WO2024021210A1 - 芯包、铝电解电容器及其封装方法 - Google Patents

芯包、铝电解电容器及其封装方法 Download PDF

Info

Publication number
WO2024021210A1
WO2024021210A1 PCT/CN2022/114490 CN2022114490W WO2024021210A1 WO 2024021210 A1 WO2024021210 A1 WO 2024021210A1 CN 2022114490 W CN2022114490 W CN 2022114490W WO 2024021210 A1 WO2024021210 A1 WO 2024021210A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
electrode
conductive
conductive foil
packaging bag
Prior art date
Application number
PCT/CN2022/114490
Other languages
English (en)
French (fr)
Inventor
刘博�
艾立华
艾亮
王安安
Original Assignee
湖南艾华集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南艾华集团股份有限公司 filed Critical 湖南艾华集团股份有限公司
Priority to KR1020237014040A priority Critical patent/KR20240017157A/ko
Priority to CA3209011A priority patent/CA3209011A1/en
Priority to EP22925228.3A priority patent/EP4339978A1/en
Publication of WO2024021210A1 publication Critical patent/WO2024021210A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present disclosure relates to the technical field of capacitors, and in particular, to a core package, an aluminum electrolytic capacitor and a packaging method thereof.
  • the existing technology is difficult to realize a direct connection between the conductive foil strip and the anode foil used for capacitor lead-out, and will damage the structure of the anode foil;
  • problems such as current accumulation and heat generation at the connection point between the conductive foil strip and the anode foil. The above problems will lead to the problem that the performance of the aluminum electrolytic capacitor cannot be guaranteed.
  • the purpose of this disclosure is to provide a core package, an aluminum electrolytic capacitor and a packaging method thereof, which are used to solve the problem that the capacitance lead-out structure of the existing square aluminum electrolytic capacitor cannot guarantee the performance of the aluminum electrolytic capacitor.
  • One embodiment of the present disclosure provides a core package, which includes:
  • a plurality of first electrode foils and a plurality of second electrode foils are stacked, two adjacent first electrode foils are separated by one second electrode foil, and two adjacent second electrode foils are separated by One of the first electrode foils is spaced apart, and the adjacent first electrode foil and the second electrode foil are spaced apart by electrolytic paper;
  • the first electrode foil is any one of an anode foil and a cathode foil, so The second electrode foil is the other one of the anode foil and the cathode foil;
  • a first conductive foil is provided on the edge of each first electrode foil, and the first part of the first conductive foil is electrically connected to the corresponding first electrode foil. Connection, the second part of the first conductive foil extends and protrudes relative to the first electrode foil; multiple first conductive foils are connected to one first conductive foil strip through the second part;
  • an oxide film is formed on the surface of the first conductive foil.
  • a second conductive foil is provided at the edge of each second electrode foil, and the third conductive foil of the second conductive foil is One part is electrically connected to the corresponding second electrode foil, and the second part of the second conductive foil extends and protrudes relative to the second electrode foil; a plurality of the second conductive foils pass through the second Both sections are connected to a second chaff strip;
  • an oxide film is formed on the surface of the second conductive foil.
  • the first conductive foil is made of pure aluminum material, and the characteristics of the surface oxide film of the first conductive foil are consistent with the surface oxide film of the first electrode foil. characteristics are the same.
  • the surface of the first conductive foil is treated by a chemical conversion process to form the oxide film, and the surface of the first conductive foil is treated by a chemical conversion process to form the oxide film.
  • the method is the same as the chemical formation process for forming an oxide film on the surface of the first electrode foil.
  • the core package wherein the first electrode foil is an anode foil, and the second electrode foil is a cathode foil;
  • Each of the cathode foils includes an integrally formed body portion and a tab portion, the tab portion protrudes relative to an edge of the body portion, and a plurality of cathode foils are connected to a third conductor through the tab portion. chaff.
  • each of the first electrode foils respectively includes an integrally formed body part and a tab part, and the tab part protrudes relative to an edge of the body part, and the first electrode foil A first portion of a conductive foil is connected to the first electrode foil through the tab portion;
  • the tab portions of the plurality of first electrode foils are arranged staggered in sequence along the first direction.
  • a plurality of the first conductive foils are arranged sequentially along the first direction, and the second parts of two adjacent first conductive foils are connected in contact with each other.
  • the core package wherein the thickness of the first conductive foil is between 5-50 ⁇ m.
  • the first part of the first conductive foil and the first electrode foil are connected by one of riveting, welding and conductive glue.
  • One embodiment of the present disclosure also provides an aluminum electrolytic capacitor, which includes the core package as described in any one of the above.
  • the aluminum electrolytic capacitor wherein the aluminum electrolytic capacitor further includes a first shell with one end open and made of aluminum material, and the core package is arranged inside the first shell;
  • a first packaging cover plate is provided at the opening, and a wiring post is provided on the first packaging cover plate; the first conductive foil strip is connected to the wiring post on the first packaging cover plate.
  • the size and shape of the first shell are adapted to the size and shape of the core package.
  • the aluminum electrolytic capacitor wherein the aluminum electrolytic capacitor further includes a packaging bag made of aluminum plastic film, the packaging bag is formed into an accommodation cavity, and the edge of the accommodation cavity is sealed to seal the The core package is sealed inside the packaging bag, and the first foil strip extends through the first sealing edge of the packaging bag to the outside of the packaging bag.
  • the aluminum electrolytic capacitor wherein the aluminum electrolytic capacitor further includes a second shell with an open end, and the packaging bag containing the core package is disposed inside the second shell;
  • a second packaging cover plate is provided at the opening, a wiring post is provided on the second packaging cover plate, and the first conductive foil strip is connected to the wiring post on the second packaging cover plate.
  • the aluminum electrolytic capacitor further includes an integrally formed second shell, the packaging bag is disposed inside the second shell, and the first conductive foil strip extends out to the outside of the second housing, and the first foil strip and the second housing are sealed and insulated.
  • the aluminum electrolytic capacitor wherein the packaging bag further includes an airbag structure separated from the accommodation cavity by a separation strip; the isolation strip is provided with a gasket connecting the airbag structure and the accommodation cavity.
  • the airbag structure is disposed on one side of the accommodation cavity, wherein the direction from the accommodation cavity to the airbag structure is a plurality of first electrode foils and a plurality of second electrodes. The direction in which the foil stacks are set.
  • a compression clamp is further provided inside the second housing, the compression clamp clamps the accommodation cavity, and the airbag structure is located on the compression clamp. one side.
  • the isolation strip is opposite to the first sealing edge of the packaging bag, or the isolation strip is located at an adjacent side of the first sealing edge.
  • the aluminum electrolytic capacitor wherein the width of the second sealing edge of the packaging bag is greater than the width of the first sealing edge
  • the second sealing edge is located on both sides of the first sealing edge.
  • the second sealing edge includes at least two sealing isolation strips.
  • One embodiment of the present disclosure also provides a packaging method, which is applied to the aluminum electrolytic capacitor as described above, wherein the method includes:
  • the core package is placed in the receiving cavity of the packaging bag, and the first foil strip of the core package is passed through the opening of the packaging bag;
  • the packaging bag is made of aluminum-plastic film;
  • the packaging bag is heat-pressed and sealed at the opening to form a first sealing edge, and the connecting glue on the first conductive foil strip is heat-sealed and connected to the packaging bag.
  • the packaging bag further includes an airbag structure separated from the accommodation cavity by a sealing isolation strip; the sealing isolation strip is provided with a seal connecting the airbag structure and the accommodation cavity.
  • the exhaust structure the method further includes:
  • the second packaging cover is sealed, and the packaging bag is sealed inside the second shell.
  • Figure 1 is one of the schematic diagrams of the implementation structure of the core package according to the embodiment of the present disclosure
  • Figure 2 is a schematic diagram of one implementation structure of the first electrode foil
  • Figure 3 is the second structural schematic diagram of the implementation of the core package according to the embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of one implementation structure of the second electrode foil
  • Figure 5 is the third schematic diagram of the implementation structure of the core package according to the embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of another implementation structure of the first electrode foil
  • Figure 7 is one of the implementation structural diagrams of the packaging bag in the embodiment of the present disclosure.
  • Figure 8 is the second implementation structural diagram of the packaging bag in the embodiment of the present disclosure.
  • Figure 9 is the third implementation structure diagram of the packaging bag in the embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a capacitor according to one embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a compression clamp provided on the packaging bag in an embodiment of the present disclosure.
  • embodiments of the present disclosure provide a core package.
  • the first conductive foil is Connect the first electrode foil and the first conductive foil strip to realize the capacitance extraction of the first electrode foil.
  • the connection area between the first conductive foil piece and the first electrode foil is large and easy to realize, so as to effectively ensure the performance of the aluminum electrolytic capacitor;
  • the arrangement of the oxide film on the first conductive foil can avoid the problem that the performance of the aluminum electrolytic capacitor cannot be guaranteed due to a large amount of heat generated at the connection position due to current accumulation.
  • the core package 10 includes:
  • a plurality of first electrode foils 100 and a plurality of second electrode foils 200 are stacked, two adjacent first electrode foils 100 are separated by a second electrode foil 200, and two adjacent second electrode foils 200 are separated by a
  • the first electrode foil 100 is spaced apart, and the adjacent first electrode foil 100 and the second electrode foil 200 are spaced apart by electrolytic paper 300;
  • the first electrode foil 100 is either an anode foil or a cathode foil, and the second electrode foil 200 is the other of the anode foil and the cathode foil;
  • a first conductive foil 101 is provided on the edge of each first electrode foil 100.
  • the first part of the first conductive foil 101 is electrically connected to the corresponding first electrode foil 100.
  • a second part of a conductive foil 101 extends and protrudes relative to the first electrode foil 100; multiple first conductive foils are connected to a first conductive foil strip 102 through the second part;
  • an oxide film is formed on the surface of the first conductive foil 101 .
  • the plurality of first electrode foils 100 realize capacitance extraction through the first conductive foil 101, and an oxide film (aluminum trioxide) is formed on the first conductive foil 101.
  • an oxide film (aluminum trioxide) is formed on the first conductive foil 101.
  • the oxide film damaged due to the electrical connection between the first conductive foil 101 and the first electrode foil 100 can be repaired; and an oxide film is formed on the first conductive foil 101, so that the capacitor is
  • the first conductive foil 101 is made of high-purity aluminum material and has a thin thickness, such as a thickness of 5-50 ⁇ m.
  • the structural characteristics of the first conductive foil 101 make it different from the first electrode foil 100
  • the connection between the first conductive foil 101 and the first electrode foil 100 can be easily realized, for example, by laser welding.
  • the welding area of the first conductive foil 101 and the first electrode foil 100 is large, the connection is more stable, and the lateral tensile strength is stronger.
  • the electrode foil and the conductive foil strip are directly connected by riveting to achieve capacitance extraction.
  • the electrical connection between the two only relies on the connection part, resulting in a large equivalent series resistance ESR of the capacitor.
  • the capacitor's ripple current resistance performance is not high.
  • the first conductive foil strip 102 and the first conductive foil 101 and the first conductive foil 101 and the first electrode foil 100 can be connected by welding, such as laser welding, for electrical connection.
  • the large area can effectively reduce the resistance of the electrical connection part, thus avoiding the problem that the equivalent series resistance ESR of the capacitor is large and the ripple current resistance performance of the capacitor is not high.
  • the first conductive foil strip 102 can be connected to the first electrode foil 100 through the first conductive foil piece 101, compared with the capacitor extraction method in the prior art capacitor, the conductive foil and the conductive foil strip are directly connected by riveting to achieve capacitance extraction. , can avoid the problem that when the conductive foil and the conductive foil strip are directly connected, the electrical connection between the two only relies on the connection part, resulting in a large equivalent series resistance ESR of the capacitor and low ripple current resistance performance of the capacitor.
  • first part and the second part of the first conductive foil 101 are only used to distinguish and illustrate different parts of the first conductive foil 101.
  • the two parts are essentially integrally formed to form the first conductive foil 101. There are no distinguishing boundaries on a conductive foil.
  • the first conductive foil 101 is made of high-purity aluminum material, and the surface is treated by a chemical conversion process to form an oxide film, and the surface chemical treatment method of the first conductive foil 101 is preferably the same as the first conductive foil 101.
  • the surface chemical treatment of an electrode foil 100 is the same.
  • the first conductive foil 101 is an aluminum foil, and an oxide film is formed on the surface using a chemical conversion process. That is, there are oxide films on both the first electrode foil and the first conductive foil.
  • a conductive foil is electrically connected, the oxide film at the connecting portion of the first electrode foil and the first conductive foil will be destroyed and connected to each other.
  • the damaged oxide film on the surface of the first electrode foil and the first conductive foil will be repaired. Due to the arrangement of the oxide film on the first conductive foil, after the production of the capacitor is completed, there will be no electrolyte repair or the formation of an oxide film on the surface of the first conductive foil 101, causing the current to flow at the first conductive foil. aggregation, heat-producing conditions.
  • the traditional conductive foil cannot ensure the realization of the welding connection with the electrode foil.
  • the first conductive foil forming the oxide film is solid High-purity aluminum and thin thickness can ensure the electrical connection of the welding between the first conductive foil and the first electrode foil.
  • the surface treatment process is the same as that of the first electrode foil 100 , that is, the surface is chemically treated in the treatment process of the first electrode foil 100 .
  • the method is the same, so that after using the same surface chemical process, the surface characteristics of the first conductive foil 101 are the same as the surface characteristics of the connected first electrode foil 100, thus preventing the aluminum electrolytic capacitor from being damaged by the first conductive foil during use.
  • the foil 101 is used for capacitor extraction, current will accumulate at the connection location, causing a problem of heat generation.
  • the first electrode foil 100 is either an anode foil or a cathode foil
  • the second electrode foil 200 is the other one of the anode foil or cathode foil. That is, in one embodiment, either the anode foil or the cathode foil in the core package 10 can adopt the capacitor extraction structure of the above embodiment. Specifically, the surface is formed with characteristics that are expressed by the connected first electrode foil. The first conductive foil with the same oxide film characteristics realizes the capacitance extraction of the first electrode foil 100 .
  • a second conductive foil 201 is provided at the edge of each second electrode foil 200 , and the second conductive foil 201 is The first part is electrically connected to the corresponding second electrode foil 200, and the second part of the second conductive foil 201 extends and protrudes relative to the second electrode foil 200; multiple second conductive foils 201 are connected to one through the second part.
  • An oxide film is formed on the surface of the second conductive foil 201 .
  • the characteristics of the surface oxide film of the second conductive foil are the same as the characteristics of the surface oxide film of the connected second electrode foil.
  • the capacitance leads of the anode foil and cathode foil in the core package 10 are respectively provided with conductive foils.
  • the first electrode foil 100 is an anode foil
  • the second electrode foil 200 is a cathode foil
  • a first conductive foil 101 is respectively provided on the edge of multiple anode foils, and the first conductive foil 101 and the corresponding first electrode foil 100 is electrically connected, a plurality of first conductive foils 101 are connected to a first conductive foil strip 102 through the second part
  • a second conductive foil 201 is respectively provided on the edge of the plurality of cathode foils, and the second conductive foil 201 Electrically connected to the corresponding second electrode foil 200, a plurality of second conductive foils 201 are connected to one second conductive foil strip 202 through the second part.
  • a plurality of first conductive foils 101 are connected to each other and then connected to the first conductive foil strip 102.
  • they are connected to the first foil strip 102 at the connection position 104, and a plurality of second conductive foil strips 102 are connected to each other at the connection position 104.
  • the foils 201 are connected to each other and then connected to the second conductive foil strip 202, which is used to realize the capacitance extraction of the anode foil and the cathode foil of the core package 10.
  • the first electrode foil 100 is an anode foil
  • the second electrode foil 200 is a cathode foil
  • Each cathode foil includes an integrally formed body portion 210 and a tab portion 220, the tab portion 220 protrudes relative to an edge of the body portion 210, and a plurality of cathode foils are connected to a third conductive foil through the tab portion 220. bars (not shown in the figure).
  • the cathode foil does not need to use the same capacitor lead-out structure as the anode foil. It can be used to set the tab as shown in Figure 4 Part 220 is used to realize the capacitance extraction of the cathode foil.
  • the cathode foil can be formed into the tab portion 220 by cutting off a portion 230 of the quadrilateral base material, and the quadrilateral portion excluding the tab portion 220 forms the main body portion 210 of the cathode foil for realizing the capacitor function.
  • the thickness of the first conductive foil 101 is between 5-50 ⁇ m, optionally between 10-30 ⁇ m; the width of the first conductive foil 101 is between 5 -50mm, optionally 10-20mm. Wherein, the width is the width in the edge direction along which the first conductive foil 101 is disposed along the first electrode foil 100 .
  • the thickness of the second conductive foil 201 is between 5-50 ⁇ m, optionally 10-30 ⁇ m; second The width of the conductive foil 201 lies between 5-50mm, optionally 10-20mm.
  • the thickness of the first conductive foil 101 or the second conductive foil 201 electrically connected to the anode foil is only 5-50 ⁇ m, preferably 5-20 ⁇ m; compared with the thickness of the anode foil, it is much smaller.
  • the anode foil and the first conductive foil 101 will not be caused by the arrangement of the first conductive foil 101 and the second conductive foil 201
  • the thickness of the connection part of the second conductive foil 201 is greatly increased to avoid the uneven contact surface between the anode foil and the electrolytic paper, which may affect the overall performance of the core package 10, such as stability and capacity extraction.
  • the first part of the first conductive foil 101 and the first electrode foil 100 are connected by one of riveting, welding and conductive glue; similarly, the first part of the first conductive foil 101 and the first electrode foil 100 The first part of the two conductive foils 201 and the second electrode foil 200 are connected by one of riveting, welding and conductive glue.
  • the riveting can be any one of cold riveting, hot riveting and stab riveting;
  • the welding can be laser welding.
  • the first conductive foil 101 and the first electrode foil 100 are connected by laser welding
  • the second conductive foil 101 and the second electrode foil 200 are connected by laser welding. Laser welded connections.
  • ultrasonic welding is used for the electrical connection process between the plurality of first conductive foils 101 and between the plurality of first conductive foils 101 and the first conductive foil strips 102 .
  • each first electrode foil 100 includes an integrally formed main body part 110 and a tab part 120 , and the tab part 120 protrudes relative to the edge of the main body part 110 , the first part of the first conductive foil 101 is connected to the first electrode foil 100 through the tab part 120;
  • the tab portions 120 of the plurality of first electrode foils 100 are arranged staggered in sequence along the first direction.
  • the first direction is the extending direction of one edge of the first electrode foil 100 .
  • the protruding width of the tab portion 120 relative to the main body portion 110 is between 3 mm and 5 mm.
  • a plurality of first conductive foils 101 are arranged in sequence along the first direction, and the second portions of two adjacent first conductive foils 101 are connected in contact.
  • the plurality of first conductive foils 101 can be connected to the first electrode foil 100 through the tab portions 120 of the first electrode foil 100 because the tab portions 120 of the plurality of first electrode foils 100 are aligned along the first direction.
  • the plurality of first conductive foils 101 can be arranged in sequence along the first direction, and there will be no problem that the plurality of first conductive foils 101 and the first electrode foil 100 will be caused by the stacked arrangement of the first electrode foils 100
  • the connections are respectively stacked in one position, causing the thickness of the connection position between the first conductive foil 101 and the first electrode foil 100 to increase.
  • the first conductive foil strip 102 and the second conductive foil strip 202 can respectively adopt tabs, and the tabs can have the same structure as the tabs used in lithium-ion batteries, such as including conductive tabs. piece and the tab glue arranged on the conductive piece.
  • one first conductive foil 101 is electrically connected to each anode foil, the first conductive foils 101 on multiple anode foils are stacked and electrically connected, and a plurality of first conductive foils 101 are stacked and electrically connected.
  • the first conductive foil strips 101 are electrically connected to one first conductive foil strip 102 .
  • each cathode foil is electrically connected to a second conductive foil 201, and the second conductive foils 201 on multiple cathode foils are stacked and electrically connected.
  • multiple second conductive foil strips 201 are electrically connected to one second conductive foil strip 202 .
  • the electrolytic paper 300 on the core package 10 is integrally connected to form a "Z"-shaped structure with multiple layers parallel to each other and connected in sequence, in which the first electrode foil 100 and the second electrode foil 200 are respectively disposed between two adjacent layer structures of the electrolytic paper 300, and the two adjacent first electrode foils 100 are separated by a second electrode foil 200, and the two adjacent second electrode foils 200 are separated by one second electrode foil 200.
  • the electrode foils 200 are separated by a first electrode foil 100 .
  • the opposite ends of the electrolytic paper 300 extend and protrude relative to the first electrode foil 100 and the second electrode foil 200, that is, The area of the portion of the electrolytic paper 300 facing the first electrode foil 100 and the second electrode foil 200 is larger than the area of the first electrode foil 100 and the second electrode foil 200 .
  • the size of the cathode foil is slightly larger than the size of the anode foil, or the size of the cathode foil is equal to the size of the anode foil.
  • the number of anode foils in the core package 10 may be 1 to 100 pieces, preferably 10 to 60 pieces.
  • the first electrode foil 100 and the first conductive foil strip 102 are connected, such as by laser welding, as shown in Figure 2.
  • the welding seams can be arranged transversely, That is, perpendicular to the direction from the first electrode foil 100 to the first conductive foil strip 102; in another embodiment, the welds can also be arranged longitudinally, as shown in FIG. 6, that is, parallel to the direction from the first electrode foil 100 to the first conductive foil strip 102.
  • a guide chaff 102 direction Therefore, the specific connection method is not required, as long as the electrical connection between the first electrode foil 100 and the first conductive foil strip 102 can be ensured.
  • the plurality of first electrode foils 100 realize capacitance extraction through the first conductive foil 101.
  • the characteristics of the oxide film on the surface of the first electrode foil 100 are consistent with the characteristics of the oxide film on the surface of the first conductive foil 101.
  • the electrolyte will continue to repair or form an oxide film on the first conductive foil, causing current accumulation. Fever conditions.
  • the thickness of the first conductive foil 101 and the second conductive foil 201 is much smaller than the thickness of the first electrode foil 100 and the second electrode foil 200, the multi-layer first electrode foil 100 and the multi-layer first electrode foil 100 of the core package 10 are When the second electrode foil 200 is stacked, the thickness of the corresponding parts will not be increased due to the arrangement of the first conductive foil 101 and the second conductive foil 201, and the first conductive foil 101 and the second conductive foil 201 will not interact with the electrolyte.
  • the uneven contact surface of the paper may cause problems affecting the overall performance of the core package 10, such as stability and capacity.
  • An embodiment of the present disclosure also provides an aluminum electrolytic capacitor, including a core package having the above-mentioned structure.
  • the aluminum electrolytic capacitor further includes a first casing with one end open and made of aluminum material, and the core package is disposed inside the first casing;
  • a first packaging cover plate is provided at the opening, and a wiring post is provided on the first packaging cover plate; the first conductive foil strip is connected to the wiring post on the first packaging cover plate.
  • the size and shape of the first shell are adapted to the size and shape of the core package.
  • the core package is formed into a rectangular body
  • the first shell is formed into a rectangular body matching the size of the core package.
  • the core package is packaged by a first casing made of aluminum material and a first packaging cover.
  • the core package including the first electrode foil, the second electrode foil and the electrolytic paper is directly placed inside the first casing.
  • the first packaging cover is sealed and packaged.
  • the first shell and the first packaging cover may be sealed by sealant or laser welding.
  • the first conductive foil strip is a tab, which includes a conductive sheet and a tab glue disposed on the conductive sheet.
  • the tab glue is formed into a connecting strip.
  • the first conductive foil strip is connected to the first packaging cover. Connect to the binding posts on the board.
  • the first electrode foil is an anode foil; the core package also includes a second conductive foil strip or a third conductive foil strip connected to the cathode foil.
  • the second conductive foil strip or the third conductive foil strip is connected to the first packaging cover. Another terminal connection on the board is used to realize the capacitance extraction of the cathode foil.
  • the terminals on the first package cover plate are connected to the first conductive foil strip and the second conductive foil strip (or the third conductive foil strip) on the inside, and are connected to the circuit board on the outside.
  • the core disposed in the first housing is immersed in an electrolyte, and the electrolyte includes solvents, solutes and additives.
  • the solvent includes a main solvent and an auxiliary solvent.
  • the main solvent is ethylene glycol.
  • the auxiliary solvent includes one or more of deionized water, glycerol, glycerol, sorbitol, propylene glycol and 1,4-butanediol. The auxiliary solvent Yes or no.
  • Solutes include succinic acid, glutaric acid, adipic acid, ammonium adipate, ammonium suberate, ammonium azelate, ammonium sebacate, ammonium 1,7-sebacate, ammonium isosebacate, alkanes Ammonium sebacate, ammonium dodecanedioate, 2-hexyl adipic acid, boric acid, polyvinyl alcohol, polyethylene glycol, butyl phosphate, monobutyl phosphate, ammonium pentaborate, phthalic acid, terephthalic acid One or more of acid and citric acid;
  • the additive includes one or more of p-nitrophenol, o-nitrophenol, m-dinitrobenzene, p-nitrobenzene, p-nitrobenzyl alcohol, and ammonium hypophosphite.
  • the aluminum electrolytic capacitor also includes a packaging bag 400 made of aluminum plastic film.
  • the bag 400 is formed into an accommodation cavity 410, the edge of the accommodation cavity 410 is sealed, the core package 10 is sealed inside the packaging bag 400, and the first guide foil strip 102 passes through the first side of the packaging bag 400.
  • the sealing edge 401 extends to the outside of the packaging bag 400 .
  • the core package 10 can be packaged by the packaging bag 400 of aluminum plastic film.
  • the core package 10 is connected to the first conductive foil strip of the anode foil, the second conductive foil strip or the third conductive foil strip of the cathode foil.
  • the strips are sealingly connected to the first sealing edge 401 through connecting rubber strips 103 respectively.
  • the first and second conductive foil strips (or the third conductive foil strip) are heated and pressed from the extending edges of the packaging bag 400 Sealing to form a first sealing edge 401.
  • the core package in the containing cavity 410 is immersed in electrolyte, and the electrolyte includes solvent, solute and additives.
  • the packaging bag 400 further includes an airbag structure 420 separated from the accommodation cavity 410 by a separation strip 402; the isolation strip 420 is provided with a hole connecting the airbag structure 420 and the accommodation cavity 410. exhaust structure 421.
  • the exhaust structure 421 is formed as a through hole or a one-way pressure relief valve; in one embodiment, the exhaust structure 421 is disposed in the middle of the isolation bar 420 .
  • the isolation strip 420 is formed by heat-pressing sealing.
  • the isolation strip 420 is opposite to the first sealing edge 401 of the packaging bag 400, or is located at an adjacent side of the first sealing edge 401.
  • the width of the second sealing edge 403 of the packaging bag 400 is greater than the width of the first sealing edge 401;
  • the second sealing edge 403 is located on both sides of the first sealing edge 401 .
  • the second sealing edge 403 includes at least two sealing isolation strips.
  • the sealing isolation strip is formed by hot-pressing sealing.
  • the packaging bag 400 is provided with spaced accommodation chambers 410 and airbag structures 420 , and the airbag structure 420 can be folded relative to the accommodation chamber 410 by using a sealing isolation strip 420 located between the accommodation chambers 410 and the airbag structure 420 .
  • the aluminum electrolytic capacitor further includes a second shell 500 with an open end, and the packaging bag 400 containing the core package is disposed on the second shell 500 . interior of housing 500;
  • a second packaging cover 600 is provided at the opening, and a wiring post is provided on the second packaging cover 600 .
  • the first conductive foil strip is connected to the wiring post on the second packaging cover 600 .
  • the second housing 500 can be made of any one of aluminum materials, polyurethane materials, etc., and is not specifically limited.
  • the airbag structure 420 is disposed on one side of the accommodation cavity 410, wherein the direction from the accommodation cavity 410 to the airbag structure 420 is a plurality of the first airbag structures 420.
  • the entire packaging bag 400 is placed in the second shell 500 .
  • a small gap is reserved between the packaging bag 400 and the second housing 500 inside the second housing 500 .
  • the generated gas when gas is generated in the accommodation cavity 410 and becomes bloated, the generated gas will first enter the airbag through the exhaust structure 421 that connects the airbag structure 420 and the accommodation cavity 410 In the structure 420, since the air bag structure 420 is located on one side of the accommodating cavity 410, when the accommodating cavity 410 bulges, it will squeeze the core package in the accommodating cavity 410, making the core package more compact after being squeezed, thereby slowing down the core package. The effect of the decay rate of capacitor extraction rate.
  • the gas generated by the core package will first be stored in the air bag structure 420, and will not rush out from the pressure relief valve on the aluminum shell like traditional capacitors, causing sputtering to the circuit. board, causing accidents such as fire.
  • the connection strength at the connecting rubber strip is weaker than that at other parts, and in the packaging bag After the generated gas pressure reaches a certain level, a break occurs at the sealing position between the connecting tape and the packaging bag or at the connection position between the first conductive foil strip (or the second conductive foil strip) and the cathode foil. After the break, the capacitor will be powered off. As a result, gas will no longer be generated, thereby avoiding the problem of a large amount of gas rushing out and sputtering onto the circuit board.
  • the second conductive foil strip on the cathode foil It breaks at the aluminum-plastic sealing position or at the riveting part of the cathode foil (the cathode foil is very thin and easy to break).
  • the packaging bag 400 is also disposed in the second housing 500, when the electrolyte of the core package leaks, it only leaks in the second housing 500 and generally does not flow out or cause sputtering to the circuit board. to achieve the flame retardant effect.
  • a compression clamp is also provided in the second housing 500. As shown in FIG. 11, the compression clamp 700 clamps the accommodation cavity 410, and the airbag structure 420 is located on one side of the compression clamp 700.
  • the compression clamp 700 includes two opposite clamping plates, which clamp the accommodating cavity 410 to compress the core package in the accommodating cavity 410 .
  • the holding chamber 410 is clamped by the compression clamp 700.
  • the gas in the holding chamber 410 can arrive quickly under the action of the compression clamp 700.
  • the gas will not stay in the accommodation cavity 410, and at the same time, it will not affect the reverse compression of the accommodation cavity 410 by the gas in the airbag structure 420.
  • vacuuming is performed so that the packaging bag 400 can be tightly attached to the core package.
  • the packaging bag 400 is prefabricated in advance.
  • a sealing isolation strip is included between the prefabricated accommodation cavity and the airbag structure.
  • the packaging bag can also be formed by first placing the core package on a piece of aluminum plastic film, then covering the core package with another piece of aluminum plastic film, and then sealing the edges by hot pressing.
  • the accommodating cavity and airbag structure are formed on the aluminum plastic film.
  • the capacitor When the capacitor is in use, due to the problem of ripple current, it may generate heat, thereby evaporating the electrolyte or generating gas. Therefore, the evaporated electrolyte will also enter the airbag structure along the exhaust structure, so the core package needs to be impregnated with sufficient electrolyte. liquid.
  • the electrolyte since the square laminated core package is not as tightly wound as the rolled cylindrical core package, the electrolyte is more likely to penetrate the entire core package. That is to say, under the same impregnation conditions, the square laminated core package can Impregnated with more electrolyte, the performance of the capacitor will be better.
  • the sealing requirements of the second housing for the core package are not as high as those of traditional capacitors.
  • the wiring The posts can be set up in the same way as the wiring posts on traditional capacitors, but the sealing requirements between the second cover plate and the second shell do not need to be so high, as long as the gas generated by the core package reaches a certain level, causing the packaging bag to explode. When it is turned on, the electrolyte will not flow out of the second housing.
  • the aluminum electrolytic capacitor described in the embodiment of the present disclosure is used, and the gas passes through the exhaust structure 421 enters the airbag structure 420 to inflate the airbag structure 420.
  • the airbag structure can be evacuated by making an incision to discharge the gas in the airbag structure, and then the incision can be re-sealed by hot pressing.
  • the aluminum electrolytic capacitor further includes an integrally formed second shell, and the packaging bag containing the core package is disposed inside the second shell, and the The first conductive foil strip extends to the outside of the second housing, and the first conductive foil strip and the second housing are sealed and insulated.
  • the second shell may be made of an aluminum shell, and the packaging bag containing the core package is disposed inside the second shell made of an integrally formed aluminum shell.
  • the strip (or the third conductive foil strip) extends out of the second housing to realize the extraction of the capacitor.
  • the first conductive foil strip, the second conductive foil strip (or the third conductive foil strip) and the second shell can be sealed and insulated by rubber plugs.
  • the packaging bag containing the core package is packaged through the second shell and the second packaging cover with an open end.
  • the packaging bag also includes an air bag structure and a clip for clamping.
  • air bag structure and the compression clamp please refer to the above description of the air bag structure and the compression clamp, which will not be described in detail here.
  • embodiments of the present disclosure also provide a packaging method, which is applied to the aluminum electrolytic capacitor as described above, wherein the method includes:
  • the core package is placed in the accommodation cavity of the packaging bag, and the first foil guide strip of the core package passes through the opening of the packaging bag;
  • the packaging bag is made of aluminum-plastic film;
  • the packaging bag is heat-pressed and sealed at the opening to form a first sealing edge, and the connecting glue of the first conductive foil strip is heat-sealed and connected to the packaging bag.
  • the packaging bag further includes an airbag structure separated from the accommodation cavity by a sealing isolation strip; an exhaust structure is provided on the sealing isolation strip to communicate with the airbag structure and the accommodation cavity, and the method Also includes:
  • the second packaging cover is sealed, and the packaging bag is sealed inside the second shell.
  • packaging method and packaging process of aluminum electrolytic capacitors can be referred to the above description, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

提供一种芯包(10)、铝电解电容器及其封装方法。芯包(10)包括:层叠设置的多个第一电极箔(100)和多个第二电极箔(200);第一电极箔(100)为阳极箔和阴极箔中的其中任一个,第二电极箔(200)为阳极箔和阴极箔中的另一个;多个第一电极箔(100)中,每一第一电极箔(100)的边缘分别设置一个第一导电箔片(101),第一导电箔片(101)的第一部分与相应的第一电极箔(100)电性连接,第一导电箔片(101)的第二部分相对于第一电极箔(100)延伸突出;多个第一导电箔片(101)通过第二部分均连接至一个第一导箔条(102);其中,第一导电箔片(101)的表面形成有氧化膜。

Description

芯包、铝电解电容器及其封装方法
本申请基于申请号为202210904879.7、申请日为2022年07月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电容器技术领域,尤其是指一种芯包、铝电解电容器及其封装方法。
背景技术
传统铝电解电容器多采用卷绕型芯包,在含浸过后,利用铝壳、橡胶塞等配件组装成型。随着电子产品的微型化和扁平化,传统的圆柱型铝电解电容器在空间利用率上并无优势而且还制约了电子产品的微型、扁平化发展趋势。基于圆柱型铝电解电容器的应用限制,市场上已有开发方形铝电解电容器,能够有效满足电子产品的微型化和扁平化结构需求,但目前方形铝电解容器中层叠设置的阳极箔与阴极箔的电容引出结构,无法保证铝电解电容器的性能,如由于阳极箔材料的特点,现有技术用于电容引出的导箔条与阳极箔之间直接连接,难以实现,且会破坏阳极箔的结构;再比如,导箔条与阳极箔之间的连接点处存在电流聚集而发热的问题等;上述都会存在铝电解电容器的性能无法保证的问题。
发明内容
本公开的目的是提供一种芯包、铝电解电容器及其封装方法,用于解决现有技术方形铝电解电容器的电容引出结构,无法保证铝电解电容器性能的问题。
本公开其中一实施例提供一种芯包,其中,包括:
层叠设置的多个第一电极箔和多个第二电极箔,相邻的两个所述第一电极箔通过一个所述第二电极箔间隔,相邻的两个所述第二电极箔通过一个所述第一电极箔间隔,且相邻的所述第一电极箔和所述第二电极箔通过电解纸间隔;所述第一电极箔为阳极箔和阴极箔中的其中任一个,所述第二电极箔为阳极箔和阴极箔中的另一个;
多个所述第一电极箔中,每一所述第一电极箔的边缘分别设置一个第一导电箔片,所述第一导电箔片的第一部分与相应的所述第一电极箔电性连接,所述第一导电箔片的第二部分相对于所述第一电极箔延伸突出;多个所述第一导电箔片通过所述第二部分均连接至一个第一导箔条;
其中,所述第一导电箔片的表面形成有氧化膜。
可选地,所述的芯包,其中,多个所述第二电极箔中,每一所述第二电极箔的边缘分别设置一个第二导电箔片,所述第二导电箔片的第一部分与相应的所述第二电极箔电性连接,所述第二导电箔片的第二部分相对于所述第二电极箔延伸突出;多个所述第二导电箔片通过所述第二部分均连接至一个第二导箔条;
其中,所述第二导电箔片的表面形成有氧化膜。
可选地,所述的芯包,其中,所述第一导电箔片采用纯铝材料制作,且所述第一导电箔片的表面氧化膜的特性与所述第一电极箔的表面氧化膜的特性相同。
可选地,所述的芯包,其中,所述第一导电箔片的表面经化成工艺处理形成所述氧化膜,且所述第一导电箔片的表面形成所述氧化膜的化成工艺处理方式与所述第一电极箔的表面形成氧化膜的化成工艺处理方式相同。
可选地,所述的芯包,其中,所述第一电极箔为阳极箔,所述第二电极箔为阴极箔;
每一所述阴极箔包括一体成型的主体部分和极耳部分,所述极耳部分相对于所述主体部分的边缘突出,多个所述阴极箔通过所述极耳部分连接至一个第三导箔条。
可选地,所述的芯包,其中,每一所述第一电极箔分别包括一体成型的主体部分和极耳部分,所述极耳部分相对于所述主体部分的边缘突出,所述第一导电箔片的第一部分通过所述极耳部分与所述第一电极箔连接;
其中,多个所述第一电极箔的极耳部分沿第一方向依次交错排列。
可选地,所述的芯包,其中,多个所述第一导电箔片沿所述第一方向依次排列设置,且相邻两个所述第一导电箔片的第二部分贴合连接。
可选地,所述的芯包,其中,所述第一导电箔片的厚度位于5-50μm之间。
可选地,所述的芯包,其中,所述第一导电箔片的第一部分与所述第一电 极箔之间通过铆接、焊接和导电胶中的其中一种方式连接。
本公开其中一实施例还提供一种铝电解电容器,其中,包括如上任一项所述的芯包。
可选地,所述的铝电解电容器,其中,所述铝电解电容器还包括一端开口且采用铝材料制作的第一外壳,所述芯包设置于所述第一外壳的内部;
所述开口处设置有第一封装盖板,所述第一封装盖板上设置有接线柱;所述第一导箔条与所述第一封装盖板上的接线柱连接。
可选地,所述的铝电解电容器,其中,所述第一外壳的尺寸、形状与所述芯包的尺寸、形状相适配。
可选地,所述的铝电解电容器,其中,所述铝电解电容器还包括由铝塑膜制成的封装袋,所述封装袋形成为容纳腔,所述容纳腔的边缘密封,将所述芯包密封于所述封装袋的内部,且所述第一导箔条穿过所述封装袋的第一密封边缘延伸至所述封装袋的外部。
可选地,所述的铝电解电容器,其中,所述铝电解电容器还包括一端开口的第二外壳,容置有所述芯包的所述封装袋设置于所述第二外壳的内部;
所述开口处设置有第二封装盖板,所述第二封装盖板上设置有接线柱,所述第一导箔条与所述第二封装盖板上的接线柱连接。
可选地,所述的铝电解电容器,其中,所述铝电解电容器还包括一体成型的第二外壳,所述封装袋设置于所述第二外壳的内部,所述第一导箔条伸出至所述第二外壳的外部,且所述第一导箔条与所述第二外壳之间密封并且绝缘。
可选地,所述的铝电解电容器,其中,所述封装袋还包括与所述容纳腔通过隔离条间隔的气囊结构;所述隔离条上开设有连通所述气囊结构和所述容纳腔的排气结构;
在所述第二外壳的内部,所述气囊结构设置于所述容纳腔的一侧,其中所述容纳腔至所述气囊结构的方向为多个所述第一电极箔和多个第二电极箔的层叠设置方向。
可选地,所述的铝电解电容器,其中,所述第二外壳的内部还设置有压紧夹,所述压紧夹夹持所述容纳腔,所述气囊结构位于所述压紧夹的一侧。
可选地,所述的铝电解电容器,其中,所述隔离条与所述封装袋的所述第一密封边缘相对,或者所述隔离条位于所述第一密封边缘的相邻侧边处。
可选地,所述的铝电解电容器,其中,所述封装袋的第二密封边缘的宽度大于所述第一密封边缘的宽度;
其中,所述第二密封边缘位于所述第一密封边缘的两侧。
可选地,所述的铝电解电容器,其中,所述第二密封边缘包括至少两个密封隔离条。
本公开其中一实施例还提供一种封装方法,其中,应用于如上所述的铝电解电容器,其中,所述方法包括:
将芯包置于封装袋的容纳腔内,且所述芯包的第一导箔条由所述封装袋的开口处穿出;所述封装袋采用铝塑膜制成;
在所述开口处对所述封装袋进行热压封口,形成第一密封边缘,且使所述第一导箔条上的连接胶体与所述封装袋热封连接。
可选地,所述的封装方法,其中,所述封装袋还包括与所述容纳腔通过密封隔离条间隔的气囊结构;所述密封隔离条上开设有连通所述气囊结构和所述容纳腔的排气结构,所述方法还包括:
将所述气囊结构折叠至所述封装袋的一侧;
将进行所述气囊结构折叠后的所述封装袋置于第二外壳内;
将第二盖板盖设于所述第二外壳的开口处,且使所述第一导箔条与所述第二封装盖板上的接线柱连接;
对所述第二封装盖板进行密封,将所述封装袋封闭于所述第二外壳的内部。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例所述芯包的实施结构的示意图之一;
图2为第一电极箔的其中一实施结构的示意图;
图3为本公开实施例所述芯包的实施结构示意图之二;
图4为第二电极箔的其中一实施结构的示意图;
图5为本公开实施例所述芯包的实施结构的示意图之三;
图6为第一电极箔的另一实施结构的示意图;
图7为本公开实施例中,封装袋的实施结构图之一;
图8为本公开实施例中,封装袋的实施结构图之二;
图9为本公开实施例中,封装袋的实施结构图之三;
图10为本公开实施例的其中一实施方式的电容器的结构示意图;
图11为本公开实施例中,封装袋上设置压紧夹的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为解决现有技术方形铝电解电容器的电容引出结构,无法保证铝电解电容器性能的问题,本公开实施例提供一种芯包,对于芯包的多个第一电极箔,通过第一导电箔片连接第一电极箔和第一导箔条,实现第一电极箔的电容引出,第一导电箔片与第一电极箔之间的连接面积大,易于实现,以有效保证铝电解电容器的性能;此外,第一导电箔片上的氧化膜的设置,能够避免连接位置处由于电流聚集而大量产生热量,导致铝电解电容器性能无法保证的问题。
如图1至图3所示,本公开实施例其中一实施方式,所述芯包10包括:
层叠设置的多个第一电极箔100和多个第二电极箔200,相邻的两个第一电极箔100通过一个第二电极箔200间隔,相邻的两个第二电极箔200通过一个第一电极箔100间隔,且相邻的第一电极箔100和第二电极箔200通过电解纸300间隔;第一电极箔100为阳极箔和阴极箔中的其中任一个,第二电极箔200为阳极箔和阴极箔中的另一个;
多个第一电极箔100中,每一第一电极箔100的边缘分别设置一个第一导电箔片101,第一导电箔片101的第一部分与相应的第一电极箔100电性连接,第一导电箔片101的第二部分相对于第一电极箔100延伸突出;多个第一导电箔片通过第二部分均连接至一个第一导箔条102;
其中,第一导电箔片101的表面形成有氧化膜。
本公开实施例中,其中一方面,多个第一电极箔100通过第一导电箔片101 实现电容引出,第一导电箔片101上形成有氧化膜(三氧化二铝)。在进行老化测试的时候,能够修复第一导电箔片101与第一电极箔100电性连接部位由于连接而破坏的氧化膜;而第一导电箔片101上形成有氧化膜,这样在电容器的使用过程中就不会出现由于电解液修复第一导电箔片上氧化膜而导致电流聚集而产生大量热量的现象。
本公开实施例中,第一导电箔片101采用高纯铝材料制作,且厚度较薄,如厚度为5-50μm,该结构特性的第一导电箔片101,使得与第一电极箔100之间的连接易于实现,如可以通过激光焊接连接,第一导电箔片101与第一电极箔100激光焊接的焊接面积大,连接更加稳定,横向抗拉能力更强。
另一方面,现有技术电容器中,电极箔与导箔条直接通过铆接连接实现电容引出的方式,两者之间的电性连接仅仅依靠连接部位,导致电容器的等效串联电阻ESR较大,电容器的耐纹波电流性能不高。在本公开实施例中,第一导箔条102与第一导电箔片101之间、第一导电箔片101与第一电极箔100之间可以采用焊接的形式连接,比如激光焊,电连接的面积大,能够有效的降低电性连接部位的电阻,从而避免电容器的等效串联电阻ESR较大,电容器的耐纹波电流性能不高的问题。
因此,由于第一导箔条102可以通过第一导电箔片101与第一电极箔100连接,相较于现有技术电容器中,通过导电箔与导箔条直接通过铆接连接实现电容引出的方式,能够避免导电箔与导箔条直接连接时,两者之间的电性连接仅仅依靠连接部位,导致电容器的等效串联电阻ESR较大,电容器的耐纹波电流性能不高的问题。
需要说明的是,第一导电箔片101的第一部分与第二部分仅用于区分说明第一导电箔片101的不同部分,两者实质为一体成型构成为第一导电箔片101,在第一导电箔片上没有区分界限。
本公开实施例中,可选地,第一导电箔片101采用高纯铝材料制作,且表面经化成工艺处理形成氧化膜,且第一导电箔片101的表面化成工艺处理方式最好与第一电极箔100的表面化学工艺处理方式相同。
该实施方式中,第一导电箔片101为铝质箔片,表面采用化成工艺形成有氧化膜,也就是第一电极箔和第一导电箔片上均有氧化膜,在第一电极箔和第一导电箔片之间电性连接的时候,第一电极箔和第一导电箔片上连接部位的氧 化膜会破坏并且相互连接在一起。在经过电容器生产过程中的老化测试时,第一电极箔和第一导电箔片表面上被破坏的氧化膜会被修复。由于第一导电箔片上的氧化膜的设置,这样在电容器生产完成后,就不会出现电解液修复或者形成第一导电箔片101表面上的氧化膜,而导致电流在第一导电箔片处聚集,产热的情况。
此外,与现有技术的导电箔片上形成氧化膜不同,传统的导电箔片无法保证与电极箔之间焊接连接的实现,本公开实施例中,形成氧化膜的第一导电箔片是实心的高纯铝,并且厚度薄,其能够保证第一导电箔片与第一电极箔之间焊接的电性连接。
由于第一导电箔片101为铝质箔片,表面化成工艺处理方式与第一电极箔100的表面化成工艺处理方式相同,也即与第一电极箔100处理工序中对表面进行化学工艺处理的方式相同,使得采用相同表面化学工艺处理方式后,第一导电箔片101的表面特性与所连接的第一电极箔100的表面特性相同,这样避免铝电解电容器在使用过程中,由第一导电箔片101进行电容引出时,电流在连接位置处产生聚集,产生发热的问题。
本公开实施例中,第一电极箔100为阳极箔和阴极箔中的其中任一个,第二电极箔200为阳极箔和阴极箔中的另一个。也即,其中一实施方式,芯包10中的阳极箔和阴极箔中的任一个,可以采用上述实施方式的电容引出结构,具体地,通过表面形成有特性与所连接的第一电极箔表现的氧化膜特性相同的第一导电箔片实现第一电极箔100的电容引出。
其中一实施方式,可选地,如图2所示,多个第二电极箔200中,每一第二电极箔200的边缘分别设置一个第二导电箔片201,第二导电箔片201的第一部分与相应的第二电极箔200电性连接,第二导电箔片201的第二部分相对于第二电极箔200延伸突出;多个第二导电箔片201通过第二部分均连接至一个第二导箔条202;
其中,第二导电箔片201的表面形成有氧化膜。
可选地,第二导电箔片的表面氧化膜的特性与所连接的所述第二电极箔表面氧化膜的特性相同。
采用该实施方式,芯包10中的阳极箔和阴极箔的电容引出均分别采用设置导电箔片的形式。
举例说明,第一电极箔100为阳极箔,第二电极箔200为阴极箔;多个阳极箔的边缘分别设置一个第一导电箔片101,第一导电箔片101与相应的第一电极箔100电性连接,多个第一导电箔片101通过第二部分均连接至一个第一导箔条102;多个阴极箔的边缘分别设置一个第二导电箔片201,第二导电箔片201与相应的第二电极箔200电性连接,多个第二导电箔片201通过第二部分均连接至一个第二导箔条202。
采用该实施结构,如图1所示,多个第一导电箔片101相互连接后连接至第一导箔条102,如在连接位置104处与第一箔条102连接,多个第二导电箔片201相互连接后连接至第二导箔条202,用于实现芯包10的阳极箔和阴极箔的电容引出。
本公开实施例所述芯包,另一实施方式,如图1所示,并结合图4,所述第一电极箔100为阳极箔,所述第二电极箔200为阴极箔;
每一阴极箔包括一体成型的主体部分210和极耳部分220,所述极耳部分220相对于所述主体部分210的边缘突出,多个阴极箔通过极耳部分220连接至一个第三导箔条(图中未显示)。
该实施方式中,考虑阴极箔的制作材料成本、工艺与阳极箔的制作材料成本、工艺的不同,阴极箔无需采用与阳极箔相同的电容引出结构,可以采用如图4所示通过设置极耳部分220的方式,实现阴极箔的电容引出。
可选地,阴极箔可以通过四边形基材裁切掉其中一部分230的方式形成为极耳部分220,除去极耳部分220的四边形部分构成为阴极箔的主体部分210,用于实现电容功能。
本公开实施例中,其中一实施方式,可选地,所述第一导电箔片101的厚度位于5-50μm之间,可选地为10-30μm;第一导电箔片101的宽度位于5-50mm之间,可选地为10-20mm。其中,该宽度为沿第一电极箔100设置第一导电箔片101的边缘方向上的宽度。
另一实施方式,在第二电极箔200通过第二导电箔片201进行电容引出时,同样,第二导电箔片201的厚度位于5-50μm之间,可选地为10-30μm;第二导电箔片201的宽度位于5-50mm之间,可选地为10-20mm。
在本公开实施例中,与阳极箔电性连接的第一导电箔片101或第二导电箔片201的厚度仅为5-50μm,优选5-20μm;相较于阳极箔的厚度小很多,在 芯包10的多层第一电极箔100和第二电极箔200叠加时,不会由于第一导电箔片101和第二导电箔片201的设置,导致阳极箔与第一导电箔片101或第二导电箔片201连接部位的厚度增加很多,避免阳极箔与电解纸的接触面不平整,导致芯包10的整体性能,如稳定性、容量引出产生影响的问题。
本公开实施例中,其中一实施方式,可选地,第一导电箔片101的第一部分与第一电极箔100之间通过铆接、焊接和导电胶中的其中一种方式连接;同样,第二导电箔片201的第一部分与第二电极箔200之间通过铆接、焊接和导电胶中的其中一种方式连接。
可选地,所述铆接可以为冷铆、热铆和刺铆中的任一种;焊接可以为激光焊接。为保证第一导电箔片101和第二导电箔片201连接的平整性,第一导电箔片101与第一电极箔100通过激光焊连接,第二导电箔片101与第二电极箔200通过激光焊连接。
其中一实施方式,可选地,多个第一导电箔片101之间,以及多个第一导电箔片101与第一导箔条102之间的电性连接工艺采用超声焊接。
本公开实施例中,其中一实施方式,如图5所示,每一第一电极箔100分别包括一体成型的主体部分110和极耳部分120,极耳部分120相对于主体部分110的边缘突出,第一导电箔片101的第一部分通过极耳部分120与第一电极箔100连接;
其中,多个第一电极箔100的极耳部分120沿第一方向依次交错排列。
可选地,第一方向为第一电极箔100的其中一边缘的延伸方向。
其中一实施方式,可选地,极耳部分120相对于主体部分110突出的宽度位于3mm至5mm之间。
可选地,多个第一导电箔片101沿所述第一方向依次排列设置,且相邻两个第一导电箔片101的第二部分贴合连接。
采用该实施方式,多个第一导电箔片101可以通过第一电极箔100的极耳部分120与第一电极箔100连接,由于多个第一电极箔100的极耳部分120沿第一方向依次交错排列,可以使得多个第一导电箔片101沿所述第一方向依次排列,不会存在由于第一电极箔100层叠设置,导致多个第一导电箔片101与第一电极箔100的连接分别层叠在一个位置,使第一导电箔片101与第一电极箔100的连接位置厚度增加的问题。
本公开实施例中,可选地,第一导箔条102与第二导箔条202可以分别采用极耳,该极耳可以与应用于锂离子电池中的极耳的结构相同,如包括导电片和设置于导电片上的极耳胶。
本公开实施例中,可选地,每一阳极箔上均电性连接有一个第一导电箔片101,多个阳极箔上的第一导电箔片101层叠设置并且电性连接,且多个第一导电箔片101均电性连接一个第一导箔条102。同样,在阴极箔也由导电箔片引出电容时,每一阴极箔上均电性连接有一个第二导电箔片201,多个阴极箔上的第二导电箔片201层叠设置并且电性连接,且多个第二导电箔片201均电性连接一个第二导箔条202。
其中一实施方式,可选地,如图3所示,在芯包10上的电解纸300一体连接,形成为多层结构相互平行且依次连接的“Z”字型结构,其中第一电极箔100与第二电极箔200分别设置于电解纸300的相邻两个层结构之间,且相邻的两个第一电极箔100通过一个第二电极箔200间隔,相邻的两个第二电极箔200通过一个第一电极箔100间隔。
可选地,为保证电解纸300对第一电极箔100与第二电极箔200的有效隔离,电解纸300的相对两端相对于第一电极箔100与第二电极箔200延伸突出,也即电解纸300与第一电极箔100和第二电极箔200相正对部分的面积大于第一电极箔100与第二电极箔200的面积。
可选地,第一电极箔100与第二电极箔200中,阴极箔的尺寸略大于阳极箔的尺寸,或者阴极箔的尺寸大小等于阳极箔的尺寸大小。
本公开实施例中,可选地,芯包10的阳极箔的数量可以为1至100片,优选为10至60片。
本公开实施例中,可选地,第一电极箔100与第一导箔条102连接,如通过激光焊接连接时,如图2所示,其中一实施方式,焊缝可以沿横向排布,也即垂直于第一电极箔100至第一导箔条102的方向;另一实施方式,焊缝也可以沿纵向排布,如图6所示,也即平行于第一电极箔100至第一导箔条102的方向。因此具体连接方式并不作要求,只要能够保证第一电极箔100与第一导箔条102之间的电连接即可。
采用本公开实施例所述芯包,多个第一电极箔100通过第一导电箔片101实现电容引出,第一电极箔100表面的氧化膜特性与第一导电箔片101表面的 氧化膜特性相同,使得铝电解电容器在使用时,不会出现第一导电箔片101上没有氧化膜或者因为特性的不同,导致电解液在第一导电箔片上不断的修复或者形成氧化膜,出现电流聚集,发热的情况。
另外,由于第一导电箔片101和第二导电箔片201的厚度相较于第一电极箔100和第二电极箔200的厚度小很多,在芯包10的多层第一电极箔100和第二电极箔200叠加时,不会由于第一导电箔片101和第二导电箔片201的设置,导致相应部位的厚度增加,避免第一导电箔片101和第二导电箔片201与电解纸的接触面不平整,导致芯包10的整体性能,如稳定性、容量引出产生影响的问题。
本公开实施例还提供一种铝电解电容器,包括如上实施结构的芯包。
其中一实施方式,所述铝电解电容器还包括一端开口且采用铝材料制作的第一外壳,所述芯包设置于所述第一外壳的内部;
所述开口处设置有第一封装盖板,所述第一封装盖板上设置有接线柱;所述第一导箔条与所述第一封装盖板上的接线柱连接。
可选地,所述第一外壳的尺寸、形状与所述芯包的尺寸、形状相适配。其中一实施方式,芯包形成为方形体,则第一外壳形成为与芯包的尺寸匹配的方形体。
该实施方式中,芯包通过铝材料制作的第一外壳和第一封装盖板封装,包括第一电极箔、第二电极箔和电解纸的芯包直接放入于第一外壳的内部,通过第一封装盖板进行密封封装。可选地,第一外壳与第一封装盖板之间可以通过密封胶密封,也可以通过激光焊密封。
本公开实施例中,第一导箔条为极耳,包括导电片和设置于导电片上的极耳胶,该极耳胶形成为连接胶条,第一导箔条与所述第一封装盖板上的接线柱连接。
可选地,第一电极箔为阳极箔;芯包还包括连接阴极箔的第二导箔条或第三导箔条,同样,第二导箔条或第三导箔条与第一封装盖板上的另一接线柱连接,用于实现阴极箔的电容引出。
其中,第一封装盖板上的接线柱在内侧连接第一导箔条和第二导箔条(或第三导箔条),在外侧连接线路板。
本公开实施例中,设置于第一外壳内的芯包含浸有电解液,电解液包括溶 剂、溶质和添加剂。
溶剂包括主溶剂和辅助溶剂,其中主溶剂为乙二醇,辅助溶剂包括去离子水、甘油、丙三醇、山梨醇、丙二醇和1,4-丁二醇的一种或多种,辅助溶剂可有可没有。
溶质包括丁二酸、戊二酸、己二酸、己二酸铵、辛二酸铵、壬二酸铵、癸二酸铵、1,7-癸二酸铵、异癸二酸铵、烷基癸二酸铵、十二双酸铵、2-己基己二酸、硼酸、聚乙烯醇、聚乙二醇、磷酸丁酯、磷酸单丁酯、五硼酸铵、苯二酸、对苯二酸、柠檬酸的一种或多种;
添加剂包括对硝基苯酚、邻硝基苯酚、间二硝基苯、对硝基苯甲醚或对硝基苯甲醇、次亚磷酸铵的一种或多种。
本公开实施例中,芯包封装的另一实施方式,如图7至图9所示,并结合图1,所述铝电解电容器还包括由铝塑膜制成的封装袋400,所述封装袋400形成为容纳腔410,所述容纳腔410的边缘密封,将所述芯包10密封于所述封装袋400的内部,且第一导箔条102穿过所述封装袋400的第一密封边缘401延伸至所述封装袋400的外部。
采用该实施方式,芯包10可以通过铝塑膜的封装袋400封装,可选地,芯包10连接阳极箔的第一导箔条、连接阴极箔的第二导箔条或第三导箔条分别通过连接胶条103与第一密封边缘401密封连接。
其中,在芯包10设置于封装袋400的容纳腔410后,在第一导箔条和第二导箔条(或者为第三导箔条)从封装袋400的伸出边缘处进行热压封口,形成第一密封边缘401。
与芯包10的上一实施方式的封装方式相同,在容纳腔410内的芯包含浸有电解液,电解液包括溶剂、溶质和添加剂。
其中一实施方式,可选地,所述封装袋400还包括与容纳腔410通过隔离条402间隔的气囊结构420;所述隔离条420上开设有连通所述气囊结构420和所述容纳腔410的排气结构421。
可选地,该排气结构421形成为通孔或者单向泄压阀;其中一实施方式,排气结构421设置于隔离条420的中部位置。
本公开实施例中,隔离条420通过热压封口形成。
其中,所述隔离条420与封装袋400的第一密封边缘401相对,或者位于 第一密封边缘401的相邻侧边处。
结合图7至图9所示,所述封装袋400的第二密封边缘403的宽度大于第一密封边缘401的宽度;
其中,所述第二密封边缘403位于第一密封边缘401的两侧。
可选地,如图8所示,所述第二密封边缘403包括至少两个密封隔离条。
该实施方式中,密封隔离条通过热压封口形成。其中,通过使第一密封边缘401两侧的第二密封边缘403的宽度大于第一密封边缘401的宽度,以有效保证封装袋400在进行第一密封边缘401的热压封口时的密封效果。
结合图9所示,封装袋400通过设置相间隔的容纳腔410和气囊结构420,利用位于容纳腔410和气囊结构420之间的密封隔离条420,气囊结构420可以相对于容纳腔410折叠。
本公开实施例中,可选地,如图10所示,所述铝电解电容器还包括一端开口的第二外壳500,容置有所述芯包的所述封装袋400设置于所述第二外壳500的内部;
所述开口处设置有第二封装盖板600,所述第二封装盖板600上设置有接线柱,所述第一导箔条与所述第二封装盖板600上的接线柱连接。
该实施方式中,第二外壳500可以为铝材料、聚氨酯材料等中的任一种,具体并不作限制。
本公开实施例中,在第二外壳500的内部,所述气囊结构420设置于所述容纳腔410的一侧,其中所述容纳腔410至所述气囊结构420的方向为多个所述第一电极箔和多个第二电极箔的层叠设置方向。
采用该实施方式,如图10所示,在芯包10封装在容纳腔410后,气囊结构420相对于容纳腔410折叠到一侧后,将整个封装袋400放置于第二外壳500内。可选地,在第二外壳500的内部,封装袋400与第二外壳500之间预留较小间隙。
基于该实施结构的铝电解电容器,在使用的过程中,容纳腔410内产生气体出现胀气的情况后,所产生的气体首先会通过连通气囊结构420和容纳腔410的排气结构421进入到气囊结构420内,由于气囊结构420位于容纳腔410的一侧,容纳腔410鼓起时会挤压容纳腔410内的芯包,使得芯包受挤压后,更加的紧凑,达到减缓芯包的电容引出率的衰减速度的效果。
此外,采用本公开实施例所述铝电解电容器,芯包产生的气体会首先储存在气囊结构420内,不会像传统的电容器一样从铝壳上的泄压阀冲出,导致溅射到线路板上,引起着火等事故问题。
另一方面,本公开实施例中,由于第一导箔条(或者第二导箔条)通过连接胶条与封装袋密封连接,连接胶条处的连接强度弱于其他部位,在封装袋内产生的气体压力达到一定程度后,在连接胶条与封装袋的密封位置或者第一导箔条(或者第二导箔条)与阴极箔的连接位置产生断裂,断裂后电容器就会断电,从而不会再产生气体,从而避免大量气体冲出溅射到线路板上的问题。
举例说明,以电压660V,电流1A为试验条件,对多个本公开实施例的铝电解电容器进行测试,接通电源,瞬间达到试验条件1-2秒后,阴极箔上的第二导箔条在铝塑密封位置断裂或者在阴极箔铆接部位断裂(阴极箔很薄容易断裂)。
进一步地,由于封装袋400还设置于第二外壳500内,在芯包的电解液泄露的情况下,也只是泄露在第二外壳500内,一般不会流出,不会产生溅射到线路板上的问题,从而达到阻燃效果。
其中一实施方式,可选地,第二外壳500内还设置有压紧夹,如图11所示,压紧夹700夹持容纳腔410,气囊结构420位于压紧夹700的一侧。
可选地,压紧夹700包括相对的两块夹板,该两块夹板夹持容纳腔410,从而将容纳腔410内的芯包压紧。
采用该实施方式,通过压紧夹700夹持容纳腔410,电容器工作时,容纳腔410内的芯包产生气体时,在压紧夹700的作用下,容纳腔410内的气体可以很快到达气囊结构420内,使气体不会在容纳腔410内停留,同时不会影响气囊结构420内的气体对容纳腔410的反向挤压。
可选地,在芯包封装到封装袋400内后,通过抽真空,使得封装袋400可以紧贴芯包。
可选地,封装袋400为事先预制形成,在事先预制封装袋400时,包括预制容纳腔和气囊结构之间的密封隔离条。
在将芯包封装时,先在连接阳极箔的第一导箔条和连接阴极箔的第二导箔条上贴上热封用的密封胶,之后执行芯包装袋、抽真空,热封密封的封装过程。
其中一实施方式,可选的,封装袋的形成也可以是先将芯包放置在一块铝 塑膜上,然后再芯包上再覆盖一块铝塑膜,然后再通过热压封边的方式在铝塑膜上形成容纳腔和气囊结构。
电容器在使用的时候,由于纹波电流的问题可能发热,从而蒸发电解液,或者产生气体,故蒸发的电解液也会沿着排气结构进入到气囊结构内,故芯包需要含浸足够的电解液,事实上方形叠层的芯包由于没有卷绕式圆柱形芯包那么缠绕得紧,电解液更加容易浸透整个芯包,也就是说在同等的含浸条件下,方形叠层式芯包能够含浸更多的电解液,电容的性能会更好。
此外,由于芯包是通过铝塑膜制成的封装袋包装,所以第二外壳对于芯包的密封作用要求就没有传统电容器高,第二盖板将封装袋密封在第二外壳内后,接线柱(引出端子)可以与传统电容器上接线柱的设置方式相同,但第二盖板与第二外壳的密封要求不需要那么高,只要保证当芯包产生气体达到一定的程度,使得封装袋爆开的时候,电解液不会流出第二外壳即可。
另一方面,在将芯包置于封装袋400内封装后,进行老化测试时,在老化测试过程中生成气体存在胀气现象时,采用本公开实施例所述铝电解电容器,气体通过排气结构421进入到气囊结构420内,使气囊结构420鼓起,在该种情况下,可以通过将气囊结构切口的方式,抽真空使气囊结构内气体排出,之后在切口处可以重新采用热压封口。
本公开实施例所述铝电解电容器,另一实施方式,所述铝电解电容器还包括一体成型的第二外壳,所述装有芯包的封装袋设置于所述第二外壳的内部,所述第一导箔条伸出至所述第二外壳的外部,且所述第一导箔条与所述第二外壳之间密封并且绝缘。
该实施方式中,第二外壳可以为采用铝壳制成,装有芯包的封装袋设置于一体成型的铝壳制成的第二外壳的内部,通过第一导箔条和第二导箔条(或为第三导箔条)伸出至第二外壳之外,实现电容引出。第一导箔条和第二导箔条(或为第三导箔条)与第二外壳之间可以通过橡胶塞来密封和绝缘。
可选地,该实施方式中,与上一实施方式的容置有芯包的封装袋通过一端开口的第二外壳与第二封装盖板进行封装相同,封装袋还包括气囊结构和用于夹持容纳腔的压紧夹等,具体实施方式可以参阅以上关于气囊结构和压紧夹的描述,在此不再详细说明。
本公开实施例另一方面还提供一种封装方法,应用于如上所述的铝电解电 容器,其中,所述方法包括:
将芯包置于封装袋的容纳腔内,且所述芯包的第一导箔条由所述封装袋的开口处穿出;所述封装袋采用铝塑膜制成;
在所述开口处对所述封装袋进行热压封口,形成第一密封边缘,且使所述第一导箔条的连接胶体与所述封装袋热封连接。
可选地,所述封装袋还包括与所述容纳腔通过密封隔离条间隔的气囊结构;所述密封隔离条上开设有连通所述气囊结构和所述容纳腔的排气结构,所述方法还包括:
将所述气囊结构折叠至所述封装袋的一侧;
将进行所述气囊结构折叠后的所述封装袋置于第二外壳内;
将第二盖板盖设于所述第二外壳的开口处,且使所述第一导箔条与所述第二封装盖板上的接线柱连接;
对所述第二封装盖板进行密封,将所述封装袋封闭于所述第二外壳的内部。
具体地,对铝电解电容器进行封装的封装方式和封装过程可以参阅以上的描述,在此不再详细说明。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (22)

  1. 一种芯包,其中,包括:
    层叠设置的多个第一电极箔和多个第二电极箔,相邻的两个所述第一电极箔通过一个所述第二电极箔间隔,相邻的两个所述第二电极箔通过一个所述第一电极箔间隔,且相邻的所述第一电极箔和所述第二电极箔通过电解纸间隔;所述第一电极箔为阳极箔和阴极箔中的其中任一个,所述第二电极箔为阳极箔和阴极箔中的另一个;
    多个所述第一电极箔中,每一所述第一电极箔的边缘分别设置一个第一导电箔片,所述第一导电箔片的第一部分与相应的所述第一电极箔电性连接,所述第一导电箔片的第二部分相对于所述第一电极箔延伸突出;多个所述第一导电箔片通过所述第二部分均连接至一个第一导箔条;
    其中,所述第一导电箔片的表面形成有氧化膜。
  2. 根据权利要求1所述的芯包,其中,多个所述第二电极箔中,每一所述第二电极箔的边缘分别设置一个第二导电箔片,所述第二导电箔片的第一部分与相应的所述第二电极箔电性连接,所述第二导电箔片的第二部分相对于所述第二电极箔延伸突出;多个所述第二导电箔片通过所述第二部分均连接至一个第二导箔条;
    其中,所述第二导电箔片的表面形成有氧化膜。
  3. 根据权利要求1所述的芯包,其中,所述第一导电箔片采用纯铝材料制作,且所述第一导电箔片的表面氧化膜的特性与所述第一电极箔的表面氧化膜的特性相同。
  4. 根据权利要求1所述的芯包,其中,所述第一导电箔片的表面经化成工艺处理形成所述氧化膜,且所述第一导电箔片的表面形成所述氧化膜的化成工艺处理方式与所述第一电极箔的表面形成氧化膜的化成工艺处理方式相同。
  5. 根据权利要求1所述的芯包,其中,所述第一电极箔为阳极箔,所述第二电极箔为阴极箔;
    每一所述阴极箔包括一体成型的主体部分和极耳部分,所述极耳部分相对于所述主体部分的边缘突出,多个所述阴极箔通过所述极耳部分连接至一个第三导箔条。
  6. 根据权利要求1所述的芯包,其中,每一所述第一电极箔分别包括一体成型的主体部分和极耳部分,所述极耳部分相对于所述主体部分的边缘突出,所述第一导电箔片的第一部分通过所述极耳部分与所述第一电极箔连接;
    其中,多个所述第一电极箔的极耳部分沿第一方向依次交错排列。
  7. 根据权利要求6所述的芯包,其中,多个所述第一导电箔片沿所述第一方向依次排列设置,且相邻两个所述第一导电箔片的第二部分贴合连接。
  8. 根据权利要求1所述的芯包,其中,所述第一导电箔片的厚度位于5-50μm之间。
  9. 根据权利要求1所述的芯包,其中,所述第一导电箔片的第一部分与所述第一电极箔之间通过铆接、焊接和导电胶中的其中一种方式连接。
  10. 一种铝电解电容器,其中,包括权利要求1至9任一项所述的芯包。
  11. 根据权利要求10所述的铝电解电容器,其中,所述铝电解电容器还包括一端开口且采用铝材料制作的第一外壳,所述芯包设置于所述第一外壳的内部;
    所述开口处设置有第一封装盖板,所述第一封装盖板上设置有接线柱;所述第一导箔条与所述第一封装盖板上的接线柱连接。
  12. 根据权利要求11所述的铝电解电容器,其中,所述第一外壳的尺寸、形状与所述芯包的尺寸、形状相适配。
  13. 根据权利要求10所述的铝电解电容器,其中,所述铝电解电容器还包括由铝塑膜制成的封装袋,所述封装袋形成为容纳腔,所述容纳腔的边缘密封,将所述芯包密封于所述封装袋的内部,且所述第一导箔条穿过所述封装袋的第一密封边缘延伸至所述封装袋的外部。
  14. 根据权利要求13所述的铝电解电容器,其中,所述铝电解电容器还包括一端开口的第二外壳,容置有所述芯包的所述封装袋设置于所述第二外壳的内部;
    所述开口处设置有第二封装盖板,所述第二封装盖板上设置有接线柱,所述第一导箔条与所述第二封装盖板上的接线柱连接。
  15. 根据权利要求13所述的铝电解电容器,其中,所述铝电解电容器还包括一体成型的第二外壳,所述封装袋设置于所述第二外壳的内部,所述第一导箔条伸出至所述第二外壳的外部,且所述第一导箔条与所述第二外壳之间密封 并且绝缘。
  16. 根据权利要求14或15所述的铝电解电容器,其中,所述封装袋还包括与所述容纳腔通过隔离条间隔的气囊结构;所述隔离条上开设有连通所述气囊结构和所述容纳腔的排气结构;
    在所述第二外壳的内部,所述气囊结构设置于所述容纳腔的一侧,其中所述容纳腔至所述气囊结构的方向为多个所述第一电极箔和多个第二电极箔的层叠设置方向。
  17. 根据权利要求16所述的铝电解电容器,其中,所述第二外壳的内部还设置有压紧夹,所述压紧夹夹持所述容纳腔,所述气囊结构位于所述压紧夹的一侧。
  18. 根据权利要求16所述的铝电解电容器,其中,所述隔离条与所述封装袋的所述第一密封边缘相对,或者所述隔离条位于所述第一密封边缘的相邻侧边处。
  19. 根据权利要求13所述的铝电解电容器,其中,所述封装袋的第二密封边缘的宽度大于所述第一密封边缘的宽度;
    其中,所述第二密封边缘位于所述第一密封边缘的两侧。
  20. 根据权利要求19所述的铝电解电容器,其中,所述第二密封边缘包括至少两个密封隔离条。
  21. 一种封装方法,其中,应用于权利要求10所述的铝电解电容器,其中,所述方法包括:
    将芯包置于封装袋的容纳腔内,且所述芯包的第一导箔条由所述封装袋的开口处穿出;所述封装袋采用铝塑膜制成;
    在所述开口处对所述封装袋进行热压封口,形成第一密封边缘,且使所述第一导箔条上的连接胶体与所述封装袋热封连接。
  22. 根据权利要求21所述的封装方法,其中,所述封装袋还包括与所述容纳腔通过密封隔离条间隔的气囊结构;所述密封隔离条上开设有连通所述气囊结构和所述容纳腔的排气结构,所述方法还包括:
    将所述气囊结构折叠至所述封装袋的一侧;
    将进行所述气囊结构折叠后的所述封装袋置于第二外壳内;
    将第二盖板盖设于所述第二外壳的开口处,且使所述第一导箔条与所述第 二封装盖板上的接线柱连接;
    对所述第二封装盖板进行密封,将所述封装袋封闭于所述第二外壳的内部。
PCT/CN2022/114490 2022-07-29 2022-08-24 芯包、铝电解电容器及其封装方法 WO2024021210A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237014040A KR20240017157A (ko) 2022-07-29 2022-08-24 코어 팩, 알루미늄 전해 콘덴서 및 그 패키지 방법
CA3209011A CA3209011A1 (en) 2022-07-29 2022-08-24 Core package, aluminum electrolytic capacitor and pack aging method thereof
EP22925228.3A EP4339978A1 (en) 2022-07-29 2022-08-24 Jelly roll, and aluminum electrolytic capacitor and packaging method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210904879.7 2022-07-29
CN202210904879.7A CN115148503A (zh) 2022-07-29 2022-07-29 芯包、铝电解电容器及其封装方法

Publications (1)

Publication Number Publication Date
WO2024021210A1 true WO2024021210A1 (zh) 2024-02-01

Family

ID=83413272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114490 WO2024021210A1 (zh) 2022-07-29 2022-08-24 芯包、铝电解电容器及其封装方法

Country Status (3)

Country Link
CN (1) CN115148503A (zh)
TW (1) TW202405839A (zh)
WO (1) WO2024021210A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223317A (ja) * 1990-12-25 1992-08-13 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
JP2008028074A (ja) * 2006-07-20 2008-02-07 Matsushita Electric Ind Co Ltd 積層型アルミ電解コンデンサ及びその製造方法
CN101604579A (zh) * 2008-06-13 2009-12-16 万裕三信电子(东莞)有限公司 引线式铝电解电容器
JP2015159210A (ja) * 2014-02-25 2015-09-03 スタンレー電気株式会社 扁平型コンデンサ、扁平型コンデンサの製造方法及び扁平型コンデンサを用いた画像入力光源装置
CN105551806A (zh) * 2016-03-07 2016-05-04 湖南艾华集团股份有限公司 一种软包装的方形液态铝电解电容器及其制作工艺
CN110828179A (zh) * 2019-10-31 2020-02-21 湖南艾华集团股份有限公司 一种耐纹波电流能力强的铝电解电容器及其制备方法
CN110828180A (zh) * 2019-10-31 2020-02-21 湖南艾华集团股份有限公司 一种铝电解电容器及其制备方法
CN110957137A (zh) * 2019-12-16 2020-04-03 湖南艾华集团股份有限公司 极耳引出的叠层高压铝电解电容器芯包单体、制备方法及电容器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223317A (ja) * 1990-12-25 1992-08-13 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
JP2008028074A (ja) * 2006-07-20 2008-02-07 Matsushita Electric Ind Co Ltd 積層型アルミ電解コンデンサ及びその製造方法
CN101604579A (zh) * 2008-06-13 2009-12-16 万裕三信电子(东莞)有限公司 引线式铝电解电容器
JP2015159210A (ja) * 2014-02-25 2015-09-03 スタンレー電気株式会社 扁平型コンデンサ、扁平型コンデンサの製造方法及び扁平型コンデンサを用いた画像入力光源装置
CN105551806A (zh) * 2016-03-07 2016-05-04 湖南艾华集团股份有限公司 一种软包装的方形液态铝电解电容器及其制作工艺
CN110828179A (zh) * 2019-10-31 2020-02-21 湖南艾华集团股份有限公司 一种耐纹波电流能力强的铝电解电容器及其制备方法
CN110828180A (zh) * 2019-10-31 2020-02-21 湖南艾华集团股份有限公司 一种铝电解电容器及其制备方法
CN110957137A (zh) * 2019-12-16 2020-04-03 湖南艾华集团股份有限公司 极耳引出的叠层高压铝电解电容器芯包单体、制备方法及电容器

Also Published As

Publication number Publication date
TW202405839A (zh) 2024-02-01
CN115148503A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP3497448B2 (ja) 電気二重層コンデンサおよび電池
JP2019160825A (ja) 電気化学素子の封止構造
JP2003045760A (ja) 積層型電気二重層キャパシタモジュール
WO2011027683A1 (ja) 扁平巻回形電力貯蔵デバイスセルおよび扁平巻回形電力貯蔵デバイスモジュール
JP2011086760A (ja) 蓄電素子
JP3877968B2 (ja) 電気二重層コンデンサ
RU2439732C2 (ru) Электрический двухслойный конденсатор
WO2024021210A1 (zh) 芯包、铝电解电容器及其封装方法
JP2006079909A (ja) 蓄電モジュール及びその製造方法
JP2002280264A (ja) 電気二重層コンデンサおよびその製造方法
JP2002343681A (ja) 電気二重層キャパシタ
JP2002313677A (ja) 電気二重層キャパシタの組立方法
JP3908917B2 (ja) 電気二重層キャパシタの製造方法
CN218160021U (zh) 芯包和铝电解电容器
KR20240017157A (ko) 코어 팩, 알루미늄 전해 콘덴서 및 그 패키지 방법
JP2021118073A (ja) 蓄電装置
JP3880804B2 (ja) 電気二重層キャパシタ及びその製造方法
JP5216292B2 (ja) 蓄電素子
JP4382949B2 (ja) 積層型電気二重層コンデンサ
JP2013207026A (ja) キャパシタ及びこれを用いたキャパシタモジュール
JP2002075806A (ja) 電気二重層コンデンサ
JP7172696B2 (ja) 電極ユニット及び蓄電モジュール
CN114730965B (zh) 蓄电装置及绝缘支架
JP4189561B2 (ja) 電気二重層コンデンサの製造方法
JP2010016308A (ja) 蓄電装置及びその作製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022925228

Country of ref document: EP

Effective date: 20230815

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010224

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925228

Country of ref document: EP

Kind code of ref document: A1