WO2024021074A1 - 发光基板、背光模组、显示装置及发光基板的制备方法 - Google Patents

发光基板、背光模组、显示装置及发光基板的制备方法 Download PDF

Info

Publication number
WO2024021074A1
WO2024021074A1 PCT/CN2022/109125 CN2022109125W WO2024021074A1 WO 2024021074 A1 WO2024021074 A1 WO 2024021074A1 CN 2022109125 W CN2022109125 W CN 2022109125W WO 2024021074 A1 WO2024021074 A1 WO 2024021074A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
emitting
support structure
emitting substrate
Prior art date
Application number
PCT/CN2022/109125
Other languages
English (en)
French (fr)
Inventor
李佳昕
李冬磊
余鸿昊
鹿堃
孙吉伟
段涛涛
张志涛
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002456.4A priority Critical patent/CN117795403A/zh
Priority to PCT/CN2022/109125 priority patent/WO2024021074A1/zh
Publication of WO2024021074A1 publication Critical patent/WO2024021074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a light-emitting substrate, a backlight module, a display device, and a method for preparing the light-emitting substrate.
  • Mini LED (English full name: Mini Light-Emitting Diode, Chinese name: Micro Light-Emitting Diode) display device is a display device that uses sub-millimeter light-emitting diodes as light-emitting devices. Compared with traditional light-emitting diodes, the size of sub-millimeter light-emitting diodes is greater than or equal to 80 ⁇ m and less than 500 ⁇ m.
  • Mini LED display devices can achieve higher contrast, more layered images, and closer to reality.
  • the future market prospects are very broad.
  • a light-emitting substrate including: a substrate and a plurality of light-emitting devices arranged on one side of the substrate, and a plurality of driving chips and a plurality of supporting structures arranged on one side of the substrate, each driving chip and at least one light-emitting device Electrical connection; wherein each of the plurality of driver chips is covered by one of the plurality of support structures.
  • a receiving groove is provided at the bottom of the support structure, and the driver chip is embedded in the receiving groove.
  • a surface of a side of the driver chip close to the substrate is flush with a surface of the bottom of the support structure.
  • the receiving groove is opened at a middle position of the bottom of the support structure.
  • the area of the orthographic projection of the accommodation groove on the substrate is larger than the area of the orthographic projection of the driving chip on the substrate, and the orthographic projection of the driving chip on the substrate is at the The receiving groove is within the orthographic projection of the base plate.
  • the driver chip and the support structure are connected through transparent glue disposed in the receiving groove.
  • the support structure includes a first support structure, the first support structure includes a first body structure, the first body structure is perpendicular to the base plate and in a direction away from the base plate along which the support structure is.
  • the cross-sectional area of the structure gradually decreases; the receiving groove is provided at the bottom of the first main body structure.
  • the support structure includes a second support structure, the second support structure includes a second main structure and a base, the second main structure is disposed on a side of the base away from the base plate, along Perpendicular to the base plate and along the direction in which the support structure is away from the base plate, the cross-sectional area of the second main body structure gradually decreases; the receiving groove is provided at the bottom of the base.
  • the groove depth of the receiving groove is smaller than the thickness of the base.
  • the base is a boss structure, and the orthographic projection of the second main structure on the base is located within the orthographic projection of the base on the base.
  • the outer surface color of the support structure is white.
  • the outer surface of the support structure has a reflectivity greater than 92%.
  • the orthographic projection of the driver chip on the substrate is a square, and the side length of the square is 3 cm to 3.5 cm.
  • the driver chip is provided with a plurality of pads
  • the substrate includes a substrate and a circuit layer provided on one side of the substrate
  • the circuit layer includes a plurality of connection pad groups, each Each connection pad group includes a plurality of connection pads, and the plurality of pads of the driver chip are electrically connected to the plurality of connection pads in the connection pad group respectively.
  • a backlight module includes: the light-emitting substrate according to any embodiment of the above aspect.
  • a membrane material group is provided on the side of the plurality of support structures away from the substrate.
  • the film material group includes: a diffusion plate, a lower diffusion sheet, a diffusion plate, a prism sheet and an upper diffusion sheet.
  • the diffusion plate is disposed on a side of the plurality of support structures away from the light-emitting substrate;
  • the lower diffusion sheet is arranged on the side of the diffusion plate away from the light-emitting substrate;
  • the prism sheet is arranged on the side of the lower diffusion sheet away from the light-emitting substrate;
  • the upper diffusion sheet is arranged on the side of the prism sheet away from the light-emitting substrate. one side of the light-emitting substrate.
  • an air gap is provided between the diffusion plate and the tops of the plurality of support structures, and the air gap ranges from 0.1 mm to 0.2 mm.
  • the backlight module further includes a plastic frame.
  • the plastic frame surrounds the film material group.
  • the edge of the backlight module is provided with a side wall extending in the light emitting direction.
  • the plastic frame surrounds the film material group.
  • the side wall is provided on the outer peripheral side.
  • a display device includes: the backlight module according to any one of the embodiments of the above aspect, wherein the display panels are stacked on the light emitting side of the backlight module.
  • a method for preparing a light-emitting substrate includes: providing a substrate; forming a plurality of light-emitting devices on one side of the substrate; providing a plurality of support structures, and forming a receiving groove at the bottom of each support structure; and driving the The chip is embedded in the receiving groove, so that the driving chip and the supporting structure form an integral body; the integral body formed by the driving chip and the supporting structure is transferred to the base plate, and the driving chip in the integral body is welded to the base plate.
  • Figure 1 is a structural diagram of a display device provided by some embodiments of the present disclosure.
  • Figure 2 is a cross-sectional view along the A-A direction in Figure 1;
  • Figure 3A is a structural diagram of a backlight module provided by some embodiments of the present disclosure.
  • Figure 3B is a structural diagram of another backlight module provided by some embodiments of the present disclosure.
  • Figure 4 is a top structural view of a light-emitting substrate provided by some embodiments of the present disclosure.
  • Figure 5A is a structural diagram of a support structure provided by some embodiments of the present disclosure.
  • Figure 5B is a structural diagram of the driver chip installation location provided by some embodiments of the present disclosure.
  • Figure 6A is a structural diagram of a card slot provided by some embodiments of the present disclosure.
  • Figure 6B is a structural diagram of another card slot provided by some embodiments of the present disclosure.
  • Figure 6C is a structural diagram of another card slot provided by some embodiments of the present disclosure.
  • Figure 7A is a structural diagram of a support structure provided by some embodiments of the present disclosure.
  • Figure 7B is a structural diagram of another support structure provided by some embodiments of the present disclosure.
  • Figure 7C is a structural diagram of yet another support structure provided by some embodiments of the present disclosure.
  • Figure 8A is a structural diagram of a support structure provided by some embodiments of the present disclosure.
  • Figure 8B is a structural diagram of another support structure provided by some embodiments of the present disclosure.
  • Figure 8C is a structural diagram of yet another support structure provided by some embodiments of the present disclosure.
  • Figure 9 is a structural diagram of the light exit side of a light-emitting substrate provided by some embodiments of the present disclosure.
  • Figure 10 is an internal structural diagram of a light-emitting substrate provided by some embodiments of the present disclosure.
  • Figure 11 is a connection structure diagram of a light emitting group and a connection pad group provided by some embodiments of the present disclosure
  • Figure 12 is an internal structural diagram of another light-emitting substrate provided by some embodiments of the present disclosure.
  • Figure 13A is a structural diagram of a backlight module provided by some embodiments of the present disclosure.
  • Figure 13B is a structural diagram of another backlight module provided by some embodiments of the present disclosure.
  • Figure 14A is a structural diagram of another backlight module provided by some embodiments of the present disclosure.
  • Figure 14B is a structural diagram of yet another backlight module provided by some embodiments of the present disclosure.
  • Figure 15A is a structural diagram of a display device provided by some embodiments of the present disclosure.
  • Figure 15B is a structural diagram of another display device provided by some embodiments of the present disclosure.
  • Figure 16 is a structural diagram of a backlight module provided by some embodiments of the present disclosure.
  • Figure 17 is a flow chart of a method for preparing a light-emitting substrate according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “in response to” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when it is determined" or “in response to the determination" or “on detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • a driver chip is used to control at least one light-emitting device to control the light emitting brightness of the light-emitting device, and the light-emitting device and the driver chip that controls the light emission of the light-emitting device are arranged on the same substrate.
  • the driver chip is large in size, for example, its side length is on the order of centimeters, the driver chip and the light-emitting device are placed on different sides of the backplane.
  • the driver chip and the light-emitting device are placed on different sides of the backplane.
  • such a design will increase the thickness of the overall module, which is not conducive to the realization of the product. Light and thin.
  • the driver chip and the light-emitting device can be placed on the same side of the backplane.
  • this design also has the following problems: On the one hand, for light-emitting For a backplane with a large number of devices and a high density of arrangement, the driver chip and the light-emitting device are placed on the same side. It is necessary to ensure that the driver chip does not affect the optical effect of the light-emitting device. This will have a significant impact on the overall size, appearance color, and performance of the driver chip. There will be various restrictions on location.
  • the optical film material includes a film layer for uniform light.
  • the distance between the optical film material closest to the light-emitting device and the light-emitting device is the light mixing distance T.
  • the larger the light mixing distance the greater the irradiation of a single light-emitting device incident on the optical film material.
  • a support column can be provided between the light-emitting device and the film layer so that there is a certain distance between the optical film material and the light-emitting device.
  • the display device 1000 can display images whether moving (eg, video) or fixed (eg, still images) and whether text or text. of any device.
  • the display device 1000 can be a television, a laptop, a tablet, a mobile phone, a personal digital assistant (Personal Digital Assistant, PDA), a navigator, a wearable device, an augmented reality (Augmented Reality, AR) device, a virtual Reality (Virtual Reality, VR) equipment and other products or components with display functions.
  • PDA Personal Digital Assistant
  • AR Augmented Reality
  • VR Virtual Reality
  • the display device 1000 may be a liquid crystal display (LCD). As shown in FIG. 2 , the display device 1000 may include a backlight module 100 and a display panel 200 .
  • the backlight module 100 includes a light exit side aa and a backlight side bb.
  • the light exit side aa refers to the side of the backlight module 100 that emits light
  • the backlight side bb refers to the other side of the backlight module 100 opposite to the light exit side aa.
  • the backlight module 100 can be used to provide a light source for the display panel 200
  • the display panel 200 is disposed on the light exit side aa of the backlight module 100 .
  • the display device 1000 may further include a glass cover 300 disposed on the side of the display panel 200 away from the backlight module 100 .
  • the glass cover 300 is used to protect the display panel 200 .
  • the backlight module 100 includes a light emitting substrate 110 .
  • the light-emitting substrate 110 includes a substrate 10 and a plurality of light-emitting devices 20 disposed on one side surface of the substrate 10 , a plurality of driving chips 30 and a plurality of supporting structures 40 .
  • Each driving chip 30 of the plurality of driving chips 30 is connected to at least one The light emitting devices 20 are electrically connected, and each of the plurality of driving chips 30 is covered by one of the plurality of supporting structures 40 .
  • each of the plurality of support structures 40 is disposed above one driver chip 30 , and the plurality of support structures 40 cover the plurality of driver chips 30 in one-to-one correspondence.
  • multiple support structures 40 cover the plurality of driver chips 30 in a one-to-one correspondence.
  • One part of the support structures 40 covers the corresponding driver chip 30 , and the other part of the support structure 40 can be independently provided on the surface of one side of the substrate 10 as a support. That is to say, the relationship between the number of the support structures 40 and the driver chips 30 is There is no absolute corresponding relationship. In this way, the support structure 40 can play a supporting role on the one hand, and can also protect the driver chip 30 by isolating water vapor and preventing the driver chip 30 from being corroded by water vapor.
  • each driver chip 30 among the plurality of driver chips 30 is covered by one of the plurality of support structures 40 .
  • the plurality of driver chips 30 and the plurality of support structures 40 correspond one to one.
  • Each driver chip 30 It is provided at the bottom of a support structure 40.
  • the support structure 40 covers the driver chip 30.
  • the support structure 40 and the driver chip 30 are integrated.
  • the support structure 40 can be equivalent to the packaging structure of the driver chip 30 and can isolate the water vapor from causing damage to the driver chip 30.
  • the support structure 40 has a certain supporting role and can replace the support pillars provided in the display module in the prior art, so that the number of devices provided on the light-emitting substrate 110 is reduced, thereby improving the impact of too many devices on the optical picture.
  • the support structure 40 and the driver chip 30 are integrated, so that the size of the driver chip 30 does not need to be limited to the micron level.
  • the area of the driver chip 30 can be increased, thereby increasing the contact area between the pad and the pin, thereby reducing the risk of die solidification. Difficulty and reduce false soldering.
  • the driver chip 30 and the light-emitting device 20 are arranged on the same side of the substrate 10, thereby reducing the thickness of the light-emitting substrate 110, so that the backlight module 100 can be made more efficient. Light and thin.
  • each driving chip 30 of the plurality of driving chips 30 is electrically connected to one light-emitting device 20 , or that each driving chip 30 of the plurality of driving chips 30 is electrically connected to a plurality of light-emitting devices 20 .
  • there is no limit on the number of driving chips 30 and light-emitting devices 20 as long as the light-emitting substrate 110 can ensure normal light emission.
  • the light emitting device 20 may be a mini light emitting diode.
  • the driving chip 30 may be configured to control the light-emitting state of at least one light-emitting device 20, for example, control whether the at least one light-emitting device 20 emits light.
  • one driver chip 30 can control the light-emitting states of four light-emitting devices 20 .
  • one driving chip 30 can control the light-emitting states of eight light-emitting devices 20 .
  • This disclosure does not limit the number of light-emitting devices 20 controlled by one driving chip 30, as long as the light-emitting substrate 110 can normally emit light.
  • an encapsulation part 21 is provided on the periphery of each light-emitting device 20 , where the encapsulation part 21 is semicircular and may be made of transparent silicone.
  • the encapsulation part 21 is mainly used to protect the light-emitting device 20.
  • the encapsulation part 21 can prevent water vapor from covering the light-emitting device 20, and can also avoid being hit by other components.
  • a plurality of light emitting devices 20 and a plurality of support structures 40 are arrayed on a substrate 10 , and each of the plurality of driving chips 30 is supported by one of the plurality of support structures 40 .
  • the support structure 40 covers it. It can be understood that the orthographic projection of one support structure 40 on the substrate 10 can cover the orthographic projection of one driving chip 30 on the substrate 10 . Therefore, the number of driving chips 30 is consistent with the number of supporting structures 40 .
  • the support structure 40 can be used to protect the driver chip 30 and isolate moisture, water vapor and other tiny electrolytes.
  • a receiving groove 41 is provided at the bottom of the support structure 40 , and the driver chip 30 is embedded in the receiving groove 41 .
  • the accommodating groove 41 is opened upward along a partial area of the plane where the bottom of the support structure 40 is located.
  • the accommodating groove 41 has a certain groove depth to facilitate the entire driving chip 30 to be embedded inside the accommodating groove 41 .
  • the side surface of the driver chip 30 close to the substrate 10 is flush with the surface of the bottom of the support structure 40 .
  • the side surface of the driver chip 30 close to the substrate 10 has no protrusion or depression relative to the bottom surface of the support structure 40 , that is, the side surface of the drive chip 30 close to the substrate 10 is flush with the surface of the bottom of the support structure 40 . flat.
  • a closed space can be formed between the receiving groove 41 at the bottom of the support structure 40 and the substrate 10 to avoid gaps, so that the support structure 40 can seal the drive chip 30 in a sealed space.
  • the interior of the space isolates water vapor to prevent the driver chip 30 from being corroded by water vapor.
  • the receiving groove 41 is opened in the middle of the bottom of the support structure 40 .
  • the geometric center of the receiving groove 41 and the bottom center of the supporting structure 40 are located on the same straight line.
  • the area of the orthographic projection of the receiving groove 41 on the substrate 10 is larger than the area of the orthographic projection of the driving chip 30 on the substrate 10 , and the orthographic projection of the driving chip 30 on the substrate 10 is smaller than the orthographic projection of the receiving groove 41 on the substrate 10 within the orthographic projection.
  • the area of the orthographic projection of the accommodating groove 41 on the substrate 10 is the sum of the orthographic projection of the drive chip 30 on the substrate 10 plus the area of the connection between the two. Therefore, the orthogonal projection area of the accommodating groove 41 on the substrate 10 is The projected area is larger than the area of the orthographic projection of the driving chip 30 on the substrate 10 , and the orthographic projection of the driving chip 30 on the substrate 10 is within the orthographic projection of the receiving groove 41 on the substrate 10 .
  • the driver chip 30 and the support structure 40 are connected through transparent glue.
  • the bottom of the support structure 40 is provided with a slot 42 , and the lower surface of the slot 42 is flush with the lower surface of the support structure 40 , that is, the bottom of the support structure 40 is aligned with the slot 42
  • the mating part is recessed inward, and the center of the clamping slot 42 coincides with the center of the receiving slot 41.
  • the middle part of the clamping slot 42 is provided with an opening 421 corresponding to the position of the receiving slot 41 and having the same size.
  • the outer contour of the clamping slot 42 is supported by
  • the orthographic projection of the bottom of the structure 40 is a polygon, for example, a square, a rhombus or a triangle, and this shape is not limited here.
  • the bottom of the support structure 40 is also provided with at least one marking point, for example, the number of marking points is two, four, six, etc., and the contact surface of the bottom of the slot 42 and the support structure 40 is provided with positioning points, where the positioning points correspond to the positions of the marking points. , therefore, the card slot 42 can limit the deviation that occurs during the assembly process of the driving chip 30 and the supporting structure 40 .
  • the four sides of the opening 421 correspond to the four sides of the driving chip 30, and the size of at least one side of the opening 421 is larger than the size of the side corresponding to the side of the driving chip 30.
  • the transparent glue here can play a bonding role on the one hand, and can also isolate water and oxygen on the other hand, and play a role in protecting the driver chip 30.
  • the outer outline of the card slot 42 shown in FIG. 6A is a square, with a rectangular opening 421 in the middle.
  • the size of one side of the rectangular opening 421 is larger than the size of the side corresponding to the side of the driver chip 30 . size, when placing the driver chip 30, leave a certain space between the rectangular opening 421 and the driver chip 30. Inject transparent glue into this space to inlay and fix the driver chip 30.
  • the orthographic projection of the rectangular opening 421 on the light-emitting substrate 110 is larger than Orthographic projection of the driving chip 30 on the light-emitting substrate 110 .
  • the outer outline of the card slot 42 shown in FIG. 6B is a rhombus, with a rectangular opening 421 in the middle.
  • the size of one side of the rectangular opening 421 is larger than the size of the side corresponding to the side of the driver chip 30 . size, when placing the driver chip 30, leave a certain space between the rectangular opening 421 and the driver chip 30. Inject transparent glue into this space to inlay and fix the driver chip 30.
  • the orthographic projection of the rectangular opening 421 on the light-emitting substrate 110 is larger than Orthographic projection of the driving chip 30 on the light-emitting substrate 110 .
  • the outer outline of the card slot 42 shown in FIG. 6C is a triangle, with a rectangular opening 421 in the middle.
  • the size of one side of the rectangular opening 421 is larger than the size of the side corresponding to the side of the driver chip 30 . size, when placing the driver chip 30, leave a certain space between the rectangular opening 421 and the driver chip 30. Inject transparent glue into this space to inlay and fix the driver chip 30.
  • the orthographic projection of the rectangular opening 421 on the light-emitting substrate 110 is larger than Orthographic projection of the driving chip 30 on the light-emitting substrate 110 .
  • the support structure 40 includes a first support structure 401 , the first support structure 401 includes a first main structure 4011 , and is perpendicular to the substrate 10 and away from the substrate 10 along the support structure 40 . direction, the cross-sectional area of the first main structure 4011 gradually decreases; a receiving groove 41 is provided at the bottom of the first main structure 4011.
  • the distance between the two ends of the first main structure 4011 gradually becomes smaller.
  • the bottom of the first main body structure 4011 is provided with a receiving groove 41 for the driver chip 30 to be embedded inside.
  • FIG. 7A shows a first support structure 401 , which includes a first main body structure 4011 in a cone shape, that is, along a direction perpendicular to the substrate 10 and away from the substrate 10 along the support structure 40 . direction, the cross-sectional area of the first main structure 4011 in the plane parallel to the substrate 10 gradually decreases, and finally reduces to 0.
  • the first main structure 4011 is equivalent to removing part of the volume of the cylinder on the basis of the cylinder, thereby minimizing the It is possible to prevent the light emitted from the light emitting device 20 from being affected by the first support structure 401 and causing the light path to change.
  • a receiving groove 41 is provided at the bottom of the first main body structure 4011 for the driver chip 30 to be embedded therein.
  • FIG. 7B another first support structure 401 is shown in FIG. 7B , which includes a first main structure 4011 that is a large cone and is formed by cutting off a small cone at the top, that is, along the vertical On the substrate 10 and along the direction in which the support structure 40 is away from the substrate 10, the cross-sectional area of the first main structure 4011 gradually shrinks to a constant value, which is greater than 0.
  • the first main structure 4011 is equivalent to a cone, Part of the volume of the cone is removed to obtain a first support structure 401 with a smaller volume, thereby preventing the light emitted from the light emitting device 20 from being affected by the first support structure 401 from changing the optical path as much as possible.
  • a receiving groove 41 is provided at the bottom of the first main structure 4011 for the driver chip 30 to be embedded inside.
  • Figure 7C shows yet another first support structure 401, which includes a first main structure 4011 formed by a lower half in the shape of a cylinder and an upper half in the shape of a semi-ellipsoid, that is, Along the direction perpendicular to the substrate 10 and along the direction away from the substrate 10 along the support structure 40, the cross-sectional area of the first main structure 4011 gradually reduces, and finally reduces to 0.
  • the first main structure 4011 is equivalent to a cone, minus the cone.
  • Partial volume of the body is obtained to obtain a smaller first support structure 401, thereby avoiding as much as possible the change of the light path of the light emitted by the light-emitting device due to the influence of the first support structure 401.
  • a receiving groove 41 is provided at the bottom of the first main structure 4011 for the driver chip 30 to be embedded inside.
  • the structure and shape of the first support structure 401 can be selected and designed according to the different requirements of the light-emitting substrate 110 for light mixing, combined with the light emission pattern of the light-emitting device 20 and the arrangement of the multiple light-emitting devices 20 .
  • the support structure 40 includes a second support structure 402.
  • the second support structure 402 includes a second main structure 4021 and a base 4022.
  • the second main structure 4021 is disposed away from the base 4022.
  • the cross-sectional area of the second main structure 4021 gradually decreases in the direction perpendicular to the base plate 10 and in the direction in which the support structure 40 is away from the base plate 10 ; a receiving groove 41 is provided at the bottom of the base 4022 .
  • a receiving groove 41 is provided at the bottom of the base 4022 for the driver chip 30 to be embedded therein.
  • FIG. 8A a second support structure 402 is shown in FIG. 8A , which includes a second main body structure 4021 in a cone shape, that is, along a direction perpendicular to the substrate 10 and away from the substrate 10 along the support structure 40 . direction, the cross-sectional area of the second main structure 4021 gradually reduces, and finally reduces to 0.
  • the second main structure 4021 is equivalent to removing part of the volume of the cone on the basis of the cone to obtain a second support structure with a smaller volume. 402, so as to avoid the light path change caused by the influence of the first support structure 401 on the light emitted from the light-emitting device 20 as much as possible.
  • a receiving groove 41 is provided at the bottom of the base 4022 for the driver chip 30 to be embedded inside.
  • FIG 8B another second support structure 402 is shown in Figure 8B, which includes a second main structure 4021 that is a large cone and is formed by cutting off a small cone at the top, that is, along the vertical
  • the cross-sectional area of the second main structure 4021 gradually shrinks to a constant value, which is greater than 0.
  • the second main structure 4021 is equivalent to a cone, Part of the volume of the cone is removed to obtain a second support structure 402 with a smaller volume, so as to avoid as much as possible the change of the light path of the light emitted from the light-emitting device 20 due to the influence of the first support structure 401.
  • the bottom of the base 4022 is provided with a receiving space.
  • the slot 41 is for the driver chip 30 to be embedded in the slot 41 .
  • Figure 8C shows yet another second support structure 402, which includes a second main structure 4021 formed by a lower half that is cylindrical and an upper half that is semi-elliptical, that is, Along the direction perpendicular to the substrate 10 and along the direction away from the substrate 10 along the support structure 40, the cross-sectional area of the second main structure 4021 gradually decreases, and finally decreases to 0.
  • the second main structure 4021 is equivalent to a cone, minus the cone. Partial volume of the body is obtained to obtain a smaller second support structure 402, thereby avoiding as much as possible the change of the light path of the light emitted by the light emitting device 20 due to the influence of the first support structure 401.
  • a receiving groove 41 is provided at the bottom of the base 4022 , for the driver chip 30 to be embedded inside it.
  • the structure and shape of the second support structure 402 can be selected and designed according to the different requirements of the light-emitting substrate 110 for light mixing, combined with the light emission pattern of the light-emitting device 20 and the arrangement of the multiple light-emitting devices 20 .
  • the volume of the support structure 40 can be reduced, thereby reducing the blocking effect of the support structure 40 on light and improving the efficiency of the light-emitting substrate. 110, the light extraction amount in a direction perpendicular to the substrate 10 and in a direction in which the support structure 40 is away from the substrate 10, thereby improving the light extraction efficiency of the light-emitting substrate 110.
  • the depth of the receiving groove 41 is less than the thickness of the base 4022 .
  • the groove depth of the receiving groove 41 is h
  • the thickness of the base 4022 is t, that is, h is less than t.
  • the base 4022 is a boss structure, and the orthographic projection of the second main structure 4021 on the substrate 10 is located within the orthographic projection of the base 4022 on the substrate 10 .
  • the base 4022 is a truncated cone structure
  • the maximum outer dimension of the bottom of the second main structure 4021 is g
  • the maximum outer dimension of the base 4022 is G
  • the second main structure 4021 is on the substrate 10
  • the orthographic projection of is located within the orthographic projection of the base 4022 on the substrate 10, that is, g ⁇ G.
  • the outer surface color of support structure 40 is white.
  • the reflectivity of the outer surface of support structure 40 is greater than 92%.
  • the outer surface color of the support structure 40 By setting the outer surface color of the support structure 40 to white and having a reflectivity greater than 92%, light absorption can be reduced and reflection increased, thereby ensuring or even increasing the light emitting efficiency of the light emitting device 20 and ensuring or even reducing the overall power consumption of the product.
  • the orthographic projection of the driver chip 30 on the substrate 10 is a square, and the side length L of the square is 3 cm to 3.5 cm.
  • the driver chip 30 since the driver chip 30 is disposed at the bottom of the support structure 40, it can accommodate the driver chip 30 with a size of centimeters. Compared with the existing technology, on the one hand, it can greatly reduce the difficulty of die bonding and improve the welding yield. , on the other hand, the area of the integrated circuit inside the driver chip 30 can be increased, and at the same time, the functions of the driver chip 30 can be enriched.
  • the driver chip 30 is provided with a plurality of pins 301
  • the substrate 10 includes a substrate 101 and a circuit layer 102 provided on one side of the substrate.
  • the circuit layer 102 includes a plurality of connection pad groups 1021.
  • Each connection pad group 1021 includes a plurality of connection pads 10211.
  • the plurality of pins 301 of the driver chip 30 correspond to the plurality of connection pads 10211 in the connection pad group 1021 respectively. Electrical connection.
  • the light-emitting substrate 110 includes a plurality of light-emitting areas 111 arranged in an array, and each light-emitting area 111 is provided with at least one connection pad group 1021 and at least one light-emitting group 112 .
  • the light-emitting groups 112 are evenly arranged around the support structure 40, and the distance between each light-emitting device 20 in each light-emitting group 112 and the support structure 40 is approximately equal, so as to avoid the distance between the support structure 40 and any light-emitting device 20 being too close. This blocks the light emission of the light-emitting device 20 to avoid uneven light emission of the light-emitting substrate 110 .
  • Each light-emitting group 112 is electrically connected to one connection pad group 1021.
  • the light-emitting substrate 110 also includes a plurality of signal lines. The plurality of signal lines are located in the circuit layer 102 and pass through the light-emitting area 111. The light-emitting group 112 and the connection pad group 1021 in the light-emitting area 111 are electrically connected to the corresponding signal lines.
  • the light-emitting group 112 includes a plurality of light-emitting devices 20 .
  • the light-emitting devices 20 may be sub-millimeter light-emitting diodes and/or micro-light emitting diodes.
  • Each light-emitting group 112 may include 4 There are one, six, eight, or nine light-emitting devices 20, and the connection mode of the multiple light-emitting devices 20 can be series and/or parallel connection.
  • the lighting group 112 includes four series-connected light-emitting devices 20 , wherein the first light-emitting device 20 among the four series-connected light-emitting devices 20 The anode of is the first end of the light-emitting group 112; the cathode of the last light-emitting device 20 among the four series-connected light-emitting devices 20 is the second end of the light-emitting group 112.
  • the plurality of signal lines include a first power supply voltage signal line VLED, a second power supply voltage signal line PWR, and a third power supply voltage signal line GND.
  • the connection pad group 1021 is provided with four connection pads 10211, which are respectively connected to four pins 301 of a driver chip 30: the signal input pin Di, the signal output pin Out, the first power supply pin Pwr and the second power supply pin. Pin Gnd is connected accordingly.
  • the surface of each pin of the driver chip 30 has a quadrilateral shape, and the side length of the quadrilateral may not exceed 90 ⁇ m.
  • the first end of the light-emitting group 112 is electrically connected to the first power supply voltage signal line VLED, and the first power supply voltage signal line VLED is configured to transmit the third power supply to the light-emitting group 112.
  • the level signal for example, the third level signal may be a high level signal.
  • the first power pin Pwr of the driver chip 30 is electrically connected to the second power supply voltage signal line PWR through a connection pad of the connection pad group 1021, and the second power supply voltage signal line PWR is configured to transmit a second level signal, for example The second level signal may be a high level signal.
  • the second power pin Gnd of the driver chip 30 is electrically connected to the third power supply voltage signal line GND through a connection pad of the connection pad group 1021.
  • the third power supply voltage signal line GND is configured to transmit the first power supply voltage signal line GND to the driver chip 30.
  • the level signal for example, the first level signal may be a low level signal.
  • the second end of each light-emitting group 112 is electrically connected to the output pin Out of the corresponding driver chip 30 .
  • high-level signal refers to the potential of an electrical signal received or output by a node, a terminal or an output terminal in the circuit.
  • the high-level signal may be 3.3V or 5V.
  • Low-level signal represents the potential of an electrical signal received or output by a node, a terminal or an output terminal in the circuit.
  • a low-level signal can refer to a ground signal. Specifically, a low-level signal can be 0V. .
  • the light emitting device 20 is a light emitting diode (LED), that is, the size of the light emitting diode is greater than or equal to 500 ⁇ m, and the distance between the light emitting diodes is greater than 2 mm. That is to say, the light emitting diode serves as the point light source of the backlight module 100 .
  • LED light emitting diode
  • a backlight module 100 when the light-emitting device 20 is a light-emitting diode, a backlight module 100 further includes: a film material group 50 disposed on a side of the plurality of support structures 40 away from the substrate, wherein the film material group 50 is From bottom to top, it includes: a diffusion plate 51, a lower diffusion sheet 52, a prism sheet 53 and an upper diffusion sheet 54.
  • the diffusion plate 51 is arranged on the light emitting side of the light-emitting substrate 110, that is, the diffusion plate 51 is arranged on the plurality of support structures 40 away from the light emitting substrate.
  • the diffusion plate 51 can be used to provide mechanical support to the lower diffusion sheet 52, the prism sheet 53 and the upper diffusion sheet 54, and at the same time diffuse the point light source of the light emitting device 20 into a surface light source.
  • the lower diffusion sheet 52 is located on the side of the diffusion plate 51 away from the light-emitting substrate 110.
  • the lower diffusion sheet 54 produces diffuse reflection after the light from the surface light source passes through the diffusion layer arranged on it, so that the light is evenly distributed and ensures that the backlight module
  • the brightness of the light-emitting side of 100 is uniform; the prism sheet 53 is arranged on the side of the lower diffusion sheet 52 away from the light-emitting substrate 110 to further improve the brightness of the backlight module 100 within the display range of the light-emitting side aa; the upper diffusion sheet 54 is located on the prism sheet 53 On the side away from the light-emitting substrate 110 , the upper diffusion sheet 54 is used to protect the display panel 200 from being stained or scratched by external objects such as the backlight module 100 .
  • the light emitting device 20 is a sub-millimeter light emitting diode (Mini Light Emitting Diode, Mini LED) and/or a micro light emitting diode (Micro Light Emitting Diode, Micro LED).
  • the size of the sub-millimeter light-emitting diode is greater than or equal to 80 ⁇ m and less than 500 ⁇ m. Micro LEDs are smaller than 50 ⁇ m in size.
  • another backlight module 100 further includes: a support structure 40 , a quantum dot film 60 and an optical film layer 70 .
  • the function of the support structure 40 is to support each diaphragm to obtain a certain light mixing distance and eliminate lamp shadows.
  • the light-emitting substrate 110 may emit blue light
  • the quantum dot film 60 may include red quantum dot material, green quantum dot material, and transparent material.
  • the optical film layer 70 may include an optical film such as a diffusion plate 51 or a prism sheet 53.
  • the diffusion plate 51 has scattering and diffusion effects and can further mix the above-mentioned white light; the prism sheet 53 can improve the light extraction efficiency of the backlight module 100.
  • the disclosed embodiments do not specifically limit the structure of the optical film layer 70 .
  • the backlight module 100 includes: the light-emitting substrate 110 provided by any one of the embodiments in the above aspect.
  • the backlight module 100 also includes: a plurality of support structures 40, a reflective film 57, a diffusion plate 51, a quantum dot film 60, a diffusion sheet, and a composite film.
  • a plurality of support structures 40 are fixed on the light-emitting side aa of the light-emitting substrate 110 .
  • the reflective film 57 is disposed on the light emitting side of the light-emitting substrate 110
  • the diffusion plate 51 is disposed on one end of the plurality of support structures 40 away from the light-emitting substrate 110 .
  • the quantum dot film 60 is disposed on the side of the diffusion plate 51 away from the light-emitting substrate 110 .
  • the diffusion sheet is disposed on the side of the quantum dot film away from the light-emitting substrate 110 .
  • the composite film is disposed on the side of the diffusion sheet away from the light-emitting substrate 110 .
  • a plurality of support structures 40 are evenly arranged on the light-emitting substrate 110 to support various optical films 90, so that there is a distance between the reflective film 57 of the light-emitting substrate 110 and the optical film 90, and the distance is mixed.
  • Optical Distance (OD) that is, the light emitted by two adjacent light-emitting devices 20 can be mixed between the reflective film 57 and the optical film 90 (such as a diffuser), which can improve the light-emitting substrate 110
  • the generated light shadow improves the display quality of the display device 1000 .
  • the optical film 90 may include: a diffusion plate 51, a quantum dot film 60, a diffusion sheet and a composite film. The functions of each optical film layer 70 have been described in the above embodiments and will not be described again.
  • the display side and the bottom surface of the display device 1000 are perpendicular to each other, and there is no contact between the diffusion plate 51 and the top ends of the multiple support structures 40 , that is, there is Gap X, the gap X range is 0.1mm-0.2mm. The existence of the gap
  • the backlight module 100 further includes a plastic frame 120 .
  • the plastic frame 120 surrounds the film material group 50 .
  • the edge of the backlight module 100 is provided with side walls extending along the light emitting direction.
  • the plastic frame 120 surrounds the side walls. set on the outer peripheral side of the wall. Among them, supports are provided around the plastic frame 120 .
  • the display device 1000 includes: the backlight module 100 of any one of the above embodiments and a display device 1000.
  • Panel 200 wherein the display panel 200 is stacked on the light exit side aa of the backlight module 100.
  • the display device 1000 includes the backlight module 100 provided in the above embodiment, which has the same effect and function as the above backlight module 100.
  • the display device 1000 can be a mobile phone, a wireless device, a personal data assistant (PDA), Handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, automotive monitors (e.g., mileage table displays, etc.), navigators, cockpit controls and/or displays, displays for camera views (e.g. displays for rear-view cameras in vehicles), electronic photographs, electronic billboards or signs, projectors, packaging and aesthetic structures ( For example, for a display of an image of a piece of jewelry) etc.
  • PDA personal data assistant
  • some embodiments of the present disclosure provide a method of preparing a light-emitting substrate 110 .
  • the preparation method includes:
  • the substrate 10 includes a substrate 101 and a circuit layer 102 provided on one side of the substrate.
  • the circuit layer 102 includes a plurality of connection pad groups 1021, and each connection pad group 1021 includes a plurality of connection pads 10211.
  • the pins 301 of the light emitting device 20 and the driver chip 30 are respectively electrically connected to a plurality of connection pads 10211 in different connection pad groups 1021 . It can be understood that the number of connection pads included in the connection pad group corresponds to the number of pins of the electronic components to which the connection pad group is electrically connected.
  • a plurality of light emitting devices 20 are formed on one side of the substrate 10 .
  • a plurality of light emitting device 20 arrays are distributed on the substrate 10 .
  • S3 Provide multiple support structures 40, and form a receiving groove 41 at the bottom of each support structure 40.
  • the receiving groove 41 is a rectangular groove, the groove depth is consistent with the thickness of the driving chip 30 , and the orthographic projection of the receiving groove 41 on the substrate 10 is slightly larger than the orthographic projection of the driving chip 30 on the substrate 10 .
  • the orthographic projections of the plurality of light-emitting devices 20 and the plurality of support structures 40 on the substrate 10 do not overlap. Therefore, when preparing the light-emitting substrate 110, the order of S2 and S3 is not limited here.
  • the drive chip 30 is fixedly embedded in the accommodating slot 41 by disposing transparent glue in the solid core channel 422 of the card slot 42 to achieve the fixation of the drive chip 30 . , so that the driving chip 30 and the supporting structure 40 form an integral body.
  • the supporting structure 40 can also cover the driving chip 30 to protect the driving chip 30 while improving the display quality of the display device 1000 .
  • the plurality of pins 301 of the driver chip 30 are welded to the substrate 10, that is, the driver chip 30 and the support structure are connected to the substrate 10.
  • the structure 40 is integrally fixed to the base plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

本公开涉及显示技术领域,尤其涉及一种发光基板、背光模组、显示装置及发光基板的制备方法。所述发光基板包括:基板、多个发光器件、多个驱动芯片和多个支撑结构。所述多个发光器件设置于所述基板一侧,所述多个驱动芯片设置于所述基板一侧,每个驱动芯片与至少一个发光器件电连接;所述多个支撑结构设置于所述基板一侧,其中,所述多个驱动芯片中的每个驱动芯片被所述多个支撑结构中的一个支撑结构覆盖。

Description

发光基板、背光模组、显示装置及发光基板的制备方法 技术领域
本公开涉及显示技术领域,尤其涉及一种发光基板、背光模组、显示装置及发光基板的制备方法。
背景技术
Mini LED(英文全称:Mini Light-Emitting Diode,中文名称:微型发光二极管)显示装置,是采用次毫米发光二极管作为发光器件的显示装置。与传统的发光二极管相比,次毫米发光二极管的尺寸大于或等于80μm,且小于500μm。
Mini LED显示装置可实现更高的对比度,画面更具层次,画面效果贴近现实,未来市场前景十分广阔。
发明内容
一方面,提供一种发光基板。一种发光基板,包括:基板和设置于所述基板一侧的多个发光器件,以及设置于所述基板一侧的多个驱动芯片和多个支撑结构,每个驱动芯片与至少一个发光器件电连接;其中,所述多个驱动芯片中的每个驱动芯片被所述多个支撑结构中的一个支撑结构覆盖。
在一些实施例中,所述支撑结构的底部开设有容纳槽,所述驱动芯片嵌设于所述容纳槽内。
在一些实施例中,所述驱动芯片靠近所述基板的一侧表面与所述支撑结构的底部的表面齐平。
在一些实施例中,所述容纳槽开设在所述支撑结构的底部的中间位置。
在一些实施例中,所述容纳槽在所述基板上的正投影的面积大于所述驱动芯片在所述基板上的正投影的面积,所述驱动芯片在所述基板上的正投影在所述容纳槽在所述基板上的正投影内。
在一些实施例中,所述驱动芯片与所述支撑结构通过设置在所述容纳槽内的透明胶连接。
在一些实施例中,支撑结构包括第一支撑结构,所述第一支撑结构包括第一主体结构,沿垂直于所述基板且沿所述支撑结构远离所述基板的方向,所述第一主体结构的横截面积逐渐缩小;所述第一主体结构的底部开设有所述容纳槽。
在一些实施例中,所述支撑结构包括第二支撑结构,所述第二支撑结构包括第二主体结构和底座,所述第二主体结构设置在所述底座远离所述基板 的一侧,沿垂直于所述基板且沿所述支撑结构远离所述基板的方向,所述第二主体结构的横截面积逐渐缩小;所述底座的底部开设有所述容纳槽。
在一些实施例中,所述容纳槽的槽深小于所述底座的厚度。
在一些实施例中,所述底座为一凸台结构,所述第二主体结构在所述基板上的正投影位于所述底座在所述基板上的正投影内。
在一些实施例中,所述支撑结构的外表面颜色为白色。
在一些实施例中,所述支撑结构的外表面的反射率大于92%。
在一些实施例中,所述驱动芯片在所述基板上的正投影为一正方形,所述正方形的边长尺寸为3cm~3.5cm。
在一些实施例中,所述驱动芯片上设置有多个焊盘,所述基板包括衬底和设置在所述衬底一侧的线路层,所述线路层包括多个连接焊盘组,每个连接焊盘组包括多个连接焊盘,所述驱动芯片的多个焊盘与所述连接焊盘组中的多个连接焊盘分别对应电连接。
另一方面,一种背光模组,包括:如上述一方面的任一项实施例的发光基板。设置在所述多个支撑结构远离所述基板一侧的膜材组。
在一些实施例中,所述膜材组包括:扩散板、下扩散片、扩散板、棱镜片和上扩散片,扩散板,设置于所述多个支撑结构远离所述发光基板的一侧;下扩散片,设置于所述扩散板远离所述发光基板的一侧;棱镜片,设置于所述下扩散片远离所述发光基板的一侧;上扩散片,设置于所述棱镜片远离所述发光基板的一侧。
在一些实施例中,所述扩散板与所述多个支撑结构的顶端之间设有空气间隙,所述空气间隙范围为0.1mm~0.2mm。
在一些实施例中,所述背光模组还包括胶框,所述胶框包围所述膜材组,所述背光模组的边缘设置有沿出光方向延伸的侧壁,所述胶框围绕所述侧壁的外周侧设置。
又一方面,一种显示装置,包括:如上述另一方面的任一项实施例的背光模组,显示面板堆叠设置于背光模组的出光侧。
再一方面,一种发光基板的制备方法,包括:提供基板;在所述基板一侧形成多个发光器件;提供多个支撑结构,在每个支撑结构底部开设形成容纳槽;将所述驱动芯片嵌设在所述容纳槽内,使驱动芯片和支撑结构形成一个整体;将驱动芯片和支撑结构形成的整体转移到所述基板上,所述整体中的驱动芯片焊接在所述基板上。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为本公开的一些实施例提供的一种显示装置的结构图;
图2为图1中A-A方向的截面图;
图3A为本公开的一些实施例提供的一种背光模组的结构图;
图3B为本公开的一些实施例提供的另一种背光模组的结构图
图4为本公开的一些实施例提供的发光基板的俯视结构图;
图5A为本公开的一些实施例提供的一种支撑结构的结构图;
图5B为本公开的一些实施例提供的驱动芯片安装位置的结构图;
图6A为本公开的一些实施例提供的一种卡槽的结构图;
图6B为本公开的一些实施例提供的另一种卡槽的结构图;
图6C为本公开的一些实施例提供的又一种卡槽的结构图;
图7A为本公开的一些实施例提供的一种支撑结构的结构图;
图7B为本公开的一些实施例提供的另一种支撑结构的结构图;
图7C为本公开的一些实施例提供的又一种支撑结构的结构图;
图8A为本公开的一些实施例提供的一种支撑结构的结构图;
图8B为本公开的一些实施例提供的另一种支撑结构的结构图;
图8C为本公开的一些实施例提供的又一种支撑结构的结构图;
图9为本公开的一些实施例提供的一种发光基板出光侧的结构图;
图10为本公开的一些实施例提供的一种发光基板的内部结构图;
图11为本公开的一些实施例提供的发光组和连接焊盘组的连接结构图;
图12为本公开的一些实施例提供的另一种发光基板的内部结构图;
图13A为本公开的一些实施例提供的一种背光模组的结构图;
图13B为本公开的一些实施例提供的另一种背光模组的结构图;
图14A为本公开的一些实施例提供的又一种背光模组的结构图;
图14B为本公开的一些实施例提供的再一种背光模组的结构图;
图15A为本公开的一些实施例提供的一种显示装置的结构图;
图15B为本公开的一些实施例提供的另一种显示装置的结构图;
图16为本公开的一些实施例提供的一种背光模组的结构图;
图17为本公开的一些实施例提供的一种发光基板的制备方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文, 短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
相关技术中,为了实现对发光器件的精准控制采用驱动芯片控制至少一个发光器件的方式对发光器件的出光亮度进行控制,并将发光器件与控制发光器件发光的驱动芯片设置在同一基板上。具体地,若驱动芯片的体积较大, 例如其边长尺寸在厘米量级,驱动芯片与发光器件设置在背板的不同侧,然而这样的设计会增加整体模组的厚度,不利于实现产品轻薄化。若驱动芯片的体积较小,例如其边长尺寸在毫米或微米量级,可以将驱动芯片与发光器件设置在背板的同一侧,但是,该种设计也存在以下问题:一方面,对于发光器件数量较多,排布密度较大的背板,驱动芯片与发光器件同侧设置,需要确保驱动芯片不影响发光器件的光学效果,这对驱动芯片的外形尺寸、外观颜色,以及驱动芯片的位置会有多种限制。
在阵列排布的多个发光器件作为背光源的应用场景中,背光源还需要与光学膜材等相互配合。光学膜材中包括用于匀光的膜层,最靠近发光器件的光学膜材与发光器件之间的距离为混光距离T,混光距离越大,单个发光器件入射到光学膜材的照射面积越大,相邻发光器件发出的光会混合得更充分。为了实现发光器件与膜材之间的混光距离,可以在发光器件与膜层之间设置支撑柱,使光学膜材与发光器件具有一定的间距。
在阵列排布的多个发光器件作为背光源的应用场景中,为了保证出光效果,应优先保证发光器件的排布空间以及发光器件的出光效果,因此应尽可能地减少其他器件(例如驱动芯片和/或支撑柱)的数量。
基于此,本公开的一些实施例提供一种显示装置1000,如图1所示,显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。示例性地,该显示装置1000可以为电视机、笔记本电脑、平板电脑、手机、个人数字助理(Personal Digital Assistant,PDA)、导航仪、可穿戴设备、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备等任何具有显示功能的产品或者部件。
在一些实施例中,上述显示装置1000可以为液晶显示装置(Liquid Crystal Display,LCD),如图2所示,显示装置1000可以包括背光模组100、显示面板200。背光模组100包括出光侧aa和背光侧bb,出光侧aa是指背光模组100发出光线的一侧,背光侧bb是指与出光侧aa相对的背光模组100另一侧。背光模组100可以用于为显示面板200提供光源,显示面板200设置于背光模组100的出光侧aa。在另一些实施例中,显示装置1000还可以包括设置于显示面板200远离背光模组100一侧的玻璃盖板300,玻璃盖板300用于保护显示面板200。
在一些实施例中,如图3A和图3B所示,背光模组100包括发光基板110。其中,发光基板110包括基板10以及设置于基板10一侧表面的多个发光器件20、多个驱动芯片30以及多个支撑结构40,多个驱动芯片30中的每个驱 动芯片30与至少一个发光器件20电连接,多个驱动芯片30中的每个驱动芯片30被多个支撑结构40中的一个支撑结构40覆盖。
其中,在一些实施例中,多个支撑结构40中的每个设置在一个驱动芯片30的上方,多个支撑结构40一一对应地覆盖多个驱动芯片30,在另一些实施例中,多个支撑结构40中的一部分支撑结构40覆盖对应的驱动芯片30,另一部分支撑结构40可以独立的设置于基板10一侧的表面上作为支撑,也就是说支撑结构40和驱动芯片30的数量关系没有绝对的对应关系,这样支撑结构40一方面可以起到支撑作用,另一方面还可以对驱动芯片30进行保护,有隔绝水汽,避免驱动芯片30受到水汽腐蚀的作用。
示例性地,多个驱动芯片30中的每个驱动芯片30被多个支撑结构40中的一个支撑结构40覆盖,多个驱动芯片30和多个支撑结构40一一对应,每个驱动芯片30设置在一个支撑结构40的底部,支撑结构40将驱动芯片30覆盖,支撑结构40和驱动芯片30一体化设置,支撑结构40可以相当于驱动芯片30的封装结构,能够隔绝水汽对驱动芯片30形成保护,同时,支撑结构40具有一定的支撑作用,可以替代现有技术中显示模组中设置的支撑柱,使得发光基板110上设置的器件减少,从而改善由于器件过多对光学画面造成的影响,减少显示亮度不均,且造成各种痕迹的风险。同时支撑结构40和驱动芯片30一体化设置,能够使得驱动芯片30的尺寸不必局限在微米级,驱动芯片30的面积可以增大,进而增大焊盘与引脚的接触面积,从而降低固晶难度,减少虚焊。本公开提供的发光基板110中,在满足匀光性能的同时,实现驱动芯片30与发光器件20设置在基板10的同一侧,减小发光基板110的厚度,使背光模组100可以做的更加轻薄化。
可以理解的是,多个驱动芯片30中的每个驱动芯片30与一个发光器件20电连接,或者,多个驱动芯片30中的每个驱动芯片30与多个发光器件20电连接。本公开中对驱动芯片30和发光器件20的数量均不进行限制,只要能够保证发光基板110正常发光即可。
示例性地,发光器件20可以为迷你发光二极管。驱动芯片30可以被配置为控制至少一个发光器件20的发光状态,例如,控制至少一个发光器件20是否发光。示例性地,一个驱动芯片30可以控制四个发光器件20的发光状态。或者,示例性地,一个驱动芯片30可以控制八个发光器件20的发光状态。本公开并不对一个驱动芯片30所控制的发光器件20的数量进行限制,只要能够使发光基板110正常发光即可。
示例性地,每个发光器件20的外围设置有封装部21,其中,封装部21 呈半圆形,材料可以为透明硅胶。封装部21主要用于保护发光器件20,例如,封装部21可以防止水汽覆盖发光器件20,同时还可以避免被其他部件碰撞。
示例性地,参照图4,其中,多个发光器件20和多个支撑结构40阵列排布在基板10上,多个驱动芯片30中的每个驱动芯片30被多个支撑结构40中的一个支撑结构40覆盖,可以理解的是,一个支撑结构40在基板10上的正投影能够覆盖一个驱动芯片30在基板10上的正投影,因此,驱动芯片30的数量与支撑结构40的数量保持一致。除此之外,支撑结构40可以用于保护驱动芯片30,隔绝湿气水汽以及其他微小电解质。
在一些实施例中,如图5A和图5B所示,支撑结构40的底部开设有容纳槽41,驱动芯片30嵌设于容纳槽41内。
示例性地,容纳槽41为支撑结构40沿底部所在平面的部分区域向上开设,容纳槽41具有一定的槽深,便于驱动芯片30的整体嵌设于容纳槽41内部。
在一些实施例中,驱动芯片30靠近基板10的一侧表面与支撑结构40的底部的表面齐平。
可以理解的是,驱动芯片30靠近基板10的一侧表面,相对于支撑结构40的底部表面没有凸出或者凹陷,即驱动芯片30靠近基板10的一侧表面与支撑结构40的底部的表面齐平。这样在驱动芯片30焊接在基板10的表面上的同时,支撑结构40的底部的容纳槽41能够和基板10之间形成密闭空间,避免出现间隙,从而支撑结构40能够将驱动芯片30密封在密闭空间的内部,隔绝水汽,避免驱动芯片30受到水汽腐蚀。
在一些实施例中,容纳槽41开设在支撑结构40的底部的中间位置。
示例性地,容纳槽41的几何中心与支撑结构40的底部中心位于同一条直线上。
在一些实施例中,容纳槽41在基板10上的正投影的面积大于驱动芯片30在基板10上的正投影的面积,驱动芯片30在基板10上的正投影在容纳槽41在基板10上的正投影内。
需要说明的是,这里容纳槽41在基板10上的正投影的面积为驱动芯片30在基板10上的正投影加上二者连接部分的面积之和,所以容纳槽41在基板10上的正投影的面积大于驱动芯片30在基板10上的正投影的面积,驱动芯片30在基板10上的正投影在容纳槽41在基板10上的正投影内。
在一些实施例中,驱动芯片30与支撑结构40通过透明胶连接。
示例性地,如图6A~图6C所示,支撑结构40的底部设置有卡槽42,卡 槽42的下表面与支撑结构40的下表面齐平,即支撑结构40的底部与卡槽42配合处向内凹陷设置,卡槽42的中心与容纳槽41的中心重合,其中,卡槽42的中部开设有与容纳槽41位置对应且等大的开口421,卡槽42的外轮廓在支撑结构40底部的正投影为多边形,例如,正方形、菱形或者三角形,这里并不对此形状作限定。
支撑结构40的底部还设置有至少一个标记点,例如标记点数量为二,四,六等,卡槽42与支撑结构40的底部接触面上设置有定位点,其中定位点与标记点位置对应,因此,卡槽42可以限定驱动芯片30与支撑结构40组装过程中发生的偏差。此外,开口421中的四条边与驱动芯片30的四条边相对应,且开口421中至少的一条边的尺寸大于驱动芯片30中与该边相对应的边的尺寸,在放置驱动芯片30时,矩形开口421与驱动芯片30之间留有一定空间,在此空间内注入透明胶,将驱动芯片30除背离支撑结构40的底表面以外的其他表面通过透明胶镶嵌固化在卡槽42或容纳槽41内,这里的透明胶一方面能够起到粘结的作用,另一方面还可以隔绝水氧,起到保护驱动芯片30的作用。
示例性地,图6A中所示的卡槽42的外部轮廓为一正方形,其中部开设有一矩形开口421,矩形开口421中的一条边的尺寸大于驱动芯片30中与该边相对应的边的尺寸,在放置驱动芯片30时,矩形开口421与驱动芯片30之间留有一定空间,在此空间内注入透明胶,将驱动芯片30镶嵌固定,矩形开口421在发光基板110上的正投影大于驱动芯片30在发光基板110上的正投影。
示例性地,图6B中所示的卡槽42的外部轮廓为一菱形,其中部开设有一矩形开口421,矩形开口421中的一条边的尺寸大于驱动芯片30中与该边相对应的边的尺寸,在放置驱动芯片30时,矩形开口421与驱动芯片30之间留有一定空间,在此空间内注入透明胶,将驱动芯片30镶嵌固定,矩形开口421在发光基板110上的正投影大于驱动芯片30在发光基板110上的正投影。
示例性地,图6C中所示的卡槽42的外部轮廓为一个三角形,其中部开设有一矩形开口421,矩形开口421中的一条边的尺寸大于驱动芯片30中与该边相对应的边的尺寸,在放置驱动芯片30时,矩形开口421与驱动芯片30之间留有一定空间,在此空间内注入透明胶,将驱动芯片30镶嵌固定,矩形开口421在发光基板110上的正投影大于驱动芯片30在发光基板110上的正投影。
在一些实施例中,如图7A~图7C所示,支撑结构40包括第一支撑结构401,第一支撑结构401包括第一主体结构4011,沿垂直于基板10且沿支撑结构40远离基板10的方向,第一主体结构4011的横截面积逐渐缩小;第一主体结构4011的底部开设有容纳槽41。
可以理解的是,第一主体结构4011沿垂直于基板10且沿支撑结构40远离基板10的方向,第一主体结构4011的两端的距离尺寸逐渐变小。第一主体结构4011的底部开设容纳槽41,供驱动芯片30嵌设在其内部。
示例性地,参照图7A,图7A中示出了一种第一支撑结构401,其包括的第一主体结构4011呈一圆锥状,即沿垂直于基板10且沿支撑结构40远离基板10的方向,第一主体结构4011在平行于基板10所在平面的横截面积逐渐缩小,最终减小到0,第一主体结构4011相当于在柱体的基础上,去除柱体的部分体积,从而尽可能避免发光器件20出射的光线受第一支撑结构401影响而发生光路改变。图7A中第一主体结构4011的底部开设有容纳槽41,供驱动芯片30嵌设在其内部。
示例性地,参照图7B,图7B中示出了另一种第一支撑结构401,其包括的第一主体结构4011为一大圆锥,且顶部截去一个小圆锥所形成的,即沿垂直于基板10且沿支撑结构40远离基板10的方向,第一主体结构4011的横截面积逐渐缩小至一个定值,该定值大于0,第一主体结构4011相当于在锥体的基础上,去除锥体的部分体积,得到较小体积的第一支撑结构401,从而尽可能避免发光器件20出射的光线受第一支撑结构401影响而发生光路改变。图7B中第一主体结构4011的底部开设有容纳槽41,供驱动芯片30嵌设在其内部。
示例性地,参照图7C,图7C中示出了又一种第一支撑结构401,其包括下半部分呈圆柱体,上半部分为半椭球形,所形成的第一主体结构4011,即沿垂直于基板10且沿支撑结构40远离基板10的方向,第一主体结构4011的横截面积逐渐缩小,最终减小至0,第一主体结构4011相当于在锥体的基础上,去除锥体的部分体积,得到较小体积的第一支撑结构401,从而尽可能避免发光器件出射的光线受第一支撑结构401影响而发生光路改变。图7C中第一主体结构4011的底部开设有容纳槽41,供驱动芯片30嵌设在其内部。
以上实施例中关于第一支撑结构401结构和形状,可以根据发光基板110对混光的不同要求,结合发光器件20的出光光型和多个发光器件20的排布方式来进行选择和设计。
在一些实施例中,如图8A~图8C所示,支撑结构40包括第二支撑结构 402,第二支撑结构402包括第二主体结构4021和底座4022,第二主体结构4021设置在底座4022远离基板10的一侧,沿垂直于基板10且沿支撑结构40远离基板10的方向,第二主体结构4021的横截面积逐渐减小;底座4022的底部开设有容纳槽41。
可以理解的是,第二主体结构4021沿垂直于基板10且沿支撑结构40远离基板10的方向,第二主体结构4021的两端的距离尺寸逐渐变小。底座4022的底部开设容纳槽41,供驱动芯片30嵌设在其内部。
示例性地,参照图8A,图8A中示出了一种第二支撑结构402,其包括的第二主体结构4021呈一圆锥状,即沿垂直于基板10且沿支撑结构40远离基板10的方向,第二主体结构4021的横截面积逐渐缩小,最终减小到0,第二主体结构4021相当于在锥体的基础上,去除锥体的部分体积,得到较小体积的第二支撑结构402,从而尽可能避免发光器件20出射的光线受第一支撑结构401影响而发生光路改变。图8A中底座4022的底部开设有容纳槽41,供驱动芯片30嵌设在其内部。
示例性地,参照图8B,图8B中示出了另一种第二支撑结构402,其包括的第二主体结构4021为一大圆锥,且顶部截去一个小圆锥所形成的,即沿垂直于基板10且沿支撑结构40远离基板10的方向,第二主体结构4021的横截面积逐渐缩小至一个定值,该定值大于0,第二主体结构4021相当于在锥体的基础上,去除锥体的部分体积,得到较小体积的第二支撑结构402,从而尽可能避免发光器件20出射的光线受第一支撑结构401影响而发生光路改变,图8B中底座4022的底部开设有容纳槽41,供驱动芯片30嵌设在其内部。
示例性地,参照图8C,图8C中示出了又一种第二支撑结构402,其包括下半部分呈圆柱形,上半部分为半椭球形,所形成的第二主体结构4021,即沿垂直于基板10且沿支撑结构40远离基板10的方向,第二主体结构4021的横截面积逐渐缩小,最终减小至0,第二主体结构4021相当于在锥体的基础上,去除锥体的部分体积,得到较小体积的第二支撑结构402,从而尽可能避免发光器件20出射的光线受第一支撑结构401影响而发生光路改变,图8C中底座4022的底部开设有容纳槽41,供驱动芯片30嵌设在其内部。
以上实施例中关于第二支撑结构402的结构和形状,可以根据发光基板110对混光的不同要求,结合发光器件20的出光光型和多个发光器件20的排布方式来进行选择和设计。
通过上述设置方式,在支撑结构40的底面(靠近基板10的一面)的面 积不变的情况下,可以减小支撑结构40的体积,从而减小支撑结构40对光线的阻挡作用,提高发光基板110沿垂直于基板10且沿支撑结构40远离基板10的方向的出光量,从而提高发光基板110的出光效率。
在一些实施例中,容纳槽41的槽深小于底座4022的厚度。
示例性地,容纳槽的41的槽深为h,底座4022的厚度为t,即h小于t。
在一些实施例中,底座4022为一凸台结构,第二主体结构4021在基板10上的正投影位于底座4022在基板10上的正投影内。
示例性地,参照图8A~图8C,底座4022为圆台结构,第二主体结构4021的底部最大外廓尺寸为g,底座4022的最大外廓尺寸为G,第二主体结构4021在基板10上的正投影位于底座4022在基板10上的正投影内,也即g<G。
在一些实施例中,支撑结构40的外表面颜色为白色。
在一些实施例中,支撑结构40的外表面的反射率大于92%。
通过设置支撑结构40的外表面颜色为白色,且反射率大于92%,一方面能够减少吸光,增加反射,从而确保甚至增加发光器件20的出光光效,以及确保甚至降低产品整体的功耗。
在一些实施例中,如图12所示,驱动芯片30在基板10上的正投影为一正方形,正方形的边长L尺寸为3cm~3.5cm。
需要说明的是,由于驱动芯片30设置在支撑结构40的底部,能够容纳变成尺寸在厘米级的驱动芯片30,相比现有技术,一方面能够大大降低固晶难度,提高焊接的良率,另一方面驱动芯片30内部可集成电路的面积增加,同时可以丰富驱动芯片30的功能。
在一些实施例中,参照图9、图10和图12所示,驱动芯片30上设置有多个引脚301,基板10包括衬底101和设置在衬底一侧的线路层102,线路层102包括多个连接焊盘组1021,每个连接焊盘组1021包括多个连接焊盘10211,驱动芯片30的多个引脚301与连接焊盘组1021中的多个连接焊盘10211分别对应电连接。
在一些示例中,如图9和图10所示,发光基板110包括阵列设置的多个发光区111,每个发光区111内设置有至少一个连接焊盘组1021和至少一个发光组112,每个发光组112围绕支撑结构40的四周均匀布置,每个发光组112中的每个发光器件20与支撑结构40的距离均大致相等,避免支撑结构40与任一发光器件20的距离过近,而对该发光器件20的出光造成阻挡,从而避免导致发光基板110的出光不均匀。每个发光组112与一个连接焊盘组1021电连接。发光基板110还包括多条信号线,多条信号线位于线路层102, 且经过发光区111位置,发光区111内的发光组112和连接焊盘组1021与对应的信号线电连接。
在一些实施例中,如图10所示,发光组112包括多个发光器件20,示例性地,发光器件20可以为次毫米发光二极管和/或微型发光二极管,每个发光组112可以包括4个、6个、8个、或9个发光器件20,多个发光器件20的连接方式可以为串联和/或并联。
例如,如图11所示,其中,图11为图10的局部位置的放大图,发光组112包括四个串联的发光器件20,其中,四个串联的发光器件20中第一个发光器件20的正极为发光组112的第一端;四个串联的发光器件20中最后一个发光器件20的负极为发光组112的第二端。
在一些实施例中,如图10、图11和图12所示,多条信号线包括第一电源电压信号线VLED、第二电源电压信号线PWR、第三电源电压信号线GND。连接焊盘组1021上设置有四个连接焊盘10211,分别与一个驱动芯片30的四个引脚301:信号输入引脚Di、信号输出引脚Out、第一电源引脚Pwr和第二电源引脚Gnd对应连接。驱动芯片30的每个引脚的表面具有四边形形状,四边形的边长尺寸可以不超过90μm。
其中,如图10、图11和图12所示,发光组112的第一端与第一电源电压信号线VLED电连接,第一电源电压信号线VLED被配置为向发光组112传输第三电平信号,例如第三电平信号可以为高电平信号。驱动芯片30的第一电源引脚Pwr通过连接焊盘组1021的一个连接焊盘与第二电源电压信号线PWR电连接,第二电源电压信号线PWR被配置为传输第二电平信号,例如第二电平信号可以为高电平信号。驱动芯片30的第二电源引脚Gnd通过连接焊盘组1021的一个连接焊盘与与第三电源电压信号线GND电连接,第三电源电压信号线GND被配置为向驱动芯片30传输第一电平信号,例如第一电平信号可以为低电平信号。每个发光组112的第二端与对应驱动芯片30的输出引脚Out电连接。
在本公开中,“高电平信号”表示电路中一个节点、一个接线端或一个输出端的接收或输出的电信号的电位大小,例如,高电平信号可以为3.3V或5V。“低电平信号”表示电路中一个节点、一个接线端或一个输出端的接收或输出的电信号的电位大小,例如,低电平信号可以指接地信号,具体地,低电平信号可以为0V。
在一些示例中,多个发光器件20阵列布置。示例性地,发光器件20为发光二极管(Light Emitting Diode,LED),即发光二极管的尺寸大于或等于 500μm,且发光二极管之间的距离大于2mm。也就是说,发光二极管作为背光模组100的点光源。
如图3A和图3B所示,发光器件20为发光二极管时,一种背光模组100还包括:设置在多个支撑结构40远离基板一侧的膜材组50,其中,膜材组50自下而上依次包括:扩散板51、下扩散片52、棱镜片53和上扩散片54,扩散板51设置于发光基板110的出光一侧,即扩散板51设置于多个支撑结构40远离发光基板110的一侧,扩散板51可用于对下扩散片52、棱镜片53和上扩散片54提供机械性支撑,同时将发光器件20的点光源扩散为面光源。其中,下扩散片52位于扩散板51远离发光基板110的一侧,下扩散片54在面光源的光线透过其上布置的扩散图层后产生漫反射,使光线均匀分布,保证背光模组100的发光侧亮度均一化;棱镜片53设置于下扩散片52远离发光基板110的一侧,进一步提高背光模组100在出光侧aa的显示范围内的亮度;上扩散片54位于棱镜片53远离发光基板110的一侧,上扩散片54用于保护显示面板200不被背光模组100等外界物体弄脏或划伤。
在另一些示例中,发光器件20为次毫米发光二极管(Mini Light Emitting Diode,Mini LED)和/或微型发光二极管(Micro Light Emitting Diode,Micro LED)。其中,次毫米发光二极管的尺寸大于或等于80μm,且小于500μm。微型发光二极管的尺寸小于50μm。
如图14A和图14B所示,发光器件20为次毫米发光二极管和/或微型发光二极管时,另一种背光模组100还包括:支撑结构40、量子点膜60和光学膜层70。其中,支撑结构40作用是支撑各膜片,以获得一定的混光距离,消除灯影。发光基板110可以为发射蓝色光线,量子点膜60可以包括红色量子点材料、绿色量子点材料和透明材料。发光基板110发射的蓝色光线穿过红色量子点材料时,被转换为红色光线;穿过绿色量子点材料时,被转换为绿色光线;穿过透明材料时,不会发生色转换。之后,蓝色光线、红色光线和绿色光线以一定比例混合叠加后呈现为白色光。光学膜层70可以包括扩散板51或棱镜片53等光学膜片,扩散板51具有散射和扩散效应,能够将上述白色光进一步混匀;棱镜片53能够提升背光模组100的出光效率,本公开的实施例不对光学膜层70的结构具体限定。
另一方面,本公开的一些实施例还提供一种背光模组100,如图15A和图15B所示,背光模组100包括:如上述一方面中任一项实施例提供的发光基板110。
在一些实施例中,背光模组100除采用上述发光基板110外,还包括: 多个支撑结构40、反射膜57、扩散板51、量子点膜60、扩散片和复合膜。其中,多个支撑结构40固定于发光基板110的出光侧aa。反射膜57设置于发光基板110的出光侧,扩散板51设置于多个支撑结构40远离发光基板110的一端。量子点膜60设置于扩散板51远离发光基板110的一侧。扩散片设置于量子点膜远离发光基板110的一侧。复合膜设置于扩散片远离发光基板110的一侧。
示例性地,多个支撑结构40均匀布置在发光基板110上,对各种光学膜片90形成支撑作用,使发光基板110的反射膜57与光学膜片90之间存在距离,该距离为混光距离(Optical Distance,OD),也即是,相邻的两个发光器件20发射的光线,能够在反射膜57与光学膜片90(例如扩散片)之间进行混合,可改善发光基板110所产生的灯影,提高显示装置1000的显示画质。光学膜片90可以包括:扩散板51、量子点膜60、扩散片和复合膜,各光学膜层70的作用在上述实施例中已进行阐述,在此不做赘述。
在一些实施例中,如图15A和图15B所示,在实际使用场景下,显示装置1000的显示侧与底面相互垂直,扩散板51与多个支撑结构40的顶端之间不接触,即具有间隙X,间隙X范围为0.1mm-0.2mm。间隙X的存在可以防止扩散板51与支撑结构40顶部产生摩擦,导致扩散板51表面损坏,影响光学画面。
在一些实施例中,参照图16,背光模组100还包括胶框120,胶框120包围膜材组50,背光模组100的边缘设置有沿出光方向延伸的侧壁,胶框120围绕侧壁的外周侧设置。其中,胶框120的四周设置支撑体。
再一方面,本公开的一些实施例还提供一种显示装置1000,如图15A和图15B所示,显示装置1000包括:如上述另一方面中任一项实施例的背光模组100以及显示面板200,其中,显示面板200堆叠设置于背光模组100的出光侧aa。
示例性地,显示装置1000包括上述实施例提供的背光模组100,具有与上述背光模组100相同的效果和作用,该显示装置1000可以为移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
如图17所示,本公开的一些实施例提供了一种发光基板110的制备方法。该制备方法包括:
S1:提供基板。
需要说明的是,基板10包括衬底101和设置在衬底一侧的线路层102,线路层102包括多个连接焊盘组1021,每个连接焊盘组1021包括多个连接焊盘10211,发光器件20和驱动芯片30的引脚301与不同连接焊盘组1021中的多个连接焊盘10211分别对应电连接。可以理解的是,连接焊盘组中包括的连接焊盘的个数,与连接焊盘组所电连接的电子元件的引脚个数相对应。
S2:在基板10一侧形成多个发光器件20。
示例性地,多个发光器件20阵列分布在基板10上。
S3:提供多个支撑结构40,在每个支撑结构40底部开设形成容纳槽41。
示例性地,容纳槽41为矩形槽,槽深与驱动芯片30的厚度一致,且容纳槽41在基板10上的正投影略大于驱动芯片30在基板10上的正投影。
需要说明的是,多个发光器件20与多个支撑结构40在基板10上的正投影无交叠,因此,在制备发光基板110时,S2与S3的顺序这里不做限定。
S4:将驱动芯片30嵌设在容纳槽41内,使驱动芯片30和支撑结构40形成一个整体。
可以理解的是,在卡槽42与支撑结构40精准定位后,通过在卡槽42的固芯通道422设置透明胶,将驱动芯片30固定嵌设在容纳槽41内,实现驱动芯片30的固定,使得驱动芯片30与支撑结构40形成一个整体,其中,支撑结构40除了可以支撑光学膜片90外,还能覆盖驱动芯片30,保护驱动芯片30的同时,提高显示装置1000的显示画质。
S5:将驱动芯片30和支撑结构40形成的整体转移到基板10上,整体中的驱动芯片30焊接在基板10上。
示例性地,在将驱动芯片30和支撑结构40形成的整体转移到基板10上,精准对位后,将驱动芯片30的多个引脚301焊接在基板10上,也即将驱动芯片30和支撑结构40形成的整体固定在基板上。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种发光基板,包括:
    基板;
    设置于所述基板一侧的多个发光器件;
    设置于所述基板一侧的多个驱动芯片;每个驱动芯片与至少一个发光器件电连接;
    设置于所述基板一侧的多个支撑结构;其中,所述多个驱动芯片中的每个驱动芯片被所述多个支撑结构中的一个支撑结构覆盖。
  2. 根据权利要求1所述的发光基板,其中,所述支撑结构的底部开设有容纳槽,所述驱动芯片嵌设于所述容纳槽内。
  3. 根据权利要求2所述的发光基板,其中,所述驱动芯片靠近所述基板的一侧表面与所述支撑结构的底部的表面齐平。
  4. 根据权利要求3所述的发光基板,其中,所述容纳槽开设在所述支撑结构的底部的中间位置。
  5. 根据权利要求4所述的发光基板,其中,所述容纳槽在所述基板上的正投影的面积大于所述驱动芯片在所述基板上的正投影的面积,所述驱动芯片在所述基板上的正投影在所述容纳槽在所述基板上的正投影内。
  6. 根据权利要求1~5中任一项所述的发光基板,其中,所述驱动芯片与所述支撑结构通过设置在所述容纳槽内的透明胶连接。
  7. 根据权利要求1~6中任一项所述的发光基板,其中,支撑结构包括第一支撑结构,所述第一支撑结构包括第一主体结构,沿垂直于所述基板且沿所述支撑结构远离所述基板的方向,所述第一主体结构的横截面积逐渐缩小;所述第一主体结构的底部开设有所述容纳槽。
  8. 根据权利要求1~7中任一项所述的发光基板,其中,所述支撑结构包括第二支撑结构,所述第二支撑结构包括第二主体结构和底座,所述第二主体结构设置在所述底座远离所述基板的一侧,沿垂直于所述基板且所述支撑结构远离所述基板的方向,所述第二主体结构的横截面积逐渐缩小;所述底座的底部开设有所述容纳槽。
  9. 根据权利要求8所述的发光基板,其中,所述容纳槽的槽深小于所述底座的厚度。
  10. 根据权利要求9所述的发光基板,其中,所述底座为一凸台结构,所述第二主体结构在所述基板上的正投影位于所述底座在所述基板上的正投影内。
  11. 根据权利要求1~10任一项所述的发光基板,其中,所述支撑结构的 外表面颜色为白色。
  12. 根据权利要求11所述的发光基板,其中,所述支撑结构的外表面的反射率大于92%。
  13. 根据权利要求1~12任一项所述的发光基板,其中,所述驱动芯片在所述基板上的正投影为一正方形,所述正方形的边长尺寸为3cm~3.5cm。
  14. 根据权利要求13所述的发光基板,其中,所述驱动芯片上设置有多个焊盘,所述基板包括衬底和设置在所述衬底一侧的线路层,所述线路层包括多个连接焊盘组,每个连接焊盘组包括多个连接焊盘,所述驱动芯片的多个焊盘与所述连接焊盘组中的多个连接焊盘分别对应电连接。
  15. 一种背光模组,包括:
    如权利要求1~14任一项所述的发光基板;
    设置在所述多个支撑结构远离所述基板一侧的膜材组。
  16. 根据权利要求15所述的背光模组,其中,所述膜材组包括:
    扩散板,设置于所述多个支撑结构远离所述发光基板的一侧;
    下扩散片,设置于所述扩散板远离所述发光基板的一侧;
    棱镜片,设置于所述下扩散片远离所述发光基板的一侧;
    上扩散片,设置于所述棱镜片远离所述发光基板的一侧。
  17. 根据权利要求16所述的背光模组,其中,所述扩散板与所述多个支撑结构的顶端之间设有空气间隙,所述空气间隙范围为0.1mm-0.2mm。
  18. 根据权利要求17所述的背光模组,其中,所述背光模组还包括胶框,所述胶框包围所述膜材组,所述背光模组的边缘设置有沿出光方向延伸的侧壁,所述胶框围绕所述侧壁的外周侧设置。
  19. 一种显示装置,包括:
    如权利要求15~18任一项所述的背光模组;
    显示面板,堆叠设置于所述背光模组的出光侧。
  20. 一种发光基板的制备方法,包括:
    提供基板;
    在所述基板一侧形成多个发光器件;
    提供多个支撑结构,在每个支撑结构底部开设形成容纳槽;
    将所述驱动芯片嵌设在所述容纳槽内,使驱动芯片和支撑结构形成一个整体;
    将所述驱动芯片和所述支撑结构形成的整体转移到所述基板上,所述整体中的驱动芯片焊接在所述基板上。
PCT/CN2022/109125 2022-07-29 2022-07-29 发光基板、背光模组、显示装置及发光基板的制备方法 WO2024021074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002456.4A CN117795403A (zh) 2022-07-29 2022-07-29 发光基板、背光模组、显示装置及发光基板的制备方法
PCT/CN2022/109125 WO2024021074A1 (zh) 2022-07-29 2022-07-29 发光基板、背光模组、显示装置及发光基板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109125 WO2024021074A1 (zh) 2022-07-29 2022-07-29 发光基板、背光模组、显示装置及发光基板的制备方法

Publications (1)

Publication Number Publication Date
WO2024021074A1 true WO2024021074A1 (zh) 2024-02-01

Family

ID=89705068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109125 WO2024021074A1 (zh) 2022-07-29 2022-07-29 发光基板、背光模组、显示装置及发光基板的制备方法

Country Status (2)

Country Link
CN (1) CN117795403A (zh)
WO (1) WO2024021074A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025507A (zh) * 2006-02-22 2007-08-29 株式会社日立显示器 液晶显示装置
JP2007323857A (ja) * 2006-05-30 2007-12-13 Sony Corp バックライト装置及びカラー画像表示装置
CN102748667A (zh) * 2012-06-20 2012-10-24 深圳市华星光电技术有限公司 直下式的背光模块及其液晶显示器
CN210835515U (zh) * 2019-09-30 2020-06-23 深圳Tcl新技术有限公司 一种支撑结构、背光模组及其显示装置
CN214669974U (zh) * 2021-03-03 2021-11-09 惠州视维新技术有限公司 灯托、背光模组及显示装置
CN113777825A (zh) * 2020-06-10 2021-12-10 海信视像科技股份有限公司 一种显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025507A (zh) * 2006-02-22 2007-08-29 株式会社日立显示器 液晶显示装置
JP2007323857A (ja) * 2006-05-30 2007-12-13 Sony Corp バックライト装置及びカラー画像表示装置
CN102748667A (zh) * 2012-06-20 2012-10-24 深圳市华星光电技术有限公司 直下式的背光模块及其液晶显示器
CN210835515U (zh) * 2019-09-30 2020-06-23 深圳Tcl新技术有限公司 一种支撑结构、背光模组及其显示装置
CN113777825A (zh) * 2020-06-10 2021-12-10 海信视像科技股份有限公司 一种显示装置
CN214669974U (zh) * 2021-03-03 2021-11-09 惠州视维新技术有限公司 灯托、背光模组及显示装置

Also Published As

Publication number Publication date
CN117795403A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN211879404U (zh) 显示基板及显示装置
JP6680311B2 (ja) 発光装置および面発光光源
EP4131435A1 (en) Display substrate and manufacturing method therefor, and display apparatus
WO2019007068A1 (zh) 背光模组、显示装置
CN215416207U (zh) 一种显示装置
US20210255507A1 (en) Backlight Module, Display, And Mobile Terminal
CN217691209U (zh) 发光基板、背光模组及显示装置
US11662624B2 (en) Backlight unit and display device using the same
CN114578615A (zh) 背光模组及显示装置
CN114203934A (zh) 显示面板及显示装置
WO2024021074A1 (zh) 发光基板、背光模组、显示装置及发光基板的制备方法
CN108153030A (zh) 一种3d显示装置
JP2009116204A (ja) 液晶表示装置
CN217639870U (zh) 背光模组、显示模组和显示装置
CN214474343U (zh) 一种显示装置
US11402691B2 (en) Light source and light plate for light emitting module
CN113721383A (zh) 一种显示装置
WO2023216070A1 (zh) 发光基板、背光模组及显示装置
WO2023221815A9 (zh) 发光基板、背光模组及显示装置
CN217689704U (zh) 显示装置
WO2023050366A1 (zh) 背光模组、显示模组及显示装置
WO2023185312A1 (zh) 背光模组、显示模组和显示装置
CN218848518U (zh) 背光模组及显示装置
WO2023226019A1 (zh) 发光基板及其制备方法、显示装置
CN213093218U (zh) 发光模块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002456.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952521

Country of ref document: EP

Kind code of ref document: A1