WO2023082636A1 - 用于空调器自清洁的方法及装置、空调器 - Google Patents

用于空调器自清洁的方法及装置、空调器 Download PDF

Info

Publication number
WO2023082636A1
WO2023082636A1 PCT/CN2022/099310 CN2022099310W WO2023082636A1 WO 2023082636 A1 WO2023082636 A1 WO 2023082636A1 CN 2022099310 W CN2022099310 W CN 2022099310W WO 2023082636 A1 WO2023082636 A1 WO 2023082636A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
air conditioner
capillary
cleaning
dirty
Prior art date
Application number
PCT/CN2022/099310
Other languages
English (en)
French (fr)
Inventor
张新朝
耿宝寒
胡志刚
孙帅辉
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023082636A1 publication Critical patent/WO2023082636A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of smart home appliances, for example, to a method and device for self-cleaning of an air conditioner, and an air conditioner.
  • the self-cleaning function of traditional air conditioners depends on the large and expensive electronic expansion valve, it is not suitable for small air conditioners limited by structure and cost. Therefore, the small air conditioner cannot realize the self-cleaning of the evaporator, and needs to be cleaned by the user.
  • Embodiments of the present disclosure provide a method and device for self-cleaning of an air conditioner, and an air conditioner, so that a small air conditioner can realize self-cleaning of an evaporator without the need for users to clean themselves.
  • the above-mentioned air conditioner includes a refrigerating cycle composed of a compressor, an evaporator, a condenser and a throttling device.
  • the throttling device includes a first capillary, a second capillary and a two-way valve; the first capillary and the second capillary are arranged in series between the condenser and the evaporator; the two-way valve is arranged in parallel with the second capillary; the method includes : Obtain the dirty clogging information of the evaporator; when the dirty clogging information indicates that the evaporator needs to be cleaned, control the closing of the two-way valve to make frost on the surface of the evaporator.
  • the device includes a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for air conditioner self-cleaning when running the program instructions.
  • the above-mentioned air conditioner includes: a refrigeration cycle circuit composed of a compressor, an evaporator, a condenser, and a throttling device.
  • the throttling device includes: a first capillary arranged between the condenser and the evaporator; a second capillary arranged in series with the first capillary between the condenser and the evaporator; a two-way valve arranged in parallel with the second capillary; and , the above-mentioned device for self-cleaning of an air conditioner.
  • the two-way valve By controlling the on-off of the two-way valve to control the on-off of the second capillary installed in parallel with it, during the normal refrigeration process of the air conditioner, it is composed of a compressor, an evaporator, a condenser, a two-way valve and the first capillary. refrigeration cycle to achieve refrigeration.
  • the two-way valve is controlled to be disconnected.
  • the first capillary tube and the second capillary tube in the system act together as a throttling effect, which reduces the evaporation pressure of the air conditioner refrigeration system, thereby making the surface of the evaporator Frost to clean the evaporator. That is to say, the small air conditioner can realize the self-cleaning of the evaporator without installing the electronic expansion valve, so as to avoid the user's self-cleaning.
  • Fig. 1 is a schematic structural view of an air conditioner according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of another method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of a self-cleaning device for an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of another device for self-cleaning of an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • correspondence may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • the method for self-cleaning of an air conditioner can be applied to the structure of the air conditioner as shown in FIG. 1 .
  • the air conditioner includes a refrigeration cycle circuit composed of a compressor 1, an evaporator 2, a condenser 3 and a throttling device.
  • the throttling device includes: the first capillary tube 4 is arranged between the condenser 3 and the evaporator 2, and is used for making the refrigerant form a local contraction at the throttling place during the cooling process of the air conditioner, so that the flow rate of the refrigerant increases and the static pressure decreases.
  • the second capillary 5 and the first capillary 4 are arranged in series between the condenser 3 and the evaporator 2, and are used to cooperate with the first capillary 4 during the self-cleaning process of the air conditioner to reduce the evaporation pressure of the refrigeration system of the air conditioner to make the evaporation Frost formed on the surface of device 2.
  • the two-way valve 6 and the second capillary 5 are arranged in parallel between the evaporator 2 and the first capillary 4 , and the on-off of the second capillary 5 is controlled by controlling the on-off of the two-way valve 6 .
  • the two-way valve 6 When the air conditioner is cooling normally, the two-way valve 6 is connected, and the air conditioner connects the first capillary tube 4 and the evaporator 2 through the two-way valve 6, and only the first capillary tube 4 plays a throttling effect at this moment.
  • the air conditioner runs the cleaning process of the evaporator 2
  • the two-way valve 6 is disconnected, and the air conditioner connects the first capillary 4 and the evaporator 2 through the second capillary 5, and at this time through the joint action of the first capillary 4 and the second capillary 5 To play a throttling effect.
  • the fluxes of the first capillary 4 and the second capillary 5 are not specifically limited here, and can be selected according to the needs of users.
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner obtains the dirty and clogged information of the evaporator.
  • the air conditioner controls the two-way valve to close when the dirty blockage information indicates that the evaporator needs to be cleaned, so that the surface of the evaporator is frosted.
  • the self-cleaning method for the air conditioner can control the on-off of the second capillary installed in parallel with the two-way valve by controlling the on-off of the two-way valve.
  • Refrigeration is realized by the refrigeration cycle circuit composed of machine, evaporator, condenser, two-way valve and first capillary tube.
  • the two-way valve is controlled to be disconnected.
  • the first capillary tube and the second capillary tube in the system act together as a throttling effect, which reduces the evaporation pressure of the air conditioner refrigeration system, thereby making the surface of the evaporator Frost to clean the evaporator. That is, the small air conditioner can realize the self-cleaning of the evaporator without installing the electronic expansion valve.
  • the air conditioner determines the dirty clogging information of the evaporator in the following manner, including: the air conditioner determines the dirty clogging information of the evaporator according to the running time and air quality information; or, the air conditioner determines the dirty clogging information of the evaporator according to the air pressure difference on both sides of the evaporator , to determine the dirty clogging information of the evaporator; or, the air conditioner determines the dirty clogging information of the evaporator according to the light transmittance of the evaporator.
  • the air conditioner can determine different trigger commands for cleaning the evaporator according to the difference in air quality in the working area, so as to ensure the cleanliness of the evaporator after cleaning and lower energy consumption during the cleaning process.
  • the air conditioner can also determine the trigger instruction for cleaning the evaporator through the air pressure difference on both sides of the evaporator.
  • the air conditioner can also determine the degree of dirtiness of the evaporator through the light transmittance of the evaporator, and then determine whether to trigger an instruction to clean the evaporator.
  • the detection method can be any combination of one or more of the above methods, and the common use of multiple methods can effectively avoid the possibility of a single device failure.
  • the air conditioner determines the dirty clogging information of the evaporator according to the running time and air quality information, including: the air conditioner determines the target running time corresponding to the air quality information; the cumulative running time of the air conditioner is greater than or equal to the target running time In this case, it was determined that the evaporator needs to be cleaned.
  • the air quality of the working environment of the air conditioner is used to determine the running time for the evaporator to meet the cleaning conditions, and the air conditioner is controlled to clean the evaporator when this time is reached.
  • the working environment in which the air conditioner is turned on twice in a row is inconsistent, after each start of the air conditioner, on the basis of the last calculated running time, recalculate the remaining running time for the evaporator to meet the cleaning conditions . Therefore, it is ensured that self-cleaning will not be advanced or delayed due to changing the working environment.
  • the air conditioner determines the dirty clogging information of the evaporator according to the air pressure difference on both sides of the evaporator, including: the air conditioner determines that the evaporator needs to be cleaned when the air pressure difference is less than or equal to a pressure difference threshold.
  • the accuracy of detection can be effectively improved, and it can be realized only through the air pressure difference detection module without the joint action of the timing module and the air quality detection module.
  • the failure rate of the equipment is reduced, and at the same time, the possibility of misjudgment that may occur when the working environment where the air conditioner is turned on twice in a row is inconsistent.
  • the air conditioner determines the dirty clogging information of the evaporator according to the light transmittance of the evaporator, including: the air conditioner determines that the evaporator needs to be cleaned when the light transmittance is less than or equal to a light transmittance threshold.
  • the accuracy of detection can be effectively improved, and it can be realized only through the light transmittance detection module without the joint action of the timing module and the air quality detection module.
  • the failure rate of the equipment is reduced, and at the same time, the possibility of misjudgment that may occur when the working environment where the air conditioner is turned on twice in a row is inconsistent.
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner obtains the dirty and clogged information of the evaporator.
  • the air conditioner controls the two-way valve to close when the dirty blockage information indicates that the evaporator needs to be cleaned, so that the surface of the evaporator is frosted.
  • the air conditioner controls the speed of the fan to drop to the first set speed to run.
  • the air conditioner controls the air supply angle of the air deflector to be adjusted to a first preset angle.
  • Using the self-cleaning method for air conditioners provided by the embodiments of the present disclosure can reduce the efficiency of temperature regulation by reducing the speed of the fan and the angle of air supply, thereby ensuring that the cooling generated by the air conditioner is mainly used for the surface junction of the evaporator.
  • Frost In order to ensure the frosting efficiency on the surface of the evaporator, reducing the speed of the fan without turning off the fan is to ensure the comfort of the user when using the air conditioner. Therefore, it is only necessary to ensure that the speed of the fan can meet the minimum requirements of the indoor personnel.
  • the first set rotational speed of the fan and the first preset angle of the wind deflector are optimal states selected after combining mutual influences between them.
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner obtains the dirty and clogged information of the evaporator.
  • the air conditioner controls the two-way valve to close when the dirty blockage information indicates that the evaporator needs to be cleaned, so that the surface of the evaporator is frosted.
  • the air conditioner obtains the surface temperature of the evaporator.
  • the air conditioner runs the defrosting mode when the surface temperature is less than or equal to the frosting temperature threshold.
  • the current frosting state on the surface of the evaporator can be accurately determined through the surface temperature value of the evaporator. It avoids the problem of inaccurate precision caused by time control, and further avoids the possibility of insufficient cleaning due to incomplete frosting, as well as the decline in refrigeration efficiency and even equipment damage caused by excessive frosting. damage.
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner obtains the dirty and clogged information of the evaporator.
  • the air conditioner controls the two-way valve to close when the dirty blockage information indicates that the evaporator needs to be cleaned, so that the surface of the evaporator is frosted.
  • the air conditioner obtains the surface temperature of the evaporator.
  • the air conditioner controls the compressor to stop running.
  • the air conditioner controls the speed of the fan to increase to the second set speed to run.
  • the air conditioner controls the air supply angle of the air deflector to be adjusted to a second preset angle, so as to defrost the surface of the evaporator.
  • the wind speed on the surface of the compressor can be increased by adjusting the air outlet speed, thereby increasing the defrosting speed on the surface of the evaporator.
  • the air velocity on the surface of the evaporator reaches the maximum value that does not affect the comfort of the user. Therefore, under the condition of ensuring the normal cooling of the air conditioner, the frost on the surface of the evaporator can be melted quickly, and then the impurities on the surface of the evaporator can be taken away to achieve the purpose of self-cleaning.
  • the air supply angle of the air deflector avoids blowing directly to the user, and prevents impurities on the surface of the evaporator from being blown around the user.
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner obtains the dirty and clogged information of the evaporator.
  • the air conditioner controls the two-way valve to close when the dirty blockage information indicates that the evaporator needs to be cleaned, so that the surface of the evaporator is frosted.
  • the air conditioner acquires the closing time of the two-way valve.
  • the air conditioner runs the defrosting mode when the shutdown duration is greater than or equal to the shutdown duration threshold.
  • the current frosting state on the surface of the evaporator can be determined according to the closing time of the two-way valve.
  • the cost increase and high equipment failure rate caused by the use of sensors are avoided, and the control of the cleaning time node can be completed only through the control time obtained from the experiment.
  • the solution shown in FIG. 4 and the solution shown in FIG. 6 can be used on the air conditioner at the same time, thereby effectively avoiding the occurrence of wrong judgments caused by a single detection element failure.
  • an embodiment of the present disclosure provides a method for self-cleaning of an air conditioner, including:
  • the air conditioner obtains the dirty and clogged information of the evaporator.
  • the air conditioner controls the two-way valve to close when the dirty blockage information indicates that the evaporator needs to be cleaned, so that the surface of the evaporator is frosted.
  • the air conditioner acquires the closing time of the two-way valve.
  • the air conditioner controls the speed of the fan to increase to the second set speed to run.
  • the air conditioner controls the air supply angle of the air deflector to be adjusted to a second preset angle, so as to defrost the surface of the evaporator.
  • the wind speed on the surface of the compressor can be increased by adjusting the air outlet speed, thereby increasing the defrosting speed on the surface of the evaporator.
  • the air velocity on the surface of the evaporator reaches the maximum value that does not affect the comfort of the user. Therefore, under the condition of ensuring the normal cooling of the air conditioner, the frost on the surface of the evaporator can be melted quickly, and then the impurities on the surface of the evaporator can be taken away to achieve the purpose of self-cleaning.
  • the air supply angle of the air deflector avoids blowing directly to the user, and prevents impurities on the surface of the evaporator from being blown around the user.
  • an embodiment of the present disclosure provides a self-cleaning device for an air conditioner, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the method for self-cleaning of the air conditioner in the above embodiment.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, ie to implement the method for self-cleaning of the air conditioner in the above embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned device for self-cleaning the air conditioner.
  • An embodiment of the present disclosure provides a storage medium storing computer-executable instructions configured to execute the above-mentioned method for self-cleaning an air conditioner.
  • the above-mentioned storage medium may be a transient storage medium or a non-transitory storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种用于空调器自清洁的方法、用于空调器自清洁的装置及空调器,包括:获取蒸发器(2)的脏堵信息;在脏堵信息表示蒸发器(2)需要进行清洁的情况下,控制二通阀(6)关闭,以使蒸发器(2)的表面结霜;通过控制二通阀(6)的通断来控制与其并联设置的第二毛细管(5)的通断,在空调器正常制冷的过程中,通过由压缩机(1)、蒸发器(2)、冷凝器(3)、二通阀(6)和第一毛细管(4)所构成的制冷循环回路来实现制冷;当判定蒸发器(2)需要清洁时,控制二通阀(6)断开,此时系统中的第一毛细管(4)和第二毛细管(5)共同起节流作用,使空调器制冷系统的蒸发压力降低,进而使蒸发器(2)表面结霜以清洁蒸发器(2),可以在不安装电子膨胀阀的前提下实现蒸发器(2)的自清洁。

Description

用于空调器自清洁的方法及装置、空调器
本申请基于申请号为202111354024.3、申请日为2021年11月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于空调器自清洁的方法及装置、空调器。
背景技术
目前,小型空调器由于其价格不高且使用便利,被人们作为风扇的替代品,在日常生活中越发常见。
由于小型空调器的价格不高且工作地点不受场地限制,因此经常被用于环境较恶劣的场所。但长期在环境较恶劣的场所中使用之后,会导致蒸发器表面附着大量的灰尘和杂质。这样一来既影响换热效果增加整机功耗,又容易滋生细菌影响用户健康,此时就需要对换热器进行清洗。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
由于传统空调器的自清洁功能依赖于体积较大、成本较高的电子膨胀阀,并不适配于受结构与成本限制小型空调器。因此小型空调器无法实现蒸发器的自清洁,需用户自行清洗。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调器自清洁的方法及装置、空调器,以使小型空调器可以实现蒸发器的自清洁,无需用户自行清洗。
在一些实施例中,上述空调器包括由压缩机、蒸发器、冷凝器和节流装置所构成的制冷循环回路。节流装置包括第一毛细管、第二毛细管和二通阀;第一毛细管与所述第二毛细管串联设置于冷凝器与蒸发器之间;二通阀与第二毛细管并联设置;所述方法包括:获 取蒸发器的脏堵信息;在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
在一些实施例中,所述装置包括处理器和存储有程序指令的存储器,处理器被配置为在运行程序指令时,执行上述用于空调器自清洁的方法。
在一些实施例中,上述空调器包括:由压缩机、蒸发器、冷凝器和节流装置所构成的制冷循环回路。节流装置包括:第一毛细管,设置于冷凝器与蒸发器之间;第二毛细管,与第一毛细管串联设置于冷凝器与蒸发器之间;二通阀,与第二毛细管并联设置;和,上述用于空调器自清洁的装置。
本公开实施例提供的用于空调器自清洁的方法及装置、空调器,可以实现以下技术效果:
通过控制二通阀的通断来控制与其并联设置的第二毛细管的通断,在空调器正常制冷的过程中,通过由压缩机、蒸发器、冷凝器、二通阀和第一毛细管所构成的制冷循环回路来实现制冷。在判定蒸发器需要清洁的情况下,控制二通阀断开,此时系统中的第一毛细管和第二毛细管共同起节流作用,使空调器制冷系统的蒸发压力降低,进而使蒸发器表面结霜以清洁蒸发器。即小型空调器可以在不安装电子膨胀阀的前提下实现蒸发器的自清洁,避免用户自行清洗。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例的一个空调器的结构示意图;
图2是本公开实施例提供的一个用于空调器自清洁的方法的示意图;
图3是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图4是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图5是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图6是本公开实施例提供的另一个用于空调器自清洁的方法的示意图;
图7是本公开实施例提供的一个用于空调器自清洁的装置的示意图;
图8是本公开实施例提供的另一个用于空调器自清洁的装置的示意图。
附图标记
1:压缩机;2:蒸发器;3:冷凝器;4:第一毛细管;5:第二毛细管;6:二通阀。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
本申请提供的用于空调器自清洁的方法可以应用于如图1所示的空调器的结构。该空调器包括由压缩机1、蒸发器2、冷凝器3和节流装置所构成的制冷循环回路。其中,节流装置包括:第一毛细管4设置于冷凝器3与蒸发器2之间,用于空调器制冷过程中使冷媒在节流处形成局部收缩,从而使冷媒的流速增加静压力降低。第二毛细管5与第一毛细管4串联设置于冷凝器3与蒸发器2之间,用于在空调器自清洁过程中与第一毛细管4共同作用,以降低空调器制冷系统的蒸发压力使蒸发器2表面结霜。二通阀6与第二毛细管5并联设置于蒸发器2与第一毛细管4之间,通过控制二通阀6的通断来控制第二毛细管5的通断。当空调器正常制冷时二通阀6接通,空调器通过二通阀6来连接第一毛细管4和蒸发器2,此时仅通过第一毛细管4起到节流效果。当空调器运行蒸发器2清洁进程时二通阀6断开,空调器通过第二毛细管5来连接第一毛细管4和蒸发器2,此时通过第一毛细管4和第二毛细管5的共同作用来起到节流效果。其中,第一毛细管4与第二毛细管5的通量在此不做具体限定,可以根据用户的需求自行选取。
结合图2所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S01,空调器获取蒸发器的脏堵信息。
S02,空调器在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
采用本公开实施例提供的用于空调器自清洁的方法,能通过控制二通阀的通断来控制与其并联设置的第二毛细管的通断,在空调器正常制冷的过程中,通过由压缩机、蒸发器、冷凝器、二通阀和第一毛细管所构成的制冷循环回路来实现制冷。在判定蒸发器需要清洁的情况下,控制二通阀断开,此时系统中的第一毛细管和第二毛细管共同起节流作用,使空调器制冷系统的蒸发压力降低,进而使蒸发器表面结霜以清洁蒸发器。即小型空调器可以在不安装电子膨胀阀的前提下实现蒸发器的自清洁。
可选地,空调器通过以下方式确定蒸发器的脏堵信息,包括:空调器根据运行时长和空气质量信息,确定蒸发器的脏堵信息;或者,空调器根据蒸发器两侧的空气压差,确定蒸发器的脏堵信息;或者,空调器根据蒸发器的透光率,确定蒸发器的脏堵信息。
这样,由于空调器在不同的工作环境下所造成的蒸发器堵塞程度并不相同。因此空调器可以通过工作区域空气质量的不同,来确定不同的清洁蒸发器进程的触发指令,从而保证蒸发器清洗后的清洁程度以及清洁过程中的能耗较低。为了提升判定的准确性,空调器也可以通过蒸发器两侧的空气压差来确定清洁蒸发器进程的触发指令。同样的,空调器还可以通过蒸发器的透光率来确定蒸发器的脏堵程度,进而确定是否触发清洁蒸发器进程的指令。此外检测方式可以是上述方法中的一种或多种的任意组合,多种共同使用可以有效的避免单一设备故障的可能。
可选地,空调器根据运行时长和空气质量信息,确定蒸发器的脏堵信息,包括:空调器确定与空气质量信息相对应的目标运行时长;空调器在累计运行时长大于或等于目标运行时长的情况下,确定蒸发器需要进行清洁。
这样,由于空调器在不同的工作环境下所造成的蒸发器堵塞程度并不相同,所以在不同的工作环境下蒸发器的脏堵速度也并不相同。因此通过空调器工作环境的空气质量,来判定蒸发器满足需要进行清洁条件的运行时长,在达到该时长的情况下控制空调器清洗蒸发器。此外,为了避免空调器连续两次开机所处的工作环境不一致的可能,在空调器每次开启后在上次计算的运行时长的基础上,重新计算蒸发器满足需要进行清洁条件的剩余运行时长。从而保证了不会由于更换工作环境所导致的自清洁进行提前或延后的情况出现。
可选地,空调器根据蒸发器两侧的空气压差,确定蒸发器的脏堵信息,包括:空调器在空气压差小于或等于压差阈值的情况下,确定蒸发器需要进行清洁。
这样,可以有效地提升检测的准确性,无需通过计时模块与空气质量检测模块的共同作用,仅通过空气压差检测模块即可实现。降低了设备的故障率,同时也避免了空调器连续两次开机所处的工作环境不一致的情况下,所可能出现的误判可能。
可选地,空调器根据蒸发器的透光率,确定蒸发器的脏堵信息,包括:空调器在透光率小于或等于透光率阈值的情况下,确定蒸发器需要进行清洁。
这样,可以有效地提升检测的准确性,无需通过计时模块与空气质量检测模块的共同作用,仅通过透光率检测模块即可实现。降低了设备的故障率,同时也避免了空调器连续两次开机所处的工作环境不一致的情况下,所可能出现的误判可能。
结合图3所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S01,空调器获取蒸发器的脏堵信息。
S02,空调器在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
S03,空调器控制风机转速降至第一设定转速运行。
S04,空调器控制导风板的送风角度调整至第一预设角度。
采用本公开实施例提供的用于空调器自清洁的方法,能通过降低风机的转速和送风的角度来降低温度调节的效率,从而保证空调器所产生的冷量主要用于蒸发器表面结霜。为了保障蒸发器表面的结霜效率,降低风机的转速而不关闭风机是为了保障用户使用空调器的舒适度,因此仅需要保证风机的转速能满足室内人员使用需求的最低限度即可。同样,控制导风板的送风角度至能满足室内人员使用需求的最低限度即可,避免由于将大量的冷量送出空调器影响蒸发器表面的结霜效率。其中,风机的第一设定转速和导风板的第一预设角度为结合彼此之间的相互影响后选取的最佳状态。
结合图4所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S01,空调器获取蒸发器的脏堵信息。
S02,空调器在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
S05,空调器获取蒸发器的表面温度。
S06,空调器在表面温度小于或等于结霜温度阈值的情况下,运行化霜模式。
采用本公开实施例提供的用于空调器自清洁的方法,能通过蒸发器的表面温度值准确的判定当前蒸发器表面的结霜状态。避免了通过时间控制时所带来的精度不准确的问题,也进一步地避免了由于结霜不全面所导致的清洁程度不足的可能,以及由于过度结霜所造成的制冷效率的下降甚至是设备的损坏。
结合图5所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S01,空调器获取蒸发器的脏堵信息。
S02,空调器在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
S05,空调器获取蒸发器的表面温度。
S061,空调器在表面温度小于或等于结霜温度阈值的情况下,控制压缩机停止运行。
S062,空调器控制风机转速升至第二设定转速运行。
S063,空调器控制导风板的送风角度调整至第二预设角度,使蒸发器的表面化霜。
采用本公开实施例提供的用于空调器自清洁的方法,能通过调节出风速度来增加压缩机表面的风速,进而提升蒸发器表面的化霜速度。通过调整风机的转速与导风板的送风角度,来使得蒸发器表面的空气流速达到不影响用户使用舒适度的最大值。从而可以在保障空调器正常制冷的情况下,可以使蒸发器表面的霜迅速融化,进而带走蒸发器表面的杂质以达到自清洁的目的。其中,导风板的送风角度避免直吹用户,防止将蒸发器表面的杂质吹至用户周围。
结合图6所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S01,空调器获取蒸发器的脏堵信息。
S02,空调器在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
S07,空调器获取二通阀的关闭时长。
S08,空调器在关闭时长大于或等于关闭时长阈值的情况下,运行化霜模式。
采用本公开实施例提供的用于空调器自清洁的方法,能通过二通阀的关闭时长来判定当前蒸发器表面的结霜状态。避免了使用传感器所带来的成本的增加与较高的设备故障率,只需通过实验得出的控制时间即可完成对于清洁时间节点的控制。此外,可以同时在空调器上使用图4所示的方案与图6所示的方案,进而有效避免单一检测元件故障所导致的错误判定情况的出现。
结合图7所示,本公开实施例提供一种用于空调器自清洁的方法,包括:
S01,空调器获取蒸发器的脏堵信息。
S02,空调器在脏堵信息表示蒸发器需要进行清洁的情况下,控制二通阀关闭,以使蒸发器的表面结霜。
S07,空调器获取二通阀的关闭时长。
S081,空调器在关闭时长大于或等于关闭时长阈值的情况下,控制压缩机停止运行。
S082,空调器控制风机转速升至第二设定转速运行。
S083,空调器控制导风板的送风角度调整至第二预设角度,使蒸发器的表面化霜。
采用本公开实施例提供的用于空调器自清洁的方法,能通过调节出风速度来增加压缩机表面的风速,进而提升蒸发器表面的化霜速度。通过调整风机的转速与导风板的送风角度,来使得蒸发器表面的空气流速达到不影响用户使用舒适度的最大值。从而可以在保障空调器正常制冷的情况下,可以使蒸发器表面的霜迅速融化,进而带走蒸发器表面的杂质以达到自清洁的目的。其中,导风板的送风角度避免直吹用户,防止将蒸发器表面的杂质吹至用户周围。
结合图8所示,本公开实施例提供一种用于空调器自清洁的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于空调器自清洁的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于空调器自清洁的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调器,包含上述的用于空调器自清洁的装置。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调器自清洁的方法。
上述的存储介质可以是暂态存储介质,也可以是非暂态存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代 码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择 其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调器自清洁的方法,所述空调器包括由压缩机、蒸发器、冷凝器和节流装置所构成的制冷循环回路,其特征在于,所述节流装置包括第一毛细管、第二毛细管和二通阀;所述第一毛细管与所述第二毛细管串联设置于冷凝器与蒸发器之间;二通阀与所述第二毛细管并联设置;所述方法包括:
    获取所述蒸发器的脏堵信息;
    在所述脏堵信息表示所述蒸发器需要进行清洁的情况下,控制所述二通阀关闭,以使所述蒸发器的表面结霜。
  2. 根据权利要求1所述的方法,其特征在于,通过以下方式确定所述蒸发器的脏堵信息,包括:
    根据所述空调器的运行时长和空气质量信息,确定所述蒸发器的脏堵信息;或者,
    根据所述蒸发器两侧的空气压差,确定所述蒸发器的脏堵信息;或者,
    根据所述蒸发器的透光率,确定所述蒸发器的脏堵信息。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述空调器的运行时长和空气质量信息,确定所述蒸发器的脏堵信息,包括:
    确定与所述空气质量信息相对应的目标运行时长;
    在所述空调器的累计运行时长大于或等于所述目标运行时长的情况下,确定所述蒸发器需要进行清洁。
  4. 根据权利要求2所述的方法,其特征在于,根据所述蒸发器两侧的空气压差,确定所述蒸发器的脏堵信息,包括:
    在所述空气压差小于或等于压差阈值的情况下,确定所述蒸发器需要进行清洁。
  5. 根据权利要求2所述的方法,其特征在于,根据所述蒸发器的透光率,确定所述蒸发器的脏堵信息,包括:
    在所述透光率小于或等于透光率阈值的情况下,确定所述蒸发器需要进行清洁。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在所述脏堵信息表示所述蒸发器需要进行清洁的情况下,还包括:
    控制风机转速降至第一设定转速运行,并控制导风板的送风角度调整至第一预设角度,以提升蒸发器表面的结霜速度。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,在所述脏堵信息表示所述蒸发器需要进行清洁的情况下,还包括:
    获取蒸发器的表面温度和二通阀的关闭时长;
    在所述表面温度小于或等于结霜温度阈值的情况下,控制空调器运行化霜模式;或,
    在所述关闭时长大于或等于关闭时长阈值的情况下,控制空调器运行化霜模式。
  8. 根据权利要求7所述的方法,其特征在于,所述控制空调器运行化霜模式,包括:
    控制压缩机停止运行;
    控制风机转速升至第二设定转速运行;
    控制导风板的送风角度调整至第二预设角度,使蒸发器的表面化霜。
  9. 一种用于空调器自清洁的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至8任一项所述的用于空调器自清洁的方法。
  10. 一种空调器,包括由压缩机、蒸发器、冷凝器和节流装置所构成的制冷循环回路,其特征在于,所述节流装置包括:
    第一毛细管,设置于冷凝器与蒸发器之间;
    第二毛细管,与所述第一毛细管串联设置于冷凝器与蒸发器之间;
    二通阀,与所述第二毛细管并联设置;和,
    如权利要求9所述的用于空调器自清洁的装置。
PCT/CN2022/099310 2021-11-12 2022-06-17 用于空调器自清洁的方法及装置、空调器 WO2023082636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111354024.3A CN114234365A (zh) 2021-11-12 2021-11-12 用于空调器自清洁的方法及装置、空调器
CN202111354024.3 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023082636A1 true WO2023082636A1 (zh) 2023-05-19

Family

ID=80749637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099310 WO2023082636A1 (zh) 2021-11-12 2022-06-17 用于空调器自清洁的方法及装置、空调器

Country Status (2)

Country Link
CN (1) CN114234365A (zh)
WO (1) WO2023082636A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234365A (zh) * 2021-11-12 2022-03-25 青岛海尔空调器有限总公司 用于空调器自清洁的方法及装置、空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428753A2 (en) * 2010-09-09 2012-03-14 Panasonic Corporation Air conditioner
CN202734149U (zh) * 2012-04-28 2013-02-13 上海理工大学 一种空调设备通堵状况监测装置
CN103994559A (zh) * 2014-05-16 2014-08-20 广东志高空调有限公司 一种具有自动检测并提示用户清洗过滤网功能的空调器及其提示方法
CN110779162A (zh) * 2019-11-29 2020-02-11 宁波奥克斯电气股份有限公司 一种滤网积尘检测装置、方法及空调器
CN111536675A (zh) * 2020-05-13 2020-08-14 广东美的制冷设备有限公司 空调器自清洁控制方法、空调器及存储介质
CN111854044A (zh) * 2020-07-24 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN113446762A (zh) * 2021-06-22 2021-09-28 珠海格力电器股份有限公司 节流装置、空调自清洁装置以及空调自清洁方法
CN114234365A (zh) * 2021-11-12 2022-03-25 青岛海尔空调器有限总公司 用于空调器自清洁的方法及装置、空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110001346A (zh) * 2019-03-21 2019-07-12 青岛海尔空调器有限总公司 汽车空调自清洁控制方法
CN113137669A (zh) * 2020-01-16 2021-07-20 日立江森自控空调有限公司 制冷循环系统、窗式空调器及操作窗式空调器的方法
CN113085482A (zh) * 2021-04-14 2021-07-09 东风汽车有限公司东风日产乘用车公司 汽车空调自清洁方法、存储介质及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428753A2 (en) * 2010-09-09 2012-03-14 Panasonic Corporation Air conditioner
CN202734149U (zh) * 2012-04-28 2013-02-13 上海理工大学 一种空调设备通堵状况监测装置
CN103994559A (zh) * 2014-05-16 2014-08-20 广东志高空调有限公司 一种具有自动检测并提示用户清洗过滤网功能的空调器及其提示方法
CN110779162A (zh) * 2019-11-29 2020-02-11 宁波奥克斯电气股份有限公司 一种滤网积尘检测装置、方法及空调器
CN111536675A (zh) * 2020-05-13 2020-08-14 广东美的制冷设备有限公司 空调器自清洁控制方法、空调器及存储介质
CN111854044A (zh) * 2020-07-24 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN113446762A (zh) * 2021-06-22 2021-09-28 珠海格力电器股份有限公司 节流装置、空调自清洁装置以及空调自清洁方法
CN114234365A (zh) * 2021-11-12 2022-03-25 青岛海尔空调器有限总公司 用于空调器自清洁的方法及装置、空调器

Also Published As

Publication number Publication date
CN114234365A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110230857B (zh) 一拖多空调器及其自清洁控制方法
CN106594976B (zh) 空调内外机清洗方法
CN111426017B (zh) 空调室外换热器自清洁控制方法、空调及计算机可读存储介质
JP7383829B2 (ja) エアコンのクリーニング方法及びエアコン
WO2020070892A1 (ja) 空気調和機、空気調和機の制御方法およびプログラム
WO2022121351A1 (zh) 一种空调化霜控制方法、装置、存储介质及空调
CN111023452B (zh) 一种多联机自清洁控制方法、装置及多联机
CN104654531A (zh) 空调器及其外机除尘的控制方法
CN110848882B (zh) 空调器及其自清洁控制方法和控制装置
CN110986280A (zh) 用于空调自清洁控制的方法和装置及空调
CN110736191B (zh) 用于空调自清洁的控制方法及装置、空调
WO2023082636A1 (zh) 用于空调器自清洁的方法及装置、空调器
WO2022242144A1 (zh) 用于空调自清洁的控制方法及装置、空调
JP2021096034A (ja) 空気調和機および制御方法
CN110469991B (zh) 用于空调除霜的控制方法、装置及空调
JP5227661B2 (ja) 空気調和機
CN111594982B (zh) 用于空调器清洁的控制方法、控制装置及空调器
CN110470000B (zh) 用于空调除霜的控制方法、装置及空调
CN112524778A (zh) 用于空调蒸发器自清洁的方法、装置及空调器
JP2021055931A (ja) ヒートポンプサイクル装置
CN110986278A (zh) 用于空调自清洁控制的方法和装置及空调
WO2020010723A1 (zh) 一种空调及其除霜控制方法
CN110986277A (zh) 用于空调自清洁控制的方法和装置及空调
CN110469992A (zh) 用于空调除霜的控制方法、装置及空调
CN113339938A (zh) 用于控制空调除霜的方法及装置、空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891445

Country of ref document: EP

Kind code of ref document: A1