WO2022160764A1 - 用于空调系统除霜控制的方法及装置、空调系统 - Google Patents

用于空调系统除霜控制的方法及装置、空调系统 Download PDF

Info

Publication number
WO2022160764A1
WO2022160764A1 PCT/CN2021/121628 CN2021121628W WO2022160764A1 WO 2022160764 A1 WO2022160764 A1 WO 2022160764A1 CN 2021121628 W CN2021121628 W CN 2021121628W WO 2022160764 A1 WO2022160764 A1 WO 2022160764A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
conditioning system
air
heat exchanger
refrigerant circulation
Prior art date
Application number
PCT/CN2021/121628
Other languages
English (en)
French (fr)
Inventor
汪亚东
王若峰
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022160764A1 publication Critical patent/WO2022160764A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of smart homes, for example, to a method and device for defrosting control of an air-conditioning system, and an air-conditioning system.
  • the existing air-conditioning system is generally equipped with a defrosting function, which can eliminate the frost layer by starting the defrosting function when the air-conditioning system is in a frost condition.
  • the defrosting function of the current air-conditioning system generally adopts the reverse defrosting method, that is, the air-conditioning system is converted into a cooling mode, and the heat exchanger of the outdoor unit is In a state of exothermic heat, the frost of the outdoor unit absorbs heat and then melts.
  • the defrosting function is running, no warm air is blown out from the air outlet of the indoor unit, and even cold air is blown out, which causes the indoor ambient temperature to drop and affects the user experience.
  • the embodiments of the present disclosure provide a method and device for defrosting control of an air conditioning system, and an air conditioning system, so as to solve the technical problem that the existing defrosting control operation mode of the air conditioning system cannot ensure comfortable indoor ambient temperature.
  • the method includes:
  • the heating mode includes that the first refrigerant circulation circuit transports refrigerant according to the heating and refrigerant flow direction, and the second refrigerant circulation circuit is turned on state, and the refrigerant flow rate of the first refrigerant circulation loop is greater than the refrigerant flow rate of the second refrigerant circulation loop;
  • the refrigerant flow rate of the first refrigerant circulation loop is controlled to be less than or equal to the refrigerant flow rate of the second refrigerant circulation loop, so that the air conditioning system operates in a defrosting mode.
  • the apparatus includes:
  • the defrosting determination module is configured to determine to trigger entry into the defrosting mode when the air conditioning system operates in the heating mode; wherein the heating mode includes that the first refrigerant circulation loop transports refrigerant according to the flow direction of the heating refrigerant, and the The second refrigerant circulation loop is in an on state, and the refrigerant flow rate of the first refrigerant circulation loop is greater than the refrigerant flow rate of the second refrigerant circulation loop;
  • the defrosting switching module is configured to control the refrigerant flow rate of the first refrigerant circulation circuit to be less than or equal to the refrigerant flow rate of the second refrigerant circulation circuit, so that the air conditioning system operates in a defrost mode.
  • the apparatus includes:
  • a processor and a memory storing program instructions the processor is configured to execute the method for defrosting control of an air conditioning system shown in the above embodiments when executing the program instructions.
  • the air conditioning system includes a compressor, a first cycle assembly, and a second cycle assembly
  • the first cycle assembly includes a first indoor heat exchanger, a first outdoor heat exchanger, a first throttle A device and a four-way valve
  • the first circulation component is connected with the compressor to form a first refrigerant circulation loop
  • the second circulation component includes a second indoor heat exchanger, a second outdoor heat exchanger and a second throttle
  • the second circulation component is connected with the compressor to form a second refrigerant circulation loop, wherein the second indoor heat exchanger is communicated with the air return port of the compressor, and the second outdoor heat exchanger is connected to the air return port of the compressor.
  • the exhaust port of the compressor is communicated, and the first outdoor heat exchanger is arranged adjacent to the second outdoor heat exchanger;
  • the air-conditioning system further includes a controller, which is used to: when the air-conditioning system operates a heating mode, determine to trigger to enter a defrosting mode; wherein the heating mode includes the first refrigerant circulation loop according to the heating mode.
  • the refrigerant flows to the conveying refrigerant, the second refrigerant circulation loop is in an on state, and the refrigerant flow rate of the first refrigerant circulation loop is greater than the refrigerant flow rate of the second refrigerant circulation loop; control the refrigerant flow of the first refrigerant circulation loop The flow rate is less than or equal to the refrigerant flow rate of the second refrigerant circulation loop, so that the air conditioning system operates in a defrost mode.
  • the method and device for defrosting control of an air-conditioning system, and the air-conditioning system provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the method for defrosting control of an air-conditioning system is based on a new set of refrigerant circulation loops added to the refrigerant circulation loop of the original air-conditioning system.
  • the newly added outdoor heat exchanger is used to dissipate the heat of the refrigerant to the surrounding environment of the outdoor heat exchanger of the original refrigerant circulation circuit with different heat dissipation efficiencies, which can not only delay the freezing rate of the original outdoor heat exchanger during the heating mode operation, but also It can also operate in the heating mode so that the condensed frost can be melted by heat, and the original air-conditioning system refrigerant circulation loop can normally heat the indoor environment, so the indoor environment fluctuates less during the overall operation of the air-conditioning system, and the indoor temperature can be maintained. Within the user's comfortable temperature range, the user experience is improved.
  • FIG. 1 is a schematic diagram of a refrigerant cycle in a cooling mode of an air conditioning system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of refrigerant circulation in a heating mode of an air conditioning system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of refrigerant circulation in the defrosting mode of the air conditioning system provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of refrigerant circulation in the defrosting mode of the air conditioning system provided by another embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a method for defrosting control of an air conditioning system provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of another method for defrosting control of an air conditioning system provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a device for defrosting control of an air-conditioning system provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of another device for defrosting control of an air conditioning system provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B three relationships.
  • an embodiment of the present disclosure provides an air conditioning system, including an indoor body, an outdoor body, a compressor 31, a first circulation component and a second circulation component.
  • the above-mentioned compressor 32 is arranged in the outdoor body;
  • the above-mentioned first circulation component includes a first indoor heat exchanger 11, a first outdoor heat exchanger 12, a first throttling device 13 and a four-way valve 24; the first circulation component and the compressor
  • the compressor 3 is connected to form a first refrigerant circulation loop;
  • the above-mentioned second circulation component includes a second indoor heat exchanger 21, a second outdoor heat exchanger 22 and a second throttling device 23;
  • the second circulation component is connected with the compressor 3 to form the first Two refrigerant circulation loops, wherein the second indoor heat exchanger 21 communicates with the air return port of the compressor 3 , and the second outdoor heat exchanger 22 communicates with the exhaust port of the compressor 3 .
  • the first indoor heat exchanger 11 and the second indoor heat exchanger 21 are jointly arranged in the indoor body, and the first indoor heat exchanger 11 and the second indoor heat exchanger 21 are respectively arranged in In the two mutually independent internal air ducts in the indoor body 31, each indoor heat exchanger can independently conduct heat exchange with the indoor air.
  • first outdoor heat exchanger 12 and the second outdoor heat exchanger 22 are disposed adjacent to each other.
  • first outdoor heat exchanger 12 and the second outdoor heat exchanger 22 are arranged adjacent to each other in an abutting manner, or the first outdoor heat exchanger 12 and the second outdoor heat exchanger 22 are arranged in an adjacent manner. Set the distance of the interval to achieve adjacent settings.
  • the air conditioning system when the first refrigerant circulation loop is in the passage state, the air conditioning system can realize the basic cooling/heating function; when the second refrigerant circulation loop is in the passage state, the air conditioner The system can realize the defrosting function of the outdoor unit of the first refrigerant circulation loop through the second refrigerant circulation loop.
  • the diversion of the refrigerant circulation in the air conditioning system is simple and reasonable, and the manufacturing cost is low.
  • the first refrigerant circulation loop flows in the direction of the refrigerant refrigerant flow
  • the high temperature and high pressure gaseous refrigerant enters from the exhaust port of the compressor 3
  • the refrigerant exchanges heat with the outdoor air and releases heat, and then flows into the first indoor heat exchanger 11, where the refrigerant exchanges heat with the air blown through the first indoor heat exchanger 11 and absorbs air heat , and finally flows into the compressor 3 through the return port of the compressor 3 .
  • the refrigeration function can be realized by the first refrigerant circulation circuit.
  • the refrigerant flow direction is opposite to the above-mentioned cooling flow direction.
  • the first outdoor heat exchanger 12 exchanges heat with the outdoor air and absorbs heat.
  • the first indoor heat exchanger 11 exchanges heat with the indoor air and releases heat, so that the heating function can be realized through the first refrigerant circulation loop.
  • the temperature of the first outdoor heat exchanger 12 of the outdoor unit will be low, and the water vapor in the outdoor air will gradually condense on the outdoor unit under a long-term use state, resulting in the problem of frost and freezing.
  • the high-temperature and high-pressure gaseous refrigerant flows out from the discharge port of the compressor 3, and then enters the second outdoor heat exchanger 22, where it communicates with the outdoor air in the second outdoor heat exchanger 22.
  • Carry out heat exchange and release heat, and the released heat can increase the temperature of its surrounding environment, especially the temperature of the surrounding environment of the first outdoor heat exchanger 21 arranged adjacent to it;
  • the air passing through the second indoor heat exchanger 21 undergoes heat exchange and absorbs air heat, and finally flows into the compressor 3 from the air return port of the compressor 3 .
  • the first refrigerant circulation loop may be in a blocking state, as shown in FIG. 3;
  • the loop can be in a conducting state and still flows in the direction of the heating and cooling medium.
  • the first indoor heat exchanger 11 of the first refrigerant circulation loop can exchange heat with the indoor air and continue to deliver heat to the indoor environment. .
  • the first throttling device 13 includes a capillary tube and an on-off valve, or an electronic expansion valve; and/or, the second throttling device 23 includes a capillary tube and an on-off valve, or an electronic expansion valve.
  • the throttling device is mainly used to adjust the refrigerant flow and air conditioning system pressure of the first refrigerant circulation loop and the second refrigerant circulation loop.
  • the first throttle device 13 and the second throttle device 23 may further include a throttle valve and a thermal expansion valve.
  • an electronic expansion valve between the first indoor heat exchanger 11 and the first outdoor heat exchanger 12, and between the second indoor heat exchanger 21 and the second outdoor heat exchanger 22 are sequentially connected an electronic expansion valve, an on-off valve and a capillary tube.
  • the electronic expansion valve may be electromagnetic or electric.
  • the internal fan includes a first fan and a second fan.
  • the first inner fan is arranged corresponding to the position of the first indoor heat exchanger 11
  • the second inner fan is arranged corresponding to the position of the second indoor heat exchanger 21 .
  • the rotational speed of the second indoor fan can affect the heat exchange efficiency between the air and the second indoor heat exchanger 21, and the two are approximately positively correlated.
  • FIG. 5 is a schematic diagram of a method for defrosting control of an air conditioning system provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for defrosting control of an air-conditioning system.
  • the method can be applied to the air-conditioning system shown in the above-mentioned embodiments of FIGS. 1 to 4 , and can Effectively reduce the adverse effects of indoor temperature reduction and large fluctuation during the defrosting operation of the air-conditioning system; specifically, the control steps of the method include:
  • the first refrigerant circulation circuit transports refrigerant according to the heating refrigerant flow direction, and the second refrigerant circulation circuit is in a conducting state, that is, the state of the air conditioning system shown in the embodiment of FIG. 4 above.
  • the first refrigerant circulation loop conveys the refrigerant according to the flow direction of the heating refrigerant
  • the high-temperature refrigerant flows out of the exhaust port of the compressor and then enters the first indoor heat exchanger and releases heat to the indoor environment, and then the low-temperature refrigerant flows into the first indoor heat exchanger. Outdoor heat exchangers and absorb heat from the outdoor environment.
  • the second refrigerant circulation circuit is in the conducting state, the high-temperature refrigerant flows out from the exhaust port of the compressor and first enters the second outdoor heat exchanger and releases heat to the surrounding outdoor environment, and then flows into the second indoor heat exchanger. And finally return to the compressor.
  • the heat released by the second outdoor heat exchanger can improve the ambient temperature condition of the first outdoor heat exchanger, increase the ambient temperature, and can delay the The effect of the frost condensation speed on the outer surface of the first outdoor heat exchanger can effectively reduce the occurrence of too fast and excessive frost condensation on the outer surface of the first outdoor heat exchanger when the first outdoor heat exchanger runs for a long time in the heating mode.
  • the refrigerant flow rate of the first refrigerant circulation loop is set to be greater than the refrigerant flow rate of the second refrigerant circulation loop.
  • the respective refrigerant flows of the first refrigerant circulation loop and the second refrigerant circulation loop are obtained from the compressors, so the amount of refrigerant divided by each refrigerant circulation loop can affect its corresponding heating performance and defrosting performance. high and low.
  • the heating mode takes heating and heating of the air-conditioning system as its main function. Therefore, the refrigerant flow rate of the first refrigerant circulation loop is set to a larger value so that more high-temperature refrigerant can be obtained by diverting the flow, thereby ensuring that Heating effect for indoor environment.
  • the second refrigerant circulation circuit is transported with less refrigerant flow.
  • it can also weaken the conduction of the second refrigerant circulation flow path and reduce the impact on the air conditioning system. Interference effects on heating performance.
  • the refrigerant flow of the first refrigerant circulation loop can be controlled by the aforementioned first throttling device, and the on-off state of the second refrigerant circulation loop can be controlled by the aforementioned second throttling device.
  • the opening degree of the first throttling device is 1/2K
  • the opening degree of the second throttling device is 1/10K.
  • the first throttling device and the second throttling device The upper limit of the maximum opening is K.
  • the step of "determining to trigger entry into the defrost mode" in step S01 includes: determining to obtain a start instruction of the defrost mode input by the user.
  • the air-conditioning system may send a control command to the indoor unit of the air-conditioning system through a remote controller or a control panel, and the air-conditioning system will execute the action corresponding to the control command after obtaining the relevant control command.
  • the control command options displayed to the user by the remote control or the control panel include the above-mentioned activation command of the defrosting mode.
  • the step of "determining to trigger entry into the defrost mode" in step S01 includes: detecting the current outdoor ambient temperature; if the current outdoor ambient temperature is lower than the outer ambient temperature threshold, determining to trigger entry into the defrost mode model.
  • a temperature sensor is provided on the outdoor unit side of the air conditioning system, and the temperature sensor can be used to detect the real-time temperature of the outdoor environment where the outdoor unit is located. In this embodiment, whether to trigger the defrost mode is determined by the real-time temperature of the outdoor environment detected by the temperature sensor.
  • the outer ring temperature threshold is a preset temperature value, and the temperature value can be used to represent whether the outdoor unit of the air conditioning system is prone to frost and frost within the upper and lower temperature ranges of the temperature value.
  • the outer ring temperature threshold is set, the outdoor unit of the air conditioning system is more likely to freeze frost under the outdoor ambient temperature condition. Therefore, the present application enables the defrosting mode to reduce the adverse effect of frost on the air conditioning system performance of the outdoor heat exchanger.
  • the first refrigerant circulation loop and the second refrigerant circulation loop still maintain the original conduction state and the flow direction of the refrigerant remains unchanged, that is, the above-mentioned implementation of FIG. 4 The status of the air conditioning system shown in the example.
  • the refrigerant flow adjustment for the first refrigerant circulation loop can be achieved by the aforementioned first throttling device; and/or the refrigerant flow adjustment for the second refrigerant circulation loop can be achieved through the aforementioned second throttling device.
  • the opening degree of the first throttle device of the first refrigerant circulation loop can be kept unchanged, that is, the opening degree of the first throttle device in the heating mode can be maintained;
  • the opening degree of the throttling device is such that the opening degree of the second throttling device is greater than that of the first throttling device, so that the refrigerant flow rate diverted to the first refrigerant circulation loop can be less than or equal to the refrigerant diverted to the second refrigerant circulation loop. flow.
  • the opening of the first throttling device is kept at 1/2K, and the opening of the second throttling device is increased to 3/5K.
  • This method can be used when the operating power of the compressor is high and the refrigerant flow is large, and the compressor discharges more high-temperature refrigerant.
  • the second throttling device can be increased.
  • the opening degree of the first refrigerant circulation circuit is constant or small, the heating performance remains stable, and the refrigerant amount of the second refrigerant circulation circuit increases, which improves the defrosting effect of the first outdoor heat exchanger. .
  • step S02 when step S02 is performed, the opening degree of the second throttle device of the second refrigerant circulation loop can be kept unchanged, that is, the opening degree of the second throttle device in the heating mode can be maintained;
  • the opening degree of the first throttling device makes the opening degree of the second throttling device larger than the opening degree of the first throttling device, so that the refrigerant flow rate diverted to the first refrigerant circulation loop can be less than or equal to that diverted to the second refrigerant circulation loop refrigerant flow.
  • the opening of the second throttling device is kept at 1/10K, and the opening of the first throttling device is reduced to 1/15K.
  • This method can be used when the operating power of the compressor is low and the refrigerant flow is small, or when the indoor ambient temperature is high and the indoor unit is in the standby state, the compressor discharges less high-temperature refrigerant.
  • the opening degree of the device remains unchanged, and the opening degree of the first throttling device is lowered, so that more refrigerant is diverted to the second refrigerant circulation circuit for defrosting.
  • the opening degrees of the two first throttling devices of the two refrigerant circulation loops can also be adjusted simultaneously, for example, the opening degrees of the first throttling devices can be adjusted lower and higher at the same time.
  • the opening degree of the second throttling device; or, increase the opening degrees of the first throttling device and the second throttling device at the same time, and the opening degree of the first throttling device after the adjustment is completed is smaller than the opening degree of the second throttling device
  • the opening degrees of the first throttling device and the second throttling device are simultaneously adjusted, and the opening degree of the first throttling device after the adjustment is completed is smaller than the opening degree of the second throttling device.
  • the method for defrosting control of an air-conditioning system is based on a new set of refrigerant circulation loops added to the refrigerant circulation loop of the original air-conditioning system.
  • the newly added outdoor heat exchanger is used to dissipate the heat of the refrigerant to the surrounding environment of the outdoor heat exchanger of the original refrigerant circulation circuit with different heat dissipation efficiencies, which can not only delay the freezing rate of the original outdoor heat exchanger during the heating mode operation, but also It can also operate in the heating mode so that the condensed frost can be melted by heat, and the original air-conditioning system refrigerant circulation loop can normally heat the indoor environment, so the indoor environment fluctuates less during the overall operation of the air-conditioning system, and the indoor temperature can be maintained. Within the user's comfortable temperature range, the user experience is improved.
  • the heating mode further includes: the first indoor fan operates at the rotation speed R1 for heating , the second inner fan operates at the rotation speed R2 for heating , and R1 heating >R2 heating .
  • the second refrigerant circulation loop in the heating mode, the second refrigerant circulation loop is in an on state and the second indoor heat exchanger absorbs heat from the indoor side environment, which will lead to a decrease in the indoor ambient temperature and a decrease in the first refrigerant circulation loop. Therefore, in the embodiment of the present application, the rotation speed of the second indoor fan is set to be lower than the rotation speed of the first indoor fan, so as to reduce the flow of indoor air relative to the second indoor heat exchanger and slow down the heat exchange in the second indoor fan. The heat exchange efficiency between the heater and the indoor air.
  • the second indoor fan runs at a lower speed, which can also ensure that the low-temperature refrigerant in the second indoor heat exchanger can absorb heat and vaporize to a certain extent, so as to reduce the amount of liquid refrigerant returning to the compressor and reduce the " liquid" problem.
  • the rotational speed R1 of the first indoor fan is set to 400 r/min for heating
  • the rotational speed R2 of the second indoor fan is set to 100 r/min for heating .
  • the method further includes: controlling the first indoor fan to defrost at the rotational speed R1, the second indoor fan to defrost at the rotational speed R2, and R1 defrost ⁇ R2 Defrost , and R1 defrost ⁇ R1 heating .
  • the rotation speed of the first indoor fan is adjusted higher than that in the heating mode, which can increase the heat exchange rate between the indoor air and the first indoor heat exchanger.
  • the refrigerant flow rate of the second refrigerant circulation loop is greater than or equal to the refrigerant flow rate of the first refrigerant circulation loop, and the heating capacity per unit time of the first refrigerant circulation loop may decrease.
  • the heating capacity of the circulation loop per unit time ensures that the heating performance of the air conditioning system to the indoor environment remains unchanged or does not drop too much under the refrigerant distribution state of the defrost mode.
  • the rotational speed R1 of the first indoor fan for defrosting is set to 500 r/min
  • the rotational speed R2 of the second indoor fan for heating is set to 200 r/min.
  • the air conditioning system operates in the heating mode, further comprising: acquiring the outlet air temperature on the side of the first indoor heat exchanger when the air conditioning system operates in the heating mode; if the outlet air temperature is less than a set outlet air temperature threshold , the rotational speed of the first internal fan is increased and/or the rotational speed of the second internal fan is decreased, so that the outlet air temperature reaches the set outlet air temperature threshold.
  • the indoor unit side of the air-conditioning system is provided with a temperature sensor, which is correspondingly arranged on the air outlet path on the side of the first indoor heat exchanger, and can be used to detect the heat exchange with the first indoor heat exchanger.
  • the real-time temperature of the post-blown air that is, the outlet air temperature on the side of the first indoor heat exchanger; the change in the outlet air temperature can reflect the change in the heat release efficiency of the first indoor heat exchanger to the indoor air.
  • the set outlet air temperature threshold is a threshold value used to indicate that the indoor ambient temperature is kept within a small temperature fluctuation range during the operation of the heating mode, and the outlet air temperature of the indoor unit is lower than the set outlet air temperature.
  • the threshold value when the threshold value is set, it reflects that the second indoor heat exchanger absorbs more heat from the indoor environment, which affects the overall heating efficiency of the air conditioning system. Therefore, it is necessary to increase the rotational speed of the first indoor fan to increase the heat released by the first indoor heat exchanger to the indoor environment, and/or reduce the rotational speed of the second indoor fan to reduce the heat absorption of the second indoor heat exchanger to the indoor environment quantity. In this way, by adjusting the rotational speed of one or two internal fans, the outlet air temperature can reach the set outlet air temperature threshold.
  • the method for defrosting control of an air-conditioning system of the present application further includes: after it is determined that the entry into the defrosting mode is triggered, acquiring the indoor ambient temperature when the air-conditioning system is running in the defrosting mode; if the temperature change rate of the indoor ambient temperature is If it is greater than or equal to the set temperature change rate, increase the rotational speed of the first indoor fan and/or decrease the rotational speed of the second indoor fan, so that the temperature change rate of the indoor ambient temperature is smaller than the set temperature change rate.
  • the indoor unit side of the air conditioning system is provided with a temperature sensor, and the temperature sensor can be used for the real-time temperature of the indoor environment where the indoor unit is located, that is, the indoor ambient temperature; the temperature change rate of the indoor ambient temperature refers to a certain time It can reflect the temperature change of the indoor environment in the defrost mode.
  • the defrosting mode of the air-conditioning system has a significant impact on the temperature change caused by the indoor environment and affects the stability of the indoor environment. Therefore, it is necessary to increase the rotational speed of the first indoor fan to increase the heat released by the first indoor heat exchanger to the indoor environment, and/or reduce the rotational speed of the second indoor fan to reduce the heat absorption of the second indoor heat exchanger to the indoor environment quantity. In this way, by adjusting the rotational speed of one or two indoor fans, the temperature change rate of the indoor ambient temperature is less than the set temperature change rate.
  • the method for defrosting control of an air-conditioning system of the present application further includes: acquiring an outdoor ambient temperature when the air-conditioning system operates in a heating mode; adjusting the temperature of the second refrigerant circulation loop in the heating mode according to the outdoor ambient temperature refrigerant flow.
  • a temperature sensor is provided on the outdoor unit side of the air conditioning system, and the temperature sensor is used to detect the real-time temperature of the outdoor side as the outdoor ambient temperature.
  • the surrounding temperature can affect how much heat is transferred to the first outdoor heat exchanger.
  • the refrigerant flow rate of the second refrigerant circulation loop in the heating mode is adjusted according to the outdoor ambient temperature to ensure heating. The effect of delaying frost formation in the second refrigerant circulation loop in mode.
  • the air-conditioning system presets an association relationship, and the association relationship is the corresponding relationship between the outdoor ambient temperature and the refrigerant adjustment amount of the second refrigerant circulation loop; therefore, after obtaining the real-time outdoor ambient temperature, it can be based on the association.
  • the relationship is searched to obtain the corresponding refrigerant adjustment amount, and then the refrigerant flow rate of the second refrigerant circulation loop is adjusted.
  • FIG. 6 is a schematic diagram of another method for defrosting control of an air conditioning system provided by an embodiment of the present disclosure.
  • the present disclosure also provides another method for defrosting control of an air-conditioning system, and the steps of the method mainly include:
  • step S11 for the execution manner of step S11, refer to the foregoing embodiment, and details are not described herein.
  • the outdoor unit of the air conditioning system is further provided with a temperature sensor on the side of the first outdoor heat exchanger, and the temperature sensor can be used to detect the real-time temperature of the coil of the first outdoor heat exchanger.
  • Step S12 in this embodiment That is, the temperature of the outer coil is obtained through the temperature sensor;
  • step S13 Determine whether T outer coil ⁇ T1? , if yes, the degree of frosting is heavy frosting, and step S14 is performed; if not, the degree of frosting is mild frosting, and step S15 is performed;
  • step S14 determine that the first refrigerant flow is Q1 and the second refrigerant flow is Q2; and execute step S16;
  • step S15 determine that the first refrigerant flow is Q3 and the second refrigerant flow is Q4; and execute step S16;
  • the defrost mode after it is determined that the defrost mode is triggered, it is also necessary to determine the defrost refrigerant flow rates of the first refrigerant circulation loop and the second refrigerant circulation loop in the defrost mode according to the frosting degree of the first outdoor heat exchanger. , so that the heating efficiency of the first refrigerant circulation loop and the defrosting efficiency of the second refrigerant circulation loop can match the current frosting degree of the first outdoor heat exchanger, thereby ensuring the heating effect of the air conditioning system on the indoor environment and the first Defrosting effect of outdoor heat exchangers.
  • the frosting degree of the first outdoor heat exchanger is determined according to the coil temperature of the outdoor heat exchanger.
  • the refrigerant flow of the second refrigerant circulation loop is positively correlated with the frosting degree of the first outdoor heat exchanger, that is, the more serious the frosting of the first outdoor heat exchanger, the more severe the frosting of the first outdoor heat exchanger
  • the greater the flow of defrosting refrigerant the more heat can be used for removing the frost from the first outdoor heat exchanger.
  • the refrigerant flow rates of the second refrigerant circulation system respectively determined in steps S14 and S15 according to different degrees of frost formation satisfy the relationship: Q2>Q4.
  • the temperature judgment range has a temperature threshold upper limit T2.
  • T2 the temperature threshold
  • the outdoor unit is not easy to condense frost, so the temperature of the outer coil with mild frost not only needs to meet the The temperature requirements greater than T1 also need to be less than T2.
  • T outer coil is the coil temperature of the first outdoor heat exchanger
  • T1 and T2 are set coil temperature thresholds.
  • the value manner of the first refrigerant flow rate is the difference between the total refrigerant flow rate and the second refrigerant flow rate.
  • the air conditioning system determines that the defrosting mode is triggered, it also more accurately determines the refrigerant flow divided to the first refrigerant circulation loop and the second refrigerant circulation loop according to the actual frosting degree of the outdoor unit of the air conditioning system. , so that the heating performance and defrosting efficiency of the air-conditioning system during the defrosting mode operation can meet the actual needs of the air-conditioning system.
  • the method for defrosting control of an air-conditioning system of the present application further: when it is determined that the exit from the defrosting mode is triggered, the air-conditioning system is controlled to exit the defrosting mode.
  • the exit from the defrost mode is determined according to the operation time of the defrost mode.
  • the air-conditioning system minimizes the heat absorbed from the indoor environment when the air-conditioning system operates in the defrost mode
  • the air-conditioning system is replaced from the second indoor of the second refrigerant circulation loop.
  • Most of the refrigerant returned from the heater to the compressor is in liquid state, and the liquid refrigerant is generally intercepted in the air storage tank at the air return port of the compressor, resulting in a reduction in the amount of refrigerant actually used in the two refrigerant circulation loops, and a long defrosting mode.
  • Time operation will cause both the heating performance of the first refrigerant circulation circuit and the defrosting performance of the second refrigerant circulation circuit to decrease. Therefore, it is necessary to limit the operation time of the defrost mode to avoid the above problems.
  • the air conditioning system is further provided with a timing module, and the timing module can be used for timing after the air conditioning system enters the defrosting mode to obtain the real-time defrosting duration t defrosting of the air conditioning system running in the defrosting mode, and calculate the defrosting duration t.
  • the defrost is compared with the set defrost duration threshold t threshold , and when t defrost ⁇ t threshold , it is determined to trigger the exit of the defrost mode.
  • the defrost duration threshold t threshold is associated with the defrost refrigerant flow rate of the second refrigerant circulation loop.
  • the actual defrost duration of the system defrost mode is shorter.
  • the air-conditioning system is preset with an association relationship, which is used to characterize the defrost duration threshold t threshold and the defrost refrigerant flow of the second refrigerant circulation loop.
  • the defrost refrigerant flow of the second refrigerant circulation loop After the defrost refrigerant flow of the second refrigerant circulation loop is determined, it can be obtained from The correlation relationship is matched to obtain a defrost duration threshold corresponding to the flow of the defrosted refrigerant, which is used to determine the triggering control of the air conditioning system to exit the defrost mode.
  • FIG. 7 is a schematic diagram of an apparatus for defrosting control of an air conditioning system according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a device for defrosting control of an air conditioning system, the device comprising:
  • the defrosting determination module 71 is configured to determine to trigger entry into the defrosting mode when the air conditioning system operates in the heating mode; wherein the heating mode includes that the first refrigerant circulation loop transports refrigerant according to the flow direction of the heating refrigerant, so The second refrigerant circulation loop is in an on state, and the refrigerant flow rate of the first refrigerant circulation loop is greater than the refrigerant flow rate of the second refrigerant circulation loop;
  • the defrost switching module 72 is configured to control the refrigerant flow rate of the first refrigerant circulation circuit to be less than or equal to the refrigerant flow rate of the second refrigerant circulation circuit, so that the air conditioning system operates in a defrost mode.
  • a heating operation module is further included, which is configured to: control the first internal fan to operate at the rotational speed R1 for heating , and the rotational speed of the second internal fan to run at the rotational speed R2 for heating , where R1 for heating >R2 for heating ; and / or,
  • the defrosting switching module 72 is also configured to: control the first internal fan to defrost at the rotational speed R1, and the second internal fan to run at the rotational speed R2 for defrosting , where R1 defrosting ⁇ R2 defrosting , and R1 defrosting ⁇ R1 hot .
  • the heating operation module is further configured to:
  • the rotational speed of the first inner fan is increased and/or the rotational speed of the second inner fan is decreased, so that the outlet air temperature reaches the set outlet air temperature threshold.
  • the defrost switching module 72 is further configured to:
  • the temperature change rate of the indoor ambient temperature is greater than or equal to the set temperature change rate, increase the rotational speed of the first internal fan and/or reduce the rotational speed of the second internal fan so that the temperature change rate of the indoor ambient temperature is less than the set temperature change rate .
  • the heating operation module is further configured to:
  • the refrigerant flow rate of the second refrigerant circulation circuit in the heating mode is adjusted.
  • the defrost switching module 72 is further configured to:
  • the refrigerant flow rate of the first refrigerant circulation circuit and the refrigerant flow rate of the second refrigerant circulation circuit in the defrosting mode are determined.
  • the defrost switching module 72 is further configured to:
  • tdefrost is the running time of the defrost mode
  • tthreshold is the set defrost duration threshold
  • defrost duration threshold and The defrosting refrigerant flow of the second refrigerant circulation loop is associated;
  • FIG. 8 is a schematic diagram of another device for defrosting control of an air conditioning system provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an apparatus for defrosting control of an air conditioning system, including a processor (processor) 100 and a memory (memory) 101 .
  • the apparatus may further include a communication interface (Communication Interface) 102 and a bus 103 .
  • the processor 100 , the communication interface 102 , and the memory 101 can communicate with each other through the bus 103 .
  • Communication interface 102 may be used for information transfer.
  • the processor 100 may invoke the logic instructions in the memory 101 to execute the method for defrosting control of the air conditioning system of the above-mentioned embodiments.
  • logic instructions in the memory 101 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the function application and data processing by running the program instructions/modules stored in the memory 101, that is, to implement the method for defrosting control of the air conditioning system in the above embodiment.
  • the memory 101 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include high-speed random access memory, and may also include non-volatile memory.
  • An embodiment of the present disclosure provides an air-conditioning system, which includes the components and matching forms of the air-conditioning system as shown in FIGS. 1 to 4 , and further includes a controller for executing the above-mentioned method for defrosting control of the air-conditioning system .
  • Embodiments of the present disclosure provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are configured to execute the above method for defrosting control of an air conditioning system.
  • Embodiments of the present disclosure provide a computer program product, where the computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions that, when executed by a computer, cause all The computer executes the above-described method for defrosting control of an air-conditioning system.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium, and may also be a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure may be embodied in the form of software products, and the computer software products are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to execute all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listings.
  • the term “comprise” and its variations “comprises” and/or including and/or the like refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, or device that includes the element.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the various embodiments may refer to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method section disclosed in the embodiments, reference may be made to the description of the method section for relevant parts.
  • the disclosed methods and products may be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • there may be other division methods for example, multiple units or components may be combined Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Defrosting Systems (AREA)

Abstract

一种用于空调系统除霜控制的方法、装置及空调系统,该方法包括:在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括第一冷媒循环回路按照制热冷媒流向输送冷媒,第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除霜模式运行。该方法使得在空调系统整体运行过程中室内环境波动较小,室内温度能够维持在用户舒适的温度范围内,提高了用户的使用体验。

Description

用于空调系统除霜控制的方法及装置、空调系统
本申请基于申请号为202110130362.2、申请日为2021年1月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智慧家庭技术领域,例如涉及一种用于空调系统除霜控制的方法及装置、空调系统。
背景技术
目前,随着人们生活水平的提高,空调系统设备也已经走进了千家万户,家用空调系统、中央空调系统的使用越来越普遍,用户对于空调系统舒适度的要求也越来越高,空调系统使用过程中所存在的问题也逐渐暴漏出来,其中一个就是空调系统在严寒气候下运行时的室外机结霜冻结的问题。在空调系统在低温地区或者风雪较大的地区运行时,室外机的换热器从室外环境吸收热量,自身温度较低,室外环境中的水汽会逐渐凝结在室外换热器的表面形成冰霜层,冰霜层会阻碍内部的冷媒与室外环境的热量交换,使得空调系统的制冷效率下降。
为了保证空调系统的制热效果,现有空调系统一般配置有除霜功能,在空调系统出现结霜状况时通过启动除霜功能可以实现消除冰霜层的作用。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:目前空调系统的除霜功能一般是采用逆除霜方式,即将空调系统器转化为制冷模式,使室外机的换热器处于放热状态,进而使室外机的冰霜吸热后融化。但是该种除霜功能运行时时室内机出风口没有暖风吹出,甚至会吹出冷风,导致室内环境温度下降,影响用户的使用体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调系统除霜控制的方法及装置、空调系统,以解决现有空调系统除霜控制运行方式无法保证室内环境温度舒适的技术问题。
在一些实施例中,所述方法包括:
在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;
控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除霜模式运行。
在一些实施例中,所述装置包括:
除霜确定模块,被配置为在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;
除霜切换模块,被配置为控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除霜模式运行。
在一些实施例中,所述装置包括:
处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行上述实施例示出的用于空调系统除霜控制的方法。
在一些实施例中,所述空调系统包括压缩机、第一循环组件和第二循环组件,其中所述第一循环组件包括第一室内换热器、第一室外换热器、第一节流装置和四通阀,所述第一循环组件与所述压缩机连接构成第一冷媒循环回路,所述第二循环组件包括第二室内换热器、第二室外换热器和第二节流装置,所述第二循环组件与所述压缩机连接构成第二冷媒循环回路,其中所述第二室内换热器与所述压缩机的回气口相连通,所述第二室外换热器与所述压缩机的排气口相连通,且所述第第一室外换热器与所述第二室外换热器相邻设置;
所述空调系统还包括一控制器,该控制器用于:在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除霜模式运行。
本公开实施例提供的用于空调系统除霜控制的方法及装置、空调系统,可以实现以下技术效果:
本公开实施例提供的空调系统除霜控制的方法基于在原有空调系统冷媒循环回路上新增的一套冷媒循环回路,该新增冷媒循环回路可以在空调系统制热及除霜模式运行时,分别利用新增的室外换热器以不同的散热效率,向原有冷媒循环回路的室外换热器的周围环境散发冷媒热量,不仅可以延缓制热模式运行时原室外换热器的结冰速率,还可以在制热模式运行使其凝结的冰霜可以受热融化,原有空调系统冷媒循环回路可以正常对室内环境进行制热,因而在空调系统整体运行过程中室内环境波动较小,室内温度能够维持在用户舒适的温度范围内,提高了用户的使用体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开一实施例提供的空调系统在制冷模式下冷媒循环示意图;
图2是本公开一实施例提供的空调系统在制热模式下冷媒循环示意图;
图3是本公开一实施例提供的空调系统在除霜模式下冷媒循环示意图;
图4是本公开又一实施例提供的空调系统在除霜模式下冷媒循环示意图;
图5是本公开实施例提供的一种用于空调系统除霜控制的方法的示意图;
图6是本公开实施例提供的另一种用于空调系统除霜控制的方法的示意图;
图7是本公开实施例提供的一种用于空调系统除霜控制的装置的示意图;
图8是本公开实施例提供的另一种用于空调系统除霜控制的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1-4所示,本公开实施例提供了一种空调系统,包括室内机体、室外机体、压缩机31、第一循环组件和第二循环组件。上述压缩机32设置于室外机体中;上述第一循环组件包括第一室内换热器11、第一室外换热器12、第一节流装置13和四通阀24;第一循环组件与压缩机3连接构成第一冷媒循环回路;上述第二循环组件包括第二室内换热器21、第二室外换热器22和第二节流装置23;第二循环组件与压缩机3连接构成第二冷媒循环回路,其中第二室内换热器21与压缩机3的回气口相连通,第二室外换热器22与压缩机3的排气口相连通。
在一些可选的实施例中,第一室内换热器11和第二室内换热器21共同设置于室内机体中,且第一室内换热器11和第二室内换热器21分别设置于室内机体31内相互独立的两个内部风道中,每一室内换热器可以独立的与室内空气进行热交换。
在又一些可选的实施例中,第一室外换热器12和第二室外换热器22相邻设置。可选的,第一室外换热器12和第二室外换热器22是采用贴靠的方式实现相邻设置,或者,第一室外换热器12和第二室外换热器22之间呈设定间隔的距离实现相邻设置。
可选的,采用本公开实施例提供的空调系统,当第一冷媒循环回路处于通路状态时,空调系统可以实现基础的制冷/制热功能;当第二冷媒循环回路均处于通路状态时,空调系统通过第二冷媒循环回路可以实现对第一冷媒循环回路的室外机的除霜功能。且该空调系统内冷媒循环的分流简单合理,制造成本低。
在一些实施例中,如图1所示(图中的箭头方向表示冷媒的流向),在第一冷媒循环回路以制冷冷媒流向流动时,高温高压的气态冷媒从压缩机3的排气口进入第一室外换热器12,冷媒与室外的空气进行热交换并释放热量,然后流入第一室内换热器11,冷媒与吹过第一室内换热器11的空气进行热交换并吸收空气热量,最后通过压缩机3 的回气口流入压缩机3。这样,通过第一冷媒循环回路能够实现制冷功能。
反之,如图2所示,在第一冷媒循环回路以制热冷媒流向流动时,冷媒流向与上述制冷流向相反,此时第一室外换热器12与室外的空气进行热交换并吸收热量,第一室内换热器11与室内的空气进行热交换并释放热量,这样通过第一冷媒循环回路能够实现制热功能。
上述制热功能运行过程中,室外机的第一室外换热器12温度会较低,长时间使用状态下室外空气中的水汽会逐渐凝结在室外机上,造成凝霜结冰问题。
在第二冷媒循环回路处于导通状态时,高温高压的气态冷媒从压缩机3的排气口流出,之后进入第二室外换热器22,在第二室外换热器22内与室外的空气进行热交换并释放热量,释放的热量能够提高其周围环境的温度,特别是与其相邻设置的第一室外换热器21周围环境的温度;然后流入第二室内换热器21,冷媒与吹过第二室内换热器21的空气进行热交换并吸收空气热量,最后从压缩机3的回气口流入压缩机3。
可选的,在空调系统利用第二冷媒循环回路对第一室外换热器21进行升温除霜时,第一冷媒循环回路可以为阻断状态,如图3所示;或者,第一冷媒循环回路可以为导通状态且仍以制热冷媒流向流动,如图4所示,此时第一冷媒循环回路的第一室内换热器11能够与室内空气进行热交换,继续向室内环境输送热量。
在一些实施例中,第一节流装置13包括毛细管和开关阀,或者,电子膨胀阀;和/或,第二节流装置23包括毛细管和开关阀,或者,电子膨胀阀。节流装置主要用于调节第一冷媒循环回路和第二冷媒循环回路的冷媒流量和空调系统压力。
可选的,第一节流装置13和第二节流装置23还可以包括节流阀、热力膨胀阀。
可选的,第一室内换热器11和第一室外换热器12之间、第二室内换热器21和第二室外换热器22之间依次连接有电子膨胀阀、开关阀和毛细管。
在上述实施例中,进一步的,电子膨胀阀可以是电磁式的或电动式的。
在上述实施例中,可选的,内风机包括第一风机和第二风机。其中第一内风机与第一室内换热器11位置对应设置,第二内风机与第二室内换热器21位置对应设置。这样,在第一内风机的作用下,风道内的空气快速通过第一室内换热器11进行热交换;在第二内风机的作用下,风道内的空气快速通过第二室内换热器21进行热交换,第二内风机的转速能够影响到空气与第二室内换热器21之间的热交换效率,且两者近似正相关关系。
图5是本公开实施例提供的一种用于空调系统除霜控制的方法的示意图。
结合图5所示,本公开实施例提供一种用于空调系统除霜控制的方法,可选的,该方法可应用于如上述图1至4的实施例所示出的空调系统,并且能够有效降低空调系统除霜运行过程中室内温度降低、波动大等不利影响;具体的,该方法的控制步骤包括:
S01、在空调系统运行制热模式时,确定触发进入除霜模式;
在一些实施例中,该制热模式下,第一冷媒循环回路按照制热冷媒流向输送冷媒,第二冷媒循环回路为导通状态,即前文图4实施例所示出的空调系统状态。
这里,第一冷媒循环回路按照制热冷媒流向输送冷媒的情况下,高温冷媒自压缩机的排气口流出后先进入第一室内换热器并向室内环境释放热量,之后低温冷媒流入第一室外换热器并从室外环境吸收热量。以及,第二冷媒循环回路为导通状态的情况下,高温冷媒自压缩机的排气口流出后先进入第二室外换热器并向周围室外环境释放热量,之后流入第二室内换热器并最终回流至压缩机。
由于第一室外换热器和第二室外换热器相邻设置,第二室外换热器释放的热量能够改善第一室外换热器周围环境温度状况,提升周围环境温度,并且可以起到延缓第一室外换热器外表面冰霜凝结速度的作用,从而可有效减少制热模式下第一室外换热器在长时间运行时外表面冰霜凝结过快、过多等情况的出现。
在本实施例中,第一冷媒循环回路的冷媒流量被设置为大于第二冷媒循环回流的冷媒流量。
第一冷媒循环回路和第二冷媒循环回路各自的冷媒流量均是从压缩机分流得到,因此每一冷媒循环回路分流的冷媒量的多少能够影响到其对应的制热性能和延缓结霜性能的高低。本实施例中制热模式是以对空调系统升温制热为主要功能,因此将第一冷媒循环回路的冷媒流量设置为较大的数值,使其能够分流得到更多的高温冷媒,进而能够保证对于室内环境的制热效果。
第二冷媒循环回路以较少的冷媒流量进行输送,除了在一定程度上起到延缓第一室外换热器结霜速度的作用外,还可减弱第二冷媒循环流路导通而对空调系统制热性能的干扰影响。
可选的,第一冷媒循环回路的冷媒流量可通过前述的第一节流装置进行控制,第二冷媒循环回路的通断状态通过前述的第二节流装置进行控制。例如,在空调系统运行制热模式下,第一节流装置的开度为1/2K,第二节流装置的开度为1/10K,这里,第一节流装置和第二节流装置的最大开度上限均为K。
在一些可选的实施例中,步骤S01中“确定触发进入除霜模式”的步骤包括:确 定获得用户输入的除霜模式的启动指令。
在本实施例中,空调系统可通过遥控器或者控制面板向空调系统的室内机发送控制指令,空调系统获得相关控制指令后会执行该控制指令对应的动作。这里,遥控器或者控制面板示出给用户的控制指令选项中包含上述除霜模式的启动指令。
在又一些可选的实施例中,步骤S01中“确定触发进入除霜模式”的步骤包括:检测当前的室外环境温度;若当前的室外环境温度小于外环温阈值,则确定触发进入除霜模式。
在本实施例中,空调系统的室外机侧设置有温度传感器,该温度传感器可用于检测室外机所处室外环境的实时温度。本实施例中即是通过该温度传感器检测的室外环境的实时温度确定是否触发除霜模式。
可选的,外环温阈值为一预设的温度数值,该温度数值可用于表征该温度数值的上下温度范围内空调系统的室外机是否易凝结冰霜,具体而言,在室外环境温度小于该外环温阈值时,该室外环境温度条件下空调系统的室外机较容易凝结冰霜,因此本申请在该种启用除霜模式降低室外换热器结霜对空调系统性能的不利影响。
S02、控制第一冷媒循环回路的冷媒流量小于或等于第二冷媒循环回路的冷媒流量,以使空调系统以除霜模式运行。
在一些可选的实施例中,在步骤S02的空调系统除霜模式下,第一冷媒循环回路和第二冷媒循环回路仍保持原有的导通状态以及冷媒流向不变,即前文图4实施例所示出的空调系统状态。
对于第一冷媒循环回路的冷媒流量调节可通过前述的第一节流装置实现;和/或,对于第二冷媒循环回路的冷媒流量调节可通过前述的第二节流装置实现。
可选的,在执行步骤S02时,可保持第一冷媒循环回路的第一节流装置的开度不变,即第一节流装置保持制热模式下的开度状态;通过调高第二节流装置开度,使得第二节流装置的开度大于第一节流装置的开度,进而能够使分流至第一冷媒循环回路的冷媒流量小于或等于分流至第二冷媒循环回路的冷媒流量。例如,除霜模式下,第一节流装置的开度保持1/2K,第二节流装置的开度调高为3/5K。
该种方式可用于在压缩机的运行功率较高、冷媒流量较多的情况,压缩机排出的高温冷媒较多,通过保持第一节流装置的开度不变,调高第二节流装置的开度,使得第一冷媒循环回路的冷媒量不变或变化较小、制热性能保持稳定,第二冷媒循环回路的冷媒量增大,提高其对第一室外换热器的除霜效果。
又一可选的,在执行步骤S02时,可保持第二冷媒循环回路的第二节流装置的开度不变,即第二节流装置保持制热模式下的开度状态;通过调低第一节流装置开度,使得第二节流装置的开度大于第一节流装置的开度,进而能够使分流至第一冷媒循环回路的冷媒流量小于或等于分流至第二冷媒循环回路的冷媒流量。例如,除霜模式下,第二节流装置的开度保持1/10K,第一节流装置的开度调低为1/15K。
该种方式可用于在压缩机的运行功率较低、冷媒流量较少的情况,或者室内环境温度较高、室内机处于待机状态下,压缩机排出的高温冷媒较少,通过保持第二节流装置的开度不变,调低第一节流装置的开度,使得更多的冷媒分流至第二冷媒循环回路用于除霜。
又一可选的,在执行步骤S02时,还可以同时对两条冷媒循环回路的两个第一节流装置的开度进行调整,如同时调低第一节流装置的开度,调高第二节流装置的开度;或者,同时调高第一节流装置和第二节流装置的开度,且调整完成后的第一节流装置的开度小于第二节流装置的开度;又或者,同时调低第一节流装置和第二节流装置的开度,且调整完成后的第一节流装置的开度小于第二节流装置的开度。
本公开实施例提供的空调系统除霜控制的方法基于在原有空调系统冷媒循环回路上新增的一套冷媒循环回路,该新增冷媒循环回路可以在空调系统制热及除霜模式运行时,分别利用新增的室外换热器以不同的散热效率,向原有冷媒循环回路的室外换热器的周围环境散发冷媒热量,不仅可以延缓制热模式运行时原室外换热器的结冰速率,还可以在制热模式运行使其凝结的冰霜可以受热融化,原有空调系统冷媒循环回路可以正常对室内环境进行制热,因而在空调系统整体运行过程中室内环境波动较小,室内温度能够维持在用户舒适的温度范围内,提高了用户的使用体验。
在一些可选的实施例中,制热模式还包括:第一内风机以转速R1 制热运行,第二内风机转速以转速R2 制热运行,R1 制热>R2 制热
在本实施例中,在制热模式下,第二冷媒循环回路为导通状态且第二室内换热器从室内侧环境吸收热量,这会导致室内环境温度的降低和第一冷媒循环回路的制热量的损失,因此本申请实施例中将第二内风机的转速设定为小于第一内风机的转速,以减少室内空气相对于第二室内换热器的流动,减缓第二室内换热器与室内空气的热交换效率。同时,第二内风机以较低的转速运行,也能够在一定程度上保证冷媒在第二室内换热器中的低温冷媒能够吸热汽化,以减少回流至压缩机的液态冷媒量,降低“液态”问题的发生。
例如,制热模式下,第一内风机的转速R1 制热设定为400r/min,第二内风机的转速R2 制热设定为100r/min。
在一些可选的实施例中,在确定触发进入除霜模式后,还包括:控制第一内风机以转速R1 除霜运行,第二内风机转速以转速R2 除霜运行,R1 除霜≥R2 除霜,且R1 除霜≥R1
在本实施例中,在除霜模式下,将第一内风机的转速调高且大于制热模式下的转速,可增加室内空气与第一室内换热器之间的热交换速率,由于第二冷媒循环回路的冷媒流量大于或等于第一冷媒循环回路的冷媒流量,第一冷媒循环回路的单位时间内的制热量有可能下降,因此通过提高第一内风机的转速,以增加第一冷媒循环回路在单位时间内的制热量,使得在除霜模式的冷媒分配状态下,空调系统对室内环境的制热性能不变或者不至于下降过多。
例如,除霜模式下,第一内风机的转速R1 除霜设定为500r/min,第二内风机的转速R2 制热设定为200r/min。
在一些可选的实施例中,空调系统运行制热模式,还包括:获取空调系统运行制热模式时第一室内换热器侧的出风温度;若出风温度小于设定出风温度阈值,则调高第一内风机转速和/或降低第二内风机转速,以使出风温度达到设定出风温度阈值。
在本实施例中,空调系统的室内机侧设置有温度传感器,该温度传感器对应设置于第一室内换热器侧的出风路径上,其可用于检测与第一室内换热器进行热交换后吹出空气的实时温度,即第一室内换热器侧的出风温度;该出风温度的变化能够反映出第一室内换热器对室内空气的放热效率的变化情况。
可选的,设定出风温度阈值是一用于表征制热模式运行过程中室内环境温度保持在较小温度波动范围内的阈值数值,在室内机的出风温度小于该设定出风温度阈值时,则反映出第二室内换热器从室内环境的吸热量较多,影响空调系统整体的制热效率。因此需要调高第一内风机转速,以增加第一室内换热器对室内环境的放热量,和/或,降低第二内风机转速,以降低第二室内换热器对室内环境的吸热量。这样通过调节一个或两个内风机的转速,以使出风温度达到设定出风温度阈值。
在一些实施例中,本申请用于空调系统除霜控制的方法还包括:在确定触发进入除霜模式后,获取空调系统运行除霜模式时的室内环境温度;若室内环境温度的温度变化速率大于或等于设定温变速率,则调高第一内风机转速和/或降低第二内风机转速,以使室内环境温度的温度变化速率小于设定温变速率。
在本实施例中,空调系统的室内机侧设置有温度传感器,该温度传感器其可用于室内机所处室内环境的实时温度,即室内环境温度;室内环境温度的温度变化速率是指在一定时间内的温度变化幅度,其能够反映出除霜模式下室内环境的温度变化情况。
室内环境温度的温度变化速率大于或等于设定温变速率时,则空调系统运行除霜模式对室内环境引起的温度变化影响较为明显,影响室内环境的稳定。因此需要调高第一内风机转速,以增加第一室内换热器对室内环境的放热量,和/或,降低第二内风机转速,以降低第二室内换热器对室内环境的吸热量。这样通过调节一个或两个内风机的转速,以使室内环境温度的温度变化速率小于设定温变速率。
在一些实施例中,本申请用于空调系统除霜控制的方法还包括:获取空调系统运行制热模式时的室外环境温度;根据室外环境温度,调节制热模式下的第二冷媒循环回路的冷媒流量。
可选的,空调系统的室外机侧设置有一温度传感器,该温度传感器用于检测室外侧的实时温度,以作为该室外环境温度。
这里,由于第二室外换热器也是设置于室外侧,其周围环境温度的高低能够影响到热量传递至第一室外换热器的多少,在室外环境温度较低时,有较多热量散热到室外环境中,则实际用于延缓第一室外换热器结霜的热量较少,因此本实施例中根据室外环境温度调节制热模式下的第二冷媒循环回路的冷媒流量,以保证制热模式下第二冷媒循环回路延缓结霜的效果。
可选的,空调系统预设一关联关系,该关联关系为室外环境温度与第二冷媒循环回路的冷媒调节量之间的对应关系;因此在获取到实时的室外环境温度后,可以根据该关联关系查找得到对应的冷媒调节量,进而对第二冷媒循环回路的冷媒流量进行调整。
该关联关系中,室外环境温度与冷媒调节量之间为负相关关系,也即室外环境温度越低,则冷媒调节量越大,以通过增加的分流冷媒流量补偿因室外环境温度低所造成的热量损失。
图6是本公开实施例提供的另一种用于空调系统除霜控制的方法的示意图。
结合图6所示,本公开还提供有另一种用于空调系统除霜控制的方法,该方法的步骤主要包括:
S11、在空调系统运行制热模式时,确定触发进入除霜模式;
在本实施例中,步骤S11的执行方式参见前文实施例,在此不作赘述。
S12、检测第一室外换热器的外盘管温度;
在本实施例中,空调系统的室外机还在第一室外换热器侧设置有一温度传感器,该温度传感器可用于检测该第一室外换热器的盘管的实时温度,本实施例步骤S12即通过该温度传感器获得外盘管温度;
S13、确定是否T 外盘管≤T1?,若是,则结霜程度为重度结霜,执行步骤S14,若否,则结霜程度为轻度结霜,执行步骤S15;
S14、确定第一冷媒流量为Q1、第二冷媒流量为Q2;并执行步骤S16;
S15、确定第一冷媒流量为Q3、第二冷媒流量为Q4;并执行步骤S16;
在本实施例中,在确定触发进入除霜模式之后,还需要根据第一室外换热器的结霜程度,确定除霜模式下第一冷媒循环回路和第二冷媒循环回路的除霜冷媒流量,从而使得第一冷媒循环回路的制热效率以及第二冷媒循环回路的除霜效率能够匹配当前第一室外换热器的结霜程度,进而保证空调系统对室内环境的制热效果以及对于第一室外换热器的除霜效果。
这里,第一室外换热器的结霜程度是根据室外换热器的盘管温度确定。
可选的,第二冷媒循环回路的冷媒流量与第一室外换热器的结霜程度为正相关关系,也即第一室外换热器的结霜越严重,则分配给第二冷媒循环回路的除霜冷媒流量越多,从而使得能够有更多的热量用于对第一室外换热器的冰霜进行清除。
因此,步骤S14和步骤S15根据不同的结霜程度分别确定的第二冷媒循环系统的冷媒流量满足关系:Q2>Q4。
这里,对于轻度结霜,其温度判断范围具有一温度阈值上限T2,在外盘管温度高于该温度阈值T2时室外机不容易凝结冰霜,因此轻度结霜的外盘管温度不仅需要满足大于T1的温度要求,同时还需要要求小于T2。
在本实施了中,T 外盘管为第一室外换热器的盘管温度,T1和T2为设定盘管温度阈值。
可选的,第一冷媒流量的取值方式为冷媒总流量与第二冷媒流量之差。
S16、控制第一冷媒循环回路按照第一冷媒流量输送冷媒;控制第二冷媒循环回路按照第二冷媒流量输送冷媒。
在本实施例中,空调系统在确定触发进入除霜模式后,还根据空调系统室外机的实际结霜程度,较为精确的确定出分流至第一冷媒循环回路、第二冷媒循环回路的冷媒流量,从而使得空调系统的除霜模式运行时的制热性能、除霜效率可以满足空调系统的实际需求。
在一些可选的实施例中,本申请用于空调系统除霜控制的方法还:在确定触发退出除霜模式,控制空调系统退出除霜模式。
这里,退出除霜模式是根据除霜模式的运行时长来确定,这里,由于空调系统在除霜模式运行时尽量减少其从室内环境吸收的热量,因此从第二冷媒循环回路的第二室内换热器回流至压缩机的冷媒有较多处于液态,液态冷媒一般会被截流在压缩机回气口处的储气罐内,导致实际用于两个冷媒循环回路的冷媒量减少,除霜模式长时间运行会导致第一冷媒循环回路的制热性能和第二冷媒循环回路的除霜性能双双下降,因此需要对除霜模式的运行时长进行限制,以避免上述问题的发生。
可选的,空调系统还设置有计时模块,计时模块可用于在空调系统进入除霜模式后进行计时,得到空调系统运行除霜模式实时的除霜时长t 除霜,并将该除霜时长t 除霜与设定除霜时长阈值t 阈值进行比较,在t 除霜≥t 阈值时确定触发退出除霜模式。
该除霜时长阈值t 阈值与第二冷媒循环回路的除霜冷媒流量相关联,这里,第二冷媒循环回路的除霜冷媒流量的设置值越高,则除霜时长阈值t 阈值越小,空调系统除霜模式的实际除霜时长就越短。这里,空调系统预置有一关联关系,该关联关系用于表征除霜时长阈值t 阈值与第二冷媒循环回路的除霜冷媒流量,在第二冷媒循环回路的除霜冷媒流量确定后,可从该关联关系中匹配得到对应该除霜冷媒流量的除霜时长阈值,并用于对于空调系统确定触发退出除霜模式的控制。
图7是本公开实施例提供的一种用于空调系统除霜控制的装置的示意图。
结合图7所示,本公开实施例提供了一种用于空调系统除霜控制的装置,该装置包括:
除霜确定模块71,被配置为在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;
除霜切换模块72,被配置为控制第一冷媒循环回路的冷媒流量小于或等于第二冷媒循环回路的冷媒流量,以使空调系统以除霜模式运行。
在一些实施例中,还包括制热运行模块,其被配置为:控制第一内风机以转速R1 制热运行,第二内风机转速以转速R2 制热运行,R1 制热>R2 制热;和/或,
除霜切换模块72,还被配置为:控制第一内风机以转速R1 除霜运行,第二内风机转速以转速R2 除霜运行,R1 除霜≥R2 除霜,且R1 除霜≥R1 制热
在一些实施例中,制热运行模块,还被配置为:
获取空调系统运行制热模式时第一室内换热器侧的出风温度;
若出风温度小于设定出风温度阈值,则调高第一内风机转速和/或降低第二内风机转速,以使出风温度达到设定出风温度阈值。
在一些实施例中,除霜切换模块72,还被配置为:
获取空调系统运行除霜模式时的室内环境温度;
若室内环境温度的温度变化速率大于或等于设定温变速率,则调高第一内风机转速和/或降低第二内风机转速,以使室内环境温度的温度变化速率小于设定温变速率。
在一些实施例中,制热运行模块,还被配置为:
获取空调系统运行制热模式时的室外环境温度;
根据室外环境温度,调节制热模式下的第二冷媒循环回路的冷媒流量。
在一些实施例中,除霜切换模块72,还被配置为:
根据第一室外换热器的结霜程度,确定除霜模式下第一冷媒循环回路的冷媒流量及第二冷媒循环回路的冷媒流量。
在一些实施例中,除霜切换模块72,还被配置为:
确定触发退出除霜模式,其中在t 除霜≥t 阈值时确定触发退出除霜模式,t 除霜为除霜模式的运行时长,t 阈值为设定除霜时长阈值,且除霜时长阈值与第二冷媒循环回路的除霜冷媒流量相关联;
控制空调系统退出除霜模式。
图8是本公开实施例提供的另一种用于空调系统除霜控制的装置的示意图。
结合图8所示,本公开实施例提供一种用于空调系统除霜控制的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于空调系统除霜控制的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存 储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于空调系统除霜控制的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调系统,包含如图1至4示出的空调系统部件组成及配合形式,其还包括一控制器,该控制器用于执行上述用于空调系统除霜控制的方法。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调系统除霜控制的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于空调系统除霜控制的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在, 但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中 的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调系统除霜控制的方法,其特征在于,所述空调系统包括压缩机、第一循环组件和第二循环组件,其中所述第一循环组件包括第一室内换热器、第一室外换热器、第一节流装置和四通阀,所述第一循环组件与所述压缩机连接构成第一冷媒循环回路,所述第二循环组件包括第二室内换热器、第二室外换热器和第二节流装置,所述第二循环组件与所述压缩机连接构成第二冷媒循环回路,其中所述第二室内换热器与所述压缩机的回气口相连通,所述第二室外换热器与所述压缩机的排气口相连通,且所述第第一室外换热器与所述第二室外换热器相邻设置;
    所述方法包括:
    在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;
    控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除霜模式运行。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一循环组件还包括第一内风机,所述第一内风机用于驱动室内空气与所述第一室内换热器进行热交换;所述第二循环组件还包括第二内风机,所述第二内风机用于驱动室内空气与所述第二室内换热器进行热交换;
    所述制热模式还包括:所述第一内风机以转速R1 制热运行,所述第二内风机转速以转速R2 制热运行,所述R1 制热>R2 制热;和/或,
    在确定触发进入除霜模式后,还包括:控制第一内风机以转速R1 除霜运行,所述第二内风机转速以转速R2 除霜运行,所述R1 除霜≥R2 除霜,且所述R1 除霜≥R1 制热
  3. 根据权利要求2所述的方法,其特征在于,所述空调系统运行制热模式,还包括:
    获取所述空调系统运行制热模式时所述第一室内换热器侧的出风温度;
    若所述出风温度小于设定出风温度阈值,则调高所述第一内风机转速和/或降低所述第二内风机转速,以使所述出风温度达到所述设定出风温度阈值。
  4. 根据权利要求2所述的方法,其特征在于,在所述确定触发进入除霜模式后,还包括:
    获取所述空调系统运行除霜模式时的室内环境温度;
    若所述室内环境温度的温度变化速率大于或等于设定温变速率,则调高所述第一内风机转速和/或降低所述第二内风机转速,以使所述室内环境温度的温度变化速率小于所述设定温变速率。
  5. 根据权利要求1所述的方法,其特征在于,所述空调系统运行制热模式,还包括:
    获取所述空调系统运行制热模式时的室外环境温度;
    根据所述室外环境温度,调节所述制热模式下的第二冷媒循环回路的冷媒流量。
  6. 根据权利要求1所述的方法,其特征在于,在所述确定触发进入除霜模式后,还包括:
    根据所述第一室外换热器的结霜程度,确定除霜模式下所述第一冷媒循环回路的冷媒流量及所述第二冷媒循环回路的冷媒流量。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,还包括:
    确定触发退出除霜模式,其中在t 除霜≥t 阈值时确定触发退出除霜模式,t 除霜为所述除霜模式的运行时长,t 阈值为设定除霜时长阈值,且所述除霜时长阈值与所述第二冷媒循环回路的除霜冷媒流量相关联;
    控制所述空调系统退出除霜模式。
  8. 一种空调系统,其特征在于,所述空调系统包括压缩机、第一循环组件和第二循环组件,其中所述第一循环组件包括第一室内换热器、第一室外换热器、第一节流装置和四通阀,所述第一循环组件与所述压缩机连接构成第一冷媒循环回路,所述第二循环组件包括第二室内换热器、第二室外换热器和第二节流装置,所述第二循环组件与所述压缩机连接构成第二冷媒循环回路,其中所述第二室内换热器与所述压缩机的回气口相连通,所述第二室外换热器与所述压缩机的排气口相连通,且所述第第一室外换热器与所述第二室外换热器相邻设置;
    所述空调系统还包括一控制器,该控制器用于:在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除 霜模式运行。
  9. 一种用于空调系统除霜控制的装置,其特征在于,包括:
    除霜确定模块,被配置为在所述空调系统运行制热模式时,确定触发进入除霜模式;其中所述制热模式包括所述第一冷媒循环回路按照制热冷媒流向输送冷媒,所述第二冷媒循环回路为导通状态,且所述第一冷媒循环回路的冷媒流量大于所述第二冷媒循环回流的冷媒流量;
    除霜切换模块,被配置为控制所述第一冷媒循环回路的冷媒流量小于或等于所述第二冷媒循环回路的冷媒流量,以使所述空调系统以除霜模式运行。
  10. 一种用于空调系统除霜控制的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的用于空调系统除霜控制的方法。
PCT/CN2021/121628 2021-01-29 2021-09-29 用于空调系统除霜控制的方法及装置、空调系统 WO2022160764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110130362.2A CN112880131B (zh) 2021-01-29 2021-01-29 用于空调系统除霜控制的方法及装置、空调系统
CN202110130362.2 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022160764A1 true WO2022160764A1 (zh) 2022-08-04

Family

ID=76052013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121628 WO2022160764A1 (zh) 2021-01-29 2021-09-29 用于空调系统除霜控制的方法及装置、空调系统

Country Status (2)

Country Link
CN (1) CN112880131B (zh)
WO (1) WO2022160764A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950125A (zh) * 2022-12-19 2023-04-11 珠海格力电器股份有限公司 化霜控制方法、制冷系统及制冷设备
WO2024113970A1 (zh) * 2022-12-01 2024-06-06 广东美的制冷设备有限公司 新风机控制方法、装置、新风机及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880131B (zh) * 2021-01-29 2022-09-06 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统
CN112880132B (zh) * 2021-01-29 2023-03-21 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统
CN114517973B (zh) * 2022-02-28 2023-11-21 青岛海尔空调器有限总公司 空调分流的控制方法、控制系统、电子设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303903A (ja) * 1994-12-23 1996-11-22 Samsung Electronics Co Ltd 空気調和機の除霜装置およびその制御方法
WO2010082325A1 (ja) * 2009-01-15 2010-07-22 三菱電機株式会社 空気調和装置
CN105004114A (zh) * 2015-07-02 2015-10-28 Tcl空调器(中山)有限公司 空调器及其除霜方法
CN105723168A (zh) * 2013-10-24 2016-06-29 三菱电机株式会社 空调装置
CN106885404A (zh) * 2017-01-09 2017-06-23 美的集团股份有限公司 一种热泵空调的制热除霜系统及方法和热泵空调
CN107023944A (zh) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN110186151A (zh) * 2019-07-11 2019-08-30 芜湖美智空调设备有限公司 运行控制方法、运行控制装置、空调器和存储介质
CN110617644A (zh) * 2019-10-18 2019-12-27 珠海格力节能环保制冷技术研究中心有限公司 换热系统、空调器及空调器的控制方法
CN112880131A (zh) * 2021-01-29 2021-06-01 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7213407B2 (en) * 2005-04-12 2007-05-08 Lung Tan Hu Wide temperature range heat pump
CN104729029B (zh) * 2013-12-24 2018-05-11 珠海格力电器股份有限公司 空调系统及其控制方法
CN104729163B (zh) * 2013-12-24 2017-06-06 珠海格力电器股份有限公司 空调系统及其化霜控制方法
JP6758500B2 (ja) * 2017-06-27 2020-09-23 三菱電機株式会社 空気調和装置
CN111637656A (zh) * 2019-03-01 2020-09-08 珠海格力电器股份有限公司 空调器及控制方法
CN110608511A (zh) * 2019-09-16 2019-12-24 珠海格力电器股份有限公司 空调制热控制方法、控制器及空调
CN110736203B (zh) * 2019-09-25 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110617219A (zh) * 2019-10-18 2019-12-27 珠海格力节能环保制冷技术研究中心有限公司 压缩机及空调系统
CN110940056A (zh) * 2019-10-28 2020-03-31 宁波奥克斯电气股份有限公司 不停机化霜的空调器及其控制方法
CN211575619U (zh) * 2019-12-11 2020-09-25 青岛海尔空调器有限总公司 空调系统
CN111059729B (zh) * 2019-12-25 2021-03-30 珠海格力电器股份有限公司 一种自适应人体舒适度空调的控制方法及空调

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303903A (ja) * 1994-12-23 1996-11-22 Samsung Electronics Co Ltd 空気調和機の除霜装置およびその制御方法
WO2010082325A1 (ja) * 2009-01-15 2010-07-22 三菱電機株式会社 空気調和装置
CN105723168A (zh) * 2013-10-24 2016-06-29 三菱电机株式会社 空调装置
CN105004114A (zh) * 2015-07-02 2015-10-28 Tcl空调器(中山)有限公司 空调器及其除霜方法
CN106885404A (zh) * 2017-01-09 2017-06-23 美的集团股份有限公司 一种热泵空调的制热除霜系统及方法和热泵空调
CN107023944A (zh) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN110186151A (zh) * 2019-07-11 2019-08-30 芜湖美智空调设备有限公司 运行控制方法、运行控制装置、空调器和存储介质
CN110617644A (zh) * 2019-10-18 2019-12-27 珠海格力节能环保制冷技术研究中心有限公司 换热系统、空调器及空调器的控制方法
CN112880131A (zh) * 2021-01-29 2021-06-01 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024113970A1 (zh) * 2022-12-01 2024-06-06 广东美的制冷设备有限公司 新风机控制方法、装置、新风机及存储介质
CN115950125A (zh) * 2022-12-19 2023-04-11 珠海格力电器股份有限公司 化霜控制方法、制冷系统及制冷设备

Also Published As

Publication number Publication date
CN112880131B (zh) 2022-09-06
CN112880131A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022160764A1 (zh) 用于空调系统除霜控制的方法及装置、空调系统
WO2022160767A1 (zh) 用于空调系统除霜控制的方法及装置、空调系统
CN106524389B (zh) 一种空调器除霜方法及其空调器
CN101975422B (zh) 冷暖型空调器及其除霜方法
CN203907772U (zh) 带除霜功能的空调系统
WO2020062606A1 (zh) 冷媒循环系统及其控制方法、空气调节装置
CN203454504U (zh) 智能除霜空调机组
CN106440462A (zh) 一种空调机组和空调机组的控制方法
WO2021068358A1 (zh) 一种多联机除霜控制方法
CN104089346A (zh) 空调和空调功率元器件冷却方法
CN104515322A (zh) 可实现连续制热的空调系统
CN104634009A (zh) 空调循环装置的控制方法
CN104634008A (zh) 空调装置的控制方法
CN103162384B (zh) 热泵运行的风机控制方法
CN104633871A (zh) 空调系统的控制方法
WO2019144616A1 (zh) 一种热泵系统及其除霜控制方法
CN203964436U (zh) 双级压缩空调系统
WO2014029316A1 (zh) 带除霜结构的热泵及其除霜方法
EP3961125B1 (en) Control method for heat pump system
CN104236155A (zh) 具有冷媒过冷、除霜制热功能的空调系统及其控制方法
WO2019144618A1 (zh) 一种热泵系统及其控制方法
CN110440478B (zh) 一种具有延缓结霜功能的空调系统及其控制方法
CN105650822A (zh) 热泵空调器及其化霜方法
WO2018043454A1 (ja) 空調給湯システム
WO2024021439A1 (zh) 用于控制空调的方法、装置、空调和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922355

Country of ref document: EP

Kind code of ref document: A1