WO2023226019A1 - 发光基板及其制备方法、显示装置 - Google Patents

发光基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023226019A1
WO2023226019A1 PCT/CN2022/095707 CN2022095707W WO2023226019A1 WO 2023226019 A1 WO2023226019 A1 WO 2023226019A1 CN 2022095707 W CN2022095707 W CN 2022095707W WO 2023226019 A1 WO2023226019 A1 WO 2023226019A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
emitting
emitting unit
protective structure
Prior art date
Application number
PCT/CN2022/095707
Other languages
English (en)
French (fr)
Inventor
余鸿昊
浩育涛
李冬磊
陈英
高杰
李佳昕
秦沛
贾丽丽
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/095707 priority Critical patent/WO2023226019A1/zh
Priority to CN202280001484.4A priority patent/CN117480441A/zh
Publication of WO2023226019A1 publication Critical patent/WO2023226019A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light-emitting substrate, a preparation method thereof, and a display device.
  • Mini LED display is a new type of display technology that has developed rapidly in recent years. Its small size, controllable luminous wavelength, high luminous efficiency, long service life, and no pollution of the luminescent material to the environment make Mini LED) Applications in displays were developed.
  • a plurality of light-emitting units located on one side of the substrate;
  • a plurality of protective structures located on the side of the light-emitting unit facing away from the substrate; each of the plurality of protective structures covers one of the plurality of light-emitting units;
  • a plurality of reflective patterns are located on the side of the protective structure facing away from the light-emitting unit; the orthographic projection of the reflective patterns on the substrate falls into the orthographic projection of the protective structure on the substrate.
  • the orthographic projection of the light emitting unit on the substrate falls within the orthographic projection of the reflective pattern on the substrate.
  • the distance between the center of the protective structure in the orthographic projection of the substrate and the center of the light-emitting unit in the orthographic projection of the substrate is less than the first preset value
  • the distance between the center of the reflection pattern in the orthographic projection of the substrate and the center of the light-emitting unit in the orthographic projection of the substrate is less than the second preset value.
  • the number of light-emitting units is the same as the number of protective structures, and the number of protective structures is the same as the number of reflective patterns.
  • the surface of the side of the protective structure facing away from the substrate is a first curved surface
  • the reflective pattern is in direct contact with the surface of the protective structure
  • the surface on the side of the reflection pattern facing away from the protective structure is the second curved surface
  • the second curved surface has the same shape as a partial region of the first curved surface.
  • the shape of the orthographic projection of the protective structure on the substrate is circular;
  • the contact surface between the reflection pattern and the protective structure intersects multiple planes perpendicular to the substrate, resulting in multiple arcs.
  • the arc length l of the largest arc among the multiple arcs satisfies:
  • h is the maximum size of the protective structure in the direction perpendicular to the substrate
  • D is the diameter of the orthographic projection of the protective structure on the substrate
  • R is the radius of the spherical surface on the side of the protective structure facing away from the substrate
  • is the light-emitting unit. half power angle.
  • the shape of the orthographic projection of the reflection pattern on the substrate is one of the following: polygon, circle, ellipse, or ring.
  • the material of the reflective pattern has a reflectivity greater than 90%.
  • the thickness of the reflective pattern is greater than or equal to 20 microns and less than or equal to 30 microns.
  • the light-emitting area of the light-emitting unit is no greater than 50,000 square microns.
  • An embodiment of the present disclosure provides a method for preparing a light-emitting substrate, including:
  • Multiple light-emitting units are provided on one side of the substrate;
  • a plurality of protective structures are formed on a side of the light-emitting unit facing away from the substrate; wherein each of the plurality of protective structures covers one of the plurality of light-emitting units;
  • a reflective pattern is formed on the side of the protective structure facing away from the light-emitting unit; wherein the orthographic projection of the reflective pattern on the substrate falls within the orthographic projection of the protective structure on the substrate.
  • a reflective pattern is formed on the side of the protective structure facing away from the light-emitting unit, specifically including:
  • a reflective pattern is formed on the side of the protective structure facing away from the light-emitting unit using a glue spraying process or a printing process.
  • a reflective pattern is formed on the side of the protective structure facing away from the light-emitting unit, specifically including:
  • the reflective layer is exposed and developed to form multiple reflective patterns.
  • multiple protective structures covering the light-emitting unit are formed on the side of the light-emitting unit away from the substrate, specifically including:
  • the pattern of the protective structure is formed on the side of the light-emitting unit facing away from the substrate using a dispensing process or a flying jet process.
  • the display device includes:
  • the light-emitting substrate provided by the embodiment of the present disclosure.
  • the display panel is located on the light-emitting side of the light-emitting substrate.
  • Figure 1 is a schematic structural diagram of a light-emitting substrate provided by an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view along AA' in Figure 1 provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of another light-emitting substrate provided by an embodiment of the present disclosure.
  • 4a and 4b are schematic diagrams of light patterns corresponding to the light-emitting unit provided by embodiments of the present disclosure.
  • 5a to 5i are schematic diagrams of optical images of the light-emitting substrate provided by embodiments of the present disclosure.
  • Figure 6 is a schematic diagram of the arrangement rules of light-emitting units and protective structures in the first, second and third light-emitting substrates provided by the embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the relationship between a reflection pattern and the size of a protective structure provided by an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of the relationship between the reflectivity and brightness gain of a reflection pattern provided by an embodiment of the present disclosure
  • Figure 9 is a schematic flow chart of a method for preparing a light-emitting substrate according to an embodiment of the present disclosure.
  • Figure 10 is a schematic flow chart of another method for preparing a light-emitting substrate according to an embodiment of the present disclosure
  • Figure 11 is a schematic flow chart of another method for preparing a light-emitting substrate according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a light-emitting substrate, as shown in Figures 1 and 2, including:
  • a plurality of light-emitting units 2 located on one side of the substrate 1;
  • a plurality of protective structures 3 are located on the side of the light-emitting unit 2 facing away from the substrate 1; each protective structure 3 in the plurality of protective structures 3 covers a light-emitting unit 2 in the plurality of light-emitting units 2;
  • a plurality of reflective patterns 4 are located on the side of the protective structure 3 facing away from the light-emitting unit 2; the orthographic projection of the reflective patterns 4 on the substrate 1 falls within the orthographic projection of the protective structure 3 on the substrate 1.
  • a reflective pattern is provided on the side of the protective structure away from the light-emitting unit, so that the light emitted by the light-emitting unit reaches the interface between the reflective pattern and the protective structure and is reflected, and the light emitted by the light-emitting unit is not reflected from the protective structure.
  • the area covered by the reflective pattern is emitted to avoid excessive light intensity emitted from the top of the light-emitting unit resulting in a high light mixing distance. That is, compared with the case where no reflective pattern is provided, the light output pattern of the light-emitting unit can be changed to reduce the light mixing distance, thereby enabling the thinning of the light-emitting substrate. Moreover, the light mixing distance can be reduced without increasing the number of light-emitting units, and costs can also be saved.
  • the light-emitting substrate when used as the light source of a passive display product, it is usually necessary to install an optical film including a diffusion film, a polarizer and other optical film materials on the light-emitting side of the light-emitting substrate.
  • the light mixing distance is in the direction perpendicular to the substrate. The distance between the two opposite surfaces of the substrate and the optical module.
  • Figure 2 is a cross-sectional view along AA' in Figure 1 .
  • a plurality of light-emitting units 2 are arranged in an array along the first direction X and the second direction Y.
  • the first direction X and the second direction Y are perpendicular to each other.
  • the number of light-emitting units is the same as the number of protective structures, and the number of protective structures is the same as the number of reflective patterns.
  • each light-emitting unit is covered by the protective structure, and each protective structure is provided with a reflective pattern on the side facing away from the light-emitting unit, so that the light emission pattern of each light-emitting unit is modulated, for example, the light emission angle of each light-emitting unit becomes larger.
  • the orthographic projection of the light emitting unit 2 on the substrate 1 falls within the orthographic projection of the reflective pattern 4 on the substrate 1 .
  • the orthographic projection of the light-emitting unit on the substrate falls within the orthographic projection of the reflective pattern on the substrate, that is, the area of the light-emitting unit is smaller than the area of the reflective pattern and the reflective pattern covers the area of the light-emitting unit, so that it can
  • the light emitted from the light-emitting unit is reflected by the reflective pattern as much as possible, and is emitted from the area of the protective structure that is not covered by the reflective pattern, so as to reduce the light mixing distance.
  • the distance between the center of the protective structure in the orthographic projection of the substrate and the center of the light-emitting unit in the orthographic projection of the substrate is less than the first preset value
  • the distance between the center of the reflection pattern in the orthographic projection of the substrate and the center of the light-emitting unit in the orthographic projection of the substrate is less than the second preset value.
  • the first preset value is: the maximum value of the distance between the center of the protection structure's orthographic projection of the substrate and the light-emitting unit's center of the orthogonal projection of the substrate when process errors are allowed.
  • the second preset value is: the maximum value of the distance between the center of the reflection pattern's orthographic projection of the substrate and the center of the light-emitting unit's orthographic projection of the substrate when the process error is allowed. That is, in the light-emitting substrate provided by the embodiment of the present disclosure, the center of the orthographic projection of the reflection pattern on the substrate, the center of the protective structure on the orthographic projection of the substrate, and the center of the orthographic projection of the light-emitting unit on the substrate are within the allowable error range. roughly coincide.
  • the first preset value is equal to the second preset value.
  • the ratio of the first preset value to the length or width of the light-emitting unit is less than or equal to 1:5. For example, when the length or width of the light-emitting unit is less than or equal to 500 microns, both the first preset value and the second preset value are less than or equal to 100 microns.
  • the surface of the protection structure 3 facing away from the substrate 1 is a first curved surface 10;
  • the reflective pattern 4 is in direct contact with the surface of the protective structure 3;
  • the surface of the reflective pattern 4 on the side facing away from the protective structure 3 is the second curved surface 11;
  • the shape of the second curved surface 12 is the same as the shape of a partial area of the first curved surface 10 .
  • the distance between the second curved surface 12 and the first curved surface 10 is the same at any position in the direction perpendicular to the substrate 1 .
  • Both the first curved surface 10 and the second curved surface 12 can be part of a spherical surface, and the first curved surface 10 and the second curved surface 12 respectively correspond to two concentric spherical surfaces with different radii.
  • the protective structure has a convex lens shape
  • the protective structure with the convex lens shape has grooves corresponding to the light-emitting unit, that is, the overall structure composed of the protective structure and the light-emitting unit has a complete convex lens shape.
  • Structure. In addition to covering the light-emitting unit to protect it, the protective structure with a convex lens shape can also change the light-emitting angle of the light-emitting unit to avoid high light intensity caused by light concentration and an increase in the light mixing distance.
  • the material of the protective structure is transparent silicone.
  • the thickness H of the reflective pattern 4 is greater than or equal to 20 microns and less than or equal to 30 microns.
  • the light-emitting area of the light-emitting unit is no greater than 50,000 square microns.
  • the shape of the orthographic projection of the protective structure 3 on the substrate 1 is circular; the maximum size of the protective structure in the direction perpendicular to the substrate is the same as the orthogonal projection of the protective structure on the substrate.
  • the diameter ratio is greater than or equal to 1:3 and less than or equal to 1:5.
  • the maximum size of the protection structure in the direction perpendicular to the substrate is 500 microns, and the diameter of the orthographic projection of the protection structure on the substrate is no more than 2500 microns.
  • the shape of the orthographic projection of the reflective pattern 4 on the substrate 1 is a rectangle.
  • Figure 4a illustrates the light pattern when a protective structure is provided on the light-emitting side of the light-emitting unit.
  • the protective structure has a convex lens shape, and the shape of the orthographic projection of the protective structure on the substrate is circular;
  • Figure 4b illustrates the light-emitted light pattern of the light-emitting unit.
  • the light output pattern when a protective structure with a reflective pattern on the surface is provided on the side, where the protective structure has a convex lens shape, and the orthographic projection of the protective structure on the substrate is circular and the orthographic projection of the reflective pattern on the substrate is rectangular .
  • Figure 4b shows a change in the light emission pattern of the overall structure.
  • Figure 4a and Figure 4b both include two curves. One of the two curves is the light emission pattern curve of the corresponding structure in the first direction X, and the other of the two curves is the light emission pattern of the corresponding structure in the second direction Y. Light curve.
  • the shape of the orthographic projection of the reflection pattern 4 on the substrate 1 is circular.
  • the shape of the orthographic projection of the reflection pattern on the substrate can also be other polygons, ellipses, rings, etc. That is, the shape of the orthographic projection of the reflection pattern on the substrate can be one of the following: polygon, circle, ellipse, or ring. In specific implementation, the polygon is, for example, a triangle, a quadrilateral, a pentagon, a hexagon, etc.
  • the optical screen analysis results of a light-emitting substrate including multiple light-emitting units are introduced.
  • the optical images of the first light-emitting substrate, the second light-emitting substrate, and the third light-emitting substrate are shown in Figures 5a to 5i; wherein, the first light-emitting substrate, the second light-emitting substrate, and the third light-emitting substrate all include Nine light-emitting units and a protective structure on each light-emitting unit; the arrangement rules of the nine light-emitting units and the nine protective structures in the first light-emitting substrate, the second light-emitting substrate, and the third light-emitting substrate are the same, as shown in the figure As shown in 6, nine light-emitting units 2 are arranged in a matrix of 3 rows and 3 columns.
  • the area of the orthographic projection of each light-emitting unit 2 on the substrate is the same.
  • the orthographic projection shape of each light-emitting unit 2 on the substrate 1 is a square.
  • the side length a is 0.35 mm, the distance b between adjacent light-emitting units 2 in the first direction
  • the distance c between the centers of the orthographic projections is 6 mm; each light-emitting unit 2 is covered by a protective structure 3.
  • the area of the orthographic projection of each protective structure 3 on the substrate is the same.
  • the area of the orthographic projection of the protective structure 3 on the substrate 1 is the same. Diameter D is 2.5 mm.
  • the first type of light-emitting substrate does not include a reflective pattern, that is, the light-emitting unit is only covered by a protective structure, and its optical picture is shown in Figure 5a.
  • the second type of light-emitting substrate also includes 9 reflective patterns. The reflective patterns are located on the side of the protective structure facing away from the light-emitting unit. The shape of the orthographic projection of the reflective patterns on the substrate is square.
  • the optical picture of the second type of light-emitting substrate is shown in Figure 5b ⁇ Fig.
  • the third type of light-emitting substrate also includes 9 reflective patterns.
  • the reflective patterns are located on the side of the protective structure facing away from the light-emitting unit.
  • the shape of the orthographic projection of the reflective patterns on the substrate is circular.
  • the optical picture of the third type of light-emitting substrate is shown in Figure 5f ⁇ As shown in Figure 5i; wherein, the diameters of the orthographic projections of the reflection patterns corresponding to Figures 5f to 5i on the substrate are different, and the diameters of the orthographic projections of the reflection patterns corresponding to Figures 5f to 5i on the substrate are respectively 0.5 mm. , 1mm, 1.5mm, 2mm.
  • the light-emitting unit is only covered by the protective structure and no reflective pattern is provided on the side of the protective structure facing away from the light-emitting unit, it can be concluded from the optical picture shown in Figure 5a that the overall structure composed of each light-emitting unit and its protective structure constitutes a light-emitting area.
  • each luminous area can be clearly distinguished from the optical picture shown in Figure 5a, that is, the mixed light effect. Poor, resulting in uneven brightness across the light-emitting substrate.
  • the dark shadow area is significant Reduction, that is, the boundaries of the light-emitting area of the overall structure composed of each light-emitting unit, protective structure and reflective pattern are not obvious, overlaps occur between adjacent light-emitting areas, and the size of the orthographic projection of the reflective pattern on the substrate gradually increases increases, the larger the overlapping area of the light-emitting areas between adjacent overall structures is, the better the light mixing effect is, and the more uniform the brightness is across the light-emitting substrate; the boundaries of each light-emitting area in the optical pictures of Figure 5b to Figure 5e are getting smaller and larger.
  • each light-emitting area can hardly be distinguished in the optical picture of Figure 5e, and the brightness of each area of the light-emitting substrate is relatively uniform.
  • the side of the protective structure covering the light-emitting unit facing away from the light-emitting unit is provided with a circular reflection pattern in orthographic projection on the substrate, it can be seen from the optical images shown in Figures 5f to 5i that the dark shaded area Significant reduction, that is, the boundaries of the light-emitting area of the overall structure composed of the light-emitting unit, the protective structure and the reflective pattern are not obvious, the light-emitting areas between adjacent overall structures overlap, and with the orthographic projection of the reflective pattern on the substrate,
  • the optics of Figure 5f to Figure 5i The boundaries of each light-emitting
  • the effect is to reduce the light mixing distance; according to Figure 5b ⁇ Figure 5e and Figure 5f ⁇ Figure 5i, it can be concluded that the shape of the orthographic projection of the reflection pattern on the substrate is square or circular, which can improve the light mixing effect, and the reflection pattern The larger the size, the better the light mixing effect.
  • the contact surface between the reflective pattern and the protective structure intersects multiple planes perpendicular to the substrate, and multiple arcs can be obtained.
  • the arc length of the arc with the largest length among multiple arcs is l.
  • O is the center of the circle corresponding to the arc with arc length l
  • h is the protection structure in the direction perpendicular to the substrate.
  • the maximum size, D is the diameter of the orthographic projection of the protective structure on the substrate
  • R is the radius of the spherical surface on the side of the protective structure facing away from the substrate (that is, the radius of the circle corresponding to the arc with arc length l)
  • is the luminescence Half power angle of the unit.
  • the reflection pattern in order to make the reflection pattern reflect the light emitted from the light-emitting unit, the reflection pattern at least covers the light-emitting angle of the light-emitting unit, that is, the arc length of the largest arc among the plurality of arcs is l relative to the positive angle of the light-emitting unit on the substrate.
  • the angle corresponding to the center of the projection is 2 ⁇ ; where ⁇ is the half-power angle of the light-emitting unit, and the luminous intensity of the light emitted by the light-emitting unit in the direction having an angle ⁇ with the normal direction is the light emitted by the light-emitting unit along the normal direction of the light-emitting surface.
  • Half of the luminous intensity, twice the half power angle is the power angle of the light-emitting unit.
  • R 2 (R-h+x) 2 +(xtan ⁇ ) 2 ;
  • the reflective pattern can completely reflect the light emitted by the light-emitting unit.
  • the material of the reflective pattern has a reflectivity greater than 90%.
  • the relationship between the reflectivity of the reflective pattern and the brightness gain is shown in Figure 8. It can be seen that the higher the reflectivity of the reflective pattern, the higher the normalized brightness gain, and the higher the brightness of the corresponding light-emitting unit.
  • the material of the reflective pattern can be made of a material with a higher reflectivity.
  • the material of the reflective pattern can be, for example, white ink.
  • a circuit layer is provided on the substrate for providing signals to the light-emitting unit.
  • the circuit layer may also include a driver circuit, which may be a micro driver chip (Integrated Circuit, IC), or a pixel circuit composed of a combination of multiple thin film transistors (Thin Film Transistor, TFT).
  • a driver circuit which may be a micro driver chip (Integrated Circuit, IC), or a pixel circuit composed of a combination of multiple thin film transistors (Thin Film Transistor, TFT).
  • the substrate is, for example, a printed circuit board (PCB) or a glass substrate.
  • PCB printed circuit board
  • the light emitting unit includes at least one light emitting device.
  • the light-emitting unit may only include one light-emitting device, that is, the light-emitting unit may be a monochromatic light source.
  • the light-emitting unit may only include one blue light-emitting device.
  • the light-emitting unit may also be a light source that emits white light.
  • the light-emitting unit includes a plurality of sub-pixels. Each sub-pixel includes a light-emitting device.
  • the plurality of sub-pixels include, for example: red sub-pixels, blue sub-pixels and green sub-pixels.
  • the light-emitting devices included in each pixel and sub-pixel emit the same color, and then the color is converted through the quantum dot color film to emit light corresponding to the emitting color of the sub-pixel.
  • the light-emitting device emits blue light.
  • the red sub-pixel includes a red quantum dot color film that absorbs blue light and emits red light.
  • the green sub-pixel includes a green quantum dot color film that absorbs blue light and emits green light.
  • the blue sub-pixel does not need to be provided with a quantum dot color film. .
  • the light-emitting device is a micro-sized inorganic light-emitting diode.
  • Micro-sized inorganic light-emitting diodes can be, for example, mini light-emitting diodes (Mini Light Emitting Diode, Mini-LED) or micro light-emitting diodes (Micro Light Emitting Diode, Micro-LED).
  • Mini-LED and Micro-LED are small in size and high in brightness, and can be widely used in display devices or their backlight modules.
  • the typical size (such as length) of Micro-LED is less than 100 microns; the typical size (such as length) of Mini-LED is 80 microns to 350 microns.
  • the light-emitting device when the light-emitting device is a micro-sized inorganic light-emitting diode, the light-emitting device includes, for example, a stacked P-type gallium nitride layer, a multi-quantum well layer, and an N-type gallium nitride layer.
  • embodiments of the present disclosure also provide a method for preparing a light-emitting substrate, as shown in Figure 9, including:
  • S102 Form multiple protective structures on the side of the light-emitting unit facing away from the substrate; wherein each of the multiple protective structures covers one of the multiple light-emitting units;
  • the preparation method of the light-emitting substrate provided by the embodiment of the present disclosure forms a reflective pattern on the side of the protective structure facing away from the light-emitting unit, so that the light emitted by the light-emitting unit reaches the interface between the reflective pattern and the protective structure and is reflected, and the light emitted by the light-emitting unit is reflected from the protective structure.
  • the area of the structure that is not covered by the reflective pattern is emitted.
  • the light emitting light pattern of the light-emitting unit can be changed to reduce the light mixing distance. Therefore, a thinner light-emitting substrate can also meet the light mixing requirements and realize the light-emitting substrate. thinner.
  • costs can be saved by forming a reflective structure to reduce the light mixing distance without increasing the number of light emitting units.
  • multiple light-emitting units are provided on one side of the substrate, which specifically includes: binding the multiple light-emitting units to the substrate through a die bonding process.
  • a step of preparing the light-emitting units is also included. After that, for example, a mass transfer process is used to transfer the produced light-emitting units to the substrate, and they are combined with a solid crystal process.
  • the substrate is bound to electrically connect the light-emitting unit to the driving circuit provided on the substrate.
  • step S102 forms multiple protective structures covering the light-emitting units on the side of the light-emitting unit facing away from the substrate, specifically including:
  • the pattern of the protective structure is formed on the side of the light-emitting unit facing away from the substrate using a dispensing process or a flying jet process.
  • a dispensing process or a flying jet process is used to form a pattern of a lens-type protective structure on the side of the light-emitting unit facing away from the substrate.
  • step S103 forms a reflective pattern on the side of the protective structure facing away from the light-emitting unit, specifically including:
  • a reflective pattern is formed on the side of the protective structure facing away from the light-emitting unit using a glue spraying process or a printing process.
  • the substrate 1 is placed on the platform 5, and a reflective pattern is formed by the component 6 containing the reflective material.
  • component 6 is a glue valve of the glue spraying equipment.
  • component 6 is a nozzle of the printing device.
  • step S103 forms a reflective pattern on the side of the protective structure facing away from the light-emitting unit, specifically including:
  • the preparation method of the light-emitting substrate provided by the embodiments of the present disclosure can improve the preparation accuracy of the reflective pattern when the exposure and development processes are used to form the reflective pattern, and can also improve the preparation efficiency when the number of reflective patterns is large.
  • an appropriate reflection pattern production method can be selected according to the specific shape and quantity of the reflection patterns.
  • the light-emitting substrate 8 provided by the embodiment of the present disclosure.
  • the display panel 9 is located on the light-emitting side of the light-emitting substrate 8 .
  • the display panel is a liquid crystal display panel.
  • the light-emitting substrate serves as the backlight source of the liquid crystal display panel.
  • the liquid crystal display panel includes: an array substrate and a counter substrate arranged oppositely, and a liquid crystal layer located between the array substrate and the counter substrate.
  • the liquid crystal display panel includes a plurality of pixels arranged in an array, and each pixel includes a plurality of sub-pixels, such as red sub-pixels, blue sub-pixels, and green sub-pixels.
  • the ratio of the number of display pixels in the liquid crystal display panel to the number of light-emitting units in the light-emitting substrate is n, and n is a positive integer.
  • the number of display pixels in the liquid crystal display panel is greater than the number of light-emitting units in the light-emitting substrate, that is, n is an integer greater than 1; for example, n is 10, that is, the number of display pixels in the liquid crystal display panel is the number of light-emitting units in the light-emitting substrate. 10 times the number of units.
  • the display device further includes an optical module located between the light-emitting substrate and the display panel.
  • Optical modules include, for example, optical film materials such as light guide plates and polarizers.
  • the display device provided by the embodiment of the present disclosure is: a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function.
  • Other essential components of the display device are understood by those of ordinary skill in the art, and will not be described in detail here, nor should they be used to limit the present disclosure.
  • a reflective pattern is provided on the side of the protective structure facing away from the light-emitting unit, so that the light emitted by the light-emitting unit reaches the interface between the reflective pattern and the protective structure. Reflection, the light emitted by the light-emitting unit emerges from the area of the protective structure that is not covered by the reflective pattern.
  • the light-emitting light pattern of the light-emitting unit can be changed to reduce the light mixing distance, so that the thinner light-emitting substrate can also It can meet the light mixing requirements and realize thinning of the light-emitting substrate.
  • cost can be saved by arranging a reflective structure to reduce the light mixing distance without increasing the number of light emitting units.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

本公开提供了发光基板及其制备方法、显示装置。发光基板包括:衬底;多个发光单元,位于衬底的一侧;多个保护结构,位于发光单元背离衬底一侧;多个保护结构中的每一个保护结构覆盖多个发光单元中的一个发光单元;多个反射图案,位于保护结构背离发光单元一侧;反射图案在衬底的正投影落入保护结构在衬底的正投影内。

Description

发光基板及其制备方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及发光基板及其制备方法、显示装置。
背景技术
迷你发光二极管显示(Mini LED)是近年来发展迅速的一种新型显示技术,其尺寸小、发光波长可控、发光效率高、使用寿命长、发光材料对环境无污染等众多优点使得Mini LED)在显示器方面的应用得以发展。
发明内容
本公开实施例提供的一种发光基板,包括:
衬底;
多个发光单元,位于衬底的一侧;
多个保护结构,位于发光单元背离衬底一侧;多个保护结构中的每一个保护结构覆盖多个发光单元中的一个发光单元;
多个反射图案,位于保护结构背离发光单元一侧;反射图案在衬底的正投影落入保护结构在衬底的正投影内。
在一些实施例中,发光单元在衬底的正投影落入反射图案在衬底的正投影内。
在一些实施例中,保护结构在衬底的正投影的中心与发光单元在衬底的正投影的中心之间的距离小于第一预设值;
反射图案在衬底的正投影的中心与发光单元在衬底的正投影的中心之间的距离小于第二预设值。
在一些实施例中,发光单元的数量与保护结构的数量相同,且保护结构的数量与反射图案的数量相同。
在一些实施例中,保护结构背离衬底一侧的表面为第一曲面;
反射图案与保护结构的表面直接接触;
反射图案背离保护结构一侧的表面为第二曲面;
第二曲面的形状与第一曲面的部分区域的形状相同。
在一些实施例中,保护结构在衬底的正投影的形状为圆形;
反射图案与保护结构的接触面与多个垂直于衬底的平面相交,得到多个弧,多个弧中最大长度的弧的弧长l满足:
Figure PCTCN2022095707-appb-000001
其中,h为在垂直于衬底方向上保护结构的最大尺寸,D为保护结构在衬底的正投影的直径,R为保护结构背离衬底一侧的表面所在球面的半径,θ为发光单元的半功率角。
在一些实施例中,反射图案在衬底上的正投影的形状为下列之一:多边形、圆形、椭圆形、环形。
在一些实施例中,反射图案的材料反射率大于90%。
在一些实施例中,反射图案的厚度大于等于20微米且小于等于30微米。
在一些实施例中,发光单元的发光面积不大于50000平方微米。
本公开实施例提供的一种发光基板的制备方法,包括:
在衬底一侧设置多个发光单元;
在发光单元背离衬底一侧形成多个保护结构;其中,多个保护结构中的每一个保护结构覆盖多个发光单元中的一个发光单元;
在保护结构背离发光单元一侧形成反射图案;其中,反射图案在衬底的正投影落入保护结构在衬底的正投影内。
在一些实施例中,在保护结构背离发光单元一侧形成反射图案,具体包括:
采用喷胶工艺或打印工艺在保护结构背离发光单元一侧形成反射图案。
在一些实施例中,在保护结构背离发光单元一侧形成反射图案,具体包 括:
在保护结构背离发光单元一侧形成反射层;
对反射层进行曝光、显影工艺形成多个反射图案。
在一些实施例中,在发光单元背离衬底一侧形成多个覆盖发光单元的保护结构,具体包括:
采用点胶工艺或者飞喷工艺在发光单元背离衬底一侧形成保护结构的图案。
本公开实施例提供的一种显示装置,显示装置包括:
本公开实施例提供的发光基板;
显示面板,位于发光基板的发光侧。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种发光基板的结构示意图;
图2为本公开实施例提供的沿图1中AA’的截面图;
图3为本公开实施例提供的另一种发光基板的结构示意图;
图4a、图4b为本公开实施例提供的发光单元对应的出光光型示意图;
图5a~图5i为本公开实施例提供的发光基板的光学画面的示意图;
图6为本公开实施例提供的第一种发光基板、第二种发光基板以及第三种发光基板中发光单元和保护结构的排布规则的示意图;
图7为本公开实施例提供的一种反射图案与保护结构尺寸关系的示意图;
图8为本公开实施例提供的一种反射图案的反射率与亮度增益之间的关系示意图;
图9为本公开实施例提供的一种发光基板的制备方法的流程示意图;
图10为本公开实施例提供的另一种发光基板的制备方法的流程示意图;
图11为本公开实施例提供的又一种发光基板的制备方法的流程示意图;
图12为本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
本公开实施例提供了一种发光基板,如图1、图2所示,包括:
衬底1;
多个发光单元2,位于衬底1的一侧;
多个保护结构3,位于发光单元2背离衬底1一侧;多个保护结构3中的每一个保护结构3覆盖多个发光单元2中的一个发光单元2;
多个反射图案4,位于保护结构3背离发光单元2一侧;反射图案4在衬 底1的正投影落入保护结构3在衬底1的正投影内。
本公开实施例提供的发光基板,在保护结构背离发光单元一侧设置反射图案,从而发光单元发出的光到达反射图案与保护结构之间的界面被反射,发光单元发出的光从保护结构未被反射图案覆盖的区域出射,避免发光单元顶部出射光强度过大导致混光距离较高。即相比于未设置反射图案的情况可以改变发光单元的出光光型以降低混光距离,从而可以实现发光基板的薄型化。并且,可以无需增加发光单元的数量就可以降低混光距离,还可以节省成本。
需要说明的是,当发光基板作为被动式显示产品的光源时,通常需要在发光基板出光侧设置包括扩散膜、偏光片等光学膜材的光学膜片,混光距离为在垂直于衬底方向上衬底与光学模组相对的两个表面之间的距离。
需要说明的是,图2为沿图1中AA’的截面图。图1中多个发光单元2沿第一方向X以及第二方向Y阵列排布,第一方向X与第二方向Y垂直。
在一些实施例中,发光单元的数量与保护结构的数量相同,且保护结构的数量与反射图案的数量相同。
从而每一发光单元均被保护结构覆盖,且每一保护结构背离发光单元一侧均设置有反射图案,从而每一发光单元的出光光型均被调制,例如各发光单元的出光角度变大。
在一些实施例中,如图1所示,发光单元2在衬底1的正投影落入反射图案4在衬底1的正投影内。
本公开实施例提供的发光基板,发光单元在衬底的正投影落入反射图案在衬底的正投影内,即发光单元的面积小于反射图案的面积且反射图案覆盖发光单元的区域,从而可以使得发光单元出射的光尽可能多的被反射图案反射,从保护结构未被反射图案覆盖的区域出射,以降低混光距离。
在一些实施例中,保护结构在衬底的正投影的中心与发光单元在衬底的正投影的中心之间的距离小于第一预设值;
反射图案在衬底的正投影的中心与发光单元在衬底的正投影的中心之间 的距离小于第二预设值。
在具体实施时,第一预设值为:在工艺误差允许的情况下保护结构在衬底的正投影的中心与发光单元在衬底的正投影的中心之间的距离的最大值。第二预设值为:在工艺误差允许的情况下反射图案在衬底的正投影的中心与发光单元在衬底的正投影的中心之间的距离的最大值。即本公开实施例提供的发光基板,反射图案在衬底的正投影的中心、保护结构在衬底的正投影的中心以及发光单元在衬底的正投影的中心三者在误差允许的范围内大致重合。
在一些实施例中,第一预设值等于第二预设值。在具体实施时,当第一预设值等于第二预设值时,第一预设值与发光单元长或宽的比值小于等于1:5。例如,当发光单元长或宽小于等于500微米时,第一预设值以及第二预设值均小于等于100微米。
在一些实施例中,如图2所示,保护结构3背离衬底1一侧的表面为第一曲面10;
反射图案4与保护结构3的表面直接接触;
反射图案4背离保护结构3一侧的表面为第二曲面11;
第二曲面12的形状与第一曲面10的部分区域的形状相同。
在一些实施例中,如图2所示,垂直于衬底1方向上,在任意位置,第二曲面12与第一曲面10之间的距离均相同。第一曲面10以及第二曲面12均可以为球面的一部分,且第一曲面10与第二曲面12分别对应两个半径不同的同心球面。
即本公开实施例提供的发光基板中,保护结构为具有凸透镜型形貌,具有凸透镜形貌的保护结构具有与发光单元对应的凹槽,即保护结构和发光单元组成的整体结构为完整凸透镜形状的结构。具有凸透镜形貌的保护结构除了覆盖发光单元对其进行保护,还可以改变发光单元出光角度,避免光线集中导致光强较高而增大混光距离。
在一些实施例中,保护结构的材料为透明硅胶。
在一些实施例中,如图2所示,反射图案4的厚度H大于等于20微米且小于等于30微米。
在一些实施例中,发光单元的发光面积不大于50000平方微米。
在一些实施例中,如图1所示,保护结构3在衬底1的正投影的形状为圆形;在垂直于衬底方向上保护结构的最大尺寸与保护结构在衬底的正投影的直径之比大于等于1:3且小于等于1:5。例如,在垂直于衬底方向上保护结构的最大尺寸为500微米,保护结构在衬底的正投影的直径不大于2500微米。
在一些实施例中,如图1所示,反射图案4在衬底1上的正投影的形状为矩形。
图4a示意的是发光单元出光侧设置保护结构情况下的出光光型,其中保护结构具有凸透镜形貌,且保护结构在衬底的正投影的形状为圆形;图4b示意的是发光单元出光侧设置表面具有反射图案的保护结构的情况下的出光光型,其中保护结构具有凸透镜形貌,且保护结构在衬底的正投影的形状为圆形且反射图案在衬底的正投影为矩形。可以看出,图4b相比于图4a,整体结构的出光光型发生了变化,即通过在保护结构上设置反射图案,可以有效增大发光单元出光角度。图4a、图4b中均包括两条曲线,两条曲线中的其中一条为对应结构在第一方向X的出光光型曲线,两条曲线中的另一条为对应结构在第二方向Y的出光光型曲线。
或者,如图3所示,反射图案4在衬底1上的正投影的形状为圆形。
当然,在具体实施时,反射图案在衬底上的正投影的形状还可以为其他多边形、椭圆形、环形等。即反射图案在衬底上的正投影的形状可为下列之一:多边形、圆形、椭圆形、环形。在具体实施时,多边形例如为三角形、四边形、五边形、六边形等。
接下来对包括多个发光单元的发光基板的光学画面分析结果进行介绍。第一种发光基板、第二种发光基板、第三种发光基板的光学画面如图5a~图5i所示;其中,第一种发光基板、第二种发光基板、第三种发光基板均包括九个发光单元以及设置每个发光单元上的保护结构;第一种发光基板、第二 种发光基板、第三种发光基板中九个发光单元以及九个保护结构的排布规则相同,如图6所示,九个发光单元2排列呈3行3列的矩阵,各发光单元2在衬底的正投影的面积相同,每一发光单元2在衬底1的正投影形状为正方形,正方形的边长a为0.35毫米,在第一方向X上相邻发光单元2在衬底1的正投影中心之间的距离b为6毫米,在第二方向Y上相邻发光单元2在衬底1的正投影中心之间的距离c为6毫米;每一发光单元2均被保护结构3覆盖,各保护结构3在衬底的正投影的面积相同,保护结构3在衬底1的正投影的直径D为2.5毫米。第一种发光基板不包括反射图案,即发光单元仅被保护结构覆盖,其光学画面如图5a所示。第二种发光基板还包括9个反射图案,反射图案位于保护结构背离发光单元一侧,反射图案在衬底上的正投影的形状为正方形,第二种发光基板的光学画面如图5b~图5e所示;其中,图5b~图5e对应的反射图案在衬底上的正投影的边长不相同,图5b~图5e对应的反射图案在衬底上的正投影的边长分别为0.5毫米、1毫米、1.5毫米、2毫米。第三种发光基板还包括9个反射图案,反射图案位于保护结构背离发光单元一侧,反射图案在衬底上的正投影的形状为圆形,第三种发光基板的光学画面如图5f~图5i所示;其中,图5f~图5i对应的反射图案在衬底上的正投影的直径不相同,图5f~图5i对应的反射图案在衬底上的正投影的直径分别为0.5毫米、1毫米、1.5毫米、2毫米。当发光单元仅被保护结构覆盖而保护结构背离发光单元一侧未设置反射图案时,从图5a所示的光学画面可以得出,每个发光单元及其保护结构组成的整体结构构成一个发光区域,相邻发光区域的边界非常明显,图5a中大致为环形的深色阴影区域即对应发光区域的边界,即从图5a所示的光学画面中可以明显区分出各个发光区域,即混光效果差,导致发光基板各处的亮度不均匀。当覆盖发光单元的保护结构背离发光单元一侧设置有在衬底上的正投影的形状为矩形的反射图案时,根据图5b~图5e所示的光学画面可以看出,深色阴影区域显著减少,即每个发光单元、保护结构以及反射图案组成的整体结构的发光区域的边界不明显,相邻发光区域之间出现交叠,且随着反射图案在衬底上的正投影的尺寸逐渐增 大,相邻的整体结构之间的发光区域交叠面积越大,混光效果越好,发光基板各处亮度越均匀;图5b~图5e的光学画面中各个发光区域的边界越来越不明显,例如,图5e的光学画面中几乎分辨不出各个发光区域的边界,发光基板各区域的亮度较均匀。当覆盖发光单元的保护结构背离发光单元一侧设置有在衬底上的正投影的形状为圆形的反射图案时,根据图5f~图5i所示的光学画面可以看出,深色阴影区域显著减少,即发光单元、保护结构以及反射图案组成的整体结构的发光区域的边界不明显,相邻整体结构之间的发光区域具有交叠,且随着反射图案在衬底上的正投影的边长逐渐增大,相邻的整体结构之间的发光区域交叠面积越大,不同的整体结构之间的混光效果越好,发光基板整体的亮度越均匀;图5f~图5i的光学画面中各个发光区域的边界越来越不明显,例如,图5i的光学画面中几乎分辨不出各个发光区域的边界,发光基板各区域的亮度较均匀。根据图5a、图5b~图5i可以得出,与仅设置发光单元和覆盖发光单元的保护结构而未设置反射图案的光学画面相比,设置发光单元、保护结构以及反射图案可以显著改善混光效果,降低混光距离;根据图5b~图5e以及图5f~图5i可以得出,反射图案在衬底上的正投影的形状为正方形或圆形均可以改善混光效果,且反射图案的尺寸越大,混光效果越好。
在一些实施例中,反射图案与保护结构的接触面与垂直于衬底的多个平面相交,可以得到多个弧。如图7所示,多个弧中最大长度的弧的弧长为l,图7中,O为弧长为l的弧对应的圆的圆心,h为在垂直于衬底方向上保护结构的最大尺寸,D为保护结构在衬底的正投影的直径,R为保护结构背离衬底一侧的表面所在球面的半径(也即弧长为l的弧对应的圆的半径),θ为发光单元的半功率角。在具体实施时,为了使得反射图案反射发光单元出射的光,反射图案至少覆盖发光单元的发光角度,即多个弧中最大长度的弧的弧长为l相对于发光单元在衬底上的正投影的中心对应的角度为2θ;其中,θ为发光单元的半功率角,发光单元沿与法线方向具有θ夹角的方向出射光线的发光强度为发光单元沿出光面的法线方向出射光线的发光强度的一半,半功率角 的2倍即为发光单元的功率角。
根据图7中的几何关系可得:
Figure PCTCN2022095707-appb-000002
h=x+y;
R 2=(R-h+x) 2+(xtanθ) 2
Figure PCTCN2022095707-appb-000003
根据图7中的几何关系还可获得:
Figure PCTCN2022095707-appb-000004
Figure PCTCN2022095707-appb-000005
根据图7中的几何关系还可获得:
Figure PCTCN2022095707-appb-000006
Figure PCTCN2022095707-appb-000007
即当
Figure PCTCN2022095707-appb-000008
时,反射图案可以完全反射发光单元发出的光。
在一些实施例中,反射图案的材料反射率大于90%。反射图案的反射率与亮度增益之间的关系如图8所示,可知反射图案的反射率越高,归一化亮度增益越高,相应的发光单元的亮度越高。在具体实施时,反射图案的材料可以选择较高反射率材料制作,反射图案的材料例如为白色油墨。
在一些实施例中,在衬底上设置有线路层,用于向发光单元提供信号。
在具体实施时,线路层还可以包括驱动电路,驱动电路可以为微型驱动 芯片(Integrated Circuit,IC),或者为多个薄膜晶体管(Thin Film Transistor,TFT)组合构成的像素电路。
在一些实施例中,衬底例如为印制电路板(Printed Circuit Board,PCB)或玻璃衬底。
在一些实施例中,发光单元包括至少一个发光器件。
在具体实施时,发光单元可以仅包括一个发光器件,即发光单元为单色光光源,例如,发光单元可以仅包括一个蓝光发光器件。
或者,在具体实施时,发光单元也可以为发白光的光源,发光单元包括多个子像素,每一子像素包括一个发光器件,多个子像素例如包括:红色子像素、蓝色子像素以及绿色子像素,各子像素包括的发光器件发光颜色相同,再通过量子点彩膜进行色转以出射与子像素发光颜色对应的光。例如,发光器件发蓝光,红色子像素包括吸收蓝光出射红光的红光量子点彩膜,绿色子像素包括吸收蓝光出射绿光的绿光量子点彩膜,蓝色子像素可以不设置量子点彩膜。
在一些实施例中,发光器件为微尺寸无机发光二极管。微尺寸无机发光二极管例如可以是迷你发光二极管(Mini Light Emitting Diode,Mini-LED)或微型发光二极管(Micro Light Emitting Diode,Micro-LED)。
需要说明的是,Mini-LED以及Micro-LED的尺寸小且亮度高,可以大量应用于显示装置或其背光模组中。例如,Micro-LED的典型尺寸(例如长度)小于100微米;Mini-LED的典型尺寸(例如长度)为80微米~350微米。
在具体实施时,发光器件为微尺寸无机发光二极管时,发光器件例如包括叠层设置的P型氮化镓层、多量子阱层、N型氮化镓层。
基于同一发明构思,本公开实施例还提供了一种发光基板的制备方法,如图9所示,包括:
S101、在衬底一侧设置多个发光单元;
S102、在发光单元背离衬底一侧形成多个保护结构;其中,多个保护结构中的每一个保护结构覆盖多个发光单元中的一个发光单元;
S103、在保护结构背离发光单元一侧形成反射图案;其中,反射图案在衬底的正投影落入保护结构在衬底的正投影内。
本公开实施例提供的发光基板的制备方法,在保护结构背离发光单元一侧形成反射图案,从而发光单元发出的光到达反射图案与保护结构之间的界面被反射,发光单元发出的光从保护结构未被反射图案覆盖的区域出射,相比于未设置反射图案的情况可以改变发光单元的出光光型以降低混光距离,从而厚度较薄的发光基板也能满足混光要求,实现发光基板的薄型化。并且,通过形成反射结构降低混光距离而无需通过增加发光单元的数量来降低混光距离还可以节省成本。
在一些实施例中,在衬底一侧设置多个发光单元,具体包括:将多个发光单元通过固晶工艺与衬底绑定。
在具体实施时,在衬底一侧设置多个发光单元之前,还包括发光单元制备的步骤,之后例如采用巨量转移工艺将制得的发光单元转移至衬底上,并通过固晶工艺与衬底绑定,以使发光单元与衬底上设置的驱动电路电连接。
在一些实施例中,步骤S102在发光单元背离衬底一侧形成多个覆盖发光单元的保护结构,具体包括:
采用点胶工艺或者飞喷工艺在发光单元背离衬底一侧形成保护结构的图案。
在具体实施时,例如采用点胶工艺或者飞喷工艺在发光单元背离衬底一侧形成透镜型保护结构的图案。
在一些实施例中,步骤S103在保护结构背离发光单元一侧形成反射图案,具体包括:
采用喷胶工艺或打印工艺在保护结构背离发光单元一侧形成反射图案。
在具体实施时,如图10所示,衬底1置于平台5上,通过容纳反射材料的部件6形成反射图案。当采用喷胶工艺形成反射图案时,部件6为喷胶设备的胶阀。当采用打印工艺形成反射图案时,部件6为打印设备的喷嘴。
或者,在一些实施例中,如图11所示,步骤S103在保护结构背离发光 单元一侧形成反射图案,具体包括:
S1031、在保护结构3背离发光单元2一侧形成反射层7;
S1032、对反射层7进行曝光、显影工艺形成多个反射图案4。
本公开实施例提供的发光基板的制备方法,当采用曝光、显影工艺形成反射图案时,可以提高反射图案的制备精度,并且,当反射图案数量较多时还可以提高制备效率。
在具体实施时,可以根据反射图案的具体形状以及数量选择合适的反射图案制作方法。
本公开实施例提供的一种显示装置,如图12所示,显示装置包括:
本公开实施例提供的发光基板8;
显示面板9,位于发光基板8的发光侧。
在一些实施例中,显示面板为液晶显示面板。发光基板作为液晶显示面板的背光源。
在具体实施时,液晶显示面板包括:相对设置的阵列基板和对向基板,以及位于阵列基板和对向基板之间的液晶层。液晶显示面板包括多个阵列排布的像素,每一像素包括多个子像素,例如包括红色子像素、蓝色子像素、绿色子像素。
在一些实施例中,液晶显示面板中显示像素的数量与发光基板中发光单元的数量之比为n,n为正整数。
在具体实施时,液晶显示面板中显示像素的数量大于发光基板中发光单元的数量,即n为大于1的整数;例如n为10,即,液晶显示面板中显示像素的数量为发光基板中发光单元的数量的10倍。
在一些实施例中,显示装置还包括位于发光基板和显示面板之间的光学模组。光学模组例如包括导光板、偏光片等光学膜材。
本公开实施例提供的显示装置为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具 有的,在此不做赘述,也不应作为对本公开的限制。该显示装置的实施可以参见上述发光基板的实施例,重复之处不再赘述。
综上所述,本公开实施例提供的发光基板及其制备方法、显示装置,在保护结构背离发光单元一侧设置反射图案,从而发光单元发出的光到达反射图案与保护结构之间的界面被反射,发光单元发出的光从保护结构未被反射图案覆盖的区域出射,相比于未设置反射图案的情况可以改变发光单元的出光光型以降低混光距离,从而厚度较薄的发光基板也能满足混光要求,实现发光基板的薄型化。并且,通过设置反射结构降低混光距离而无需通过增加发光单元的数量来降低混光距离还可以节省成本。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种发光基板,包括:
    衬底;
    多个发光单元,位于所述衬底的一侧;
    多个保护结构,位于所述发光单元背离所述衬底一侧;所述多个保护结构中的每一个保护结构覆盖所述多个发光单元中的一个发光单元;
    多个反射图案,位于所述保护结构背离所述发光单元一侧;所述反射图案在所述衬底的正投影落入所述保护结构在所述衬底的正投影内。
  2. 根据权利要求1所述的发光基板,其中,所述发光单元在所述衬底的正投影落入所述反射图案在所述衬底的正投影内。
  3. 根据权利要求1或2所述的发光基板,其中,所述保护结构在所述衬底的正投影的中心与所述发光单元在所述衬底的正投影的中心之间的距离小于第一预设值;
    所述反射图案在所述衬底的正投影的中心与所述发光单元在所述衬底的正投影的中心之间的距离小于所述第二预设值。
  4. 根据权利要求1~3任一项所述的发光基板,其中,所述发光单元的数量与所述保护结构的数量相同,且所述保护结构的数量与所述反射图案的数量相同。
  5. 根据权利要求1~4任一项所述的发光基板,其中,所述保护结构背离所述衬底一侧的表面为第一曲面;
    所述反射图案与所述保护结构的表面直接接触;
    所述反射图案背离所述保护结构一侧的表面为第二曲面;
    所述第二曲面的形状与所述第一曲面的部分区域的形状相同。
  6. 根据权利要求5所述的发光基板,其中,所述保护结构在所述衬底的正投影的形状为圆形;
    所述反射图案与所述保护结构的接触面与多个垂直于所述衬底的平面相 交,得到多个弧,所述多个弧中最大长度的弧的弧长l满足:
    Figure PCTCN2022095707-appb-100001
    其中,h为在垂直于所述衬底方向上所述保护结构的最大尺寸,D为所述保护结构在所述衬底的正投影的直径,R为所述保护结构背离所述衬底一侧的表面所在球面的半径,θ为所述发光单元的半功率角。
  7. 根据权利要求1~6任一项所述的发光基板,其中,所述反射图案在所述衬底上的正投影的形状为下列之一:多边形、圆形、椭圆形、环形。
  8. 根据权利要求1~7任一项所述的发光基板,其中,所述反射图案的材料反射率大于90%。
  9. 根据权利要求1~8任一项所述的发光基板,其中,所述反射图案的厚度大于等于20微米且小于等于30微米。
  10. 根据权利要求1~9任一项所述的发光基板,其中,所述发光单元的发光面积不大于50000平方微米。
  11. 一种发光基板的制备方法,其中,所述方法包括:
    在衬底一侧设置多个发光单元;
    在所述发光单元背离所述衬底一侧形成多个保护结构;其中,所述多个保护结构中的每一个保护结构覆盖所述多个发光单元中的一个发光单元;
    在所述保护结构背离所述发光单元一侧形成反射图案;其中,所述反射图案在所述衬底的正投影落入所述保护结构在所述衬底的正投影内。
  12. 根据权利要求11所述的方法,其中,所述在所述保护结构背离所述发光单元一侧形成反射图案,具体包括:
    采用喷胶工艺或打印工艺在所述保护结构背离所述发光单元一侧形成反射图案。
  13. 根据权利要求11所述的方法,其中,所述在所述保护结构背离所述发光单元一侧形成反射图案,具体包括:
    在所述保护结构背离所述发光单元一侧形成反射层;
    对所述反射层进行曝光、显影工艺形成多个反射图案。
  14. 根据权利要求11~13任一项所述的方法,其中,所述在所述发光单元背离所述衬底一侧形成多个覆盖所述发光单元的保护结构,具体包括:
    采用点胶工艺或者飞喷工艺在所述发光单元背离所述衬底一侧形成所述保护结构的图案。
  15. 一种显示装置,其中,所述显示装置包括:
    根据权利要求1~10任一项所述的发光基板;
    显示面板,位于所述发光基板的发光侧。
PCT/CN2022/095707 2022-05-27 2022-05-27 发光基板及其制备方法、显示装置 WO2023226019A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/095707 WO2023226019A1 (zh) 2022-05-27 2022-05-27 发光基板及其制备方法、显示装置
CN202280001484.4A CN117480441A (zh) 2022-05-27 2022-05-27 发光基板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095707 WO2023226019A1 (zh) 2022-05-27 2022-05-27 发光基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023226019A1 true WO2023226019A1 (zh) 2023-11-30

Family

ID=88918268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095707 WO2023226019A1 (zh) 2022-05-27 2022-05-27 发光基板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN117480441A (zh)
WO (1) WO2023226019A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203365860U (zh) * 2013-07-05 2013-12-25 深圳Tcl新技术有限公司 背光模组及液晶显示器
CN214704248U (zh) * 2021-04-09 2021-11-12 海信视像科技股份有限公司 一种显示装置
CN214751236U (zh) * 2021-04-30 2021-11-16 海信视像科技股份有限公司 一种显示装置
CN215416207U (zh) * 2021-08-25 2022-01-04 海信视像科技股份有限公司 一种显示装置
CN115407551A (zh) * 2021-05-28 2022-11-29 海信视像科技股份有限公司 一种显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203365860U (zh) * 2013-07-05 2013-12-25 深圳Tcl新技术有限公司 背光模组及液晶显示器
CN214704248U (zh) * 2021-04-09 2021-11-12 海信视像科技股份有限公司 一种显示装置
CN214751236U (zh) * 2021-04-30 2021-11-16 海信视像科技股份有限公司 一种显示装置
CN115407551A (zh) * 2021-05-28 2022-11-29 海信视像科技股份有限公司 一种显示装置
CN215416207U (zh) * 2021-08-25 2022-01-04 海信视像科技股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN117480441A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US11092849B2 (en) LED backlight device and display device
CN111399280B (zh) 一种显示装置
CN109585487B (zh) 显示面板及其像素结构
US7728343B2 (en) Light source apparatus and display apparatus and white resist layer
TWI754431B (zh) 光源組件、其製備方法、背光模組及顯示裝置
WO2019223202A1 (zh) 面光源背光模组及液晶显示面板
US11953779B2 (en) Backlight module, method for designing the same, and display device
CN110970546A (zh) 显示基板及其制作方法、拼接显示装置
US10761373B2 (en) Display device
TW202009580A (zh) 畫素陣列封裝結構及顯示面板
TWI765491B (zh) 顯示基板及其製備方法、顯示裝置
US20240032398A1 (en) Display panel and electronic device
CN114578615A (zh) 背光模组及显示装置
US20190361294A1 (en) Planar backlight module and lcd panel
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
WO2023226019A1 (zh) 发光基板及其制备方法、显示装置
US20190326486A1 (en) Light emitting element and electronic device
US20240053635A1 (en) Display panel and display device
CN114355657A (zh) 拼接显示面板及拼接显示装置
US11815765B2 (en) Display panel and display device
CN220543239U (zh) 一种显示装置及其背光模组
CN219225262U (zh) 显示模组、电子设备及光学器件
CN115933246B (zh) 一种显示装置
WO2024020805A1 (zh) 背光模组及显示装置
CN115407550B (zh) 一种显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001484.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943217

Country of ref document: EP

Kind code of ref document: A1