WO2024021297A1 - 功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料 - Google Patents

功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料 Download PDF

Info

Publication number
WO2024021297A1
WO2024021297A1 PCT/CN2022/122234 CN2022122234W WO2024021297A1 WO 2024021297 A1 WO2024021297 A1 WO 2024021297A1 CN 2022122234 W CN2022122234 W CN 2022122234W WO 2024021297 A1 WO2024021297 A1 WO 2024021297A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
magnetic
functional
coupling agent
nylon
Prior art date
Application number
PCT/CN2022/122234
Other languages
English (en)
French (fr)
Inventor
李�根
胡江平
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Publication of WO2024021297A1 publication Critical patent/WO2024021297A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Definitions

  • the present application relates to the technical field of magnetic materials. Specifically, it relates to a functional magnetic powder and its preparation method, magnetic nylon masterbatch and its preparation method, and magnetic plastic materials.
  • Polymer-based magnetic composite materials mainly refer to composite materials obtained by mixing magnetic powder and polymers.
  • the magnetic powders used mainly include strontium ferrite, barium ferrite, neodymium iron boron, etc.
  • the polymers used mainly include nylon 6 and nylon 12. , polyphenylene sulfide, epoxy resin, etc.
  • polymer-based magnetic composite materials Compared with traditional sintered magnets, polymer-based magnetic composite materials have the advantages of easy processing, high precision, and good toughness.
  • polymer-based magnetic composite materials also have great advantages in preparing complex-shaped and integrally formed devices. Therefore, polymer-based magnetic composite materials are widely used in automobiles, home appliances, office supplies, children's toys and other fields.
  • polymer-based magnetic composites Compared with sintered magnets, polymer-based magnetic composites have the disadvantage of lower magnetic properties.
  • the main method to improve the magnetic properties of polymer-based magnetic composite materials is to use anisotropic magnetic powder and increase the filling amount of magnetic powder (filling mass ratio 85% to 92%), but this will reduce the melt fluidity of the composite material, which will further reduce The orientation movement of various anisotropic magnetic particles under an external magnetic field reduces the magnetic properties of the material.
  • polymer-based magnetic composite materials are used inside air conditioners, refrigerators, and in Northeast China. In cold areas, it is even used in the fields of coolant, liquid nitrogen, and liquid ammonia vapor transportation. Because the toughness of the polymer-based magnetic composite material is reduced and the thermal expansion coefficient is different from that of the surrounding materials, the product is prone to cracking or even falling off.
  • the main purpose of this application is to provide a functional magnetic powder and its preparation method, magnetic nylon masterbatch and its preparation method and magnetic plastic materials, so as to solve the problem that the toughness of polymer-based magnetic composite materials decreases in low temperature environment, and the thermal expansion coefficient is different from that of surrounding materials.
  • the thermal expansion coefficients are different, causing the product to easily crack or even fall off.
  • a functional magnetic powder is provided.
  • the raw materials of the functional magnetic powder include 70 to 92 parts of magnetic powder, 0.1 to 1 part of aminosilane coupling agent and hydroxycarboxylic acid.
  • the compound has the following structure: CH 3 (CH 2 OHCCH 2 OH) n COOH, and n is an integer between 1 and 4.
  • the hydroxycarboxylic acid compound is dihydroxymethylpropionic acid; and/or the aminosilane coupling agent includes ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminosilane At least one of ethylaminopropyltrimethoxysilane and ⁇ -aminoethylaminopropyltriethoxysilane.
  • the material of the magnetic powder includes at least one of strontium ferrite, barium ferrite, neodymium iron boron or samarium iron nitrogen; and/or the average particle size of the magnetic powder is 1 to 5 ⁇ m.
  • a method for preparing functional magnetic powder includes: step S1, mixing the magnetic powder and an aminosilane coupling agent to perform a coupling reaction to obtain a coupling agent-grafted magnetic powder.
  • the temperature of the coupling reaction is preferably 60 to 120°C, and the time is preferably 0.5 to 4 hours; in step S2, the coupling agent-grafted magnetic powder and the hydroxycarboxylic acid compound are mixed to perform a grafting reaction to obtain functional magnetic powder.
  • the temperature of the grafting reaction is preferably The temperature is 60 to 120°C, and the time is preferably 0.5 to 4 hours; wherein, magnetic powder, aminosilane coupling agent, and hydroxycarboxylic acid compound have the same definitions as in the first aspect, and will not be described again here.
  • step S1 the aminosilane coupling agent is first dispersed in the first solvent to obtain a solution of the aminosilane coupling agent, and then the solution of the aminosilane coupling agent is mixed with the magnetic powder to perform a coupling reaction.
  • step S1 is also Including a drying step set after the coupling reaction;
  • step S2 first disperse the hydroxycarboxylic acid compound in the second solvent to obtain a solution of the hydroxycarboxylic acid compound, and then mix the solution of the hydroxycarboxylic acid compound with the coupling agent graft magnetic powder for grafting.
  • the reaction preferably step S2, also includes a drying step arranged after the grafting reaction.
  • the first solvent and the second solvent are each independently a mixed solution of ethanol and water.
  • the volume ratio of ethanol and water is 90-95:10-5.
  • the application provides a magnetic nylon masterbatch.
  • the raw materials of the magnetic nylon masterbatch include 70% to 94% of functional magnetic powder and 6% to 30% of nylon 12 elastomer.
  • the functional magnetic powder is any functional magnetic powder provided in the above-mentioned first aspect or a functional magnetic powder obtained according to any one of the preparation methods provided in the above-mentioned second aspect.
  • the raw materials of the magnetic nylon masterbatch also include 0.3% to 10% of auxiliaries, and the auxiliaries include at least one of compatibilizer, lubricant, antioxidant or plasticizer.
  • the compatibilizer is maleic anhydride-grafted POE
  • the mass content of maleic anhydride-grafted POE in the magnetic nylon masterbatch raw material is 0.1% to 5%.
  • the lubricant is EVA wax
  • the mass content of EVA wax in the magnetic nylon masterbatch raw material is 0.1% to 4%.
  • antioxidant 1010 is antioxidant 1010, and the mass content of antioxidant 1010 in the magnetic nylon is 0.1% to 0.5%.
  • a method for preparing the above-mentioned magnetic nylon masterbatch includes: mixing the raw materials of the magnetic nylon masterbatch including functional magnetic powder, nylon 12 elastomer and optional auxiliaries, A raw material mixture is obtained; the raw material mixture is extruded and granulated to obtain magnetic nylon masterbatch.
  • a twin-screw extruder is used for extrusion granulation, and the temperature of extrusion granulation is preferably 160 to 250°C.
  • a magnetic plastic material is also provided, which is prepared from any magnetic nylon masterbatch provided in the third aspect.
  • the functional magnetic powder provided by this application grafts hydroxycarboxylic acid compounds onto the magnetic powder through an aminosilane coupling agent, thereby obtaining functional groups such as hydroxyl, amide group, methyl and amino groups on the surface.
  • Functional magnetic powder a large number of functional groups make the functional magnetic powder have excellent affinity and reactivity with the polymer, which is beneficial to the uniform dispersion of the functional magnetic powder in the polymer, thereby improving the strength and strength of the polymer-based magnetic composite material in low temperature environments. Toughness to avoid product cracking and falling off.
  • this application provides a functional magnetic powder and its preparation method, magnetic nylon masterbatch and its preparation method, and magnetic plastic materials.
  • a functional magnetic powder is provided.
  • the raw materials of the functional magnetic powder include 70 to 92 parts of magnetic powder, 0.1 to 1 part of aminosilane coupling agent and hydroxycarboxylic acids. 0.1 to 1 part of the compound.
  • the hydroxycarboxylic acid compound has the following structure: CH 3 (CH 2 OHCCH 2 OH) n COOH, and n is an integer between 1 and 4.
  • the functional magnetic powder provided by this application grafts hydroxycarboxylic acid compounds onto the magnetic powder through an aminosilane coupling agent, thereby obtaining functional magnetic powder with functional groups such as hydroxyl, amide group, methyl and amino groups on the surface, and a large number of functional groups.
  • the functional magnetic powder has excellent affinity and reactivity with the polymer, which facilitates the uniform dispersion of the functional magnetic powder in the polymer, thereby improving the strength and toughness of the polymer-based magnetic composite material in low-temperature environments and avoiding cracking and falling off of the product. phenomenon occurs.
  • the type of the above-mentioned magnetic powder is not limited. Any magnetic powder used for polymer-based magnetic composite materials can be used, including but not limited to any one or more of strontium ferrite, barium ferrite, neodymium iron boron or samarium iron nitrogen. The resulting mixed magnetic powder.
  • the average particle size of the magnetic powder is preferably 1 to 5 ⁇ m.
  • aminosilane coupling agent is not limited. Any aminosilane coupling agent with both amino and siloxy groups can be used, including but not limited to ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethyl A mixed coupling agent formed from any one or more of oxysilane, ⁇ -aminoethylaminopropyltrimethoxysilane, and ⁇ -aminoethylaminopropyltriethoxysilane.
  • hydroxycarboxylic acid compounds have methyl, hydroxyl and carboxyl groups at the same time, and can be connected to the surface of the magnetic powder through the reaction of the carboxyl group with the amino group of the aminosilane coupling agent, forming a surface with functions such as hydroxyl, amide group, methyl and amino groups. functional magnetic powder.
  • n is selected from any integer of 1, 2, 3 or 4.
  • n in the above hydroxycarboxylic acid compound is 1, that is, the hydroxycarboxylic acid compound is dihydroxymethylpropionic acid.
  • Too much use of hydroxycarboxylic acid compounds will cause some of the hydroxycarboxylic acid compounds to be unable to be grafted onto the coupled magnetic powder, resulting in a waste of hydroxycarboxylic acid compounds. Too little use of hydroxycarboxylic acid compounds will lead to surface defects on the functional magnetic powder. There are few methyl, hydroxyl and amide groups and cannot form good interactions and reactions with polymers. In this application, among the raw materials for preparing functional magnetic powder, in terms of mass parts, 70 to 92 parts of magnetic powder, 0.1 to 1 part of aminosilane coupling agent and 0.1 to 1 part of hydroxycarboxylic acid compounds can further reduce the waste of raw materials. In this case, the functional groups on the surface of the functional magnetic powder are increased, thereby improving the affinity and reactivity between it and the polymer.
  • the mass parts of the magnetic powder are 70 parts, 72 parts, 75 parts, 78 parts, 80 parts, 82 parts, 85 parts, 88 parts, 90 parts, 92 parts Or a range value consisting of any two numerical values;
  • the mass fraction of the aminosilane coupling agent is 0.1 part, 0.2 part, 0.5 part, 0.8 part, 1 part or a range value consisting of any two numerical values;
  • hydroxycarboxylic acid compounds The mass parts are, for example, 0.1 part, 0.2 part, 0.5 part, 0.8 part, 1 part or a range value consisting of any two values.
  • a method for preparing the above-mentioned functional magnetic powder includes: step S1, mixing the magnetic powder and an aminosilane coupling agent to perform a coupling reaction to obtain a coupling agent graft Magnetic powder, step S2, mix the coupling agent-grafted magnetic powder and the hydroxycarboxylic acid compound to perform a grafting reaction to obtain functional magnetic powder; among them, the magnetic powder, aminosilane coupling agent and hydroxycarboxylic acid compound all have the above-mentioned first typical Same definition as in the implementation.
  • the preparation method of functional magnetic powder provided by this application is simple in process and easy to operate, and can be suitable for large-scale production and reduce production costs.
  • the temperature of the coupling reaction is 60 to 120°C and the time is 0.5 to 4 hours.
  • step S1 in order to further promote a more uniform mixing of the aminosilane coupling agent and the magnetic powder and further improve the efficiency of the coupling reaction, it is preferred to first disperse the aminosilane coupling agent in the first solvent to obtain the aminosilane coupling agent. solution, and then mix the solution of the aminosilane coupling agent and the magnetic powder to perform the coupling reaction.
  • step S1 also includes a drying step after the coupling reaction.
  • the first solvent is removed by drying to obtain coupling agent-grafted magnetic powder.
  • the mass concentration of the solution of the above-mentioned aminosilane coupling agent is not limited, and any mass concentration that is easy to mix evenly with the magnetic powder can be used. From the perspective of environmental protection and cost, it is preferred that the first solvent is a mixed solution of ethanol and water, especially when the volume ratio of ethanol and water in the first solvent is 90-95:10-5, it is more conducive to dispersing the aminosilane coupling agent .
  • the temperature of the grafting reaction is 60 to 120°C and the time is 0.5 to 4 hours.
  • step S2 in order to further promote a more uniform mixing of the hydroxycarboxylic acid compound and the coupling agent grafted magnetic powder and further improve the grafting efficiency, it is preferred to first disperse the hydroxycarboxylic acid compound in the second solvent to obtain the hydroxycarboxylic acid.
  • the solution of the hydroxycarboxylic acid compound is mixed with the coupling agent graft magnetic powder to carry out the grafting reaction.
  • step S2 also includes a drying step after the grafting reaction, and the second solvent is removed by drying to obtain the functional magnetic powder.
  • the mass concentration of the solution of the above-mentioned hydroxycarboxylic acid compound is not limited, and any mass concentration that is easy to mix uniformly with the aminosilane coupling agent can be used.
  • the second solvent is a mixed solution of ethanol and water. Especially when the volume ratio of ethanol and water in the second solvent is 90-95:10-5, it is more conducive to dispersing hydroxycarboxylic acid compounds. .
  • the temperature of the coupling reaction is 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C or a range of any two values; even
  • the time of the grafting reaction is, for example, 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h or a range of any two values;
  • the temperature of the grafting reaction is, for example, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C or a range of any two values;
  • the grafting reaction time is, for example, 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5 h, 4h or a range value consisting of any two values; in the above-mentioned first solvent and second solvent, the volume ratio of ethanol and water is 90:10, 91:9, 92:8, 93:7, 94:6, 95
  • a magnetic nylon masterbatch is also provided.
  • the raw materials of the magnetic nylon masterbatch include 70% to 94% of functional magnetic powder and 6% to nylon 12 elastomer. 30%, wherein the functional magnetic powder is any functional magnetic powder provided in the above-mentioned first exemplary embodiment or a functional magnetic powder obtained according to any one of the preparation methods provided in the second exemplary embodiment.
  • the magnetic nylon masterbatch provided by this application uses a specific mass ratio of nylon 12 elastomer and functional magnetic powder.
  • the functional magnetic powder is evenly dispersed in the nylon 12 elastomer, and the nylon and functional magnetic powder pass through the hydroxyl, methyl, and amino groups on the surface of the functional magnetic powder.
  • the combination with the amide group effectively improves the mechanical properties of the magnetic nylon masterbatch, which is beneficial to improving the strength and toughness of the magneto-plastic composite material prepared from the magnetic nylon masterbatch at low temperatures and avoiding shedding and cracking.
  • the raw materials of the magnetic nylon masterbatch also include 0.3% to 10% of additives by mass percentage.
  • the type of the additives is not limited, including but not limited to compatibilizers, Mixing aids formed from any one or more of lubricants, antioxidants or plasticizers.
  • the raw materials of the magnetic nylon masterbatch also include compatibilizer 0.1% to 5%, lubricant 0.1% to 4%, and plasticizer 0.1% to 1% in mass percentage. and antioxidants 0.1 to 0.5%.
  • the type of the above-mentioned compatibilizer is not limited. From the perspective of further improving the performance of the magnetic nylon masterbatch, maleic anhydride-grafted POE is preferred.
  • the type of the above-mentioned lubricant is not limited, but from the perspective of cost reduction, EVA wax is preferred.
  • the type of the above-mentioned plasticizer is not limited. From the perspective of improving compatibility with nylon 12 elastomer, pentaerythritol stearate is preferred.
  • the type of the above-mentioned antioxidant is not limited. From the perspective of improving the processing efficiency of magnetic nylon masterbatch, antioxidant 1010 is preferred.
  • the mass content of functional magnetic powder is 70%, 70.2%, 72%, 75%, 78%, 80%, 82%, 85%, 88%, 90%, 92%, 94% or a range of any two values;
  • the mass content of nylon 12 elastomer is 6%, 8%, 10%, 12%, 15%, 18%, 20%, 22% , 25%, 28%, 30% or a range of any two values;
  • the optional mass content of maleic acid rod-grafted POE is, for example, 0.1%, 0.2%, 0.5%, 0.8%, 1%, 1.5 %, 2%, 3%, 4%, 5% or a range of any two values;
  • the optional mass content of EVA wax is 0.1%, 0.2%, 0.5%, 0.8%, 1%, 1.5% , 2%, 2.5%, 3%, 3.5%, 4% or a range of any two values;
  • the optional mass content of pentaerythritol stearate is, for example, 0.1%, 0.1%, 0.1%, 0.1%, 0.1%
  • a method for preparing the above-mentioned magnetic nylon masterbatch includes: combining the magnetic nylon masterbatch including functional magnetic powder, nylon 12 elastomer and optional auxiliaries.
  • the raw materials are mixed to obtain a raw material mixture; the raw material mixture is extruded and granulated to obtain magnetic nylon masterbatch.
  • the preparation method of magnetic nylon masterbatch provided by this application has a simple process, is easy to operate, can be applied to industrial production, and is beneficial to reducing preparation costs.
  • the temperature of extrusion granulation is preferably 160 to 250°C.
  • Typical but non-limiting temperatures for extrusion granulation are 160°C, 170°C, 180°C, 200°C, 220°C, 250°C or a range of any two values.
  • a magnetic plastic material is also provided.
  • the magnetic plastic material is prepared from any magnetic nylon masterbatch provided in the third exemplary embodiment.
  • the magnetic plastic material provided in this application is prepared from magnetic nylon masterbatch. By combining functional magnetic powder with nylon 12 elastomer, the magnetic plastic material has excellent strength and toughness in low temperature environments, effectively avoiding cracking and shedding. It has broad application prospects in the fields of low-temperature resistant accessories such as automobiles and home appliances.
  • This embodiment provides a functional magnetic powder, the raw materials of which include 70kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 0.8kg of ⁇ -aminopropyltriethoxysilane, and 0.5kg of dihydroxymethylpropionic acid; according to Prepared by the following steps:
  • This embodiment provides a functional magnetic powder, the raw materials of which include 80 kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 0.8 kg of ⁇ -aminopropyltriethoxysilane, and 0.5 kg of dihydroxymethylpropionic acid; and its preparation
  • the method was the same as in Example 1, and the functional magnetic powder obtained was 81.3kg.
  • This embodiment provides a functional magnetic powder, the raw materials of which include 90 kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 0.6 kg of ⁇ -aminopropyltriethoxysilane, and 0.5 kg of dihydroxymethylpropionic acid; and its preparation
  • the method was the same as in Example 1, and the functional magnetic powder obtained was 91.1kg.
  • This embodiment provides a functional magnetic powder, whose raw materials include 85kg of NdFeB magnetic powder (average particle size 100 ⁇ m), 0.8kg of ⁇ -aminopropyltriethoxysilane, and 0.5kg of dihydroxymethylpropionic acid; its preparation method is the same as In Example 1, the functional magnetic powder obtained was 86.3kg.
  • This embodiment provides a functional magnetic powder, whose raw materials include 70kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 1kg of ⁇ -aminopropyltriethoxysilane, and 1kg of dihydroxymethylpropionic acid; its preparation method is the same as In Example 1, the functional magnetic powder obtained was 72kg.
  • This embodiment provides a functional magnetic powder, the raw materials of which include 92kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 0.1kg of ⁇ -aminopropyltriethoxysilane, and 0.1kg of dihydroxymethylpropionic acid; and its preparation
  • the method was the same as in Example 1, and the functional magnetic powder obtained was 92.2kg.
  • This comparative example provides a functional magnetic powder whose raw materials include 70kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 2kg of ⁇ -aminopropyltriethoxysilane, and 2kg of dihydroxymethylpropionic acid.
  • the obtained functional magnetic powder is 74kg.
  • This comparative example provides a functional magnetic powder whose raw materials include 70kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 0.05kg of ⁇ -aminopropyltriethoxysilane, and 0.05kg of dihydroxymethylpropionic acid.
  • the obtained Functional magnetic powder is 70.1kg.
  • This comparative example provides a functional magnetic powder, the raw materials of which include 70kg of strontium ferrite magnetic powder (average particle size 1.5 ⁇ m), 0.8kg of ⁇ -aminopropyltriethoxy silicon, and no dihydroxymethylpropionic acid is added. Functional magnetic powder is 70.8kg.
  • This example provides a magnetic nylon masterbatch, the raw materials of which are 71.3kg functional magnetic powder prepared in Example 1, 23kg nylon 12 elastomer, 3kg maleic anhydride grafted POE, 1.5kg EVA wax, and 0.7kg pentaerythritol stearic acid. Ester, 0.5kg antioxidant 1010.
  • the preparation method of the magnetic nylon masterbatch includes the following steps:
  • the raw material mixture is mixed through a twin-screw extruder and extruded for granulation.
  • the extrusion granulation temperature is set to 220°C to obtain magnetic nylon masterbatch.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are: 81.3kg functional magnetic powder prepared in Example 2, 14.7kg nylon 12 elastomer, 2kg maleic anhydride graft POE, 1kg EVA wax, 0.5kg pentaerythritol stearate and 0.5kg antioxidant 1010, the preparation method is the same as in Example 7, and will not be described again.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are: 91.1kg functional magnetic powder prepared in Example 3, 6kg nylon 12 elastomer, 2kg maleic anhydride graft POE, 0.5kg EVA wax, 0.2kg pentaerythritol stearate and 0.2kg antioxidant 1010.
  • the preparation method is the same as in Example 7 and will not be described again.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are: 86.3kg functional magnetic powder prepared in Example 4, 10kg nylon 12 elastomer, 2kg maleic anhydride graft POE, 1kg EVA wax, 0.4kg pentaerythritol stearate and 0.3kg antioxidant 1010.
  • the preparation method is the same as in Example 7 and will not be described again.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are: 72kg functional magnetic powder prepared in Example 5, 22.2kg nylon 12 elastomer, 3kg maleic anhydride graft POE, 1.5kg EVA wax, 0.7kg pentaerythritol stearate and 0.6kg antioxidant 1010.
  • the preparation method is the same as in Example 7 and will not be described again.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are: 92.2kg functional magnetic powder prepared in Example 6, 6kg nylon 12 elastomer, 1kg maleic anhydride graft POE, 0.3kg EVA wax, 0.3kg pentaerythritol stearate and 0.1kg antioxidant 1010.
  • the preparation method is the same as in Example 7 and will not be described again.
  • This comparative example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are 74kg functional magnetic powder prepared in Comparative Example 1, 21kg nylon 12 elastomer, 2kg maleic anhydride grafted POE, 1.8kg EVA wax, 0.7kg pentaerythritol stearate, and 0.5kg antioxidant 1010.
  • the preparation method is the same as in Example 7 and will not be described again.
  • This comparative example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are 70.1kg functional magnetic powder prepared in Comparative Example 2, 24.9kg nylon 12 elastomer, and 2kg maleic anhydride graft
  • the preparation method of POE, 1.8kg EVA wax, 0.7kg pentaerythritol stearate, and 0.5kg antioxidant 1010 is the same as in Example 7, and will not be described again here.
  • This comparative example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are 70.8kg functional magnetic powder prepared in Comparative Example 3, 24.2kg nylon 12 elastomer, and 2kg maleic anhydride graft
  • the preparation method of POE, 1.8kg EVA wax, 0.7kg pentaerythritol stearate, and 0.5kg antioxidant 1010 is the same as in Example 7, and will not be described again here.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are 61.3kg of functional magnetic powder prepared in Example 1, 33kg of nylon 12 elastomer, and 3kg of maleic anhydride-grafted POE. , 1.5kg EVA wax, 0.7kg pentaerythritol stearate, 0.5kg antioxidant 1010.
  • This example provides a magnetic nylon masterbatch, which is different from Example 7 in that its raw materials are 94kg of functional magnetic powder prepared in Example 1, 3.3kg of nylon 12 elastomer, and 1.5kg of maleic anhydride grafted POE, 0.5kg EVA wax, 0.5kg pentaerythritol stearate, 0.2kg antioxidant 1010.
  • the detection method of residual magnetism Br and magnetic energy product (BH)max is to put the injection molded round cake into a comprehensive magnetic performance tester, apply an external magnetic field to the injection molded round cake, and test the induced magnetic field of the injection molded round cake at the same time. Record the residual magnetism and magnetic energy product output from the instrument.
  • the detection method for cracking at minus 60°C is to put the injection molded round cake into the -60°C refrigerator, take it out after 1 hour and put it into the oven at 100°C, take it out after 1 hour and put it into -60°C In the refrigerator, cycle like this for 48 hours and observe whether the injection molded round cake cracks.
  • the functional magnetic powder provided by the present application grafts a hydroxycarboxylic acid compound onto the magnetic powder through an aminosilane coupling agent, thereby obtaining a surface with Functional magnetic powder with functional groups such as hydroxyl, amide group, methyl and amino groups.
  • a large number of functional groups make the functional magnetic powder have excellent affinity and reactivity with the polymer, which is beneficial to the uniform dispersion of the functional magnetic powder in the polymer to obtain
  • Polymer-based magnetic composite materials prepared from magnetic nylon masterbatch have excellent tensile strength and toughness in low-temperature environments, which can effectively avoid product cracking and falling off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请提供了一种功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料。本申请提供的功能磁粉,按质量份数计,包括磁粉70~92份,氨基硅烷偶联剂0.1~1份和羟基羧酸类化合物0.1~1份,其中,羟基羧酸类化合物具有如下结构:CH 3(CH 2OHCCH 2OH) nCOOH,且n为1-4之间的整数。本申请提供的功能磁粉通过氨基硅烷偶联剂将羟基羧酸类化合物接枝于磁粉上,从而得到了表面具有羟基、酰胺基、甲基和氨基等功能基团的功能磁粉,大量功能基团使得功能磁粉与聚合物具备优异的亲和性和反应性,从而有利于功能磁粉在聚合物中分散均匀,进而提高聚合物基磁性复合材料在低温环境下的强度和韧性。

Description

功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料
相关申请的交叉引用
本申请要求在2022年07月28日提交中国专利局、申请号为202210899899.X、申请名称为“功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料”的中国专利申请的优先权,全部内容通过引用结合在本申请中。
技术领域
本申请涉及磁性材料技术领域,具体而言,涉及一种功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料。
背景技术
聚合物基磁性复合材料主要指磁粉和聚合物混合加工得到的复合材料,所用的磁粉主要有锶铁氧体、钡铁氧体、钕铁硼等,所用的聚合物主要有尼龙6、尼龙12、聚苯硫醚、环氧树脂等。与传统烧结磁铁相比,聚合物基磁性复合材料具有容易加工、精度高、韧性好等优点。另外,聚合物基磁性复合材料在制备形状复杂和一体化成形器件方面也具有很大的优势。因此,聚合物基磁性复合材料被广泛的应用于汽车、家电、办公用品和儿童玩具等领域。
与烧结磁铁相比,聚合物基磁性复合材料存在磁性能偏低的不足。提高聚合物基磁性复合材料磁性能方法主要是选用各项异性磁粉,并且提高磁粉的填充量(填充质量比85%~92%),但这样会降低复合材料的熔体流动性,进而会降低各项异性磁粉在外磁场下的取向运动,降低材料的磁性能。
随着社会的发展,人们对聚合物基磁性复合材料的性能要求越来越高,尤其是应用在一些低温的环境中,比如聚合物基磁性复合材料应用在空调内部、冰箱内部、应用在东北寒冷地区、甚至应用在冷却液、液氮、液氨蒸汽输送领域。由于聚合物基磁性复合材料的韧性降低、并且热膨胀系数与其周围材料的热膨胀系数不同,导致产品容易开裂、甚至脱落。
有鉴于此,特提出本申请。
发明内容
本申请的主要目的在于提供一种功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料,以解决聚合物基磁性复合材料在低温环境下韧性降低、并且热膨胀系数与其周围材料的热膨胀系数不同,导致产品容易开裂、甚至脱落的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种功能磁粉,按质量份数计,该功能磁粉的原料包括磁粉70~92份、氨基硅烷偶联剂0.1~1份和羟基羧酸类化合物具有如下结构:CH 3(CH 2OHCCH 2OH) nCOOH,且n为1-4之间的整数。
进一步地,羟基羧酸类化合物为二羟基甲基丙酸;和/或,氨基硅烷偶联剂包括γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-氨乙基氨丙基三甲氧基硅烷、γ-氨乙基氨丙基三乙氧基硅烷中的至少一种。
进一步地,磁粉的材质包括锶铁氧体、钡铁氧体、钕铁硼或钐铁氮中的至少一种;和/或,磁粉的平均粒度为1~5μm。
根据本申请的另一个方面,还提供了一种功能磁粉的制备方法,该制备方法包括:步骤S1,将磁粉与氨基硅烷偶联剂混合进行偶联反应,得到偶联剂接枝磁粉,偶联反应的温度优选为60~120℃,时间优选为0.5~4h;步骤S2,将偶联剂接枝磁粉与羟基羧酸类化合物混合进行接枝反应,得到功能磁粉,接枝反应的温度优选为60~120℃,时间优选为0.5~4h;其中、磁粉、氨基硅烷偶联剂、羟基羧酸类化合物具有上述第一方面中相同的定义,在此不再赘述。
进一步地,步骤S1,先将氨基硅烷偶联剂分散于第一溶剂中,得到氨基硅烷偶联剂的溶液,再将氨基硅烷偶联剂的溶液与磁粉混合进行偶联反应,优选步骤S1还包括设置于偶联反应之后的干燥步骤;
和/或,步骤S2,先将羟基羧酸类化合物分散于第二溶剂中,得到羟基羧酸类化合物的溶液,再将羟基羧酸类化合物的溶液与偶联剂接枝磁粉混合进行接枝反应,优选步骤S2还包括设置于接枝反应之后的干燥步骤。
进一步地,第一溶剂和第二溶剂各自独立地为乙醇和水的混合溶液,优选乙醇和水的混合溶液中,乙醇和水的体积比为90~95:10~5。
根据本申请的第三个方面,本申请提供了一种磁性尼龙母粒,按质量百分比计,该磁性尼龙母粒的原料包括功能磁粉70%~94%、尼龙12弹性体6%~30%,其中,功能磁粉为上述第一方面提供的任一种功能磁粉或根据上述第二方面提供的任一种制备方法得到的功能磁粉。
进一步地,按质量百分比计,磁性尼龙母粒的原料还包括助剂0.3%~10%,助剂包括相容剂、润滑剂、抗氧剂或增塑剂中的至少一种。
进一步地,相容剂为马来酸酐接枝POE,马来酸酐接枝POE在磁性尼龙母粒原料中的质量含量为0.1%~5%。
进一步地,润滑剂为EVA蜡,EVA蜡在磁性尼龙母粒原料中的质量含量为0.1%~4%。
进一步地,抗氧剂为抗氧剂1010,抗氧剂1010在磁性尼龙中的质量含量为0.1%~0.5%。
根据本申请的第四个方面,还提供了上述磁性尼龙母粒的制备方法,该制备方法包括:将包括功能磁粉、尼龙12弹性体以及可选的助剂的磁性尼龙母粒的原料混合,得到原料混合物;将原料混合物进行挤出造粒,得到磁性尼龙母粒。
进一步地,采用双螺杆挤出机进行挤出造粒,挤出造粒的温度优选为160~250℃。
根据本申请的第五个方面,还提供了一种磁塑材料,该磁塑材料由上述第三方面提供的任一种磁性尼龙母粒制备得到。
应用本申请的技术方案,本申请提供的功能磁粉通过氨基硅烷偶联剂将羟基羧酸类化合物接枝于磁粉上,从而得到了表面具有羟基、酰胺基、甲基和氨基等功能基团的功能磁粉,大量功能基团使得功能磁粉与聚合物具备优异的亲和性和反应性,从而有利于功能磁粉在聚合物中分散均匀,进而提高聚合物基磁性复合材料在低温环境下的强度和韧性,避免产品开裂和脱落的现象发生。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本申请。
如本申请背景技术所分析的,现有聚合物基磁性复合材料存在低温环境下,韧性降低并且热膨胀系数与其周围材料的热膨胀系数不同,导致产品容易开裂甚至脱落的技术问题。为了解决该技术问题,本申请提供了一种功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料。
在本申请的一种典型实施方式中,提供了一种功能磁粉,按质量份数计,该功能磁粉的原料包括磁粉70~92份,氨基硅烷偶联剂0.1~1份和羟基羧酸类化合物0.1~1份,该羟基羧酸类化合物具有如下结构:CH 3(CH 2OHCCH 2OH) nCOOH,且n为1-4之间的整数。
本申请提供的功能磁粉通过氨基硅烷偶联剂将羟基羧酸类化合物接枝于磁粉上,从而得到了表面具有羟基、酰胺基、甲基和氨基等功能基团的功能磁粉,大量功能基团使得功能磁粉与聚合物具备优异的亲和性和反应性,从而有利于功能磁粉在聚合物中分散均匀,进而提高聚合物基磁性复合材料在低温环境下的强度和韧性,避免产品开裂和脱落的现象发生。
上述磁粉的类型不作限制,任何用于聚合物基磁性复合材料的磁粉均可,包括但不限于锶铁氧体、钡铁氧体、钕铁硼或钐铁氮中的任意一种或多种形成的混合磁粉。
为了进一步提高功能磁粉在聚合物中的分散均匀性,优选磁粉的平均粒度为1~5μm。
上述氨基硅烷偶联剂的类型也不作限制,任何同时具备氨基和硅氧基的氨基硅烷偶联剂均可,包括但不限于γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-氨乙基氨丙基三甲氧基硅烷、γ-氨乙基氨丙基三乙氧基硅烷中的任意一种或多种形成的混合偶联剂。
上述羟基羧酸类化合物同时具备甲基、羟基和羧基,进而能够通过羧基与氨基硅烷偶联剂的氨基反应将其连接到磁粉表面,形成表面具备有羟基、酰胺基、甲基和氨基等功能基团的功能磁粉。上述羟基羧酸类化合物中,n选自1、2、3或4中的任意一个整数。
为了进一步提高羟基羧酸类化合物的接枝率,优选上述羟基羧酸类化合物中的n为1,即该羟基羧酸类化合物为二羟基甲基丙酸。
上述氨基硅烷偶联剂用量过多,会造成部分氨基硅烷偶联剂完全偶联于磁粉上,造成氨基硅烷偶联剂的浪费,上述氨基硅烷偶联剂用量过少,会造成磁粉的表面无法被氨基硅烷基所偶联,导致后续接枝的羟基羧酸类化合物较少,进而导致功能磁粉表面的功能基团较小,无法与聚合物形成良好的相互作用以及反应,导致无法有效提高聚合物基磁性复合材料在低温环境下的的强度和韧性。羟基羧酸类化合物的用量过多会导致部分羟基羧酸类化合物无法接枝于偶联磁粉上,造成羟基羧酸类化合物的浪费,羟基羧酸类化合物用量过少,会导致功能磁粉表面的甲基、羟基以及酰胺基团较少,无法与聚合物形成良好的相互作用及反应。在本申请中,制备功能磁粉的原料中,按质量份数计,磁粉70~92份,氨基硅烷偶联剂0.1~1份和羟基羧酸类化合物0.1~1份更能够在减少原料浪费的情况下提高功能磁粉表面的功能基团,进而提高其与聚合物之间的亲和性和反应性。
典型但非限制性的,上述功能磁粉的原料中,磁粉的质量份数如为70份、72份、75份、78份、80份、82份、85份、88份、90份、92份或任意两个数值组成的范围值;氨基硅烷偶联剂的质量份数如为0.1份、0.2份、0.5份、0.8份、1份或任意两个数值组成的范围值;羟基羧酸类化合物的质量份数如为0.1份、0.2份、0.5份、0.8份、1份或任意两个数值组成的范围值。
在本申请的第二种典型实施方式中,还提供了上述功能磁粉的制备方法,该制备方法包括:步骤S1,将磁粉与氨基硅烷偶联剂混合进行偶联反应,得到偶联剂接枝磁粉,步骤S2,将偶联剂接枝磁粉与羟基羧酸类化合物混合进行接枝反应,得到功能磁粉;其中,磁粉、氨基硅烷偶联剂以及羟基羧酸类化合物均具有上述第一种典型实施方式中的相同定义。
本申请提供的功能磁粉的制备方法工艺简单,易于操作,能够适用于规模化生产,降低生产成本。
上述步骤S1中,为了进一步提高偶联反应的效率,优选偶联反应的温度为60~120℃,时间为0.5~4h。
上述步骤S1中,为了进一步促进氨基硅烷偶联剂与磁粉混合的更加均匀以及进一步提高偶联反应的效率,优选先将氨基硅烷偶联剂分散于第一溶剂中,得到氨基硅烷偶联剂的溶液,再将氨基硅烷偶联剂的溶液与磁粉混合进行偶联反应。
为了避免第一溶剂的存在影响后续接枝反应,优选上述步骤S1还包括偶联反应后的干燥步骤,通过干燥去除第一溶剂,得到偶联剂接枝磁粉。
上述氨基硅烷偶联剂的溶液的质量浓度不作限制,易于与磁粉混合均匀的质量浓度均可。从环保以及成本的角度出发,优选第一溶剂为乙醇和水的混合溶液,尤其是当第一溶剂中乙醇和水的体积比为90~95:10~5时更利于分散氨基硅烷偶联剂。
上述步骤S2中,为了进一步提高接枝效率,优选接枝反应的温度为60~120℃,时间为0.5~4h。
上述步骤S2中,为了进一步促进羟基羧酸类化合物与偶联剂接枝磁粉混合的更加均匀以及进一步提高接枝效率,优选先将羟基羧酸类化合物分散于第二溶剂中,得到羟基羧酸类化合物的溶液,再将羟基羧酸类化合物的溶液与偶联剂接枝磁粉混合进行接枝反应。
为了避免第二溶剂的存在影响功能磁粉的性能,优选上述步骤S2还包括接枝反应后的干燥步骤,通过干燥去除第二溶剂,得到功能磁粉。
上述羟基羧酸类化合物的溶液的质量浓度不作限制,易于与氨基硅烷偶联剂混合均匀的质量浓度均可。从环保以及成本的角度出发,优选第二溶剂为乙醇和水的混合溶液,尤其是当第二溶剂中乙醇和水的体积比为90~95:10~5时更利于分散羟基羧酸类化合物。
典型但非限制性的,上述步骤S1中,偶联反应的温度如为60℃、70℃、80℃、90℃、100℃、110℃、120℃或任意两个数值组成的范围值;偶联反应的时间如为0.5h、1h、1.5h、2h、2.5h、3h、3.5h、4h或任意两个数值组成的范围值;上述步骤S2中,接枝反应的温度如为60℃、70℃、80℃、90℃、100℃、110℃、120℃或任意两个数值组成的范围值;接枝反应的时间如为0.5h、1h、1.5h、2h、2.5h、3h、3.5h、4h或任意两个数值组成的范围值;上述第一溶剂和第二溶剂中,乙醇和水的体积比如为90:10、91:9、92:8、93:7、94:6、95:5或任意两个数值组成的范围值。
在本申请的第三种典型实施方式中,还提供了一种磁性尼龙母粒,按质量百分比计,该磁性尼龙母粒的原料包括功能磁粉70%~94%,尼龙12弹性体6%~30%,其中,功能磁粉为上述第一种典型实施方式提供的任一种功能磁粉或根据第二种典型实施方式提供的任一种制备方法得到的功能磁粉。
本申请提供的磁性尼龙母粒选用特定质量配比的尼龙12弹性体与功能磁粉相配合,功能磁粉在尼龙12弹性体中均匀分散且尼龙与功能磁粉通过功能磁粉表面的羟基、甲基、氨基以及酰胺基相结合,有效提高了磁性尼龙母粒的机械性能,从而有利于提高磁性尼龙母粒制备得到的磁塑复合材料在低温下的强度和韧性,避免出现脱落和开裂的现象。
为了进一步提高上述磁性尼龙母粒的加工性能,优选磁性尼龙母粒的原料还包括按质量百分比计的助剂0.3%~10%,该助剂的类型不作限制,包括但不限于相容剂、润滑剂、抗氧剂或增塑剂中的任意一种或多种形成的混合助剂。
为了进一步提高上述磁性尼龙母粒的性能,优选磁性尼龙母粒的原料还包括按质量百分比计的相容剂0.1%~5%、润滑剂0.1%~4%、增塑剂0.1%~1%和抗氧剂0.1~0.5%。
上述相容剂的类型不作限制,从进一步提高磁性尼龙母粒性能的角度出发,优选为马来酸酐接枝POE。上述润滑剂的类型也不作限制,从降低成本的角度出发优选为EVA蜡。上述增塑剂的类型不作限制,从提高与尼龙12弹性体相容性的角度出发,优选为季戊四醇硬脂酸酯。上述抗氧剂的类型也不作限制,从提高磁性尼龙母粒加工效率的角度出发,优选为抗氧剂1010。
典型但非限制性的,上述磁性尼龙母粒的原料中,功能磁粉的质量含量如为70%、70.2%、72%、75%、78%、80%、82%、85%、88%、90%、92%、94%或任意两个数值组成的范围值;尼龙12弹性体的质量含量如为6%、8%、10%、12%、15%、18%、20%、22%、25%、28%、30%或任意两个数值组成的范围值;可选的马来酸杆接枝POE的质量含量如为0.1%、0.2%、0.5%、0.8%、1%、1.5%、2%、3%、4%、5%或任意两个数值组成的范围值;可选的EVA蜡的质量含量如为0.1%、0.2%、0.5%、0.8%、1%、1.5%、2%、2.5%、3%、3.5%、4%或任意两个数值组成的范围值;可选的季戊四醇硬酯酸酯的质量含量如为0.1%、0.2%、0.5%、0.8%、1%或任意两个数值组成的范围值;可选的抗氧剂1010的质量含量如为0.1%、0.2%、0.3%、0.4%、0.5%或任意两个数值组成的范围值。
在本申请的第四种典型实施方式中,还提供了上述磁性尼龙母料的制备方法,该制备方法包括:将包括功能磁粉、尼龙12弹性体以及可选的助剂的磁性尼龙母粒的原料混合,得到原料混合物;将原料混合物进行挤出造粒,得到磁性尼龙母粒。
本申请提供的磁性尼龙母粒的制备方法工艺简单,易于操作,能够适用于工业化生产,有利于降低制备成本。
为了进一步提高挤出造粒的效率,优选采用双螺杆挤出机进行挤出造粒。为了进一步提高磁性尼龙母粒的制备效率,优选挤出造粒的温度为160~250℃。
典型但非限制性的,挤出造粒的温度如为160℃、170℃、180℃、200℃、220℃、250℃或任意两个数值组成的范围值。
在本申请的第五种典型实施方式中,还提供了一种磁塑材料,该磁塑材料由上述第三种典型实施方式提供的任一种磁性尼龙母粒制备得到。
本申请提供的磁塑材料由磁性尼龙母粒制备得到,通过将功能磁粉与尼龙12弹性体相配合,使得磁塑材料在低温环境下具备优异的强度和韧性,有效避免了开裂和脱落现象的出现,在汽车、家电等耐低温配件领域具有广阔的应用前景。
下面将结合实施例和对比例,进一步说明本申请的优异效果。
下述实施例及对比例的原料均由市售购买得到。
实施例1
本实施例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)70kg、γ-氨丙基三乙氧基硅烷0.8kg,二羟基甲基丙酸0.5kg;其按照如下步骤制备得到:
(1)将0.8kgγ-氨丙基三乙氧基硅烷分散在乙醇和水的混合溶液中(乙醇和水的体积比为95:5),得到10kgγ-氨丙基三乙氧基硅烷溶液;
(2)将0.5kg二羟基甲基丙酸分散在乙醇和水的混合溶液中(乙醇和水的体积比为95:5)得到10kg二羟基甲基丙酸溶液;
(3)将70kg锶铁氧体磁粉和10kgγ-氨丙基三乙氧基硅烷溶液加入混合机中混合进行偶联反应,设定温度为110℃,转速为200r/min,反应2h后干燥,得到偶联剂接枝磁粉;
(4)将偶联剂接枝磁粉和10kg二羟基甲基丙酸溶液在室温下混合进行接枝反应,反应2h后干燥,得到功能磁粉71.3kg。
实施例2
本实施例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)80kg、γ-氨丙基三乙氧基硅烷0.8kg,二羟基甲基丙酸0.5kg;其制备方法同实施例1,得到的功能磁粉为81.3kg。
实施例3
本实施例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)90kg、γ-氨丙基三乙氧基硅烷0.6kg,二羟基甲基丙酸0.5kg;其制备方法同实施例1,得到的功能磁粉为91.1kg。
实施例4
本实施例提供了一种功能磁粉,其原料包括钕铁硼磁粉(平均粒度100μm)85kg、γ-氨丙基三乙氧基硅烷0.8kg,二羟基甲基丙酸0.5kg;其制备方法同实施例1,得到的功能磁粉为86.3kg。
实施例5
本实施例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)70kg、γ-氨丙基三乙氧基硅烷1kg,二羟基甲基丙酸1kg;其制备方法同实施例1,得到的功能磁粉为72kg。
实施例6
本实施例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)92kg、γ-氨丙基三乙氧基硅烷0.1kg,二羟基甲基丙酸0.1kg;其制备方法同实施例1,得到的功能磁粉为92.2kg。
对比例1
本对比例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)70kg,γ-氨丙基三乙氧基硅2kg,二羟基甲基丙酸2kg,得到的功能磁粉为74kg。
对比例2
本对比例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)70kg,γ-氨丙基三乙氧基硅0.05kg,二羟基甲基丙酸0.05kg,得到的功能磁粉为70.1kg。
对比例3
本对比例提供了一种功能磁粉,其原料包括锶铁氧体磁粉(平均粒度1.5μm)70kg,γ-氨丙基三乙氧基硅0.8kg,未加入二羟基甲基丙酸,得到的功能磁粉为70.8kg。
实施例7
本实施例提供了一种磁性尼龙母粒,其原料为实施例1制备得到的71.3kg功能磁粉、23kg尼龙12弹性体,3kg马来酸酐接枝POE、1.5kgEVA蜡、0.7kg季戊四醇硬脂酸酯、0.5kg抗氧剂1010。该磁性尼龙母粒的制备方法包括以下步骤:
(1)将实施例1制备得到的71.3kg功能磁粉、23kg尼龙12弹性体,3kg马来酸酐接枝POE、1.5kgEVA蜡、0.7kg季戊四醇硬脂酸酯、0.5kg抗氧剂1010加入到高速混合机中,以300r/min的速度混合并烘干1h,得到原料混合物;
(2)将原料混合物通过双螺杆挤出机进行混合并挤出造粒,挤出造粒的温度设置为220℃,得到磁性尼龙母粒。
实施例8
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为:实施例2制备得到的81.3kg功能磁粉、14.7kg尼龙12弹性体、2kg马来酸酐接枝POE、1kg EVA蜡、0.5kg季戊四醇硬脂酸酯和0.5kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
实施例9
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为:实施例3制备得到的91.1kg功能磁粉、6kg尼龙12弹性体、2kg马来酸酐接枝POE、0.5kg EVA蜡、0.2kg季戊四醇硬脂酸酯和0.2kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
实施例10
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为:实施例4制备得到的86.3kg功能磁粉、10kg尼龙12弹性体、2kg马来酸酐接枝POE、1kg EVA蜡、0.4kg季戊四醇硬脂酸酯和0.3kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
实施例11
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为:实施例5制备得到的72kg功能磁粉、22.2kg尼龙12弹性体、3kg马来酸酐接枝POE、1.5kg EVA蜡、0.7kg季戊四醇硬脂酸酯和0.6kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
实施例12
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为:实施例6制备得到的92.2kg功能磁粉、6kg尼龙12弹性体、1kg马来酸酐接枝POE、0.3kg EVA蜡、0.3kg季戊四醇硬脂酸酯和0.1kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
对比例4
本对比例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为对比例1制备得到的74kg功能磁粉、21kg尼龙12弹性体,2kg马来酸酐接枝POE、1.8kgEVA蜡、0.7kg季戊四醇硬脂酸酯、0.5kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
对比例5
本对比例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为对比例2制备得到的70.1kg功能磁粉、24.9kg尼龙12弹性体,2kg马来酸酐接枝POE、1.8kgEVA蜡、0.7kg季戊四醇硬脂酸酯、0.5kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
对比例6
本对比例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为对比例3制备得到的70.8kg功能磁粉、24.2kg尼龙12弹性体,2kg马来酸酐接枝POE、1.8kgEVA蜡、0.7kg季戊四醇硬脂酸酯、0.5kg抗氧剂1010,其制备方法同实施例7,在此不再赘述。
对比例7
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为实施例1制备得到的61.3kg功能磁粉、33kg尼龙12弹性体,3kg马来酸酐接枝POE、1.5kgEVA蜡、0.7kg季戊四醇硬脂酸酯、0.5kg抗氧剂1010。
对比例8
本实施例提供了一种磁性尼龙母粒,其与实施例7的不同之处在于,其原料为实施例1制备得到的94kg功能磁粉、3.3kg尼龙12弹性体,1.5kg马来酸酐接枝POE、0.5kgEVA蜡、0.5kg季戊四醇硬脂酸酯、0.2kg抗氧剂1010。
试验例1
分别将实施例7-12以及对比例4-8提供的磁性尼龙母粒注塑成180mm×13mm×3mm的注塑样条,具体注塑步骤为:将磁性尼龙母粒烘干(100℃、6小时),放在注塑机中,注塑温度为280℃,注塑压力为100MPa,注塑到相应模具中,冷却得到注塑样条。按照同样步骤,注塑得到磁性能和低温测试用注塑圆饼
Figure PCTCN2022122234-appb-000001
然后分别检测上述注塑样条的拉伸强度、拉断伸长率,以及注塑圆饼剩磁Br、磁能积(BH)max以及在零下60℃下是否开开裂,结果如下表1所示。
其中,(1)剩磁Br和磁能积(BH)max的检测方法为,将注塑圆饼放入磁性能综合测试仪中,给注塑圆饼施加外加磁场,同时测试注塑圆饼的感应磁场,记录仪器输出的剩磁和磁能积。
(2)零下60℃下是否开裂的检测方法为,将注塑圆饼放入-60℃冰箱中,1小时后取出放入到100℃的烘箱中,1小时后取出再放入到-60℃的冰箱中,如此循环48小时,观察注塑圆饼是否开裂。
表1
Figure PCTCN2022122234-appb-000002
从以上的描述中可以看出,本申请上述的实施例实现了如下技术效果:本申请提供的功能磁粉通过氨基硅烷偶联剂将羟基羧酸类化合物接枝于磁粉上,从而得到了表面具有羟基、 酰胺基、甲基和氨基等功能基团的功能磁粉,大量功能基团使得功能磁粉与聚合物具备优异的亲和性和反应性,从而有利于功能磁粉在聚合物中分散均匀,得到的磁性尼龙母粒制备而成的聚合物基磁性复合材料在低温环境下具备有优异的拉伸强度和韧性,能够有效避免产品开裂和脱落的现象发生。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种功能磁粉,其特征在于,按质量份数计,所述功能磁粉的原料包括磁粉70~92份,氨基硅烷偶联剂0.1~1份和羟基羧酸类化合物0.1~1份,其中,所述羟基羧酸类化合物的具有如下结构:CH 3(CH 2OHCCH 2OH) nCOOH,且n为1-4之间的整数。
  2. 根据权利要求1所述的功能磁粉,其特征在于,所述羟基羧酸类化合物为二羟基甲基丙酸;
    和/或,所述氨基硅烷偶联剂包括γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-氨乙基氨丙基三甲氧基硅烷、γ-氨乙基氨丙基三乙氧基硅烷中的至少一种。
  3. 根据权利要求1或2所述的功能磁粉,其特征在于,所述磁粉的材质包括锶铁氧体、钡铁氧体、钕铁硼或钐铁氮中的至少一种;
    和/或,所述磁粉的平均粒度为1~5μm。
  4. 一种功能磁粉的制备方法,其特征在于,所述制备方法包括:
    步骤S1,将磁粉与氨基硅烷偶联剂混合进行偶联反应,得到偶联剂接枝磁粉;所述偶联反应的温度优选为60~120℃,时间优选为0.5~4h;
    步骤S2,将所述偶联剂接枝磁粉与羟基羧酸类化合物混合进行接枝反应,得到所述功能磁粉,所述接枝反应的温度优选为60~120℃,时间优选为0.5~4h;
    其中,所述磁粉、所述氨基硅烷偶联剂、所述羟基羧酸类化合物具有上述权利要求1至3中任一项的相同定义。
  5. 根据权利要求4所述的制备方法,其特征在于,所述步骤S1,先将所述氨基硅烷偶联剂分散于第一溶剂中,得到氨基硅烷偶联剂的溶液,再将所述氨基硅烷偶联剂的溶液与所述磁粉混合进行所述偶联反应;优选所述步骤S1还包括设置于所述偶联反应之后的干燥步骤;
    和/或,所述步骤S2,先将所述羟基羧酸类化合物分散于第二溶剂中,得到羟基羧酸类化合物的溶液,再将所述羟基羧酸类化合物的溶液与所述偶联剂接枝磁粉混合进行接枝反应;优选所述步骤S2还包括设置于接枝反应之后的干燥步骤;
    优选地,所述第一溶剂和所述第二溶剂各自独立地为乙醇和水的混合溶液,优选所述乙醇和水的混合溶液中,乙醇和水的体积比为90~95:10~5。
  6. 一种磁性尼龙母粒,其特征在于,按质量百分比计,所述磁性尼龙母粒的原料包括功能磁粉70%~94%、尼龙12弹性体6%~30%,其中,所述功能磁粉为权利要求1至3中任一项所述的功能磁粉或根据权利要求4或5所述的制备方法得到的功能磁粉。
  7. 根据权利要求6所述的磁性尼龙母粒,其特征在于,按质量百分比计,所述磁性尼龙母粒的原料还包括助剂0.3%~10%,所述助剂包括相容剂、润滑剂、抗氧剂或增塑剂中的至少一种;
    优选地,所述相容剂为马来酸酐接枝POE,所述马来酸酐接枝POE在所述磁性尼龙母粒原料中的质量含量为0.1%~5%;
    优选地,所述润滑剂为EVA蜡,所述EVA蜡在所述磁性尼龙母粒原料中的质量含量为0.1%~4%;
    优选地,所述增塑剂为季戊四醇硬酯酸酯,所述季戊四醇硬酯酸酯在所述磁性尼龙母粒中的质量含量为0.1%~1%;
    优选地,所述抗氧剂为抗氧剂1010,所述抗氧剂1010在所述磁性尼龙中的质量含量为0.1%~0.5%。
  8. 根据权利要求6或7所述的磁性尼龙母粒的制备方法,其特征在于,所述制备方法包括:将包括所述功能磁粉、所述尼龙12弹性体以及可选的所述助剂的所述磁性尼龙母粒的原料混合,得到原料混合物;将所述原料混合物进行挤出造粒,得到所述磁性尼龙母粒。
  9. 根据权利要求8所述的制备方法,其特征在于,采用双螺杆挤出机进行所述挤出造粒,所述挤出造粒的温度优选为160~250℃。
  10. 一种磁塑材料,其特征在于,所述磁塑材料由权利要求6或7所述的磁性尼龙母粒制备得到。
PCT/CN2022/122234 2022-07-28 2022-09-28 功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料 WO2024021297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210899899.XA CN117510991A (zh) 2022-07-28 2022-07-28 功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料
CN202210899899.X 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024021297A1 true WO2024021297A1 (zh) 2024-02-01

Family

ID=89705114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122234 WO2024021297A1 (zh) 2022-07-28 2022-09-28 功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料

Country Status (2)

Country Link
CN (1) CN117510991A (zh)
WO (1) WO2024021297A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680140A (en) * 1985-01-31 1987-07-14 Mitsubishi Petrochemical Company Limited Metal powder-containing compositions
JPH02113061A (ja) * 1988-10-21 1990-04-25 Ube Ind Ltd 高流動性プラスチック磁性組成物
JP2003151810A (ja) * 2001-11-09 2003-05-23 Minebea Co Ltd ポリアミド系プラスチック磁性材料、およびそれから作製された磁石
CN1645526A (zh) * 2005-01-18 2005-07-27 横店集团东磁有限公司 注塑铁氧体永磁材料配方
JP2009155545A (ja) * 2007-12-27 2009-07-16 Nippon Zeon Co Ltd 磁性複合材料の製造方法及び成形体
CN102977383A (zh) * 2012-07-30 2013-03-20 横店集团东磁股份有限公司 永磁铁氧体注塑母料的制备方法及制得的永磁铁氧体注塑母料
CN105348789A (zh) * 2015-12-09 2016-02-24 重庆可益荧新材料有限公司 一种磁性尼龙复合材料及其制备方法
CN107033632A (zh) * 2017-04-20 2017-08-11 安徽春辉仪表线缆集团有限公司 一种超支化聚酯功能化接枝炭黑导电填料及其制备方法
CN109294220A (zh) * 2018-08-22 2019-02-01 横店集团东磁股份有限公司 一种注塑用磁性材料-尼龙复合材料及其制备方法
CN109880312A (zh) * 2019-01-29 2019-06-14 安徽天光传感器有限公司 一种传感器外壳用改性聚丁二酸丁二醇酯复合材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680140A (en) * 1985-01-31 1987-07-14 Mitsubishi Petrochemical Company Limited Metal powder-containing compositions
JPH02113061A (ja) * 1988-10-21 1990-04-25 Ube Ind Ltd 高流動性プラスチック磁性組成物
JP2003151810A (ja) * 2001-11-09 2003-05-23 Minebea Co Ltd ポリアミド系プラスチック磁性材料、およびそれから作製された磁石
CN1645526A (zh) * 2005-01-18 2005-07-27 横店集团东磁有限公司 注塑铁氧体永磁材料配方
JP2009155545A (ja) * 2007-12-27 2009-07-16 Nippon Zeon Co Ltd 磁性複合材料の製造方法及び成形体
CN102977383A (zh) * 2012-07-30 2013-03-20 横店集团东磁股份有限公司 永磁铁氧体注塑母料的制备方法及制得的永磁铁氧体注塑母料
CN105348789A (zh) * 2015-12-09 2016-02-24 重庆可益荧新材料有限公司 一种磁性尼龙复合材料及其制备方法
CN107033632A (zh) * 2017-04-20 2017-08-11 安徽春辉仪表线缆集团有限公司 一种超支化聚酯功能化接枝炭黑导电填料及其制备方法
CN109294220A (zh) * 2018-08-22 2019-02-01 横店集团东磁股份有限公司 一种注塑用磁性材料-尼龙复合材料及其制备方法
CN109880312A (zh) * 2019-01-29 2019-06-14 安徽天光传感器有限公司 一种传感器外壳用改性聚丁二酸丁二醇酯复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, YUPING; LI, JIAYU; HU, JIANGPING; FU, XIAOMIN; JIN, ZHIHONG; XU, CHEN; YAN, MI: "Effect of Additives on the Fluidity of Anisotropic Injection Ferrite Granules", JOURNAL OF MAGNETIC MATERIALS AND DEVICES, CN, no. 02, 15 April 2013 (2013-04-15), CN , pages 34 - 36, 55, XP009552267, ISSN: 1001-3830 *

Also Published As

Publication number Publication date
CN117510991A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN106349686B (zh) 一种高性能聚酰胺/钐铁氮磁性复合材料及其制备方法
CN106317875B (zh) 一种高性能聚苯硫醚/钐铁氮磁性复合材料及其制备方法
CN105623097A (zh) 一种纳米材料复合长玻纤增强聚丙烯材料及其制备方法
CN102408703B (zh) 铁氧体/聚酰胺复合材料、其制备方法和应用
CN103382302A (zh) 一种红磷阻燃尼龙组合物及其制备方法
CN105885415B (zh) 一种制备高韧性聚苯硫醚/铁氧体复合材料的方法
CN109294220A (zh) 一种注塑用磁性材料-尼龙复合材料及其制备方法
CN103862589A (zh) 一种熔融共混制备聚酰胺基导热复合材料的方法
CN105504803A (zh) 一种高流动性纤维增强尼龙复合材料及其制备方法
CN101891928A (zh) 一种pctfe改性填充复合材料及其生产方法
CN101364467A (zh) 一种具有良好加工性能的铁氧体粘结磁体的制备方法
WO2024021297A1 (zh) 功能磁粉及其制备方法、磁性尼龙母粒及其制备方法和磁塑材料
CN112552684B (zh) 微弧氧化专用低线性膨胀系数聚苯硫醚复合材料及其制备和应用
CN101067041A (zh) 一种聚酰胺/丙烯腈-丁二烯-苯乙烯共聚物合金及其制备方法
CN108587147A (zh) 一种尼龙6组合物及其制备方法和应用
CN110335734A (zh) 一种高强度高流动性钕铁硼粒料及其制备方法
CN103992630A (zh) 用于汽车轮毂外罩的聚苯醚树脂合金材料及其制备方法
CN114381122A (zh) 一种稀土复合材料及其制备方法与应用
CN112223578B (zh) 一种原位聚合制备高韧性锶铁氧体/pps注塑成型颗粒料的方法
CN111574843B (zh) 高静曲、抗磨、耐高低温型塑木复合材料及制备方法
CN113045876A (zh) 一种pet/abs塑料合金及其制备方法
CN111349331A (zh) 用于高抗冲低翘曲矿物填充pc合金材料及其制备方法
CN110760136A (zh) 一种冰箱冷冻室用耐低温改性塑料
CN116178956B (zh) 改性pps及制备方法和应用、铁氧体/改性pps塑磁材料
CN111210964A (zh) 一种注塑永磁铁氧体磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952738

Country of ref document: EP

Kind code of ref document: A1