the initial target opening and maintained for the first preset time period, it is further determined whether the control valve needs to be fully opened based on the outdoor heat exchanger outlet temperature. When Ta ⁇ T, it means that the refrigerant temperature in the outdoor heat exchanger is higher. At this time, the control valve is fully opened to allow more refrigerant to flow into the outdoor heat exchanger. On the one hand, it can reduce the outdoor heat exchanger outlet temperature, thereby ensuring the reliability of the compressor. On the other hand, higher temperature refrigerant can be used to defrost the outdoor heat exchanger.
  • an embodiment of the present disclosure provides another method for controlling air conditioning, including:
  • the air conditioner determines its operating mode.
  • the air conditioner determines the target opening of the control valve based on the operating frequency.
  • the air conditioning control valve opens to the target opening.
  • the air conditioner obtains the outlet temperature difference between the uppermost heat exchange branch and the adjacent lower heat exchange branch.
  • the air conditioner corrects the target opening according to the outlet temperature difference.
  • the air conditioning control valve opens to the corrected target opening.
  • the air conditioner When the air conditioner operates in heating mode and only the uppermost heat exchange branch on the refrigerant input side is equipped with a control valve, obtain the outlet temperature difference ⁇ T between this heat exchange branch and the adjacent lower heat exchange branch.
  • the target opening is corrected based on the outlet temperature difference.
  • the correlation between the outlet temperature difference and the opening correction value is pre-stored in the processor of the air conditioner.
  • the correlation includes one or more correspondences between outlet temperature differences and opening correction values. The greater the outlet temperature difference, the greater the correction value for the target opening.
  • the opening correction value is the first correction value.
  • the opening correction value is the second correction value.
  • the opening correction value is the third correction value.
  • the opening correction value is the fourth correction value.
  • the opening correction value is the fifth correction value.
  • the first correction value to the fifth correction value decrease in sequence.
  • the first correction value and the second correction value are positive values.
  • the fourth correction value and the fifth correction value are negative values.
  • the opening correction value is 2, and the corrected target opening of the control valve is increased by 2 steps. If the outlet temperature difference is 0.5°C, the opening correction value is 0 and the target opening of the control valve remains unchanged. If the outlet temperature is -2°C, the opening correction value is -2, and the corrected target opening of the control valve is reduced by 2 steps.
  • the target opening of the control valve is corrected again. For example, if the outlet temperature difference is 2°C, the opening correction value is 2, and the opening of the control valve is controlled to increase by 2 steps. After the second preset time interval, the outlet temperature difference is obtained again. If the outlet temperature difference is still 2°C, control the opening of the control valve to increase by 2 steps.
  • the second preset time length is 15 to 30 seconds.
  • control valves are provided on multiple heat exchange branches
  • control valves are provided on the refrigerant inflow side of the outdoor heat exchanger, the uppermost heat exchange branch and the middle heat exchange branch. valve; or, the uppermost heat exchange branch and the lowermost heat exchange branch are both equipped with control valves; or, the uppermost heat exchange branch, the middle heat exchange branch, and the lowermost heat exchange branch are all equipped with control valves.
  • each control valve When each control valve is controlled to fully open, each control valve is sequentially controlled to fully open at a fixed time interval in order from bottom to top. That is, the lower control valve is fully opened first, and the upper control valve is fully opened later. This is because if the upper control valve is opened first, the upper heat exchange branch will defrost first. The defrost water generated after defrost flows to the undefrosted parts, causing freezing. Therefore, in this way, freezing can be avoided to ensure subsequent heating and defrosting effects.
  • the embodiment of the present disclosure provides another device 74 for controlling air conditioning, including: a first determination module 71 , a second determination module 72 and a control module 73 .
  • the first determination module 71 is configured to determine the operating mode of the air conditioner.
  • the second determination module 72 is configured to determine the target opening of the control valve according to the operating mode.
  • the control module 73 is configured to control the control valve to open to a target opening.
  • Using the device for controlling the air conditioner provided by the embodiment of the present disclosure is beneficial to determine the target opening of the control valve based on the operating mode of the air conditioner when the outdoor heat exchanger has a variable shunt function, so that the target opening matches the operation model. If the target opening of the control valve is different, the amount of refrigerant flowing into the heat exchange branch will be different. In this way, by controlling the flow of refrigerant flowing into the outdoor heat exchanger, the heat exchange performance of the outdoor heat exchanger is matched with the operating mode of the air conditioner, so that the operation of the air conditioner reaches a better state.
  • an embodiment of the present disclosure provides a device 84 for controlling air conditioning, including a processor 80 and a memory 81 .
  • the device may also include a communication interface (Communication Interface) 82 and a bus 83.
  • Communication interface 82 may be used for information transmission.
  • the processor 80 may call logical instructions in the memory 81 to execute the method for controlling the air conditioner in the above embodiment.
  • the above-mentioned logical instructions in the memory 81 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 81 can be used to store software programs, computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 80 executes the program instructions/modules stored in the memory 81 to execute functional applications and data processing, that is, to implement the method for controlling the air conditioner in the above embodiment.
  • the memory 81 may include a stored program area and a stored data area, where the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the terminal device, etc.
  • the memory 81 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned device 74 (84) for controlling the air conditioner.
  • Embodiments of the present disclosure provide a storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for controlling air conditioning.
  • the above-mentioned storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • An embodiment of the present disclosure provides a computer program that, when executed by a computer, causes the computer to implement the above method for controlling an air conditioner.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes computer instructions stored on a computer-readable storage medium. When the program instructions are executed by a computer, the computer implements the above-mentioned control of air conditioners. Methods.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the relevant parts can be referred to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能家电技术领域,公开一种用于控制空调的方法,空调包括:室外可变分流换热器;室外可变分流换热器的至少一个换热支路上设置有控制阀;方法包括:确定空调的运行模式;根据运行模式,确定控制阀的目标开度;控制控制阀打开至目标开度。在室外换热器具有可变分流功能的情况下,基于空调的运行模式确定控制阀的目标开度,以使目标开度匹配运行模式。控制阀的目标开度不同,则流入换热支路的冷媒量就会不同。这样,通过控制流入室外换热器的冷媒流量,使得室外换热器的换热性能与空调的运行模式匹配,从而使空调的运行达到较佳状态。本申请还公开一种用于控制空调的装置、空调和存储介质。

Description

用于控制空调的方法、装置、空调和存储介质
本申请基于申请号为202210885154.8、申请日为2022年7月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于控制空调的方法、装置、空调和存储介质。
背景技术
目前,空调在运行不同模式时,例如制冷模式和制热模式时,流路都是相同的。无法保证换热器在不同工作模式下的性能需求。
相关技术中公开了一种换热器,包括:集气管;第一换热通路,第一端与所述集气管的第一管口连接,第二端与第一分流元件连接;第二换热通路,第一端与所述集气管的第二管口连接,第二端与所述第一分流元件连接;第三换热通路,第一端与第二分流元件连接,第二端与所述第一分流元件连接;第四换热通路,第一端与所述第二分流元件连接,第二端与第三分流元件连接;第一旁通管路,连接所述第一分流元件和所述第三分流元件;第二旁通管路,连接所述第二分流元件和所述集气管;第一单向阀,设置于所述第一旁通管路,且所述第一单向阀的导通方向限定为从所述第三分流元件流向所述第一分流元件;第二单向阀,设置于所述第二旁通管路,且所述第二单向阀的导通方向限定为从所述第二分流元件流向所述集气管;第一控制阀,设置于所述第四换热通路与所述第三分流元件的连通管路。
上述换热器具有可变分流功能,使得换热器内的冷媒流向可在不同运行模式下改变,以使冷媒流向与运行模式相匹配。但是只可控制冷媒流向与运行模式匹配,并不能使空调的运行达到较佳状态。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制空调的方法、装置、空调和存储介质,以使空调运行达到较佳状态。
在一些实施例中,所述空调包括:室外可变分流换热器;所述室外可变分流换热器的至少一个换热支路上设置有控制阀;所述方法包括:确定所述空调的运行模式;根据运行模式,确定所述控制阀的目标开度;控制所述控制阀打开至目标开度。
在一些实施例中,所述装置包括:处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行前述的用于控制空调的方法。
在一些实施例中,所述空调,包括:室外可变分流换热器,所述室外可变分流换热器的至少一个换热支路上设置有控制阀;还包括:如前述的用于控制空调的装置。
在一些实施例中,所述存储介质,存储有程序指令,所述程序指令在运行时,执行前述的用于控制空调的方法。
本公开实施例提供的用于控制空调的方法、装置、空调和存储介质,可以实现以下技术效果:
在室外换热器具有可变分流功能的情况下,基于空调的运行模式确定控制阀的目标开度,以使目标开度匹配运行模式。控制阀的目标开度不同,则流入换热支路的冷媒量就会不同。这样,通过控制流入室外换热器的冷媒流量,使得室外换热器的换热性能与空调的运行模式匹配,从而使空调的运行达到较佳状态。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的空调冷媒循环回路的示意图;
图2是本公开实施例提供的一个压缩机力矩与排气压力/回气压力曲线示意图;
图3是本公开实施例提供的另一个压缩机力矩与排气压力/回气压力曲线示意图;
图4是本公开实施例提供的一个用于控制空调的方法的示意图;
图5是本公开实施例提供的另一个用于控制空调的方法的示意图;
图6是本公开实施例提供的另一个用于控制空调的方法的示意图;
图7是本公开实施例提供的一个用于控制空调的装置的示意图;
图8是本公开实施例提供的另一个用于控制空调的装置的示意图。
附图标记:
10、压缩机;20、室内换热器;30、室外可变分流换热器;31、第一分液器;32、第二分液器;33、第三分液器;34、第四分液器;35、第一换热支路;36、第二换热支路;37、第三换热支路;38、第一旁通管路;381、第一单向阀;39、第二旁通管路;391、第二单向阀;40、四通阀;50、第一主管;51、第一电子膨胀阀;60、第二主管;70、控制阀。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
结合图1所示,本公开实施例提供一种空调。该空调包括:压缩机10、室内换热器20、室外可变分流换热器30和四通阀40。压缩机10、室内换热器20、室外可变分流换热器30和四通阀40连接形成冷媒循环回路。
室外可变分流换热器30(下文简称“室外换热器”)包括:第一分液器31、第二分液器32、第三分液器33、第四分液器34和换热管路。
换热管路包括:第一换热支路35、第二换热支路36和第三换热支路37。
第一分液器31的集液端通过第一主管50与室内换热器20相连通。第一主管50上设置有第一电子膨胀阀51。
第一分液器31的分液端与第一换热支路35的第一端相连通。第一分液器31的分液端还通过第一旁通管路38与第二分液器32的集液端相连通。第一旁通管路38上设置有第一单向阀381,用于限定第一旁通管路38内的冷媒只能从第一分液器31流向第二分液器32。
第二分液器32的分液端与第二换热支路36的第一端相连通。第二分液器32的分液端还与第三换热支路37的第一端相连通。
第一换热支路35的第二端与第三分液器33的分液端相连通。第二换热支路36的第二端与第三分液器33的分液端相连通。第三分液器33的集液端通过第二旁通管路39与第四分液器34的分液端相连通。第二旁通管路39上设置有第二单向阀391,用于限定第二旁通管路39内的冷媒只能从第三分液器33流向第四分液器34。
第三换热支路37的第二端与第四分液器34的分液端相连通。第四分液器34的集液端通过第二主管60与四通阀40相连通。
当空调运行制热模式时,冷媒从第一主管50流入。在第一分液器31和第二分液器32的分液作用下,分别流入第一换热支路35、第二换热支路36和第三换热支路37。然后在第二主管60内汇合,流入四通阀40。这样,各条换热支路并联。
当空调运行制冷模式时,冷媒从第二主管60流入。在第一单向阀381和第二单向阀391的阻断作用下,依次流入第三换热支路37、第二换热支路36和第一换热支路35。最后通过第一主管50流入室内换热器20。这样,各条换热支路串联。
需要说明的是,换热管路可以包括更多的换热支路和分液器,具体连接方式参考前文即可,以实现制热模式下更多换热支路并联、以及制冷模式下更多换热支路串联。
现有的室外机除霜方式包括停机除霜和不停机除霜。
停机除霜是指:首先让压缩机、风扇电机停止。随后通过四通阀切换制冷剂的流向。也就是使空调工作在制冷状态(但室外、室内风扇电机不转),使压缩机排出来的高温、高压制冷剂进入室外换热器,通过气化散热的方式将室外换热器表面的霜融化,实现除霜的目的。大部分冷暖型空调器采用此类除霜方式。
不停机除霜是指:空调在制热状态下,从压缩机排出来的一部分高温、高压制冷剂通过旁通电磁阀流入室外换热器,完成除霜。只有少部分冷暖型空调器采用此类除霜方式。
当对本公开实施例提供的室外可变分流换热器30进行不停机除霜时,第一电子膨胀阀51不起节流作用。这是因为:常规电子膨胀阀前后接管会有毛细管连接,而本实施例中的第一电子膨胀阀51结构有所改变(本实施例中的第一电子膨胀阀51的结构不是本实施例的重点,此处不再赘述),需要去除毛细管。且当第一电子膨胀阀51的开度调节至 最大时,冷媒流量最大,因此第一电子膨胀阀51不起节流作用。所以该系统在不停机除霜过程中无蒸发器。运行不停机除霜时,排气温度降低,回气温度升高。如图2所示,坐标系的横坐标表示压缩机10的力矩,纵坐标表示排气压力/回气压力。如果不停机除霜前压缩机10力矩为A点对应的力矩,则开启旁通电磁阀后力矩可能会变为B点对应的力矩。随后排气温度基本不变甚至略有回升。回气温度升高,力矩将会变为C点对应的力矩。关闭旁通电磁阀后再恢复至A点对应的力矩。B点之后,力矩均大于A点对应的力矩。压缩机的功率升高。若持续时间较长,排气压力和回气压力就会变高,进而导致压缩机10可靠性受损。
而在换热支路上增设控制阀70后,则设置有控制阀70的换热支路起到蒸发器作用。因此,能够降低室外换热器出口温度,即降低回气温度。如图3所示,压缩机10力矩变化为A→D→E对应的力矩,低于原来的A→B→C对应的力矩。压缩机功率得到降低,同时可靠性也得到了提高。
可选地,至少一个换热支路上设置有控制阀70。
如果空调运行制热模式,则室外换热器的冷媒流入侧为图1中室外换热器的右侧。如果空调运行制冷模式,则室外换热器的冷媒流入侧为图1中室外换热器的左侧。
如果只有一个换热支路上设置有控制阀70,则该换热支路为位于最上方的支路。以图1提供的室外换热器为例,控制阀70设置在第三换热支路37上。这是因为,如果控制阀70设置在中间或下方换热支路,则会导致上方霜层融化后水流至未化霜部分。未化霜部分温度低,可能使融霜水冻结,影响后续制热、化霜。而控制阀70设置在最上方换热支路时,待下方化霜完成后,控制控制阀70开启。霜融化后,融霜水可以迅速流下并离开室外换热器。
可选地,在运行热模式时室外换热器的冷媒流入侧,每个换热支路上均设置有一个控制阀70。
可选地,控制阀70为第二电子膨胀阀。
结合图4所示,本公开实施例提供了一种用于控制空调的方法,包括:
S401,空调确定其运行模式。
S402,空调根据运行模式,确定控制阀的目标开度。
S403,空调控制控制阀打开至目标开度。
在空调运行时,确定空调的运行模式,例如确定空调运行不停机除霜模式、制冷模式或制热模式。具体地,当空调处理器接收到指令时,会对指令进行解析,从而得到相关控制内容。处理器通过以往解析所得到的内容,确定当前的运行模式。不同的运行模式,对 应控制阀不同的目标开度。确定目标开度后,控制控制阀打开至目标开度。
本公开实施例中,在室外换热器具有可变分流功能的情况下,基于空调的运行模式确定控制阀的目标开度,以使目标开度匹配运行模式。控制阀的目标开度不同,则流入换热支路的冷媒量就会不同。这样,通过控制流入室外换热器的冷媒流量,使得室外换热器的换热性能与空调的运行模式匹配,从而使空调的运行达到较佳状态。
结合图5所示,本公开实施例提供了另一种用于控制空调的方法,包括:
S401,空调确定其运行模式。
S412,空调执行S401后,在运行模式为不停机除霜模式或制热模式的情况下,确定压缩机的运行频率。
S422,空调执行S412后,根据运行频率,确定控制阀的目标开度。
S432,空调执行S401后,在运行模式为制冷模式或除湿模式的情况下,确定控制阀的最大开度为目标开度。
S403,空调控制控制阀打开至目标开度。
如果确定空调的运行模式为不停机除霜模式或制热模式,则进一步确定压缩机的运行频率。然后根据压缩机的运行频率,确定控制阀的目标开度。这是因为:当空调运行制热模式时,室外环境温度一般较低。此时室外换热器运行制冷容易发生结霜。因此,基于压缩机的运行频率确定控制阀的目标开度,以使流入室外换热器的冷媒与压缩机的运行频率相匹配。避免流入过多冷媒,增加室外换热器结霜的风险,从而保证空调的正常运行。
当空调运行不停机除霜模式时,室外机运行制热,同时室内机也始终运行制热。如前文所述,在开启旁通电磁阀后,压缩机的排气温度和回气压力会变高,进而影响压缩机的可靠性。因此,使控制阀的开度与压缩机的运行频率,即控制用于除霜的冷媒量与压缩机的运行频率相匹配,以降低排气温度和回气温度,保证压缩机的可靠性。
如果确定空调的运行模式为制冷模式或除湿模式,则表示室外环境温度相对较高。此时室外换热器没有结霜的风险。因此,确定控制阀的最大开度为目标开度,以使尽量多的冷媒流入室外换热器。通过这种方式,保证室内制冷/除湿效果达到最佳。
可选地,步骤S422,空调在运行模式为制热模式的情况下,根据运行频率,确定控制阀的目标开度,包括:
S=a*F+b               (1)
其中,S为控制阀的目标开度,F为压缩机的运行频率,a、b均为常数。
空调运行制热模式时,第一电子膨胀阀已经对冷媒进行了一次节流。因此,控制阀对冷媒流量只是起到微调的作用。具体作用为提高调节控制阀所在支路的冷媒量,以使冷媒 分流均匀。压缩机的运行频率越高,说明空调的制热能力越强,室内温度达到设定温度也就越快。因此,需要控制控制阀的开度相应地增大。具体地,根据上述公式(1)计算出控制阀的目标开度。可选地,a=1.2~1.8,b=200~300。
可选地,步骤S422,空调在运行模式为不停机除霜模式的情况下,根据运行频率,确定控制阀的目标开度,包括:
空调根据运行频率,确定控制阀的初始目标开度。
空调在控制阀维持初始目标开度第一预设时长的情况下,确定控制阀的最大开度为最终目标开度。
在上述冷媒循环回路中,第一电子膨胀阀全开时,控制阀是唯一的节流部件。
如果空调的运行模式为不停机除霜模式,首先根据空调的运行频率确定控制阀的初始目标开度。运行频率越大,初始目标开度越大。具体地,根据公式(2)计算初始目标开度。
S=F+c            (2)
其中,S为控制阀的初始目标开度,F为压缩机的运行频率,c为常数。可选地,c=100~150。
这样,控制阀的目标开度不同,则流入换热支路的冷媒量就会不同。冷媒量会影响室外换热器的换热性能,进而影响压缩机的排气温度和回气温度。这样,随压缩机的运行频率的增大/减小,使控制阀的开度适应性地增大/减小。控制阀打开至初始目标开度后,使得最上方换热支路仍起到蒸发器的作用,以降低室外换热器出口温度,即降低回气温度。这样使得压缩机整体功率降低,同时使得压缩机的可靠性得到了提高。
第一预设时长后,将控制阀的最大开度确定为控制阀的最终目标开度。此时,控制控制阀完全打开目的在于将最上方换热支路的霜化去。可选地,第一预设时长为1~2分钟。
可选地,在控制阀打开至初始目标开度后,还可以检测室外换热器出口温度Ta。如果Ta≥T,且持续第一预设时长,再确定控制阀的最终目标开度为控制阀的最大开度。其中,T为温度阈值,可以取值3~5℃。这样,在控制阀的开度为初始目标开度、且维持第一预设时长的基础上,进一步结合室外换热器出口温度判断是否需要控制阀完全打开。当Ta≥T时,说明室外换热器内冷媒温度较高。此时,将控制阀完全打开,使更多的冷媒流入室外换热器。一方面可以降低室外换热器出口温度,从而保证压缩机的可靠性。另一方面可以利用温度较高的冷媒对室外换热器进行化霜。
结合图6所示,本公开实施例提供了另一种用于控制空调的方法,包括:
S601,空调确定其运行模式。
S602,空调在运行模式为制热模式的情况下,确定压缩机的运行频率。
S603,空调根据运行频率,确定控制阀的目标开度。
S604,空调控制控制阀打开至目标开度。
S605,空调获取最上方换热支路和相邻下方换热支路的出口温差。
S606,空调根据出口温差,修正目标开度。
S607,空调控制控制阀打开至修正后的目标开度。
当空调运行制热模式、且只有位于冷媒输入侧的最上方的换热支路上设置有控制阀时,获取该换热支路与相邻下方换热支路的出口温差ΔT。根据出口温差修正目标开度。空调的处理器中预先存储有出口温差与开度修正值之间的关联关系。该关联关系包含一个或多个出口温差与开度修正值之间的对应关系。出口温差越大,对目标开度的修正值越大。
可选地,当出口温差位于第一温度区间时,开度修正值为第一修正值。当出口温差位于第二温度区间时,开度修正值为第二修正值。当温差位于第三温度区间时,开度修正值为第三修正值。当温差位于第四温度区间时,开度修正值为第四修正值。当温差位于第五温度区间时,开度修正值为第五修正值。其中,第一温度区间至第五温度区间,前一温度区间的下限值大于后一温度区间的上限值。第一修正值至第五修正值依次减小。可选地,第一修正值和第二修正值为正值。第四修正值和第五修正值为负值。具体地,出口温差与开度修正值之间的关联关系可以参见表1。
出口温差ΔT(℃) 开度修正值(步)
ΔT>3℃ 6
1℃<ΔT≤3℃ 2
-1℃<ΔT≤1℃ 0
-3℃<ΔT≤-1℃ -2
ΔT≤-3℃ -6
表1出口温差与开度修正值之间的关联关系
例如,如果出口温差为2℃,则开度修正值为2,控制阀的修正后的目标开度增加2步。如果出口温差为0.5℃,则开度修正值为0,控制阀的目标开度保持不变。如果出口温度-2℃,则开度修正值为-2,控制阀的修正后的目标开度减小2步。
需要说明的是,表1中的对应关系可以根据实际需要进行适应性调整。
可选地,间隔第二预设时长,获取当前出口温差。根据当前出口温差,再次修正控制阀的目标开度。例如,如果出口温差为2℃,则开度修正值为2,控制控制阀的开度增加2步。间隔第二预设时长后,再次获取出口温差。如果出口温差还是2℃,则控制控制阀的 开度再增加2步。可选地,第二预设时长为15~30秒。
可选地,如果多个换热支路上设置有控制阀,则在空调运行制热模式时,室外换热器的冷媒流入侧,最上方换热支路和中间换热支路上均设置有控制阀;或者,最上方换热支路和最下方换热支路均设置有控制阀;或者,最上方换热支路、中间换热支路和最下方换热支路均设置有控制阀。
当控制各个控制阀完全打开时,按照从下至上的顺序,依次控制各个控制阀以固定的时间间隔完全打开。即,位于下方控制阀优先完全打开,越靠上的控制阀完全打开的越迟。这是因为,如果先打开上方的控制阀,上方的换热支路先化霜。化霜后产生的融霜水流至未化霜部分,会发生结冻。因此,通过这种方式能够避免结冻情况的发生,以保证后续制热、化霜效果。
结合图7所示,本公开实施例提供另一种用于控制空调的装置74,包括:第一确定模块71、第二确定模块72和控制模块73。第一确定模块71被配置为确定空调的运行模式。第二确定模块72被配置为根据运行模式,确定控制阀的目标开度。控制模块73被配置为控制控制阀打开至目标开度。
采用本公开实施例提供的用于控制空调的装置,有利于在室外换热器具有可变分流功能的情况下,基于空调的运行模式确定控制阀的目标开度,以使目标开度匹配运行模式。控制阀的目标开度不同,则流入换热支路的冷媒量就会不同。这样,通过控制流入室外换热器的冷媒流量,使得室外换热器的换热性能与空调的运行模式匹配,从而使空调的运行达到较佳状态。
结合图8所示,本公开实施例提供一种用于控制空调的装置84,包括处理器(processor)80和存储器(memory)81。可选地,该装置还可以包括通信接口(Communication Interface)82和总线83。其中,处理器80、通信接口82、存储器81可以通过总线83完成相互间的通信。通信接口82可以用于信息传输。处理器80可以调用存储器81中的逻辑指令,以执行上述实施例的用于控制空调的方法。
此外,上述的存储器81中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器81作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器80通过运行存储在存储器81中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制空调的方法。
存储器81可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至 少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器81可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调,包含上述的用于控制空调的装置74(84)。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于控制空调的方法。
上述的存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于控制空调的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于控制空调的方法。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本 公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (12)

  1. 一种用于控制空调的方法,所述空调包括:室外可变分流换热器;所述室外可变分流换热器的至少一个换热支路上设置有控制阀;其特征在于,所述方法包括:
    确定所述空调的运行模式;
    根据运行模式,确定所述控制阀的目标开度;
    控制所述控制阀打开至目标开度。
  2. 根据权利要求1所述的方法,其特征在于,运行模式为不停机除霜模式或制热模式;所述根据运行模式,确定所述控制阀的目标开度,包括:
    确定压缩机的运行频率;
    根据运行频率,确定所述控制阀的目标开度。
  3. 根据权利要求2所述的方法,其特征在于,在运行模式为不停机除霜模式的情况下,所述根据运行频率,确定所述控制阀的目标开度,包括:
    根据运行频率,确定所述控制阀的初始目标开度;
    在所述控制阀维持初始目标开度预设时长的情况下,确定所述控制阀的最大开度为最终目标开度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据运行频率,确定所述控制阀的初始目标开度,包括:
    运行频率越大,所述控制阀的初始目标开度越大。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,位于最上方换热支路的下方、且与其相邻的换热支路为相邻下方换热支路;在所述控制所述控制阀打开至目标开度之后,包括:
    获取所述最上方换热支路和所述相邻下方换热支路的出口温差;
    根据出口温差,修正目标开度;
    控制所述控制阀打开至修正后的目标开度。
  6. 根据权利要求5所述的方法,其特征在于,所述根据出口温差,修正目标开度,包括:
    出口温差越大,对目标开度的修正值越大。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,运行模式为制冷模式或除湿模式;所述根据运行模式,确定所述控制阀的目标开度,包括:
    确定所述控制阀的最大开度为目标开度。
  8. 一种用于控制空调的装置,包括处理器和存储有程序指令的存储器,其特征在 于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至7中任一项所述的用于控制空调的方法。
  9. 一种空调,包括:
    室外可变分流换热器,所述室外可变分流换热器的至少一个换热支路上设置有控制阀;
    其特征在于,还包括:
    如权利要求8所述的用于控制空调的装置。
  10. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至7中任一项所述的用于控制空调的方法。
  11. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于控制空调的方法。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于控制空调的方法。
PCT/CN2022/138604 2022-07-26 2022-12-13 用于控制空调的方法、装置、空调和存储介质 WO2024021439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210885154.8 2022-07-26
CN202210885154.8A CN115289647A (zh) 2022-07-26 2022-07-26 用于控制空调的方法、装置、空调和存储介质

Publications (1)

Publication Number Publication Date
WO2024021439A1 true WO2024021439A1 (zh) 2024-02-01

Family

ID=83825086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138604 WO2024021439A1 (zh) 2022-07-26 2022-12-13 用于控制空调的方法、装置、空调和存储介质

Country Status (2)

Country Link
CN (1) CN115289647A (zh)
WO (1) WO2024021439A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289647A (zh) * 2022-07-26 2022-11-04 郑州海尔空调器有限公司 用于控制空调的方法、装置、空调和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834201A (zh) * 2021-09-06 2021-12-24 美的集团武汉暖通设备有限公司 空调器控制方法、空调器及存储介质
CN114383217A (zh) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 用于空调器控制的方法、装置、空调器及存储介质
CN115289647A (zh) * 2022-07-26 2022-11-04 郑州海尔空调器有限公司 用于控制空调的方法、装置、空调和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654193B (zh) * 2021-07-30 2023-02-17 青岛海尔空调器有限总公司 用于空调除霜控制的方法及装置、空调器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834201A (zh) * 2021-09-06 2021-12-24 美的集团武汉暖通设备有限公司 空调器控制方法、空调器及存储介质
CN114383217A (zh) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 用于空调器控制的方法、装置、空调器及存储介质
CN115289647A (zh) * 2022-07-26 2022-11-04 郑州海尔空调器有限公司 用于控制空调的方法、装置、空调和存储介质

Also Published As

Publication number Publication date
CN115289647A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2018082282A1 (zh) 多联机系统及其除霜时的防回液控制方法
WO2021068358A1 (zh) 一种多联机除霜控制方法
WO2022160764A1 (zh) 用于空调系统除霜控制的方法及装置、空调系统
WO2022160767A1 (zh) 用于空调系统除霜控制的方法及装置、空调系统
WO2023005388A1 (zh) 用于空调除霜控制的方法及装置、空调器
WO2024021439A1 (zh) 用于控制空调的方法、装置、空调和存储介质
WO2019037722A1 (zh) 空调系统及其控制方法
JPWO2019053876A1 (ja) 空気調和装置
CN112228977A (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质
CN110207278A (zh) 空调器和空调器的控制方法
WO2020098302A1 (zh) 一种除霜系统、除霜方法及空调器
CN108592297B (zh) 空调器除霜控制方法
CN105650822A (zh) 热泵空调器及其化霜方法
CN110470023B (zh) 用于空调除霜的控制方法及装置、空调
CN110470000B (zh) 用于空调除霜的控制方法、装置及空调
CN109405101B (zh) 一种双风路中央空调机组及其控制方法
CN110411055B (zh) 一种带有化霜装置的空调系统及其控制方法
WO2023279886A1 (zh) 用于热泵设备除霜的方法、装置和热水机组
WO2023082636A1 (zh) 用于空调器自清洁的方法及装置、空调器
CN113959111B (zh) 热泵系统及用于控制热泵系统的方法、装置
CN117267885A (zh) 用于空调器除霜的控制方法、装置及空调器、存储介质
CN115183402B (zh) 用于空调除霜的控制方法、控制装置和空调器
CN113639415B (zh) 用于空调器除霜的方法和装置、空调器
CN117267879A (zh) 用于空调器除霜的控制方法、装置及空调器、存储介质
CN116182322A (zh) 用于空调器防液击的方法、装置、空调器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952872

Country of ref document: EP

Kind code of ref document: A1