WO2024019375A1 - Inspection connector - Google Patents

Inspection connector Download PDF

Info

Publication number
WO2024019375A1
WO2024019375A1 PCT/KR2023/009512 KR2023009512W WO2024019375A1 WO 2024019375 A1 WO2024019375 A1 WO 2024019375A1 KR 2023009512 W KR2023009512 W KR 2023009512W WO 2024019375 A1 WO2024019375 A1 WO 2024019375A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive particles
inspection
connector
paragraph
Prior art date
Application number
PCT/KR2023/009512
Other languages
French (fr)
Korean (ko)
Inventor
김종원
유은지
김형준
정영배
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Publication of WO2024019375A1 publication Critical patent/WO2024019375A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester

Definitions

  • This disclosure relates to a connector for inspection that has a conductive portion made of conductive particles and electrically connects an inspection apparatus and a device to be inspected.
  • test connectors that electrically connect an inspection device and a device to be inspected are used in the field.
  • the test connector is disposed between the test device and the test target device.
  • a conductive rubber sheet that can be elastically deformed by a pressing force applied through a device to be tested is known in the art.
  • the conductive rubber sheet has a conductive portion that transmits signals and an insulating portion that insulates the conductive portion.
  • the conductive portion is formed by gathering a plurality of conductive particles so that electricity can pass through them in the vertical direction.
  • Part of the conductive part and the insulating part are made of an elastic insulating material such as silicone rubber.
  • the conductive portion and the insulating portion can be molded together from a liquid molding material in which liquid silicone rubber is mixed with a plurality of metal particles.
  • the conductive portion may be formed by applying a magnetic field to the liquid molding material to aggregate the conductive particles into the shape of the conductive portion.
  • conductive particles spherical conductive particles and conductive particles formed into specific character shapes are known in the art.
  • the conductive portion made of spherical conductive particles adjacent conductive particles are in point contact with each other due to the spherical shape. Since conductive particles in point contact have a small contact area, the current density of the conductive part is low.
  • the bonding force between the conductive particles and the elastic insulating material is weak due to the small specific surface area of the spherical conductive particles. If pressing force is repeatedly applied to the conductive part during inspection of the device being inspected, the contact points between the conductive particles in point contact can be easily separated, the bond between the conductive particles and the elastic insulating material can be easily resolved, and the conductive particles can be easily separated. You may deviate from your position. As a result, the electrical contact between conductive particles becomes unstable and the service life of the inspection connector is shortened.
  • Inspection connectors used for inspection of semiconductor devices must maintain performance such as electrical conductivity and elasticity even if contact with the device is repeated several times, but conventional conductive particles used in inspection connectors were insufficient to achieve this purpose.
  • Embodiments of the present disclosure solve the problems of the prior art described above.
  • the purpose of embodiments of the present disclosure is to provide an inspection connector that maintains elastic recovery force for a long time and has high electrical conductivity even if the inspection is repeatedly performed by pressing force.
  • the inspection connector is an inspection connector disposed between the device to be inspected and the test equipment to electrically connect the device to be inspected and the test equipment to each other in the vertical direction, and is insulated with an elastic insulating material. wealth; and a conductive part disposed within the insulating part and enabling electricity to be passed in an upward and downward direction, wherein at least a portion of the conductive part in the upward and downward direction includes a plurality of conductive particles having a pillar shape and a bumpy surface. Formed in contact, the plurality of conductive particles may include a first conductive particle having an upper base plane, and a second conductive particle having a lower base contacting the upper base plane of the first conductive particle. there is.
  • the inspection connector is an inspection connector disposed between the device to be inspected and the test equipment to electrically connect the device to be inspected and the test equipment to each other in the vertical direction, and is insulated with an elastic insulating material. wealth; and a conductive part that extends in the vertical direction within the insulating part to enable electricity to be passed in the vertical direction; and in at least a portion of the conductive part in the vertical direction, a plurality of conductive particles having a pillar shape are in contact with each other.
  • the plurality of conductive particles include: first conductive particles having an upper bottom surface in which a first groove recessed downward is formed; And it may include a second conductive particle having a lower bottom surface that contacts the upper bottom surface of the first conductive particle and is formed with a second groove recessed upward.
  • Embodiments of the present disclosure can provide a connector for inspection that maintains elastic recovery force for a long time and has high electrical conductivity even if the inspection is repeatedly performed by pressing force.
  • Figure 1 schematically shows a test connector and an electronic device in contact with the test connector.
  • Figure 2 shows a plurality of conductive particles constituting a conductive portion.
  • Figure 3 shows some conductive particles constituting a conductive portion in one embodiment.
  • FIG. 4 shows the conductive particles and elastic layer of FIG. 3 in detail.
  • Figure 5 shows what happens when conductive particles spread apart from each other in one embodiment.
  • Figure 6 shows various forms of conductive particles.
  • Figure 7 shows prismatic conductive particles aligned on the central axis.
  • Figure 8 shows a modified example when prismatic conductive particles are pressed in the vertical direction.
  • Figure 9 shows an example in which conductive particles are arranged to be offset from each other.
  • FIG. 10 shows the shape in which the conductive particles of FIG. 9 are deformed when pressed.
  • Figure 11 shows an example in which conductive particles are arranged to be offset from each other.
  • Figure 12 shows a case where some of the conductive particles do not contact neighboring conductive particles face to face.
  • Figure 13 shows a case in which deformation mainly occurs in one part when conductive particles are pressed.
  • Embodiments of the present disclosure are illustrated for the purpose of explaining the technical idea of the present disclosure.
  • the scope of rights according to the present disclosure is not limited to the embodiments presented below or the specific description of these embodiments.
  • FIG. 1 schematically shows a test connector and an electronic device in contact with the test connector, and the shape shown in FIG. 1 is only an example selected for understanding of the embodiment.
  • the inspection connector 100 is a sheet-shaped structure.
  • the inspection connector 100 is disposed between two electronic devices.
  • one of the two electronic devices may be the test device 200, and the other may be the test target device 300 that is tested by the test device 200.
  • the inspection connector 100 is replaceably fixed to the housing 400 and is positioned on the inspection device 200 by the housing 400.
  • the housing 400 is removably mounted on the inspection device 200.
  • the housing 400 accommodates therein the device to be inspected 300, which is transported to the inspection device 200 by hand or by a transport device, and aligns the device to be inspected 300 with the connector 100 for inspection. You can.
  • the test connector 100 is in contact with the test device 200 and the device to be tested 300 in the vertical direction (VD), and the test device 200 and the device to be tested ( 300) are electrically connected to each other.
  • VD vertical direction
  • the device under test 300 may be a semiconductor device in which a semiconductor IC chip and a plurality of terminals are packaged in a hexahedral shape using a resin material.
  • the device under test 300 has a plurality of terminals 310 on its lower side.
  • the terminal 310 may be a ball-type terminal.
  • the device under test 300 may have a land-type terminal that has a lower height than a ball-type terminal.
  • the test apparatus 200 can test various operating characteristics of the device being tested 300.
  • the test apparatus 200 may have a board on which a test is performed, and the board may be provided with a test circuit 210 for testing a device to be tested. Additionally, the test circuit 210 has a plurality of terminals 220 that are in contact with the conductive portion of the test connector 100. The terminal 220 of the test device 200 can transmit an electrical test signal and receive a response signal.
  • test connector 100 When testing the device under test 300, the test connector 100 electrically connects the terminal 220 of the test device and the terminal 310 of the corresponding device under test. The test device 300 is tested by the test device 200 through the test connector 100.
  • At least a portion of the inspection connector 100 may be made of an elastic material.
  • a pressing force P may be applied downward to the connector 100 for inspection through the device to be inspected 300 by a mechanical device or manually.
  • the terminal 310 of the test device and the test connector 100 can be brought into close contact in the vertical direction (VD), and the test connector 100 and the terminal 220 of the test device can be moved up and down. It can be closely adhered in the direction (VD).
  • some components of the inspection connector 100 may be elastically deformed in the downward and horizontal directions (HD) by the pressing force (P). When the pressing force P is removed, some of the components of the inspection connector 100 may be restored to their original shape.
  • the inspection connector 100 includes a conductive portion 110 and an insulating portion 120.
  • the conductive portion 110 may be disposed within the insulating portion 120 .
  • the insulating part 120 may surround the conductive part 110.
  • the conductive particles 130 of the conductive portion 110 may be disposed within the insulating portion 120 .
  • the insulating part 120 may surround the conductive particle 130.
  • the conductive portion 110 is configured to conduct electricity in the vertical direction (VD).
  • the conductive portion 110 extends in the vertical direction (VD).
  • the meaning that the conductive portion 110 extends in the vertical direction (VD) means not only the present embodiment in which the conductive portion 110 extends in a direction perpendicular to the horizontal direction (HD) but also forms an acute angle with the vertical direction (VD). This meaning includes embodiments (not shown) in which the conductive portion 110 extends in the inclined direction.
  • the insulating portion 120 surrounds the conductive portion 110 and insulates the conductive portion 110.
  • the inspection connector 100 may include a plurality of conductive portions 110.
  • the insulating portion 120 may space the plurality of conductive portions 110 apart in the horizontal direction (HD) and insulate them from each other.
  • the insulating portion 120 may be formed as an elastic body.
  • the conductive portion 110 When testing the device to be inspected 300, the conductive portion 110 is in contact with the terminal 220 of the inspection device 200 at its lower end, and is in contact with the terminal 310 of the device to be inspected 300 at its upper end. do.
  • a conductive path in the vertical direction (VD) may be formed between the terminal 310 and the terminal 220 corresponding to one conductive portion 110 using the conductive portion 110 as a medium.
  • the test signal of the test device 200 may be transmitted from the terminal 220 to the terminal 310 of the device under test 300 through the conductive portion 110.
  • the response signal of the device under test 300 may be transmitted from the terminal 310 to the terminal 220 of the test apparatus 200 through the conductive part 110.
  • the inspection connector 100 is formed of a separate layer constituting the top of the inspection connector 100, and there is no upper contact pad (not shown) provided to contact the terminal 310, and the inspection connector 100 is formed of a separate layer.
  • An example is shown in which a separate layer constituting the bottom is formed and there is no bottom contact pad (not shown) provided to contact the terminal 220.
  • the inspection connector may include the upper contact pad and/or the lower contact pad.
  • the top contact pad may include an upper portion of the conductive portion and a portion of the insulating portion surrounding the upper portion of the conductive portion.
  • the bottom contact pad may include a lower portion of the conductive portion and a portion of the insulating portion surrounding the lower portion of the conductive portion.
  • At least a portion of the conductive portion 110 in the vertical direction is formed by a plurality of conductive particles 130 contacting each other.
  • 1 and 2 show an example in which a plurality of conductive particles contact each other to form one entire conductive portion 110.
  • a plurality of conductive particles 130 contact each other to form one entire conductive portion 110. Only a portion of the conductive portion 110 in the vertical direction may be formed.
  • a partial section of the conductive portion included in the upper contact pad and/or a partial section of the conductive portion included in the lower contact pad are plural.
  • the conductive particles 130 may be formed by contacting each other, and a portion of the conductive portion included in the remaining portion of the inspection connector excluding the upper contact pad and the lower contact pad may have a plurality of conductive particles 130. They can also be formed by contacting each other.
  • the conductive parts 110 may be arranged at a position corresponding to the terminal 310 of the device 300, and may be arranged at a fine pitch smaller than the arrangement pitch of the terminal 310 of the device 300. It may be possible.
  • Figure 2 shows a plurality of conductive particles constituting a conductive portion.
  • the conductive portion 110 includes a plurality of conductive particles 130.
  • the plurality of conductive particles 130 are in contact with each other so as to conduct electricity, and constitute at least a partial section of the conductive portion 110 in the vertical direction VD.
  • the plurality of conductive particles 130 includes at least two conductive particles 130 that are in contact with each other in the vertical direction (VD).
  • a conductive path is formed along at least a portion of the conductive portion 110 by the plurality of conductive particles 130 .
  • Adjacent conductive particles 130 are formed in a vertical direction (VD) in a surface contact form in which a surface contacts a surface, a line contact form in which a surface contacts a line or a line in a line contact form, or a point contact form in which a surface contacts a point. It can be contacted along . Additionally, adjacent conductive particles 130 may be contacted along the horizontal direction (HD) or may be contacted in an oblique direction between the vertical direction (VD) and the horizontal direction (HD). With this exemplary contact form, the plurality of conductive particles 130 can contact each other in a densely distributed structure in the vertical direction (VD) to allow electricity to pass through, forming the conductive portion 110 .
  • the conductive particles 130 include particles made of magnetic metals such as nickel, iron, and cobalt, particles made of these alloys, or particles containing these metals, or using these particles as core particles to form the corresponding core particles.
  • Particles made of single fibers, elastic fibers, and glass fibers are manufactured to a certain length or less through a grinding process, and core particles are used, and the surface of the core particles is plated with a conductive magnetic material such as nickel or gold, or Of course, it is possible to use core particles coated with both a conductive magnetic material and a conductive metal that is difficult to oxidize.
  • the insulating portion 120 is made of an insulating elastic insulation material.
  • the elastic insulating material is preferably an insulating polymer material with a cross-linked structure.
  • Various curable polymer material forming materials that can be used to obtain this cross-linked polymer material can be used, and specific examples include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, and acrylonitrile- Conjugated diene-based rubbers such as butadiene copolymer rubber and hydrogenated products thereof, block copolymer rubbers such as styrene-butadiene-diene block copolymer rubber and styrene-isoprene block copolymer and their hydrogenated products, chloroprene, urethane rubber, poly Examples include ester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene-propylene-diene copoly
  • the elastic insulating material forming the insulating portion 120 may include silicone rubber. However, it is not limited to this.
  • the insulating portion 120 maintains the plurality of conductive particles 130 in conductive contact in the vertical direction VD as the conductive portion 110 . Additionally, the elastic insulating material constituting the insulating portion 120 may fill the space between the conductive particles 130 of the conductive portion 110. That is, the conductive portion 110 partially includes an elastic insulating material forming the insulating portion 120, and the elastic insulating material of the conductive portion may be present from the bottom to the top of the conductive portion.
  • the conductive portion 110 made of an elastic insulating material and the insulating portion 120 made of an elastic insulating material have elasticity in the vertical direction (VD) and the horizontal direction (HD).
  • VD vertical direction
  • HD horizontal direction
  • the conductive portion 110 expands slightly in the horizontal direction (HD) and elastically deforms to be compressed downward. may be, and the insulating portion 120 may be elastically deformed to allow expansion of the conductive portion 110.
  • the pressing force P is released, the conductive part 110 and the insulating part 120 can be elastically restored to their original state.
  • the conductive portion 110 and the insulating portion 120 may be molded together from a liquid molding material in which a plurality of conductive particles 130 are mixed with a liquid elastic material.
  • the liquid elastic material refers to a liquid material of the elastic insulating material constituting the insulating portion 120.
  • the liquid molding material is injected into the mold, and a magnetic field may be applied in the vertical direction to each position where the conductive portion is formed.
  • Conductive particles 130 are collected in the area of the conductive part to which a magnetic field is applied and contact each other. Thereafter, by hardening the liquid molding material, the conductive portion 110 and the insulating portion 120 are formed at the same time, so that the inspection connector 100 of one embodiment can be molded.
  • the insulating portion 120 made of the elastic insulating material in a solid state is first formed, and through holes may be formed in the insulating portion 120 at each position of the conductive portion 110.
  • the liquid molding material is injected into the through hole and a magnetic field is applied in the up and down directions to aggregate and contact the conductive particles 130 with each other, and the liquid molding material injected into the through hole may be hardened.
  • the conductive particles 130 shown in FIG. 2 are arranged in three rows in the vertical direction (VD), but this is merely an example to explain that the conductive portion 110 is composed of a plurality of conductive particles 130. , the embodiments of the present disclosure are not limited thereto.
  • the conductive particles 130 may be arranged in one row, two rows, or four or more rows.
  • the conductive particles 130 are all arranged uniformly and have the same shape, but this is only an example. In other embodiments, the conductive particles 130 are arranged non-uniformly or have different shapes. You can have it.
  • the conductive particles 130 are spaced apart from each other, but this is for convenience of explanation, and the gap between neighboring conductive particles among the conductive particles 130 constituting the conductive portion 110 may be absent or very small. You can.
  • Figure 3 shows some conductive particles 130 constituting a conductive portion in one embodiment.
  • FIG. 4 shows the conductive particles and elastic layer of FIG. 3 in detail.
  • Figure 5 shows what the conductive particles 130 look like when they are spread apart from each other in one embodiment.
  • the conductive particles 130 may have a bumpy surface.
  • the surface of the conductive particles 130 may include irregular irregularities.
  • a gap G may be formed between the conductive particles 130.
  • the roughness of the surface of the conductive particles 130 may be in the range of 1.5% to 30% of the height in the direction perpendicular to the surface of the conductive particles 130. That is, the ten-point average roughness ( ⁇ m) of the measurement surface of the conductive particle 130 divided by the height ( ⁇ m) in the direction perpendicular to the measurement surface above the conductive particle 130 multiplied by 100 is between 1.5 and 30. There may be.
  • the height of the conductive particle 130 in a direction perpendicular to the measurement surface may be the maximum thickness of the conductive particle 130 in the direction perpendicular to the measurement surface.
  • the ten-point average roughness of the upper bottom surface 131a of the first conductive particle 131 is 1.5 compared to the height in the direction perpendicular to the upper bottom surface 131a of the first conductive particle 131. It can be between % and 30%.
  • the ten-point average roughness of the lower bottom surface 132a of the second conductive particles 132 may be between 1.5% and 30% of the height in a direction perpendicular to the lower bottom surface 132a of the second conductive particles 132.
  • the ten-point average roughness is obtained by extracting only the standard length from the roughness curve in the direction of the average line, and then measuring the average of the absolute values of the elevations from the highest peak to the fifth measured vertically from the average line of this extracted portion, and the average value from the bottom of the lowest valley to the fifth. The sum of the absolute value of the valley bottom elevation and the average value is calculated, and this value is expressed in micrometers ( ⁇ m).
  • the conductive particles 130 are separated from the inspection connector 100, the conductive particles 130 are cut vertically based on the measurement surface using an ion beam, etc., and then the elevation of the peak and the bottom of the curve is measured on the cut surface using a scanning electron microscope, etc.
  • the ten-point average illuminance can be calculated by measuring . When selecting the lowest curved base of the conductive particle 130, if a portion of the cross section of the conductive particle 130 penetrates in the height direction, the penetrating portion is excluded from the measurement value.
  • the amount of elastic insulating material constituting the elastic layer 140 is small, so the elastic layer 140 interposed between the conductive particles 130 does not exert an elastic effect.
  • the illuminance is greater than 30%, there is a problem in that the strength of the conductive particles 130 weakens or the electrical resistance of the conductive portion 110 increases.
  • the conductive particles 130 may be manufactured using a sintering method.
  • the conductive particles 130 can be made by applying heat and pressure to powder-type particles.
  • the conductive particles 130 may have a bumpy surface by being manufactured using a sintering method.
  • the manufacturer adjusts the parameters of the sintering process (e.g. temperature, heating time, etc.) so that the ten-point average roughness of the surface of the conductive particles 130 is within the range of 1.5% to 30% of the height in the direction perpendicular to the surface. It can be adjusted.
  • the surface of the conductive particle 130 may include a groove (eg, the first groove 131b of the first conductive particle 131).
  • the groove may refer to a portion of the surface of the conductive particle 130 that is depressed lower than the surrounding area.
  • the surface of the conductive particle 130 may include a protrusion (eg, the first protrusion 131c of the first conductive particle 131) that protrudes from the surrounding portion.
  • a plurality of grooves or a plurality of protrusions are located on the surface of the conductive particle 130, and accordingly, the conductive particle 130 may have a bumpy surface.
  • a plurality of grooves or a plurality of protrusions may be irregularly distributed on the surface of the conductive particles 130 and may have different shapes.
  • the conductive portion 110 may include first conductive particles 131 and second conductive particles 132 .
  • the embodiment of the present disclosure is not limited to all the conductive particles 130 of the conductive portion 110 being aligned in the form shown in FIG. 3, and the conductive particles 130 in at least some sections of the conductive portion 110. It can be arranged in the same form as in Figure 3.
  • the upper bottom surface 131a of the first conductive particle 131 may include a first groove 131b.
  • the first groove portion 131b may have a shape that is recessed lower than the surrounding area. When the first conductive particles 131 contact the second conductive particles 132, the first groove portion 131b closes the gap G between the first conductive particles 131 and the second conductive particles 132 at least.
  • the lower bottom surface 132a of the second conductive particle 132 may include a second groove 132b.
  • the second groove portion 132b may have a shape that is recessed upward from the surrounding area. When the first conductive particles 131 contact the second conductive particles 132, the second groove portion 132b closes the gap G between the first conductive particles 131 and the second conductive particles 132 at least.
  • the first groove portion 131b and the second groove portion 132b may face each other in the vertical direction.
  • the gap G formed by the first groove 131b and the second groove 132b is filled with an elastic insulating material. You can.
  • the first groove portion 131b and the second groove portion 132b face each other in the vertical direction, but this is only an example, and in another embodiment, the first groove portion 131b and the second groove portion 132b may not face each other in the vertical direction.
  • the first conductive particles 131 and the second conductive particles 132 may each include a first protrusion 131c and a second protrusion 132c that protrude toward the other.
  • the first protrusion 131c may contact the lower bottom surface 132a of the second conductive particle 132
  • the second protrusion 132c may contact the upper bottom surface 131a of the first conductive particle 131.
  • the first protrusion 131c and the second protrusion 132c contact each other in the vertical direction, but this is only an example, and the first protrusion 131c and the second protrusion 132c do not contact each other. Areas may also exist.
  • the protrusion of the first conductive particle 131 may contact the groove formed in the lower bottom surface 132a of the second conductive particle 132.
  • an elastic insulating material may be filled between neighboring conductive particles 130.
  • the elastic insulating material filled in the gap G between the conductive particles 130 arranged up and down is referred to as the elastic layer 140.
  • the elastic layer 140 includes conductive particles disposed on one side of the elastic layer 140 (e.g., first conductive particles 131) and conductive particles disposed on the other side (e.g., second conductive particles 132). )) can be elastically connected.
  • the elastic layer 140 can provide an elastic restoring force that returns the conductive particles 130 to their initial state when they move relative to each other. there is.
  • the elastic layer 140 is elastically deformed according to the relative motion between the first conductive particles 131 and the second conductive particles 132, and is in the state of Figure 3. Even if the first conductive particles 131 and the second conductive particles 132 are separated from each other as shown in FIG. 5, it is possible to provide a restoring force to return the first conductive particles 131 to the state shown in FIG. 3.
  • the elastic layer 140 may be formed to have an irregular thickness.
  • the elastic layer 140 between the conductive particles 130 may include a rear portion 141 and a thin portion 142.
  • the portion of the elastic layer 140 formed on the first protrusion 131c is the thin portion 142 and has a relatively thin or zero thickness, and the portion formed on the first groove portion 131b of the elastic layer 140 is the thin portion 142.
  • the rear portion 141 may be relatively thick.
  • the elastic layer 140 between the conductive particles 130 can maintain its elastic function well.
  • the elastic layer 140 may include a relatively thick portion (e.g., the rear portion 141 in FIG. 4) due to the bumpy surface of the conductive particles 130, and the thick portion is where the conductive particles 130 are connected to each other. This is because the conductive particles 130 do not easily separate from the surface even if they are opened. That is, when relative motion occurs between the conductive particles 130, at least the thick portion of the elastic layer 140 can maintain the elastic function.
  • the lower surface of the elastic layer 140 is attached to the first portion (131d) of the upper bottom surface (131a) of the first conductive particle 131, and the upper surface is of the second conductive particle 132. It is attached to the second part 132d of the lower bottom 132a and can be elastically stretched when the first part 131d and the second part 132d move away from each other.
  • the first portion 131d and the second portion 132d are shown to correspond to the first groove 131b and the second groove 132b of FIG. 4, respectively.
  • the first portion 131d and the second groove 132b are shown in FIG.
  • One of the portions 132d may not correspond to the groove portion.
  • the second conductive particle 132 is configured to rotate based on a portion (E) of the edges of the lower bottom surface 132a of the second conductive particle 132 that contacts the upper bottom surface 131a of the first conductive particle 131. It can be.
  • the elastic layer 140 between the lower bottom surface 132a and the upper bottom surface 131a is elastically stretched to support the second conductive particle 132. It can provide a restoring force to rotate it in the opposite direction again.
  • the gap between the first part 131d and the second part 132d may be relatively large.
  • the thickness of the elastic layer (i.e., rear portion 141) formed between the first portion 131d and the second portion 132d may be relatively thick.
  • the part (E) that serves as a reference for rotation refers to a partial section or point constituting the edge of the bottom of the conductive particle 130 that faces a neighboring conductive particle.
  • the rotation reference portion E may be provided in the form of a point.
  • the point is not a point in the strict mathematical sense, but refers to a contact area that occurs when the circular bottom of the conductive particle 130 meets the bottom of the counterpart conductive particle in a non-parallel manner. do.
  • the rotation reference portion E may be provided in an overall line shape. That is, among the plurality of corners surrounding the lower bottom of the prismatic conductive particle 130, one corner (for example, the corner 132e in FIG. 8) that contacts the upper bottom of the relative conductive particle is the rotation reference portion. It can be (E).
  • the thin portion 142 of the elastic layer 140 may be easily destroyed due to the relative movement of the conductive particles 130. If the elastic layer 140 disposed between the conductive particles 130 is destroyed, the electrical resistance between the conductive particles 130 may be lowered. Referring to FIG. 5, the thin portion 142 of the elastic layer 140 formed between the third portion 131f of the first conductive particle 131 and the fourth portion 132f of the second conductive particle 132. The thickness can be very thin or zero. The third part 131f and the fourth part 132f may correspond to the first protrusion 131c and the second protrusion 132c of FIG. 4, respectively.
  • the thin portion 142 of the elastic layer 140 may be separated or damaged from the third portion 131f and the fourth portion 132f. there is. As the thin part 142 existing between the third part 131f and the fourth part 132f is damaged, when the third part 131f and the fourth part 132f come into contact again, the electrical resistance between the two increases. It can be reduced, and electricity can pass through better.
  • the surface of the conductive particle 130 shown in FIGS. 3 to 5 e.g., the upper bottom surface 131a of the first conductive particle 131
  • the shape of the elastic layer 140 are exemplary for convenience of explanation. It is nothing more than a shape, and in an actual product, the surface of the conductive particles 130 and the shape of the elastic layer 140 may be formed in various ways.
  • Figure 6 shows various forms of conductive particles 130.
  • Figure 7 shows conductive particles 130 aligned on the central axis.
  • Figure 8 shows a modified example when the conductive particles 130 are pressed in the vertical direction.
  • the conductive particles 130 constituting at least a portion of the conductive portion 110 may have a pillar shape.
  • at least a portion of the conductive portion in the vertical direction may be composed of column-shaped conductive particles 130.
  • the conductive particles 130 may be provided in the form of a prism, for example, a triangular prism, a rectangular prism, or a pentagonal prism (see Figures 6 (a), (b), and (c)).
  • the bottom of the conductive particle 130 has a polygonal shape.
  • the conductive particles 130 may be provided in a cylindrical shape (see (d) of FIG. 6). In this case, the bottom of the conductive particle 130 has a circular shape.
  • the conductive particles 130 constituting at least a portion of the conductive portion 110 may include conductive particles in the form of pillars of various shapes.
  • conductive particles in the shape of a square pillar and conductive particles in the shape of a cylinder may constitute at least a portion of one conductive part 110.
  • the fact that the conductive particles 130 have a prismatic shape means that the conductive particles 130 are generally provided in a shape similar to a prism, and due to the above-mentioned roughness, the conductive particles 130 have a prismatic shape as a whole with a surface that is not flat in the strict sense. It should be understood as including what is provided in the form of.
  • the six sides that make up the conductive particles in the form of a square pillar do not have to be exactly 90 degrees or 180 degrees to each other, but can generally be 90 degrees or 180 degrees, and the surface of the prism can be adjusted according to the above-mentioned roughness. may include grooves and protrusions.
  • At least some of the prismatic conductive particles 130 may be relatively uniformly aligned when exposed to a magnetic field that gathers them into the conductive portion 110.
  • the central axes CL of the prismatic conductive particles 130 may be aligned to coincide with each other. Accordingly, the conductive particles 130 can be relatively uniformly disposed within the conductive portion, and the conductive particles 130 can be gathered at a high density in the same volume.
  • the conductive particles 130 may preferably be provided in the form of a square pillar (more preferably in the form of a cube).
  • the conductive particles 130 may be aligned more densely or more uniformly by a magnetic field. This is because the shape of each face of the square pillar-shaped conductive particle 130 is the same as a square, and the faces facing each other are parallel to each other.
  • the cubic conductive particles 130 can be aligned more uniformly because all surfaces have the same or substantially the same size.
  • the conductive particles 130 arranged in the vertical direction may be deformed into a C shape.
  • the conductive particles 130 since the conductive particles 130 have a prismatic shape, they easily come into face-to-face contact with each other, which is advantageous for conducting electricity, and are easily aligned with the central axis CL.
  • the conductive particles 130 when the conductive particles 130 have a square pillar shape (preferably a cube shape), when the conductive particles 130 are aligned by a magnetic field, they come into face-to-face contact with each other in the vertical direction with a relatively high probability.
  • 'face-to-face contact' may be understood to include a state in which surfaces are in contact with each other in some areas (or points) and are spaced apart in other areas (or points). For example, referring to FIG.
  • the first conductive particles 131 and the second conductive particles 132 can be seen as being in face-to-face contact with each other in the vertical direction.
  • the conductive particles 130 have a cylindrical shape, some of them may be in face-to-face contact with each other, and the presence of these parts may provide an advantageous effect on current conduction.
  • the conductive particles 130 come into face-to-face contact in the up and down direction, when pressure in the up and down direction is applied to the conductive particles 130, the conductive particles 130 adhere to the edge surrounding the bottom with respect to the neighboring conductive particles 130. It can move in a rotating form based on a part of it.
  • the prismatic conductive particles 130 have a plurality of corners, and one of them can rotate while in contact with the other conductive particle.
  • the second conductive particle 132 is connected to the first conductive particle 131 (or the upper bottom) at one corner 132e of the four corners surrounding the lower bottom 132a. It can rotate while maintaining contact with (131a)).
  • the corner portion is a concept that includes the boundary surrounding the bottom of the polygonal prism and adjacent portions when looking at the conductive particles 130 as a whole, and is not limited to the corners of the prism in the strict sense.
  • the conductive particles 130 move while maintaining contact with the neighboring conductive particles 130 in some areas (e.g., the rotation reference portion E in FIG. 5), so the conductive particles Electrical conductivity between the fields 130 may be maintained. This can further improve the electrical conductivity of the entire conductive portion 110. In an actual product, even if some of the plurality of conductive particles 130 constituting the conductive part 110 are in face-to-face contact with each other in the vertical direction, the overall electrical conductivity of the conductive part 110 can be improved due to the above effect. there is.
  • the pillar-shaped conductive particles 130 may have an uneven surface as described in FIGS. 3 to 5.
  • opposing surfaces 131a and 132a of the first conductive particles 131 and the second conductive particles 132 may be uneven as shown in FIG. 3 .
  • an elastic layer eg, elastic layer 140 in FIG. 3
  • the elastic layer may provide restoring force against relative movement between the conductive particles 130 having a pillar shape.
  • the second conductive particle 132 rotates clockwise from the first conductive particle 131 with respect to the edge portion 132e, the first conductive particle 131 and the second conductive particle 132
  • the elastic layer formed in between is elastically stretched, and when the pressure on the conductive portion 110 is released, the elastic layer is restored and the second conductive particles 132 can rotate counterclockwise.
  • the conductive particles 130 e.g., the first conductive particles 131 and the second conductive particles 132
  • the conductive particles 130 When relative motion occurs between the elastic layers, at least the rear portion (e.g., the rear portion 141 in FIG. 4) can maintain the elastic function. Accordingly, even if the conductive particles 130 are pressed in the vertical direction several times, they can be restored to their original state (or at least close to the original state) after deformation, thereby increasing the lifespan of the inspection connector 100. You can.
  • the prismatic conductive particles 130 may be induced to gather relatively uniformly at a high density in at least some sections of the conductive portion 110.
  • the contact pressure between the conductive particles 130 increases and this causes the electrical resistance between the conductive particles 130 to decrease.
  • the prismatic conductive particles 130 may be guided to be relatively aligned with the central axis CL.
  • the conductive particles 130 are provided in the form of a square pillar, the surface of the conductive particles 130 is composed of square faces that are parallel to each other or cross each other at right angles, so the conductive particles 130 are more uniformly aligned. It can be guided as much as possible.
  • the conductive particles 130 may more preferably be provided in the form of a cube, and in this case, since the areas of the square surfaces constituting the surface of the conductive particles 130 are generally the same, the conductive particles 130 are more compact. It can be induced to be aligned evenly. As the conductive particles 130 are more uniformly collected, the number of face-to-face contact areas between the conductive particles 130 increases, and thus the effect due to the above-described face-to-face contact can be more effectively exerted.
  • the present disclosure does not exclude embodiments in which the conductive particles 130 are arranged irregularly or inconsistently aligned with the central axis.
  • the aligned shape may be different from the shape shown in FIG. 7 of the present disclosure. Since numerous particles are aligned stochastically by magnetic force, the conductive portion 110 of the inspection connector 100 of the present disclosure is not limited to the conductive particles 130 being uniformly aligned as a whole.
  • the conductive particles 130 may be arranged so that the central axes in the vertical direction are offset from each other.
  • the conductive particles 130 arranged as shown in FIG. 9 are pressed in the vertical direction, they may be deformed into the shape shown in FIG. 10. Since the conductive particles 130 are in face-to-face contact in a non-pressurized state, when pressurized, they can rotate with their edges in contact with the surfaces of neighboring conductive particles. Accordingly, electrical conductivity between the conductive particles 130 can be maintained relatively high.
  • the conductive particles 130 may be arranged in the vertical direction in a state in which they are rotated and misaligned with each other about a central axis.
  • some of the conductive particles 130 may not contact neighboring conductive particles face-to-face, but may make line contact or point contact. Even when the conductive particles 130 are arranged as shown in FIGS. 11 and 12, although not shown, the conductive particles 130 may contact neighboring conductive particles face-to-face at least on some surfaces or at least in some sections. there is.
  • the conductive particles 130 when they are pressed in the vertical direction, they do not necessarily need to be deformed into the shape shown in FIG. 8.
  • the section where deformation occurs between the conductive particles 130 may be limited to some areas. For example, referring to FIG. 13, when the conductive particles 130 arranged in the vertical direction are pressed, they are mainly deformed in the middle portion and may have a " ⁇ " shape.
  • the conductive particles 130 have a pillar shape and a bumpy surface, and these two features can be organically combined with each other to improve the quality of the inspection connector 100.
  • the conductive particles 130 are provided in the form of pillars and have a bumpy surface, the conductive particles 130 can be easily transformed into a hinge shape, thereby increasing the electrical conductivity between the conductive particles 130. This may increase.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Measuring Leads Or Probes (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

An inspection connector according to a disclosed embodiment is an inspection connector arranged between a device to be inspected and test equipment to electrically connect the device to be inspected to the test equipment in a vertical direction, and comprises: an insulation part made of an elastic insulation material; and a conductive part which is arranged in the insulation part and enables electrical conduction in the vertical direction, wherein at least a partial section of the conductive part in the vertical direction is formed by making a plurality of conductive particles having a pillar shape and having an uneven surface contact each other, and the plurality of conductive particles may comprise: first conductive particles each having an upper bottom surface; and second conductive particles each having a lower bottom surface in contact with the upper bottom surface of each of the first conductive particles.

Description

검사용 커넥터Connector for inspection
본 개시는, 도전성 입자로 구성되는 도전부를 가지며, 검사 장치와 피검사 디바이스를 전기적으로 접속시키는 검사용 커넥터에 관한 것이다.This disclosure relates to a connector for inspection that has a conductive portion made of conductive particles and electrically connects an inspection apparatus and a device to be inspected.
반도체 디바이스와 같은 피검사 디바이스의 검사를 위해, 검사 장치와 피검사 디바이스를 전기적으로 접속시키는 검사용 커넥터가 당해 분야에서 사용되고 있다. 검사용 커넥터는 검사 장치와 피검사 디바이스의 사이에 배치된다. 이러한 검사용 커넥터의 일 예로서, 피검사 디바이스를 통해 가해지는 가압력에 의해 탄성 변형할 수 있는 도전성 러버 시트(conductive rubber sheet)가 당해 분야에 알려져 있다. For inspection of devices to be inspected, such as semiconductor devices, inspection connectors that electrically connect an inspection device and a device to be inspected are used in the field. The test connector is disposed between the test device and the test target device. As an example of such a test connector, a conductive rubber sheet that can be elastically deformed by a pressing force applied through a device to be tested is known in the art.
도전성 러버 시트는, 신호 전달을 실행하는 도전부와 도전부를 절연시키는 절연부를 갖는다. 도전부는, 복수의 도전성 입자가 상하 방향으로 통전 가능하게 집합되어 이루어진다. 도전부의 일부와 절연부는 실리콘 러버와 같은 탄성절연재료로 이루어진다. The conductive rubber sheet has a conductive portion that transmits signals and an insulating portion that insulates the conductive portion. The conductive portion is formed by gathering a plurality of conductive particles so that electricity can pass through them in the vertical direction. Part of the conductive part and the insulating part are made of an elastic insulating material such as silicone rubber.
도전부와 절연부는, 액상의 실리콘 러버에 복수의 금속 입자가 혼합되어있는 액상의 성형 재료로부터 함께 성형될 수 있다. 상기 액상의 성형 재료에 자기장을 인가하여 도전성 입자들을 도전부의 형상으로 집합시킴으로써 도전부가 형성될 수 있다. 도전성 입자의 예로, 구형의 도전성 입자와 특정의 문자 형상으로 형성된 도전성 입자가 당해 분야에 알려져 있다. The conductive portion and the insulating portion can be molded together from a liquid molding material in which liquid silicone rubber is mixed with a plurality of metal particles. The conductive portion may be formed by applying a magnetic field to the liquid molding material to aggregate the conductive particles into the shape of the conductive portion. As examples of conductive particles, spherical conductive particles and conductive particles formed into specific character shapes are known in the art.
구형의 도전성 입자들로 이루어지는 도전부에서는, 구형의 형상으로 인해 인접한 도전성 입자들이 서로 점접촉하고 있다. 점접촉하는 도전성 입자들은 작은 접촉 면적을 가지므로, 도전부의 전류 밀도가 낮다. In the conductive portion made of spherical conductive particles, adjacent conductive particles are in point contact with each other due to the spherical shape. Since conductive particles in point contact have a small contact area, the current density of the conductive part is low.
점접촉되는 구형의 도전성 입자들에서는, 구형의 도전성 입자의 작은 비표면적으로 인해 도전성 입자와 탄성절연재료 간의 결합력이 약하다. 피검사 디바이스의 검사 시에 가압력이 도전부에 반복적으로 가해지면, 점접촉된 도전성 입자들 간의 접점이 쉽게 분리될 수 있고, 도전성 입자와 탄성절연재료 간의 결합이 쉽게 해소될 수 있으며 도전성 입자들은 제위치로부터 이탈할 수 있다. 이로인해 도전성 입자들 간의 전기적 접촉이 불안정해지고 검사용 커넥터의 사용 수명이 단축된다.In spherical conductive particles that are in point contact, the bonding force between the conductive particles and the elastic insulating material is weak due to the small specific surface area of the spherical conductive particles. If pressing force is repeatedly applied to the conductive part during inspection of the device being inspected, the contact points between the conductive particles in point contact can be easily separated, the bond between the conductive particles and the elastic insulating material can be easily resolved, and the conductive particles can be easily separated. You may deviate from your position. As a result, the electrical contact between conductive particles becomes unstable and the service life of the inspection connector is shortened.
반도체 디바이스의 검사에 이용되는 검사용 커넥터는 디바이스와 접촉을 수회 반복하더라도 전기 전도성이나 탄성력과 같은 성능을 유지해야 하는데, 검사용 커넥터에 이용되는 종래 도전성 입자들은 이러한 목적을 달성하는데 부족한 부분이 있었다. Inspection connectors used for inspection of semiconductor devices must maintain performance such as electrical conductivity and elasticity even if contact with the device is repeated several times, but conventional conductive particles used in inspection connectors were insufficient to achieve this purpose.
본 개시의 실시예들은 전술한 종래기술의 문제점을 해결한다. 본 개시의 실시예들은 가압력이 검사가 반복적으로 수행되더라도 탄성복원력을 오래 유지하고, 높은 전기 전도성을 가지는 검사용 커넥터를 제공하는데 그 목적이 있다.Embodiments of the present disclosure solve the problems of the prior art described above. The purpose of embodiments of the present disclosure is to provide an inspection connector that maintains elastic recovery force for a long time and has high electrical conductivity even if the inspection is repeatedly performed by pressing force.
본 개시의 일 실시예에 따른 검사용 커넥터는, 피검사 디바이스와 테스트 장비 사이에 배치되어 피검사 디바이스와 테스트 장비를 상하 방향으로 서로 전기적으로 연결시키기 위한 검사용 커넥터이며, 탄성절연재료로 이루어진 절연부; 및 상기 절연부 내에 배치되고 상하 방향으로 통전을 가능하게 하는 도전부;를 포함하고, 상기 도전부 중 상하 방향으로의 적어도 일부 구간은, 기둥 형태를 가지고 울퉁불퉁한 표면을 가지는 복수의 도전성 입자가 서로 접촉하여 형성되고, 상기 복수의 도전성 입자는, 상측 밑면(base plane)을 가진 제1 도전성 입자, 및 상기 제1 도전성 입자의 상기 상측 밑면에 접촉하는 하측 밑면을 가진 제2 도전성 입자를 포함할 수 있다.The inspection connector according to an embodiment of the present disclosure is an inspection connector disposed between the device to be inspected and the test equipment to electrically connect the device to be inspected and the test equipment to each other in the vertical direction, and is insulated with an elastic insulating material. wealth; and a conductive part disposed within the insulating part and enabling electricity to be passed in an upward and downward direction, wherein at least a portion of the conductive part in the upward and downward direction includes a plurality of conductive particles having a pillar shape and a bumpy surface. Formed in contact, the plurality of conductive particles may include a first conductive particle having an upper base plane, and a second conductive particle having a lower base contacting the upper base plane of the first conductive particle. there is.
본 개시의 일 실시예에 따른 검사용 커넥터는, 피검사 디바이스와 테스트 장비 사이에 배치되어 피검사 디바이스와 테스트 장비를 상하 방향으로 서로 전기적으로 연결시키기 위한 검사용 커넥터이며, 탄성절연재료로 이루어진 절연부; 및 상기 절연부 내에서 상하 방향으로 연장되어 상하 방향으로 통전을 가능하게 하는 도전부;를 포함하고, 상기 도전부 중 상하 방향으로의 적어도 일부 구간은, 기둥 형태를 가지는 복수의 도전성 입자가 서로 접촉하여 형성되고, 상기 복수의 도전성 입자는, 하측으로 함몰된 제1 홈부가 형성된 상측 밑면을 가진 제1 도전성 입자; 및 상기 제1 도전성입자의 상측 밑면에 접촉하고 상측으로 함몰된 제2 홈부가 형성된 하측 밑면을 가진 제2 도전성 입자를 포함할 수 있다.The inspection connector according to an embodiment of the present disclosure is an inspection connector disposed between the device to be inspected and the test equipment to electrically connect the device to be inspected and the test equipment to each other in the vertical direction, and is insulated with an elastic insulating material. wealth; and a conductive part that extends in the vertical direction within the insulating part to enable electricity to be passed in the vertical direction; and in at least a portion of the conductive part in the vertical direction, a plurality of conductive particles having a pillar shape are in contact with each other. It is formed, and the plurality of conductive particles include: first conductive particles having an upper bottom surface in which a first groove recessed downward is formed; And it may include a second conductive particle having a lower bottom surface that contacts the upper bottom surface of the first conductive particle and is formed with a second groove recessed upward.
본 개시의 실시예들은 가압력이 검사가 반복적으로 수행되더라도 탄성복원력을 오래 유지하고, 높은 전기 전도성을 가지는 검사용 커넥터를 제공할 수 있다.Embodiments of the present disclosure can provide a connector for inspection that maintains elastic recovery force for a long time and has high electrical conductivity even if the inspection is repeatedly performed by pressing force.
도 1은 검사용 커넥터와 검사용 커넥터에 접촉되는 전자 디바이스를 개략적으로 도시한 것이다.Figure 1 schematically shows a test connector and an electronic device in contact with the test connector.
도 2는 도전부를 구성하는 복수의 도전성 입자를 도시한 것이다. Figure 2 shows a plurality of conductive particles constituting a conductive portion.
도 3은 일 실시예에 있어서 도전부를 구성하는 일부 도전성 입자들을 도시한 것이다. Figure 3 shows some conductive particles constituting a conductive portion in one embodiment.
도 4는 도 3의 도전성 입자들 및 탄성층을 상세히 도시한 것이다. FIG. 4 shows the conductive particles and elastic layer of FIG. 3 in detail.
도 5는 일 실시예에 있어서 도전성 입자들이 서로 벌어질 때 모습을 도시한 것이다.Figure 5 shows what happens when conductive particles spread apart from each other in one embodiment.
도 6은 도전성 입자의 다양한 형태를 도시한 것이다. Figure 6 shows various forms of conductive particles.
도 7은 중심축에 정렬된 각기둥형 도전성 입자들을 도시한 것이다. Figure 7 shows prismatic conductive particles aligned on the central axis.
도 8은 각기둥형 도전성 입자들이 상하 방향으로 가압될 때 변형 예를 도시한 것이다. Figure 8 shows a modified example when prismatic conductive particles are pressed in the vertical direction.
도 9는 도전성 입자들이 서로 어긋나게 배열된 예시를 도시한 것이다. Figure 9 shows an example in which conductive particles are arranged to be offset from each other.
도 10은 도 9의 도전성 입자들이 가압되었을 때 변형되는 형태를 도시한 것이다. FIG. 10 shows the shape in which the conductive particles of FIG. 9 are deformed when pressed.
도 11은 도전성 입자들이 서로 어긋나게 배열된 예시를 도시한 것이다. Figure 11 shows an example in which conductive particles are arranged to be offset from each other.
도 12는 도전성 입자들 중 일부가 이웃하는 도전성 입자와 면대면으로 접촉하지 않는 경우를 도시한 것이다. Figure 12 shows a case where some of the conductive particles do not contact neighboring conductive particles face to face.
도 13은 도전성 입자들이 가압되었을 때, 일 부분에서 변형이 주로 발생하는 경우를 도시한 것이다.Figure 13 shows a case in which deformation mainly occurs in one part when conductive particles are pressed.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.Embodiments of the present disclosure are illustrated for the purpose of explaining the technical idea of the present disclosure. The scope of rights according to the present disclosure is not limited to the embodiments presented below or the specific description of these embodiments.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.All technical terms and scientific terms used in this disclosure, unless otherwise defined, have meanings commonly understood by those skilled in the art to which this disclosure pertains. All terms used in this disclosure are selected for the purpose of more clearly explaining this disclosure and are not selected to limit the scope of rights according to this disclosure.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.Expressions such as “comprising,” “comprising,” “having,” and the like used in the present disclosure are open terms that imply the possibility of including other embodiments, unless otherwise stated in the phrase or sentence containing the expression. It should be understood as (open-ended terms).
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.The singular forms described in this disclosure may include plural forms unless otherwise stated, and this also applies to the singular forms recited in the claims.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.Expressions such as “first” and “second” used in the present disclosure are used to distinguish a plurality of components from each other and do not limit the order or importance of the components.
본 개시에서 기재되는 치수와 수치는 기재된 치수와 수치 만으로 한정되는 것은 아니다. 달리 특정되지 않는 한, 이러한 치수와 수치는 기재된 값 및 이것을 포함하는 동등한 범위를 의미하는 것으로 이해될 수 있다. 예를 들어, 본 개시에 기재된 '** mm'라는 치수는 '약 ** mm'를 포함하는 것으로 이해될 수 있다. The dimensions and values described in this disclosure are not limited to only the dimensions and values described. Unless otherwise specified, these dimensions and values are to be understood to mean the stated values and equivalent ranges encompassing them. For example, a dimension '** mm' described in the present disclosure may be understood to include 'about ** mm'.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings. In the accompanying drawings, identical or corresponding components are given the same reference numerals. Additionally, in the description of the following embodiments, overlapping descriptions of identical or corresponding components may be omitted. However, even if descriptions of components are omitted, it is not intended that such components are not included in any embodiment.
이하 도 1을 참조하여, 일 실시예에 따른 검사용 커넥터(100)와 검사용 커넥터(100)가 적용되는 예를 설명한다. 도 1은, 검사용 커넥터와 검사용 커넥터에 접촉되는 전자 디바이스를 개략적으로 도시하며, 도 1에 도시하는 형상은 실시예의 이해를 위해 선택된 예에 불과하다.Hereinafter, with reference to FIG. 1 , an inspection connector 100 according to an embodiment and an example to which the inspection connector 100 is applied will be described. FIG. 1 schematically shows a test connector and an electronic device in contact with the test connector, and the shape shown in FIG. 1 is only an example selected for understanding of the embodiment.
일 실시예에 따른 검사용 커넥터(100)는 시트(sheet) 형상의 구조물이다. 검사용 커넥터(100)는 두개의 전자 디바이스의 사이에 배치된다. 도 1에 도시된 예에서, 두개의 전자 디바이스 중 하나는 검사 장치(200)일 수 있고, 다른 하나는 검사 장치(200)에 의해 검사되는 피검사 디바이스(300)일 수 있다.The inspection connector 100 according to one embodiment is a sheet-shaped structure. The inspection connector 100 is disposed between two electronic devices. In the example shown in FIG. 1, one of the two electronic devices may be the test device 200, and the other may be the test target device 300 that is tested by the test device 200.
일 예로, 검사용 커넥터(100)는 하우징(400)에 교체 가능하게 고정되며, 하우징(400)에 의해 검사 장치(200) 상에 위치된다. 하우징(400)은 검사 장치(200)에 제거 가능하게 장착된다. 하우징(400)은, 수작업으로 또는 운반 장치에 의해 검사 장치(200)로 운반된 피검사 디바이스(300)를 그 안에 수용하고, 피검사 디바이스(300)를 검사용 커넥터(100)에 대해 정렬시킬 수 있다. 피검사 디바이스(300)의 검사 시에, 검사용 커넥터(100)는 검사 장치(200)와 피검사 디바이스(300)에 상하 방향(VD)으로 접촉되며, 검사 장치(200)와 피검사 디바이스(300)를 서로 전기적으로 접속시킨다.As an example, the inspection connector 100 is replaceably fixed to the housing 400 and is positioned on the inspection device 200 by the housing 400. The housing 400 is removably mounted on the inspection device 200. The housing 400 accommodates therein the device to be inspected 300, which is transported to the inspection device 200 by hand or by a transport device, and aligns the device to be inspected 300 with the connector 100 for inspection. You can. When testing the device to be tested 300, the test connector 100 is in contact with the test device 200 and the device to be tested 300 in the vertical direction (VD), and the test device 200 and the device to be tested ( 300) are electrically connected to each other.
피검사 디바이스(300)는, 반도체 IC 칩과 복수의 단자를 수지 재료를 사용하여 육면체 형태로 패키징한 반도체 디바이스일 수 있다. 피검사 디바이스(300)는 그 하측에 복수의 단자(310)를 갖는다. 단자(310)는 볼(ball) 타입의 단자일 수 있다. 피검사 디바이스(300)는 볼 타입의 단자보다 낮은 높이를 갖는 랜드(land) 타입의 단자를 가질 수도 있다.The device under test 300 may be a semiconductor device in which a semiconductor IC chip and a plurality of terminals are packaged in a hexahedral shape using a resin material. The device under test 300 has a plurality of terminals 310 on its lower side. The terminal 310 may be a ball-type terminal. The device under test 300 may have a land-type terminal that has a lower height than a ball-type terminal.
검사 장치(200)는 피검사 디바이스(300)의 각종 동작 특성을 검사할 수 있다. 검사 장치(200)는 검사가 수행되는 보드를 가질 수 있고, 상기 보드에는 피검사 디바이스의 검사를 위한 검사 회로(210)가 구비될 수 있다. 또한, 검사 회로(210)는 검사용 커넥터(100)의 도전부와 접촉되는 복수의 단자(220)를 가진다. 검사 장치(200)의 단자(220)는, 전기적 테스트 신호를 송신할 수 있고 응답 신호를 수신할 수 있다.The test apparatus 200 can test various operating characteristics of the device being tested 300. The test apparatus 200 may have a board on which a test is performed, and the board may be provided with a test circuit 210 for testing a device to be tested. Additionally, the test circuit 210 has a plurality of terminals 220 that are in contact with the conductive portion of the test connector 100. The terminal 220 of the test device 200 can transmit an electrical test signal and receive a response signal.
피검사 디바이스(300)의 검사 시에, 검사용 커넥터(100)가 검사 장치의 단자(220)와 이것에 대응하는 피검사 디바이스의 단자(310)를 전기적으로 접속시킨다. 검사용 커넥터(100)를 통해 검사 장치(200)에 의해 피검사 디바이스(300)의 검사가 수행된다.When testing the device under test 300, the test connector 100 electrically connects the terminal 220 of the test device and the terminal 310 of the corresponding device under test. The test device 300 is tested by the test device 200 through the test connector 100.
검사용 커넥터(100)의 적어도 일부는 탄성 물질로 이루어질 수 있다. 피검사 디바이스(300)의 검사를 위해, 기계 장치에 의해 또는 수동으로 가압력(P)이 하방으로 피검사 디바이스(300)를 통해 검사용 커넥터(100)에 가해질 수 있다. 가압력(P)에 의해, 피검사 디바이스의 단자(310)와 검사용 커넥터(100)가 상하 방향(VD)으로 밀착될 수 있고, 검사용 커넥터(100)와 검사 장치의 단자(220)가 상하 방향(VD)으로 밀착될 수 있다. 또한, 가압력(P)에 의해 검사용 커넥터(100)의 일부 구성요소가 하방 방향과 수평 방향(HD)으로 탄성 변형될 수 있다. 가압력(P)이 제거되면, 검사용 커넥터(100)의 상기 일부 구성요소는 그 원래 형상으로 복원될 수 있다.At least a portion of the inspection connector 100 may be made of an elastic material. For the inspection of the device to be inspected 300, a pressing force P may be applied downward to the connector 100 for inspection through the device to be inspected 300 by a mechanical device or manually. By the pressing force (P), the terminal 310 of the test device and the test connector 100 can be brought into close contact in the vertical direction (VD), and the test connector 100 and the terminal 220 of the test device can be moved up and down. It can be closely adhered in the direction (VD). Additionally, some components of the inspection connector 100 may be elastically deformed in the downward and horizontal directions (HD) by the pressing force (P). When the pressing force P is removed, some of the components of the inspection connector 100 may be restored to their original shape.
도 1을 참조하면, 일 실시예에 따른 검사용 커넥터(100)는, 도전부(110)와 절연부(120)를 포함한다. 도전부(110)는 절연부(120) 내에 배치될 수 있다. 예를 들어, 도전부(110) 주위를 절연부(120)가 감싸고 있을 수 있다. 도전부(110)의 도전성 입자(130)는 절연부(120) 내에 배치될 수 있다. 예를 들어, 도전성 입자(130) 주위를 절연부(120)가 감싸고 있을 수 있다.Referring to FIG. 1, the inspection connector 100 according to one embodiment includes a conductive portion 110 and an insulating portion 120. The conductive portion 110 may be disposed within the insulating portion 120 . For example, the insulating part 120 may surround the conductive part 110. The conductive particles 130 of the conductive portion 110 may be disposed within the insulating portion 120 . For example, the insulating part 120 may surround the conductive particle 130.
도전부(110)는 상하 방향(VD)으로 통전 가능하도록 구성된다. 도전부(110)는 상하 방향(VD)으로 연장된다. 여기서, 도전부(110)가 상하 방향(VD)으로 연장된다는 의미는 수평 방향(HD)에 수직한 방향으로 도전부(110)가 연장되는 본 실시예뿐만 아니라 상하 방향(VD)과 예각을 이루는 경사 방향으로 도전부(110)가 연장되는 실시예(도시되지 않음)까지 포괄하는 의미이다. 절연부(120)는 도전부(110)를 둘러싸며 도전부(110)를 절연시킨다. 검사용 커넥터(100)는 복수의 도전부(110)를 구비할 수 있다. 절연부(120)는 복수의 도전부(110)를 수평 방향(HD)으로 이격시키고 서로 절연시킬 수 있다. 절연부(120)는 하나의 탄성체로서 형성될 수 있다.The conductive portion 110 is configured to conduct electricity in the vertical direction (VD). The conductive portion 110 extends in the vertical direction (VD). Here, the meaning that the conductive portion 110 extends in the vertical direction (VD) means not only the present embodiment in which the conductive portion 110 extends in a direction perpendicular to the horizontal direction (HD) but also forms an acute angle with the vertical direction (VD). This meaning includes embodiments (not shown) in which the conductive portion 110 extends in the inclined direction. The insulating portion 120 surrounds the conductive portion 110 and insulates the conductive portion 110. The inspection connector 100 may include a plurality of conductive portions 110. The insulating portion 120 may space the plurality of conductive portions 110 apart in the horizontal direction (HD) and insulate them from each other. The insulating portion 120 may be formed as an elastic body.
피검사 디바이스(300)의 검사 시에, 도전부(110)는 그 하단에서 검사 장치(200)의 단자(220)와 접촉되고, 그 상단에서 피검사 디바이스(300)의 단자(310)와 접촉된다. 하나의 도전부(110)에 대응하는 단자(220)와 단자(310)의 사이에서 도전부(110)를 매개로 하여 상하 방향(VD)의 도전로가 형성될 수 있다. 검사 장치(200)의 테스트 신호는 단자(220)로부터 도전부(110)를 통해 피검사 디바이스(300)의 단자(310)에 전달될 수 있다. 피검사 디바이스(300)의 응답 신호는 단자(310)로부터 도전부(110)를 통해 검사 장치(200)의 단자(220)에 전달될 수 있다.When testing the device to be inspected 300, the conductive portion 110 is in contact with the terminal 220 of the inspection device 200 at its lower end, and is in contact with the terminal 310 of the device to be inspected 300 at its upper end. do. A conductive path in the vertical direction (VD) may be formed between the terminal 310 and the terminal 220 corresponding to one conductive portion 110 using the conductive portion 110 as a medium. The test signal of the test device 200 may be transmitted from the terminal 220 to the terminal 310 of the device under test 300 through the conductive portion 110. The response signal of the device under test 300 may be transmitted from the terminal 310 to the terminal 220 of the test apparatus 200 through the conductive part 110.
도 1 및 도 2는 검사용 커넥터(100)의 상단을 구성하는 별도의 층으로 형성되며 단자(310)와 접촉 가능하게 구비된 상단 접촉 패드(미도시)가 없고, 검사용 커넥터(100)의 하단을 구성하는 별도의 층으로 형성하며 단자(220)와 접촉 가능하게 구비된 하단 접촉 패드(미도시)가 없는 예를 도시한다. 그러나 도시되지 않은 다른 실시예에서, 상기 검사용 커넥터는 상기 상단 접촉 패드 및/또는 상기 하단 접촉 패드를 포함할 수 있다. 상기 상단 접촉 패드는 상기 도전부의 상단 부분과 상기 도전부의 상단 부분을 둘러싸는 상기 절연부의 일 부분을 포함할 수 있다. 상기 하단 접촉 패드는 상기 도전부의 하단 부분과 상기 도전부의 하단 부분을 둘러싸는 상기 절연부의 일 부분을 포함할 수 있다.1 and 2 are formed of a separate layer constituting the top of the inspection connector 100, and there is no upper contact pad (not shown) provided to contact the terminal 310, and the inspection connector 100 is formed of a separate layer. An example is shown in which a separate layer constituting the bottom is formed and there is no bottom contact pad (not shown) provided to contact the terminal 220. However, in another embodiment not shown, the inspection connector may include the upper contact pad and/or the lower contact pad. The top contact pad may include an upper portion of the conductive portion and a portion of the insulating portion surrounding the upper portion of the conductive portion. The bottom contact pad may include a lower portion of the conductive portion and a portion of the insulating portion surrounding the lower portion of the conductive portion.
도전부(110) 중 상하 방향으로의 적어도 일부 구간은 복수의 도전성 입자(130)가 서로 접촉하여 형성된다. 도 1 및 도 2는 복수의 도전성 입자가 서로 접촉하여 하나의 도전부(110) 전체를 형성하는 예를 도시하였으나, 도시되지 않은 다른 실시예에서 복수의 도전성 입자(130)가 서로 접촉하여 하나의 도전부(110) 중 상하 방향으로의 일부 구간만 형성할 수도 있다. 예를 들어, 상기 상단 접촉 패드 및 상기 하단 접촉 패드를 포함하는 검사용 커넥터에서, 상기 상단 접촉 패드에 포함되는 상기 도전부의 일부 구간 및/또는 상기 하단 접촉 패드에 포함되는 상기 도전부의 일부 구간이 복수의 도전성 입자(130)가 서로 접촉하여 형성될 수도 있고, 상기 상단 접촉 패드 및 상기 하단 접촉 패드를 제외한 상기 검사용 커넥터의 나머지 부분에 포함되는 상기 도전부의 일부 구간이 복수의 도전성 입자(130)가 서로 접촉하여 형성될 수도 있다.At least a portion of the conductive portion 110 in the vertical direction is formed by a plurality of conductive particles 130 contacting each other. 1 and 2 show an example in which a plurality of conductive particles contact each other to form one entire conductive portion 110. However, in another embodiment not shown, a plurality of conductive particles 130 contact each other to form one entire conductive portion 110. Only a portion of the conductive portion 110 in the vertical direction may be formed. For example, in a connector for inspection including the upper contact pad and the lower contact pad, a partial section of the conductive portion included in the upper contact pad and/or a partial section of the conductive portion included in the lower contact pad are plural. The conductive particles 130 may be formed by contacting each other, and a portion of the conductive portion included in the remaining portion of the inspection connector excluding the upper contact pad and the lower contact pad may have a plurality of conductive particles 130. They can also be formed by contacting each other.
도전부들(110)은 디바이스(300)의 단자(310)와 대응하는 위치에 배열될 수도 있고, 디바이스(300)의 단자(310)의 배열 피치(pitch)보다 작은 미세 피치(pitch)로 배열될 수도 있다.The conductive parts 110 may be arranged at a position corresponding to the terminal 310 of the device 300, and may be arranged at a fine pitch smaller than the arrangement pitch of the terminal 310 of the device 300. It may be possible.
도 2는 도전부를 구성하는 복수의 도전성 입자를 도시한 것이다. Figure 2 shows a plurality of conductive particles constituting a conductive portion.
도 2를 참고하면, 도전부(110)는, 복수의 도전성 입자(130)를 포함한다. 복수의 도전성 입자(130)는 통전 가능하게 서로 접촉되어, 도전부(110)의 상하 방향(VD)으로의 적어도 일부 구간을 구성한다. 복수의 도전성 입자(130)는 상하 방향(VD)으로 접촉되는 적어도 2개의 도전성 입자(130)를 포함한다. 복수의 도전성 입자(130)에 의해, 도전부(110)의 적어도 일부 구간을 따라 도전로가 형성된다. Referring to FIG. 2 , the conductive portion 110 includes a plurality of conductive particles 130. The plurality of conductive particles 130 are in contact with each other so as to conduct electricity, and constitute at least a partial section of the conductive portion 110 in the vertical direction VD. The plurality of conductive particles 130 includes at least two conductive particles 130 that are in contact with each other in the vertical direction (VD). A conductive path is formed along at least a portion of the conductive portion 110 by the plurality of conductive particles 130 .
인접한 도전성 입자들(130)은, 면과 면이 접촉하는 면접촉 형태, 면과 선이 또는 선과 선이 접촉하는 선접촉 형태, 또는, 면과 점이 접촉하는 점접촉 형태 등으로 상하 방향(VD)을 따라 접촉될 수 있다. 또한, 인접한 도전성 입자들(130)은 수평 방향(HD)을 따라 접촉되거나, 상하 방향(VD)과 수평 방향(HD) 사이의 비스듬한 방향으로 접촉될 수 있다. 이러한 예시적인 접촉 형태에 의해, 복수의 도전성 입자(130)가 상하 방향(VD)으로 치밀한 분포 구조로 통전 가능하게 접촉되어, 도전부(110)를 구성할 수 있다. Adjacent conductive particles 130 are formed in a vertical direction (VD) in a surface contact form in which a surface contacts a surface, a line contact form in which a surface contacts a line or a line in a line contact form, or a point contact form in which a surface contacts a point. It can be contacted along . Additionally, adjacent conductive particles 130 may be contacted along the horizontal direction (HD) or may be contacted in an oblique direction between the vertical direction (VD) and the horizontal direction (HD). With this exemplary contact form, the plurality of conductive particles 130 can contact each other in a densely distributed structure in the vertical direction (VD) to allow electricity to pass through, forming the conductive portion 110 .
도전성 입자(130)의 구체적인 예시로는 니켈, 철, 코발트 등의 자성을 나타내는 금속으로 이루어지는 입자 또는 이들 합금으로 이루어지는 입자 또는 이들 금속을 함유하는 입자, 또는 이들 입자를 코어 입자로 하여 해당 코어 입자의 표면에 금, 은, 팔라듐, 로듐과 같이 산화되기 어려운 도전성 금속의 도금을 실시한 것이 사용될 수 있다. 한편, 도전성 입자(130)의 코어로서 반드시 자성을 가지는 것을 사용할 필요는 없으며 비자성 금속입자, 글래스, 카본 등의 무기 물질로 이루어지는 입자, 또는 폴리스티렌, 디비닐벤젠에 의해서 가교된 폴리스티렌 등의 중합체로 이루어지는 입자 및 탄성 섬유, 유리 섬유를 단섬유를 분쇄공정을 거쳐 일정한 길이이하로 제작하여 사용된 것을 코어 입자로 하고, 해당 코어 입자의 표면에 니켈, 금 등의 도전성 자성체의 도금을 실시한 것, 또는 코어 입자에 도전성 자성체 및 산화되기 어려운 도전성 금속의 양쪽을 피복한 것을 사용할 수 있음은 물론이다Specific examples of the conductive particles 130 include particles made of magnetic metals such as nickel, iron, and cobalt, particles made of these alloys, or particles containing these metals, or using these particles as core particles to form the corresponding core particles. A surface plated with a conductive metal that is difficult to oxidize, such as gold, silver, palladium, or rhodium, may be used. On the other hand, it is not necessary to use a core of the conductive particles 130 that has magnetism. It can be used as particles made of inorganic materials such as non-magnetic metal particles, glass, or carbon, or polymers such as polystyrene or polystyrene crosslinked with divinylbenzene. Particles made of single fibers, elastic fibers, and glass fibers are manufactured to a certain length or less through a grinding process, and core particles are used, and the surface of the core particles is plated with a conductive magnetic material such as nickel or gold, or Of course, it is possible to use core particles coated with both a conductive magnetic material and a conductive metal that is difficult to oxidize.
절연부(120)는 절연성이 있는 탄성절연재료(elastic insulation material)로 이루어진다. 탄성절연재료는 가교 구조를 갖는 절연성 고분자 물질이 바람직하다. 이 가교 고분자 물질을 얻기 위해서 이용할 수 있는 경화성 고분자 물질 형성 재료로는 여러가지를 사용할 수 있고, 그 구체예로는 폴리부타디엔고무, 천연고무, 폴리이소프렌고무, 스티렌-부타디엔 공중합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무와 같은 공액 디엔계 고무 및 이들의 수소 첨가물, 스티렌-부타디엔-디엔 블럭 공중합체 고무, 스티렌-이소프렌 블럭 공중합체 등의 블럭 공중합체 고무 및 이들의 수소 첨가물, 클로로프렌, 우레탄고무, 폴리에스테르계고무, 에피클로로히드린 고무, 실리콘 고무, 에틸렌-프로필렌 공중합체 고무, 에틸렌-프로필렌-디엔 공중합체 고무 등 을 들 수 있다. 이중에서, 성형 가공성 및 전기 특성의 관점에서 실리콘 고무를 사용하는 것이 바람직하다. The insulating portion 120 is made of an insulating elastic insulation material. The elastic insulating material is preferably an insulating polymer material with a cross-linked structure. Various curable polymer material forming materials that can be used to obtain this cross-linked polymer material can be used, and specific examples include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, and acrylonitrile- Conjugated diene-based rubbers such as butadiene copolymer rubber and hydrogenated products thereof, block copolymer rubbers such as styrene-butadiene-diene block copolymer rubber and styrene-isoprene block copolymer and their hydrogenated products, chloroprene, urethane rubber, poly Examples include ester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene-propylene-diene copolymer rubber. Among these, it is preferable to use silicone rubber from the viewpoint of moldability and electrical properties.
절연부(120)를 이루는 탄성절연재료는, 실리콘 러버를 포함할 수 있다. 다만, 이에 한정되지는 않는다. 절연부(120)가, 상하 방향(VD)으로 도전가능하게 접촉되어 있는 상기 복수의 도전성 입자(130)를 도전부(110)로 유지한다. 또한, 절연부(120)를 구성하는 상기 탄성절연재료가 도전부(110)의 도전성 입자들(130)의 사이를 채울 수 있다. 즉, 도전부(110)는 절연부(120)를 형성하는 탄성절연재료를 부분적으로 포함하며, 이러한 도전부의 탄성절연재료는 도전부의 하단부터 상단까지 존재할 수 있다.The elastic insulating material forming the insulating portion 120 may include silicone rubber. However, it is not limited to this. The insulating portion 120 maintains the plurality of conductive particles 130 in conductive contact in the vertical direction VD as the conductive portion 110 . Additionally, the elastic insulating material constituting the insulating portion 120 may fill the space between the conductive particles 130 of the conductive portion 110. That is, the conductive portion 110 partially includes an elastic insulating material forming the insulating portion 120, and the elastic insulating material of the conductive portion may be present from the bottom to the top of the conductive portion.
탄성절연재료를 포함하는 도전부(110)와 탄성절연재료로 이루어지는 절연부(120)는 상하 방향(VD)과 수평 방향(HD)으로 탄성을 갖는다. 가압력(P)에 의해 피검사 디바이스의 단자(310)가 도전부(110)의 상단을 하방으로 누름에 따라, 도전부(110)는 수평 방향(HD)으로 약간 팽창하면서 하방으로 압축되도록 탄성 변형될 수 있고, 절연부(120)는 도전부(110)의 팽창을 허용하도록 탄성 변형될 수 있다. 가압력(P)이 해제되면, 도전부(110)와 절연부(120)는 원상태로 탄성 복원될 수 있다.The conductive portion 110 made of an elastic insulating material and the insulating portion 120 made of an elastic insulating material have elasticity in the vertical direction (VD) and the horizontal direction (HD). As the terminal 310 of the device under test presses the top of the conductive portion 110 downward by the pressing force (P), the conductive portion 110 expands slightly in the horizontal direction (HD) and elastically deforms to be compressed downward. may be, and the insulating portion 120 may be elastically deformed to allow expansion of the conductive portion 110. When the pressing force P is released, the conductive part 110 and the insulating part 120 can be elastically restored to their original state.
일 예로, 도전부(110)와 절연부(120)는, 액상 탄성 물질에 복수의 도전성 입자(130)가 혼합되어 있는 액상 성형 재료로부터 함께 성형될 수 있다. 상기 액상 탄성 물질은 절연부(120)를 구성하는 탄성절연재료의 액체 상태의 물질을 의미한다. 액상 성형 재료를 성형 금형에 주입하고, 도전부가 형성되는 위치마다 상하 방향으로 자기장이 인가될 수 있다. 도전성 입자들(130)이 자기장이 인가되는 도전부의 영역으로 집합되고 서로 접촉된다. 그 후, 액상 성형 재료를 경화시킴으로써, 도전부(110)와 절연부(120)가 동시에 형성되어 일 실시예의 검사용 커넥터(100)가 성형될 수 있다. 또 하나의 예로서, 고체 상태의 상기 탄성절연재료로 이루어지는 절연부(120)가 먼저 성형되고, 이러한 절연부(120)에 도전부(110)의 위치마다 관통 홀이 형성될 수 있다. 상기 관통 홀에, 상기 액상 성형 재료를 주입하고 상하 방향으로 자기장을 인가하여 도전성 입자들(130)을 집합 및 서로 접촉시키고, 관통 홀에 주입된 액상 성형 재료가 경화될 수 있다. As an example, the conductive portion 110 and the insulating portion 120 may be molded together from a liquid molding material in which a plurality of conductive particles 130 are mixed with a liquid elastic material. The liquid elastic material refers to a liquid material of the elastic insulating material constituting the insulating portion 120. The liquid molding material is injected into the mold, and a magnetic field may be applied in the vertical direction to each position where the conductive portion is formed. Conductive particles 130 are collected in the area of the conductive part to which a magnetic field is applied and contact each other. Thereafter, by hardening the liquid molding material, the conductive portion 110 and the insulating portion 120 are formed at the same time, so that the inspection connector 100 of one embodiment can be molded. As another example, the insulating portion 120 made of the elastic insulating material in a solid state is first formed, and through holes may be formed in the insulating portion 120 at each position of the conductive portion 110. The liquid molding material is injected into the through hole and a magnetic field is applied in the up and down directions to aggregate and contact the conductive particles 130 with each other, and the liquid molding material injected into the through hole may be hardened.
도 2에 도시된 도전성 입자들(130)은 상하 방향(VD)으로 3개 열로 배열되나, 이는 도전부(110)가 복수의 도전성 입자들(130)로 구성된다는 것을 설명하기 위한 예시에 지나지 않고, 본 개시의 실시예는 이에 한정되지 않는다. 예를 들어, 도전성 입자들(130)은 1열, 2열, 또는 4열 이상으로 배열될 수 있다. 또 도 2에 도시된 실시예에서 도전성 입자들(130)은 모두 동일한 형태를 가지고 균일하게 배열되나 이는 예시에 지나지 않고, 다른 실시예에서 도전성 입자들(130)은 불균일하게 배열되거나 서로 다른 형태를 가질 수 있다. 도 2에서 도전성 입자들(130)은 서로 띄어져 있으나, 이는 설명의 편의를 위한 것이고, 도전부(110)를 구성하는 도전성 입자들(130) 중 이웃하는 도전성 입자들 사이의 간격은 없거나 매우 작을 수 있다. The conductive particles 130 shown in FIG. 2 are arranged in three rows in the vertical direction (VD), but this is merely an example to explain that the conductive portion 110 is composed of a plurality of conductive particles 130. , the embodiments of the present disclosure are not limited thereto. For example, the conductive particles 130 may be arranged in one row, two rows, or four or more rows. In addition, in the embodiment shown in FIG. 2, the conductive particles 130 are all arranged uniformly and have the same shape, but this is only an example. In other embodiments, the conductive particles 130 are arranged non-uniformly or have different shapes. You can have it. In FIG. 2, the conductive particles 130 are spaced apart from each other, but this is for convenience of explanation, and the gap between neighboring conductive particles among the conductive particles 130 constituting the conductive portion 110 may be absent or very small. You can.
도 3은 일 실시예에 있어서 도전부를 구성하는 일부 도전성 입자들(130)을 도시한 것이다. 도 4는 도 3의 도전성 입자들 및 탄성층을 상세히 도시한 것이다. 도 5는 일 실시예에 있어서 도전성 입자들(130)이 서로 벌어졌을 때 모습을 도시한 것이다. Figure 3 shows some conductive particles 130 constituting a conductive portion in one embodiment. FIG. 4 shows the conductive particles and elastic layer of FIG. 3 in detail. Figure 5 shows what the conductive particles 130 look like when they are spread apart from each other in one embodiment.
도 3 및 도 4를 참고하면, 일 실시예에 있어서, 도전성 입자(130)는 울퉁불퉁한 표면을 가질 수 있다. 예를 들어, 도전성 입자(130)의 표면은 불규칙적인 요철을 포함할 수 있다. 도전성 입자들(130)이 울퉁불퉁한 표면을 가짐으로써, 도전성 입자들(130) 사이에는 갭(G)이 형성될 수 있다. Referring to FIGS. 3 and 4 , in one embodiment, the conductive particles 130 may have a bumpy surface. For example, the surface of the conductive particles 130 may include irregular irregularities. As the conductive particles 130 have a bumpy surface, a gap G may be formed between the conductive particles 130.
일 실시예에 있어서 도전성 입자(130)의 표면의 조도는 도전성 입자(130)의 표면에 수직인 방향으로의 높이 대비 1.5% 내지 30%의 범위 내에 있을 수 있다. 즉, 도전성 입자(130)의 측정면의 십점 평균 조도(μm)를 도전성 입자(130)의 위 측정면과 수직인 방향의 높이(μm)로 나눈 값에 100을 곱한 값이 1.5에서 30사이에 있을 수 있다. 도전성 입자(130)의 위 측정면과 수직인 방향의 높이는 측정면과 수직인 방향으로의 도전성 입자(130)의 최대 두께일 수 있다. In one embodiment, the roughness of the surface of the conductive particles 130 may be in the range of 1.5% to 30% of the height in the direction perpendicular to the surface of the conductive particles 130. That is, the ten-point average roughness (μm) of the measurement surface of the conductive particle 130 divided by the height (μm) in the direction perpendicular to the measurement surface above the conductive particle 130 multiplied by 100 is between 1.5 and 30. There may be. The height of the conductive particle 130 in a direction perpendicular to the measurement surface may be the maximum thickness of the conductive particle 130 in the direction perpendicular to the measurement surface.
예를 들어, 도 4를 참조하면, 제1 도전성 입자(131)의 상측 밑면(131a)의 십점 평균 조도는 제1 도전성 입자(131)의 상기 상측 밑면(131a)에 수직인 방향의 높이 대비 1.5% 내지 30% 사이에 있을 수 있다. 제2 도전성 입자(132)의 하측 밑면(132a)의 십점 평균 조도는 제2 도전성 입자(132)의 상기 하측 밑면(132a)에 수직인 방향의 높이 대비 1.5% 내지 30% 사이에 있을 수 있다. For example, referring to FIG. 4, the ten-point average roughness of the upper bottom surface 131a of the first conductive particle 131 is 1.5 compared to the height in the direction perpendicular to the upper bottom surface 131a of the first conductive particle 131. It can be between % and 30%. The ten-point average roughness of the lower bottom surface 132a of the second conductive particles 132 may be between 1.5% and 30% of the height in a direction perpendicular to the lower bottom surface 132a of the second conductive particles 132.
십점 평균 조도는 조도 곡선에서 그 평균선 방향으로 기준 길이만 추출한 뒤, 이 추출 부분의 평균선에서 세로 방향으로 측정한 가장 높은 산정에서 5번째까지의 산정표고 절대치의 평균치와, 가장 낮은 곡저에서 5번째까지의 곡저 표고 절대치의 평균치와의 합을 구하고, 이 값을 마이크로미터(μm)로 표시한 것이다. 검사용 커넥터(100)로부터 도전성 입자(130)를 분리해 내어, 이온빔 등으로 측정면을 기준으로 도전성 입자(130)를 수직방향으로 절단한 후, 절단면에서 산정과 곡저의 표고를 주사전자현미경 등으로 측정함으로써 십점 평균 조도가 계산될 수 있다. 도전성 입자(130)의 가장 낮은 곡저를 선정할 때 도전성 입자(130)의 단면의 일부가 높이 방향으로 관통될 경우 관통부는 측정치에서 제외된다. The ten-point average roughness is obtained by extracting only the standard length from the roughness curve in the direction of the average line, and then measuring the average of the absolute values of the elevations from the highest peak to the fifth measured vertically from the average line of this extracted portion, and the average value from the bottom of the lowest valley to the fifth. The sum of the absolute value of the valley bottom elevation and the average value is calculated, and this value is expressed in micrometers (μm). The conductive particles 130 are separated from the inspection connector 100, the conductive particles 130 are cut vertically based on the measurement surface using an ion beam, etc., and then the elevation of the peak and the bottom of the curve is measured on the cut surface using a scanning electron microscope, etc. The ten-point average illuminance can be calculated by measuring . When selecting the lowest curved base of the conductive particle 130, if a portion of the cross section of the conductive particle 130 penetrates in the height direction, the penetrating portion is excluded from the measurement value.
조도가 1.5%보다 낮은 경우에는 탄성층(140)을 구성하는 탄성절연재료의 양이 적어 도전성 입자들(130) 사이에 개재된 탄성층(140)이 탄성 효과를 발휘하지 못한다. 조도가 30%보다 큰 경우에는 도전성 입자들(130)의 강도가 약해지거나 도전부(110)의 전기저항이 높아지는 문제가 있다. When the roughness is lower than 1.5%, the amount of elastic insulating material constituting the elastic layer 140 is small, so the elastic layer 140 interposed between the conductive particles 130 does not exert an elastic effect. When the illuminance is greater than 30%, there is a problem in that the strength of the conductive particles 130 weakens or the electrical resistance of the conductive portion 110 increases.
일 실시예에 있어서 도전성 입자(130)는 소결 방식으로 제조될 수 있다. 예를 들어, 분말형태의 입자들에 열과 압력을 가하여 도전성 입자(130)를 만들 수 있다. 도전성 입자(130)는 소결방식으로 제조됨으로써 울퉁불퉁한 표면을 가질 수 있다. 예를 들어, 제조자는 도전성 입자(130)의 표면의 십점 평균 조도가 표면에 수직인 방향으로의 높이 대비 1.5% 내지 30%의 범위 내에 있도록 소결공정의 파라미터(예: 온도, 가열 시간 등)을 조절할 수 있다. In one embodiment, the conductive particles 130 may be manufactured using a sintering method. For example, the conductive particles 130 can be made by applying heat and pressure to powder-type particles. The conductive particles 130 may have a bumpy surface by being manufactured using a sintering method. For example, the manufacturer adjusts the parameters of the sintering process (e.g. temperature, heating time, etc.) so that the ten-point average roughness of the surface of the conductive particles 130 is within the range of 1.5% to 30% of the height in the direction perpendicular to the surface. It can be adjusted.
일 실시예에 있어서 도전성 입자(130)의 표면은 홈부(예: 제1 도전성 입자(131)의 제1 홈부(131b))를 포함할 수 있다. 본개시에서 홈부는 도전성 입자(130)의 표면에서 주변보다 낮게 함몰된 부분을 의미할 수 있다. In one embodiment, the surface of the conductive particle 130 may include a groove (eg, the first groove 131b of the first conductive particle 131). In the present disclosure, the groove may refer to a portion of the surface of the conductive particle 130 that is depressed lower than the surrounding area.
일 실시예에 있어서 도전성 입자(130)의 표면은 주변부보다 돌출된 돌출부(예: 제1 도전성 입자(131)의 제1 돌출부(131c))를 포함할 수 있다. 일 실시예에 있어서 복수의 홈부 또는 복수의 돌출부가 도전성 입자(130)의 표면에 위치되고, 이에 따라 도전성 입자(130)는 울퉁불퉁한 표면을 가질 수 있다. 복수의 홈부 또는 복수의 돌출부는 도전성 입자(130)의 표면에 불규칙하게 분포할 수 있고, 서로 다른 형태를 가질 수 있다. In one embodiment, the surface of the conductive particle 130 may include a protrusion (eg, the first protrusion 131c of the first conductive particle 131) that protrudes from the surrounding portion. In one embodiment, a plurality of grooves or a plurality of protrusions are located on the surface of the conductive particle 130, and accordingly, the conductive particle 130 may have a bumpy surface. A plurality of grooves or a plurality of protrusions may be irregularly distributed on the surface of the conductive particles 130 and may have different shapes.
도 3 및 도 4를 참고하면, 도전부(110)는 제1 도전성 입자(131)와 제2 도전성 입자(132)를 포함할 수 있다. 본 개시의 실시 예는 도전부(110)의 모든 도전성 입자들(130)이 도 3과 같은 형태로 정렬된 것에 한정되지 않고, 도전부(110)의 적어도 일부 구간에서 도전성 입자들(130)이 도 3과 같은 형태로 정렬될 수 있다. Referring to FIGS. 3 and 4 , the conductive portion 110 may include first conductive particles 131 and second conductive particles 132 . The embodiment of the present disclosure is not limited to all the conductive particles 130 of the conductive portion 110 being aligned in the form shown in FIG. 3, and the conductive particles 130 in at least some sections of the conductive portion 110. It can be arranged in the same form as in Figure 3.
일 실시예에 있어서 제1 도전성 입자(131)의 상측 밑면(131a)은 제1 홈부(131b)를 포함할 수 있다. 제1 홈부(131b)는 주변보다 하측으로 함몰된 형태를 가질 수 있다. 제1 도전성 입자(131)가 제2 도전성 입자(132)와 접촉했을 때, 제1 홈부(131b)는 제1 도전성 입자(131)와 제2 도전성 입자(132) 사이의 갭(G)을 적어도 일부 정의할 수 있다. In one embodiment, the upper bottom surface 131a of the first conductive particle 131 may include a first groove 131b. The first groove portion 131b may have a shape that is recessed lower than the surrounding area. When the first conductive particles 131 contact the second conductive particles 132, the first groove portion 131b closes the gap G between the first conductive particles 131 and the second conductive particles 132 at least. Some definitions can be made.
일 실시예에 있어서 제2 도전성 입자(132)의 하측 밑면(132a)은 제2 홈부(132b)를 포함할 수 있다. 제2 홈부(132b)는 주변보다 상측으로 함몰된 형태를 가질 수 있다. 제1 도전성 입자(131)가 제2 도전성 입자(132)와 접촉했을 때, 제2 홈부(132b)는 제1 도전성 입자(131)와 제2 도전성 입자(132) 사이의 갭(G)을 적어도 일부 정의할 수 있다.In one embodiment, the lower bottom surface 132a of the second conductive particle 132 may include a second groove 132b. The second groove portion 132b may have a shape that is recessed upward from the surrounding area. When the first conductive particles 131 contact the second conductive particles 132, the second groove portion 132b closes the gap G between the first conductive particles 131 and the second conductive particles 132 at least. Some definitions can be made.
일 실시예에 있어서 제1 홈부(131b)와 제2 홈부(132b)는 상하 방향으로 대향할 수 있다. 제1 도전성 입자(131)와 제2 도전성 입자(132)가 상하 방향으로 정렬되었을 때, 제1 홈부(131b)와 제2 홈부(132b)에 의해 형성되는 갭(G)에 탄성절연재료가 채워질 수 있다. 도시된 실시예에서 제1 홈부(131b)와 제2 홈부(132b)가 서로 상하 방향으로 마주하고 있으나, 이는 예시에 지나지 않고, 다른 실시예에서 제1 홈부(131b)와 제2 홈부(132b)는 서로 상하 방향으로 마주하지 않을 수 있다. In one embodiment, the first groove portion 131b and the second groove portion 132b may face each other in the vertical direction. When the first conductive particles 131 and the second conductive particles 132 are aligned in the vertical direction, the gap G formed by the first groove 131b and the second groove 132b is filled with an elastic insulating material. You can. In the illustrated embodiment, the first groove portion 131b and the second groove portion 132b face each other in the vertical direction, but this is only an example, and in another embodiment, the first groove portion 131b and the second groove portion 132b may not face each other in the vertical direction.
일 실시예에 있어서 제1 도전성 입자(131)와 제2 도전성 입자(132)는 각각 상대방을 향해 돌출된 제1 돌출부(131c)와 제2 돌출부(132c)를 포함할 수 있다. 제1 돌출부(131c)는 제2 도전성 입자(132)의 하측 밑면(132a)에 접촉하고, 제2 돌출부(132c)는 제1 도전성 입자(131)의 상측 밑면(131a)에 접촉할 수 있다. 도시된 실시예에서 제1 돌출부(131c)와 제2 돌출부(132c)는 서로 상하 방향으로 접촉하나, 이는 예시에 지나지 않고, 제1 돌출부(131c)와 제2 돌출부(132c)가 서로 접촉하지 않는 영역도 존재할 수 있다. 예를 들어, 제1 도전성 입자(131)의 돌출부는 제2 도전성 입자(132)의 하측 밑면(132a)에 형성된 홈부에 접촉할 수 있다. In one embodiment, the first conductive particles 131 and the second conductive particles 132 may each include a first protrusion 131c and a second protrusion 132c that protrude toward the other. The first protrusion 131c may contact the lower bottom surface 132a of the second conductive particle 132, and the second protrusion 132c may contact the upper bottom surface 131a of the first conductive particle 131. In the illustrated embodiment, the first protrusion 131c and the second protrusion 132c contact each other in the vertical direction, but this is only an example, and the first protrusion 131c and the second protrusion 132c do not contact each other. Areas may also exist. For example, the protrusion of the first conductive particle 131 may contact the groove formed in the lower bottom surface 132a of the second conductive particle 132.
일 실시예에 있어서 도전성 입자들(130)의 표면은 울퉁불퉁하므로, 이웃하는 도전성 입자들(130) 사이에 탄성절연재료가 채워질 수 있다. 본 개시에서 설명의 편의를 위해 상하로 배치된 도전성 입자들(130) 사이의 갭(G)에 채워진 탄성절연재료를 탄성층(140)이라고 지칭한다. 일 실시예에 있어서 탄성층(140)은 탄성층(140)의 일측에 배치된 도전성 입자(예: 제1 도전성 입자(131))와 타측에 배치된 도전성 입자(예: 제2 도전성 입자(132))를 탄성적으로 연결할 수 있다. 도전부(110)에 압력이 가해지면 도전성 입자들(130)이 서로 상대적으로 움직이면서 탄성층(140)은 도전성 입자들(130)이 서로에 대해 움직였을 때 초기 상태로 되돌리는 탄성복원력을 제공할 수 있다. In one embodiment, since the surface of the conductive particles 130 is uneven, an elastic insulating material may be filled between neighboring conductive particles 130. In the present disclosure, for convenience of explanation, the elastic insulating material filled in the gap G between the conductive particles 130 arranged up and down is referred to as the elastic layer 140. In one embodiment, the elastic layer 140 includes conductive particles disposed on one side of the elastic layer 140 (e.g., first conductive particles 131) and conductive particles disposed on the other side (e.g., second conductive particles 132). )) can be elastically connected. When pressure is applied to the conductive portion 110, the conductive particles 130 move relative to each other, and the elastic layer 140 can provide an elastic restoring force that returns the conductive particles 130 to their initial state when they move relative to each other. there is.
예를 들어, 도 3 및 도 5를 참고하면, 탄성층(140)은 제1 도전성 입자(131)와 제2 도전성 입자(132) 사이의 상대운동에 따라 탄성변형하고, 도 3의 상태에 있는 제1 도전성 입자(131)와 제2 도전성 입자(132)가 도 5와 같이 서로 벌어지더라도 도 3의 상태로 되돌려주는 복원력을 제공할 수 있다. For example, referring to Figures 3 and 5, the elastic layer 140 is elastically deformed according to the relative motion between the first conductive particles 131 and the second conductive particles 132, and is in the state of Figure 3. Even if the first conductive particles 131 and the second conductive particles 132 are separated from each other as shown in FIG. 5, it is possible to provide a restoring force to return the first conductive particles 131 to the state shown in FIG. 3.
도전성 입자들(130)이 울퉁불퉁한 표면을 가지므로, 상하 방향으로 접촉하는 도전성 입자들(130) 사이의 갭(G)은 불규칙하게 형성된다. 갭(G)이 큰 부분에 탄성절연재료가 많이 채워지고, 갭(G)이 작은 부분에는 탄성절연재료가 적게 채워진다. 이에 따라 탄성층(140)은 두께가 불규칙하게 형성될 수 있다. 예를 들어, 도 3 및 도 4를 참고하면, 도전성 입자들(130) 사이의 탄성층(140)은 후부(厚部)(141)와 박부(142)를 포함할 수 있다. 탄성층(140) 중 제1 돌출부(131c) 상에 형성되는 부분은 박부(142)로서 비교적 얇거나 0의 두께를 가지고, 탄성층(140) 중 제1 홈부(131b) 상에 형성되는 부분은 후부(141)로서 비교적 두꺼울 수 있다. Since the conductive particles 130 have a bumpy surface, the gap G between the conductive particles 130 contacting each other in the vertical direction is formed irregularly. The part where the gap (G) is large is filled with a large amount of elastic insulating material, and the part where the gap (G) is small is filled with a small amount of elastic insulating material. Accordingly, the elastic layer 140 may be formed to have an irregular thickness. For example, referring to FIGS. 3 and 4 , the elastic layer 140 between the conductive particles 130 may include a rear portion 141 and a thin portion 142. The portion of the elastic layer 140 formed on the first protrusion 131c is the thin portion 142 and has a relatively thin or zero thickness, and the portion formed on the first groove portion 131b of the elastic layer 140 is the thin portion 142. The rear portion 141 may be relatively thick.
일 실시예에 따르면 도전성 입자(130)가 울퉁불퉁한 표면을 가짐으로써 도전성 입자들(130) 사이의 탄성층(140)은 탄성기능을 잘 유지할 수 있다. 탄성층(140)은 도전성 입자(130)의 울퉁불퉁한 표면으로 인해 비교적 두께가 두꺼운 부분(예: 도 4의 후부(141))을 포함할 수 있고, 두꺼운 부분은 도전성 입자들(130)이 서로 벌어져도 도전성 입자들(130)의 표면으로부터 쉽게 이탈되지 않기 때문이다. 즉, 도전성 입자들(130) 사이에 상대운동이 생길 때 탄성층(140) 중 적어도 두꺼운 부분은 탄성기능을 유지할 수 있다. According to one embodiment, because the conductive particles 130 have a bumpy surface, the elastic layer 140 between the conductive particles 130 can maintain its elastic function well. The elastic layer 140 may include a relatively thick portion (e.g., the rear portion 141 in FIG. 4) due to the bumpy surface of the conductive particles 130, and the thick portion is where the conductive particles 130 are connected to each other. This is because the conductive particles 130 do not easily separate from the surface even if they are opened. That is, when relative motion occurs between the conductive particles 130, at least the thick portion of the elastic layer 140 can maintain the elastic function.
도 5를 참고하면, 탄성층(140)의 하부면은 제1 도전성 입자(131)의 상측 밑면(131a)의 제1 부분(131d)에 부착되고, 상부면은 제2 도전성 입자(132)의 하측 밑면(132a)의 제2 부분(132d)에 부착되어, 제1 부분(131d)과 제2 부분(132d)이 서로 멀어질 때 탄성적으로 인장될 수 있다. 도 5에서는 제1 부분(131d)과 제2 부분(132d)은 각각 도 4의 제1 홈부(131b)와 제2 홈부(132b)에 대응하는 것으로 도시되나, 제1 부분(131d) 및 제2 부분(132d) 중 어느 하나는 상기 홈부에 대응하지 않을 수도 있다. Referring to FIG. 5, the lower surface of the elastic layer 140 is attached to the first portion (131d) of the upper bottom surface (131a) of the first conductive particle 131, and the upper surface is of the second conductive particle 132. It is attached to the second part 132d of the lower bottom 132a and can be elastically stretched when the first part 131d and the second part 132d move away from each other. In FIG. 5, the first portion 131d and the second portion 132d are shown to correspond to the first groove 131b and the second groove 132b of FIG. 4, respectively. However, the first portion 131d and the second groove 132b are shown in FIG. One of the portions 132d may not correspond to the groove portion.
제2 도전성 입자(132)는 제2 도전성 입자(132)의 하측 밑면(132a)의 가장자리 중 제1 도전성 입자(131)의 상측 밑면(131a)에 접촉하는 일부(E)를 기준으로 회전하도록 구성될 수 있다. 제2 도전성 입자(132)가 제1 도전성 입자에 대해 회전할 때, 하측 밑면(132a)과 상측 밑면(131a) 사이의 탄성층(140)은 탄성적으로 늘어나면서 제2 도전성 입자(132)를 다시 반대방향으로 회전시키는 복원력을 제공할 수 있다. 제1 부분(131d)과 제2 부분(132d) 사이의 간격은 비교적 클 수 있다. 제1 부분(131d)과 제2 부분(132d) 사이의 부분에 형성되는 탄성층(즉, 후부(141))의 두께는 비교적 두꺼울 수 있다. 제2 도전성 입자(132)가 제1 도전성 입자에 대해 회전할 때, 후부(141)는 탄성적으로 늘어나면서 제2 도전성 입자(132)를 다시 반대방향으로 회전시키는 복원력을 보다 효과적으로 제공할 수 있다. The second conductive particle 132 is configured to rotate based on a portion (E) of the edges of the lower bottom surface 132a of the second conductive particle 132 that contacts the upper bottom surface 131a of the first conductive particle 131. It can be. When the second conductive particle 132 rotates with respect to the first conductive particle, the elastic layer 140 between the lower bottom surface 132a and the upper bottom surface 131a is elastically stretched to support the second conductive particle 132. It can provide a restoring force to rotate it in the opposite direction again. The gap between the first part 131d and the second part 132d may be relatively large. The thickness of the elastic layer (i.e., rear portion 141) formed between the first portion 131d and the second portion 132d may be relatively thick. When the second conductive particle 132 rotates with respect to the first conductive particle, the rear portion 141 is elastically stretched and can more effectively provide a restoring force to rotate the second conductive particle 132 in the opposite direction again. .
여기서 회전의 기준이 되는 부분(E)(이하 '회전기준부')은 도전성 입자(130)에서 그와 이웃하는 도전성 입자와 대향하는 밑면의 가장자리를 구성하는 일부구간 또는 점을 의미한다. 예를 들어, 도전성 입자(130)가 원기둥 형태인 경우 회전기준부(E)는 점 형태로 제공될 수 있다. 회전기준부(E)가 점 형태로 제공될 때, 점은 수학적으로 엄밀한 의미의 점은 아니고, 도전성 입자(130)의 원형 밑면이 상대 도전성 입자의 밑면과 평행하지 않게 만날 때 생기는 접촉영역을 의미한다. 다른 예를 들어, 도전성 입자(130)가 각기둥 형태인 경우 회전기준부(E)는 전체적으로 선 형태로 제공될 수 있다. 즉, 각기둥 형태의 도전성 입자(130)의 하측 밑면을 둘러싸는 복수의 모서리부 중 상대 도전성 입자의 상측 밑면에 접촉하는 하나의 모서리부(예: 도 8의 모서리부(132e))가 회전기준부(E)로 될 수 있다. Here, the part (E) that serves as a reference for rotation (hereinafter referred to as 'rotation reference part') refers to a partial section or point constituting the edge of the bottom of the conductive particle 130 that faces a neighboring conductive particle. For example, when the conductive particles 130 have a cylindrical shape, the rotation reference portion E may be provided in the form of a point. When the rotation reference portion (E) is provided in the form of a point, the point is not a point in the strict mathematical sense, but refers to a contact area that occurs when the circular bottom of the conductive particle 130 meets the bottom of the counterpart conductive particle in a non-parallel manner. do. For another example, when the conductive particles 130 have a prismatic shape, the rotation reference portion E may be provided in an overall line shape. That is, among the plurality of corners surrounding the lower bottom of the prismatic conductive particle 130, one corner (for example, the corner 132e in FIG. 8) that contacts the upper bottom of the relative conductive particle is the rotation reference portion. It can be (E).
탄성층(140)의 박부(142)는 도전성 입자들(130)이 상대운동에 따라 쉽게 파괴될 수 있다. 도전성 입자들(130) 사이에 배치된 탄성층(140)이 파괴되면 도전성 입자들(130) 사이의 전기저항이 낮아질 수 있다. 도 5를 참고하면, 제1 도전성 입자(131)의 제3 부분(131f)과 제2 도전성 입자(132)의 제4 부분(132f) 사이에 형성되는 탄성층(140)의 박부(142)의 두께는 매우 얇거나 0일 수 있다. 제3 부분(131f)과 제4 부분(132f)은 각각 도 4의 제1 돌출부(131c)와 제2 돌출부(132c)에 대응할 수 있다. 제2 도전성 입자(132)가 회전기준부(E)를 기준으로 회전할 때, 탄성층(140)의 박부(142)는 제3 부분(131f)과 제4 부분(132f)으로부터 분리 또는 파손될 수 있다. 제3 부분(131f)과 제4 부분(132f) 사이에 존재하던 박부(142)가 파손됨에 따라 제3 부분(131f)과 제4 부분(132f)이 다시 접촉했을 때, 양자 사이의 전기저항이 감소할 수 있고, 전기가 더 잘 통할 수 있다. The thin portion 142 of the elastic layer 140 may be easily destroyed due to the relative movement of the conductive particles 130. If the elastic layer 140 disposed between the conductive particles 130 is destroyed, the electrical resistance between the conductive particles 130 may be lowered. Referring to FIG. 5, the thin portion 142 of the elastic layer 140 formed between the third portion 131f of the first conductive particle 131 and the fourth portion 132f of the second conductive particle 132. The thickness can be very thin or zero. The third part 131f and the fourth part 132f may correspond to the first protrusion 131c and the second protrusion 132c of FIG. 4, respectively. When the second conductive particles 132 rotate based on the rotation reference portion E, the thin portion 142 of the elastic layer 140 may be separated or damaged from the third portion 131f and the fourth portion 132f. there is. As the thin part 142 existing between the third part 131f and the fourth part 132f is damaged, when the third part 131f and the fourth part 132f come into contact again, the electrical resistance between the two increases. It can be reduced, and electricity can pass through better.
한편, 도 3 내지 도 5에 도시된 도전성 입자(130)의 표면(예: 제1 도전성 입자(131)의 상측 밑면(131a)) 및 탄성층(140)의 형태는 설명의 편의를 위한 예시적인 형태에 지나지 않으며, 실제 제품에서 도전성 입자들(130)의 표면 및 탄성층(140)의 형태는 다양하게 형성될 수 있다. Meanwhile, the surface of the conductive particle 130 shown in FIGS. 3 to 5 (e.g., the upper bottom surface 131a of the first conductive particle 131) and the shape of the elastic layer 140 are exemplary for convenience of explanation. It is nothing more than a shape, and in an actual product, the surface of the conductive particles 130 and the shape of the elastic layer 140 may be formed in various ways.
도 6은 도전성 입자(130)의 다양한 형태를 도시한 것이다. 도 7은 중심축에 정렬된 도전성 입자들(130)을 도시한 것이다. 도 8은 도전성 입자들(130)이 상하 방향으로 가압될 때 변형 예를 도시한 것이다. Figure 6 shows various forms of conductive particles 130. Figure 7 shows conductive particles 130 aligned on the central axis. Figure 8 shows a modified example when the conductive particles 130 are pressed in the vertical direction.
도 6을 참고하면, 일 실시예에 있어서 도전부(110)를 적어도 일부 구성하는 도전성 입자들(130)은 기둥 형태를 가질 수 있다. 일 실시예에 있어서 도전부 중 상하 방향으로의 적어도 일부 구간은 기둥 형태의 도전성 입자들(130)로 구성될 수 있다. 도전성 입자(130)는 각기둥 형태, 예를 들어, 삼각기둥, 사각기둥, 오각기둥 등의 형태로 제공될 수 있다(도 6의 (a), (b), 및 (c) 참조). 이경우 도전성 입자(130)의 밑면은 다각형 형태이다. 다른 예를 들어, 도전성 입자(130)는 원기둥 형태로 제공될 수 있다(도 6의 (d) 참조). 이경우 도전성 입자(130)의 밑면은 원 형태이다. 도전부(110)를 적어도 일부 구성하는 도전성 입자들(130)은 다양한 모양의 기둥 형태의 도전성 입자들을 포함할 수 있다. 예를 들어, 사각기둥 형태의 도전성 입자와 원기둥 형태의 도전성 입자가 하나의 도전부(110)를 적어도 일부 구성할 수 있다. Referring to FIG. 6 , in one embodiment, the conductive particles 130 constituting at least a portion of the conductive portion 110 may have a pillar shape. In one embodiment, at least a portion of the conductive portion in the vertical direction may be composed of column-shaped conductive particles 130. The conductive particles 130 may be provided in the form of a prism, for example, a triangular prism, a rectangular prism, or a pentagonal prism (see Figures 6 (a), (b), and (c)). In this case, the bottom of the conductive particle 130 has a polygonal shape. For another example, the conductive particles 130 may be provided in a cylindrical shape (see (d) of FIG. 6). In this case, the bottom of the conductive particle 130 has a circular shape. The conductive particles 130 constituting at least a portion of the conductive portion 110 may include conductive particles in the form of pillars of various shapes. For example, conductive particles in the shape of a square pillar and conductive particles in the shape of a cylinder may constitute at least a portion of one conductive part 110.
또, 본 개시에서 도전성 입자(130)가 각기둥 형태를 가진다는 것은 도전성 입자(130)가 대체적으로 각기둥과 유사한 형태로 제공되는 것 및 상술한 조도에 의해서 엄밀한 의미의 평면이 아닌 표면을 가진 전체적으로 각기둥의 형태로 제공되는 것을 포함하는 것으로 이해되어야 한다. 예를 들어, 사각기둥 형태의 도전성 입자를 구성하는 6개 면들이 정확하게 서로 90도 또는 180도를 이루어야 하는 것은 아니고, 대체적으로 90도 또는 180도를 이룰 수 있고, 상술한 조도에 의해서 각기둥의 표면은 홈부 및 돌출부를 포함할 수 있다. In addition, in the present disclosure, the fact that the conductive particles 130 have a prismatic shape means that the conductive particles 130 are generally provided in a shape similar to a prism, and due to the above-mentioned roughness, the conductive particles 130 have a prismatic shape as a whole with a surface that is not flat in the strict sense. It should be understood as including what is provided in the form of. For example, the six sides that make up the conductive particles in the form of a square pillar do not have to be exactly 90 degrees or 180 degrees to each other, but can generally be 90 degrees or 180 degrees, and the surface of the prism can be adjusted according to the above-mentioned roughness. may include grooves and protrusions.
각기둥 형태의 도전성 입자들(130) 중 적어도 일부는, 이들을 도전부(110)에 집합시키는 자기장에 노출되었을 때, 비교적 균일하게 정렬될 수 있다. 예를 들어, 도 7을 참고하면, 각기둥 형태의 도전성 입자들(130)은 중심축(CL)이 서로 일치하게 정렬될 수 있다. 이에 따라 도전부 내에 도전성 입자(130)가 비교적 균일하게 배치될 수 있고, 도전성 입자들(130)은 동일 체적에 높은 밀집도로 집합될 수 있다. At least some of the prismatic conductive particles 130 may be relatively uniformly aligned when exposed to a magnetic field that gathers them into the conductive portion 110. For example, referring to FIG. 7, the central axes CL of the prismatic conductive particles 130 may be aligned to coincide with each other. Accordingly, the conductive particles 130 can be relatively uniformly disposed within the conductive portion, and the conductive particles 130 can be gathered at a high density in the same volume.
일 실시예에 있어서 도전성 입자(130)는 바람직하게는 사각기둥 형태(더 바람직하게는 정육면체 형태)로 제공될 수 있다. 도전성 입자(130)가 사각기둥 형태로 제공되는 경우 도전성 입자들(130) 중 적어도 일부는 자기장에 의해 더욱 밀집도가 높게, 또는 더 균일하게 정렬될 수 있다. 사각기둥 형태의 도전성 입자(130)는 그를 구성하는 각 면의 형상이 사각형으로 동일하고, 마주보는 면이 서로 평행하기 때문이다. 정육면체형 도전성 입자(130)는 모든 면이 동일하거나 실질적으로 동일한 크기를 가지기 때문에 더 균일하게 정렬될 수 있다. In one embodiment, the conductive particles 130 may preferably be provided in the form of a square pillar (more preferably in the form of a cube). When the conductive particles 130 are provided in the form of a square pillar, at least some of the conductive particles 130 may be aligned more densely or more uniformly by a magnetic field. This is because the shape of each face of the square pillar-shaped conductive particle 130 is the same as a square, and the faces facing each other are parallel to each other. The cubic conductive particles 130 can be aligned more uniformly because all surfaces have the same or substantially the same size.
도 7 및 도 8을 참고하면, 피검사 디바이스(300)의 단자(310)가 도전부(110)를 가압하는 경우 상하방향으로 배열된 도전성 입자들(130)은 C형으로 변형될 수 있다. Referring to FIGS. 7 and 8 , when the terminal 310 of the device under test 300 presses the conductive portion 110, the conductive particles 130 arranged in the vertical direction may be deformed into a C shape.
일 실시예에 있어서 도전성 입자들(130)은 각기둥형태를 가지기 때문에 서로 면대면 접촉을 하기 쉬워져 통전에 유리하고, 중심축(CL)으로 정렬되기 쉬워진다. 특히 도전성 입자(130)가 사각기둥형태(바람직하게는 정육면체 형태)를 가지는 경우에는, 도전성 입자들(130)이 자기장에 의해 정렬됐을 때 비교적 높은 확률로 서로 상하방향으로 면대면 접촉하게 된다. 한편, 본 개시에서 '면대면 접촉'은 면과 면이 일부 영역(또는 지점)에서는 서로 접촉하고 다른 일부 영역(또는 지점)에서는 이격된 상태를 포함하는 것으로 이해될 수 있다. 예를 들어, 도 3을 참고하면 제1 도전성 입자(131)와 제2 도전성 입자(132)는 서로 상하방향으로 면대면 접촉하고 있는 것으로 볼 수 있다. 다만, 도전성 입자들(130)이 원기둥 형태를 가지는 경우에도 이들 중 일부가 상호간에 면대면 접촉을 할 수 있고, 이러한 부분이 존재함으로써 통전에 유리한 효과가 발휘될 수 있다. In one embodiment, since the conductive particles 130 have a prismatic shape, they easily come into face-to-face contact with each other, which is advantageous for conducting electricity, and are easily aligned with the central axis CL. In particular, when the conductive particles 130 have a square pillar shape (preferably a cube shape), when the conductive particles 130 are aligned by a magnetic field, they come into face-to-face contact with each other in the vertical direction with a relatively high probability. Meanwhile, in the present disclosure, 'face-to-face contact' may be understood to include a state in which surfaces are in contact with each other in some areas (or points) and are spaced apart in other areas (or points). For example, referring to FIG. 3, the first conductive particles 131 and the second conductive particles 132 can be seen as being in face-to-face contact with each other in the vertical direction. However, even when the conductive particles 130 have a cylindrical shape, some of them may be in face-to-face contact with each other, and the presence of these parts may provide an advantageous effect on current conduction.
도전성 입자들(130)이 상하방향으로 면대면 접촉함으로써, 도전성 입자들(130)에 상하방향의 압력이 가해질 때 도전성 입자(130)는 이웃하는 도전성 입자(130)에 대해 밑면을 둘러싸는 가장자리의 일부를 기준으로 회전하는 형태로 움직일 수 있다. 각기둥 형태의 도전성 입자(130)는 복수의 모서리부를 가지며, 이중 하나의 모서리가 상대 도전성 입자에 대해 접촉한 상태로 회전할 수 있다. 예를 들어, 도 8을 참고하면, 제2 도전성 입자(132)는 하측 밑면(132a)을 둘러싸는 4개의 모서리부 중 하나의 모서리부(132e)에서 제1 도전성 입자(131)(또는 상측 밑면(131a))와 접촉을 유지한 상태에서 회전할 수 있다. 본 개시에서 모서리부는 도전성 입자(130)를 전체적으로 보았을 때 다각기둥의 밑면을 둘러싸는 경계 및 그 인접 부분을 포함하는 개념으로서, 엄밀한 의미의 각기둥 모서리에 제한되지 않는다. As the conductive particles 130 come into face-to-face contact in the up and down direction, when pressure in the up and down direction is applied to the conductive particles 130, the conductive particles 130 adhere to the edge surrounding the bottom with respect to the neighboring conductive particles 130. It can move in a rotating form based on a part of it. The prismatic conductive particles 130 have a plurality of corners, and one of them can rotate while in contact with the other conductive particle. For example, referring to FIG. 8, the second conductive particle 132 is connected to the first conductive particle 131 (or the upper bottom) at one corner 132e of the four corners surrounding the lower bottom 132a. It can rotate while maintaining contact with (131a)). In the present disclosure, the corner portion is a concept that includes the boundary surrounding the bottom of the polygonal prism and adjacent portions when looking at the conductive particles 130 as a whole, and is not limited to the corners of the prism in the strict sense.
도전부(110)가 가압될 때, 도전성 입자(130)가 이웃하는 도전성 입자(130)와 일부 영역(예: 도 5의 회전기준부(E))에서의 접촉을 유지하면서 움직이기 때문에 도전성 입자들(130) 사이의 전기 전도성이 유지될 수 있다. 이는 나아가 도전부(110) 전체의 전기 전도성을 개선시킬 수 있다. 실제 제품에서 도전부(110)를 구성하는 복수의 도전성 입자들(130) 중 일부가 상호간에 상하방향으로 면대면 접촉하더라도, 위와 같은 효과로 인해 전체적인 도전부(110)의 전기 전도성이 향상될 수 있다. When the conductive portion 110 is pressed, the conductive particles 130 move while maintaining contact with the neighboring conductive particles 130 in some areas (e.g., the rotation reference portion E in FIG. 5), so the conductive particles Electrical conductivity between the fields 130 may be maintained. This can further improve the electrical conductivity of the entire conductive portion 110. In an actual product, even if some of the plurality of conductive particles 130 constituting the conductive part 110 are in face-to-face contact with each other in the vertical direction, the overall electrical conductivity of the conductive part 110 can be improved due to the above effect. there is.
한편, 일 실시예에 있어서 기둥 형태의 도전성 입자들(130)은 도 3 내지 도 5에서 설명된 울퉁불퉁한 표면을 가질 수 있다. 도 8에 도시되지는 않았으나, 제1 도전성 입자(131)와 제2 도전성 입자(132)의 상호 대향면(131a, 132a)은 도 3과 같이 울퉁불퉁할 수 있다. 이에 따라 제1 도전성 입자(131)와 제2 도전성 입자(132) 사이에 탄성층(예: 도 3의 탄성층(140))이 생길 수 있다. 탄성층은 기둥 형태를 가지는 도전성 입자들(130) 사이의 상대적 움직임에 대해 복원력을 제공할 수 있다. 예를 들어, 제2 도전성 입자(132)가 모서리부(132e)를 기준으로 제1 도전성 입자(131)로부터 시계방향으로 회전할 때, 제1 도전성 입자(131)와 제2 도전성 입자(132) 사이에 형성된 탄성층이 탄성적으로 인장되며, 도전부(110)에 압력이 해제되면 탄성층이 복원되면서 제2 도전성 입자(132)가 반시계방향으로 회전할 수 있다. 도전성 입자들(130) 중 적어도 일부(예: 제1 도전성 입자(131) 및 제2 도전성 입자(132))가 서로 면대면으로 접촉하고, 이들의 표면이 울퉁불퉁하기 때문에, 도전성 입자들(130) 사이에 상대운동이 생길 때 탄성층 중 적어도 후부(예: 도 4의 후부(141))는 탄성기능을 유지할 수 있다. 이에 따라, 도전성 입자들(130)이 상하 방향으로 수차례 가압되더라도 변형 후에 다시 원래 상태(또는 적어도 원래 상태에 가까운 상태)로 복원될 수 있으며, 이에 따라 검사용 커넥터(100)의 수명이 증대될 수 있다. Meanwhile, in one embodiment, the pillar-shaped conductive particles 130 may have an uneven surface as described in FIGS. 3 to 5. Although not shown in FIG. 8 , opposing surfaces 131a and 132a of the first conductive particles 131 and the second conductive particles 132 may be uneven as shown in FIG. 3 . Accordingly, an elastic layer (eg, elastic layer 140 in FIG. 3) may be formed between the first conductive particles 131 and the second conductive particles 132. The elastic layer may provide restoring force against relative movement between the conductive particles 130 having a pillar shape. For example, when the second conductive particle 132 rotates clockwise from the first conductive particle 131 with respect to the edge portion 132e, the first conductive particle 131 and the second conductive particle 132 The elastic layer formed in between is elastically stretched, and when the pressure on the conductive portion 110 is released, the elastic layer is restored and the second conductive particles 132 can rotate counterclockwise. Because at least some of the conductive particles 130 (e.g., the first conductive particles 131 and the second conductive particles 132) contact each other face-to-face and their surfaces are uneven, the conductive particles 130 When relative motion occurs between the elastic layers, at least the rear portion (e.g., the rear portion 141 in FIG. 4) can maintain the elastic function. Accordingly, even if the conductive particles 130 are pressed in the vertical direction several times, they can be restored to their original state (or at least close to the original state) after deformation, thereby increasing the lifespan of the inspection connector 100. You can.
일 실시예에 따르면, 각기둥 형태의 도전성 입자들(130) 중 적어도 일부는 도전부(110)의 적어도 일부 구간에서 높은 밀도로 비교적 균일하게 집합되도록 유도될 수 있다. 상하 방향의 가압력이 작용했을 때, 도전성 입자들(130) 사이의 접촉압력이 높아지고 이는 도전성 입자들(130) 사이의 전기저항이 작아지게 한다. 각기둥 형태의 도전성 입자들(130)은 비교적 중심축(CL)에 일치하게 정렬되도록 유도될 수 있다. 특히 도전성 입자들(130)이 사각기둥 형태로 제공되는 경우, 도전성 입자들(130)의 표면은 서로 평행하거나 서로 직각으로 교차하는 사각형 면들로 구성되기 때문에 도전성 입자들(130)은 더욱 균일하게 정렬되도록 유도될 수 있다. 도전성 입자들(130)이 더 바람직하게는 정육면체 형태로 제공될 수 있고, 이경우 도전성 입자들(130)의 표면을 구성하는 사각형 면들의 면적이 대체적으로 동일하기 때문에, 도전성 입자들(130)은 더욱 균일하게 정렬되도록 유도될 수 있다. 도전성 입자들(130)이 균일하게 집합될수록 도전성 입자들(130) 사이에 면대면 접촉 부분이 많아지고, 이에 따라 상술한 면대면 접촉으로 인한 효과가 더 효과적으로 발휘될 수 있다. According to one embodiment, at least some of the prismatic conductive particles 130 may be induced to gather relatively uniformly at a high density in at least some sections of the conductive portion 110. When a pressing force in the vertical direction is applied, the contact pressure between the conductive particles 130 increases and this causes the electrical resistance between the conductive particles 130 to decrease. The prismatic conductive particles 130 may be guided to be relatively aligned with the central axis CL. In particular, when the conductive particles 130 are provided in the form of a square pillar, the surface of the conductive particles 130 is composed of square faces that are parallel to each other or cross each other at right angles, so the conductive particles 130 are more uniformly aligned. It can be guided as much as possible. The conductive particles 130 may more preferably be provided in the form of a cube, and in this case, since the areas of the square surfaces constituting the surface of the conductive particles 130 are generally the same, the conductive particles 130 are more compact. It can be induced to be aligned evenly. As the conductive particles 130 are more uniformly collected, the number of face-to-face contact areas between the conductive particles 130 increases, and thus the effect due to the above-described face-to-face contact can be more effectively exerted.
다만, 후술하는 바와 같이, 본 개시는 도전성 입자들(130)이 불규칙하게 배열되거나 중심축에 일치되지 않게 정렬되는 실시예들을 배제하지 않는다. 도전성 입자들(130)이 자기장에 놓였을 때, 정렬되는 형태는 본 개시의 도 7에 도시된 형태와 다를 수 있다. 수많은 입자들이 자력에 의해 확률적으로 정렬되기 때문에 본개시의 검사용 커넥터(100)의 도전부(110)는 도전성 입자들(130)이 전체적으로 균일하게 정렬되는 것에 한정되는 것은 아니다.However, as will be described later, the present disclosure does not exclude embodiments in which the conductive particles 130 are arranged irregularly or inconsistently aligned with the central axis. When the conductive particles 130 are placed in a magnetic field, the aligned shape may be different from the shape shown in FIG. 7 of the present disclosure. Since numerous particles are aligned stochastically by magnetic force, the conductive portion 110 of the inspection connector 100 of the present disclosure is not limited to the conductive particles 130 being uniformly aligned as a whole.
예를 들어, 도 9를 참조하면, 도전성 입자들(130)은 상하방향 중심축이 서로 어긋나게 배열될 수 있다. 도 9와 같이 배열된 도전성 입자들(130)이 상하 방향으로 가압되는 경우 도 10과 같은 형태로 변형될 수 있다. 비가압 상태에서 도전성 입자들(130)은 면대면으로 접촉하고 있으므로, 가압될 때 이웃하는 도전성 입자의 표면에 모서리가 접촉된 상태로 회전할 수 있다. 이에 따라 도전성 입자들(130) 사이의 전기 전도성이 비교적 높게 유지될 수 있다.For example, referring to FIG. 9, the conductive particles 130 may be arranged so that the central axes in the vertical direction are offset from each other. When the conductive particles 130 arranged as shown in FIG. 9 are pressed in the vertical direction, they may be deformed into the shape shown in FIG. 10. Since the conductive particles 130 are in face-to-face contact in a non-pressurized state, when pressurized, they can rotate with their edges in contact with the surfaces of neighboring conductive particles. Accordingly, electrical conductivity between the conductive particles 130 can be maintained relatively high.
또 다른 예를 들어, 도 11을 참조하면, 도전성 입자들(130)은 서로 중심축을 중심으로 어긋나게 회전된 상태로 상하방향으로 배열될 수 있다. 또 다른 예를 들어, 도 12를 참조하면, 도전성 입자들(130) 중 일부는 이웃하는 도전성 입자와 면대면으로 접촉하지 않고, 선접촉하거나 점접촉할 수 있다. 도 11과 도 12와 같이 도전성 입자들(130)이 배열된 경우에도, 도시되지는 않았으나, 도전성 입자들(130)은 적어도 일부 표면 또는 적어도 일부 구간에서 이웃하는 도전성 입자와 면대면으로 접촉할 수 있다. For another example, referring to FIG. 11 , the conductive particles 130 may be arranged in the vertical direction in a state in which they are rotated and misaligned with each other about a central axis. As another example, referring to FIG. 12, some of the conductive particles 130 may not contact neighboring conductive particles face-to-face, but may make line contact or point contact. Even when the conductive particles 130 are arranged as shown in FIGS. 11 and 12, although not shown, the conductive particles 130 may contact neighboring conductive particles face-to-face at least on some surfaces or at least in some sections. there is.
한편, 도전성 입자들(130)이 상하 방향으로 가압되었을 때, 반드시 도 8과 같은 형태로 변형될 필요는 없다. 도전성 입자들(130) 사이에 변형이 일어나는 구간은 일부 영역에 한정될 수 있다. 예를 들어, 도 13 참조하면, 상하 방향으로 배열된 도전성 입자들(130)은 가압되었을 때, 중간 부분에서 주로 변형되어 "<"형태를 가질 수 있다. Meanwhile, when the conductive particles 130 are pressed in the vertical direction, they do not necessarily need to be deformed into the shape shown in FIG. 8. The section where deformation occurs between the conductive particles 130 may be limited to some areas. For example, referring to FIG. 13, when the conductive particles 130 arranged in the vertical direction are pressed, they are mainly deformed in the middle portion and may have a "<" shape.
본 개시의 다양한 실시예에 따른 도전성 입자(130)는 기둥 형태를 가지면서 울퉁불퉁한 표면을 가지며, 이 두가지 특징은 서로 유기적으로 결합되어 검사용 커넥터(100)의 품질을 향상시킬 수 있다. 예를 들어, 도전성 입자(130)가 기둥 형태로 제공되면서 울퉁불퉁한 표면을 가지기 때문에 도전성 입자들(130)이 용이하게 힌지형태로 변형될 수 있고, 이에 따라 도전성 입자들(130) 사이의 전기 전도성이 높아질 수 있다.The conductive particles 130 according to various embodiments of the present disclosure have a pillar shape and a bumpy surface, and these two features can be organically combined with each other to improve the quality of the inspection connector 100. For example, since the conductive particles 130 are provided in the form of pillars and have a bumpy surface, the conductive particles 130 can be easily transformed into a hinge shape, thereby increasing the electrical conductivity between the conductive particles 130. This may increase.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.Although the technical idea of the present disclosure has been described through some embodiments and examples shown in the accompanying drawings, it does not go beyond the technical idea and scope of the present disclosure that can be understood by a person skilled in the art to which the present disclosure pertains. It should be noted that various substitutions, modifications and changes may be made within the scope. Furthermore, such substitutions, modifications and alterations are intended to fall within the scope of the appended claims.

Claims (21)

  1. 피검사 디바이스와 테스트 장비 사이에 배치되어 피검사 디바이스와 테스트 장비를 상하 방향으로 서로 전기적으로 연결시키기 위한 검사용 커넥터이며,It is an inspection connector placed between the device to be inspected and the test equipment to electrically connect the device to be inspected and the test equipment to each other in the vertical direction.
    탄성절연재료로 이루어진 절연부; 및 an insulating portion made of an elastic insulating material; and
    상기 절연부 내에 배치되고 상하 방향으로 통전을 가능하게 하는 도전부;를 포함하고, It includes a conductive part disposed within the insulating part and enabling electricity to be passed in the vertical direction,
    상기 도전부 중 상하 방향으로의 적어도 일부 구간은, 기둥 형태를 가지고 울퉁불퉁한 표면을 가지는 복수의 도전성 입자가 서로 접촉하여 형성되고,At least a portion of the conductive portion in the vertical direction is formed by a plurality of conductive particles having a pillar shape and a bumpy surface contacting each other,
    상기 복수의 도전성 입자는, 상측 밑면을 가진 제1 도전성 입자, 및 상기 제1 도전성 입자의 상기 상측 밑면에 접촉하는 하측 밑면을 가진 제2 도전성 입자를 포함하는, The plurality of conductive particles include first conductive particles having an upper bottom surface, and second conductive particles having a lower bottom surface contacting the upper bottom surface of the first conductive particle.
    검사용 커넥터.Connector for inspection.
  2. 제1항에서, In paragraph 1:
    상기 제1 도전성 입자의 상기 상측 밑면의 십점 평균 조도는 상기 제1 도전성 입자의 상기 상측 밑면에 수직인 방향의 높이 대비 1.5% 내지 30% 사이에 있고, 상기 제2 도전성 입자의 상기 하측 밑면의 십점 평균 조도는 상기 제2 도전성 입자의 상기 하측 밑면에 수직인 방향의 높이 대비 1.5% 내지 30% 사이에 있는, The ten-point average roughness of the upper bottom of the first conductive particle is between 1.5% and 30% compared to the height in the direction perpendicular to the upper bottom of the first conductive particle, and the ten-point average roughness of the lower bottom of the second conductive particle is The average roughness is between 1.5% and 30% relative to the height in the direction perpendicular to the lower surface of the second conductive particle,
    검사용 커넥터. Connector for inspection.
  3. 제1항에서, In paragraph 1:
    상기 복수의 도전성 입자의 상기 울퉁불퉁한 표면은 소결방식으로 제조됨으로써 형성되는, The bumpy surface of the plurality of conductive particles is formed by being manufactured by a sintering method,
    검사용 커넥터.Connector for inspection.
  4. 제1항에서, In paragraph 1:
    상기 상측 밑면 또는 상기 하측 밑면은 홈부를 포함하고, 상기 홈부에 탄성절연재료가 채워지는, The upper bottom or the lower bottom includes a groove, and the groove is filled with an elastic insulating material,
    검사용 커넥터.Connector for inspection.
  5. 제4항에서, In paragraph 4,
    상기 상측 밑면 및 상기 하측 밑면 중 어느 하나는 다른 하나에 접촉하는 돌출부를 포함하는,One of the upper bottom surface and the lower bottom surface includes a protrusion contacting the other,
    검사용 커넥터.Connector for inspection.
  6. 제1항에서, In paragraph 1:
    상기 상측 밑면과 상기 하측 밑면 사이에는 갭이 형성되고, 상기 갭에 탄성절연재료가 채워지는, A gap is formed between the upper bottom and the lower bottom, and the gap is filled with an elastic insulating material,
    검사용 커넥터. Connector for inspection.
  7. 제6항에서, In paragraph 6:
    상기 갭에 채워진 탄성절연재료로 구성된 탄성층은, 불규칙한 두께를 가지는, The elastic layer composed of an elastic insulating material filled in the gap has an irregular thickness,
    검사용 커넥터.Connector for inspection.
  8. 제6항에서, In paragraph 6:
    상기 갭에 채워진 탄성절연재료로 구성된 탄성층은, 하단이 상기 상측 밑면의 제1 부분에 부착되고 상단이 상기 하측 밑면의 제2 부분에 부착되어, 상기 제1 부분이 상기 제2 부분으로부터 멀어질 때 탄성 변형하도록 구성되는,The elastic layer comprised of an elastic insulating material filled in the gap has a lower end attached to a first part of the upper bottom and an upper end attached to a second part of the lower bottom, so that the first part is moved away from the second part. When configured to elastically deform,
    검사용 커넥터.Connector for inspection.
  9. 제1항에서, In paragraph 1:
    상기 복수의 도전성 입자는 각기둥 형태로 제공되는, The plurality of conductive particles are provided in the form of a prism,
    검사용 커넥터. Connector for inspection.
  10. 제1항에서, In paragraph 1:
    상기 복수의 도전성 입자는 사각기둥 형태로 제공되는, The plurality of conductive particles are provided in the form of square pillars,
    검사용 커넥터. Connector for inspection.
  11. 제1항에서, In paragraph 1:
    상기 복수의 도전성 입자는 정육면체 형태로 제공되는,The plurality of conductive particles are provided in the form of a cube,
    검사용 커넥터.Connector for inspection.
  12. 제1항에서, In paragraph 1:
    상기 검사용 커넥터에 상하 방향으로 가압력이 작용할 때, 상기 제2 도전성 입자는 상기 하측 밑면의 가장자리 중 상기 상측 밑면에 접촉하는 일부를 기준으로 하여 상기 제1 도전성 입자에 대해 회전하도록 구성되는, When a pressing force acts on the inspection connector in the vertical direction, the second conductive particle is configured to rotate with respect to the first conductive particle based on a portion of the edge of the lower bottom that contacts the upper bottom,
    검사용 커넥터. Connector for inspection.
  13. 제9항에서,In paragraph 9:
    상기 검사용 커넥터에 상하 방향으로 가압력이 작용할 때, 상기 제2 도전성 입자는 상기 하측 밑면을 둘러싸는 복수의 모서리부 중 상기 상측 밑면에 접촉하는 모서리부를 기준으로 하여 상기 제1 도전성 입자에 대해 회전하도록 구성되는,When a pressing force acts on the inspection connector in the vertical direction, the second conductive particle rotates with respect to the first conductive particle based on the corner portion in contact with the upper bottom surface among the plurality of corners surrounding the lower bottom surface. composed,
    검사용 커넥터.Connector for inspection.
  14. 피검사 디바이스와 테스트 장비 사이에 배치되어 피검사 디바이스와 테스트 장비를 상하 방향으로 서로 전기적으로 연결시키기 위한 검사용 커넥터이며,It is an inspection connector placed between the device to be inspected and the test equipment to electrically connect the device to be inspected and the test equipment to each other in the vertical direction.
    탄성절연재료로 이루어진 절연부; 및 an insulating portion made of an elastic insulating material; and
    상기 절연부 내에서 상하 방향으로 연장되어 상하 방향으로 통전을 가능하게 하는 도전부;를 포함하고, It includes a conductive part that extends in the vertical direction within the insulating part and allows electricity to be passed in the vertical direction,
    상기 도전부 중 상하 방향으로의 적어도 일부 구간은, 기둥 형태를 가지는 복수의 도전성 입자가 서로 접촉하여 형성되고, At least a portion of the conductive portion in the vertical direction is formed by a plurality of conductive particles having a pillar shape contacting each other,
    상기 복수의 도전성 입자는, The plurality of conductive particles are,
    하측으로 함몰된 제1 홈부가 형성된 상측 밑면을 가진 제1 도전성 입자; 및 a first conductive particle having an upper bottom surface formed with a first groove recessed downward; and
    상기 제1 도전성 입자의 상측 밑면에 접촉하고 상측으로 함몰된 제2 홈부가 형성된 하측 밑면을 가진 제2 도전성 입자를 포함하는, Comprising a second conductive particle having a lower bottom surface in contact with the upper bottom surface of the first conductive particle and a second groove recessed upwardly.
    검사용 커넥터.Connector for inspection.
  15. 제14항에서, In paragraph 14:
    상기 제1 홈부와 상기 제2 홈부에는 탄성절연재료가 채워지는,The first groove portion and the second groove portion are filled with an elastic insulating material,
    검사용 커넥터. Connector for inspection.
  16. 제15항에서, In paragraph 15:
    상기 상측 밑면은 상측으로 돌출되어 상기 하측 밑면에 접촉하는 제1 돌출부를 포함하고,The upper bottom surface includes a first protrusion that protrudes upward and contacts the lower bottom surface,
    상기 하측 밑면은 하측으로 돌출되어 상기 상측 밑면에 접촉하는 제2 돌출부를 포함하는,The lower bottom includes a second protrusion that protrudes downward and contacts the upper bottom.
    검사용 커넥터.Connector for inspection.
  17. 제15항에서, In paragraph 15:
    상기 절연부 중 상기 제1 홈부 또는 상기 제2 홈부에 채워지는 부분은, 하단이 상기 상측 밑면의 제1 부분에 부착되고 상단이 상기 하측 밑면의 제2 부분에 부착되어, 상기 제1 부분이 상기 제2 부분으로부터 멀어질 때 탄성 변형하도록 구성되는,The part of the insulating part filled with the first groove or the second groove has a lower end attached to a first part of the upper bottom and an upper end attached to a second part of the lower bottom, so that the first part is attached to the upper bottom. configured to elastically deform when moved away from the second portion,
    검사용 커넥터.Connector for inspection.
  18. 제14항에서, In paragraph 14:
    상기 상측 밑면에는 복수의 상기 제1 홈부가 불균일하게 형성되고, A plurality of first grooves are formed unevenly on the upper bottom,
    상기 하측 밑면에는 복수의 상기 제2 홈부가 불균일하게 형성되는,A plurality of second grooves are formed unevenly on the lower surface,
    검사용 커넥터. Connector for inspection.
  19. 제14항에서, In paragraph 14:
    상기 도전성 입자는 각기둥 형태로 제공되는,The conductive particles are provided in the form of a prism,
    검사용 커넥터. Connector for inspection.
  20. 제14항에서, In paragraph 14:
    상기 검사용 커넥터에 상하 방향으로 가압력이 작용할 때, 상기 제2 도전성 입자는 상기 하측 밑면의 가장자리 중 상기 상측 밑면에 접촉하는 일부를 기준으로 하여 상기 제1 도전성 입자에 대해 회전하도록 구성되는, When a pressing force acts on the inspection connector in the vertical direction, the second conductive particle is configured to rotate with respect to the first conductive particle based on a portion of the edge of the lower bottom that contacts the upper bottom,
    검사용 커넥터. Connector for inspection.
  21. 제14항에서,In paragraph 14:
    상기 제1 홈부와 상기 제2 홈부에는 상기 절연부의 일부가 채워지고,A portion of the insulating portion is filled in the first groove portion and the second groove portion,
    상기 절연부 중 상기 제1 홈부 또는 상기 제2 홈부에 채워지는 부분은, 상기 상측 밑면 및 상기 하측 밑면에 부착되어, 상기 제2 도전성 입자가 상기 제1 도전성 입자에 대해 회전할 때 탄성 변형하도록 구성되는,The part of the insulating part filled with the first groove or the second groove is attached to the upper bottom and the lower bottom and is configured to elastically deform when the second conductive particle rotates with respect to the first conductive particle. felled,
    검사용 커넥터.Connector for inspection.
PCT/KR2023/009512 2022-07-21 2023-07-05 Inspection connector WO2024019375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0090423 2022-07-21
KR1020220090423A KR20240012895A (en) 2022-07-21 2022-07-21 Test connector

Publications (1)

Publication Number Publication Date
WO2024019375A1 true WO2024019375A1 (en) 2024-01-25

Family

ID=89618217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009512 WO2024019375A1 (en) 2022-07-21 2023-07-05 Inspection connector

Country Status (3)

Country Link
KR (1) KR20240012895A (en)
TW (1) TW202405437A (en)
WO (1) WO2024019375A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149269A (en) * 2001-11-07 2003-05-21 Ibiden Co Ltd Contact sheet for inspecting semiconductor wafer
KR20100052956A (en) * 2008-11-11 2010-05-20 이재학 Test socket with pillar particle
JP2014185889A (en) * 2013-03-22 2014-10-02 Nippon Tungsten Co Ltd Probe tip member and method of using the same
KR20170127319A (en) * 2016-05-11 2017-11-21 주식회사 아이에스시 Test socket and conductive particle
KR20180035466A (en) * 2016-09-29 2018-04-06 주식회사 아이에스시 Contact pin for test and contact device for test

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149269A (en) * 2001-11-07 2003-05-21 Ibiden Co Ltd Contact sheet for inspecting semiconductor wafer
KR20100052956A (en) * 2008-11-11 2010-05-20 이재학 Test socket with pillar particle
JP2014185889A (en) * 2013-03-22 2014-10-02 Nippon Tungsten Co Ltd Probe tip member and method of using the same
KR20170127319A (en) * 2016-05-11 2017-11-21 주식회사 아이에스시 Test socket and conductive particle
KR20180035466A (en) * 2016-09-29 2018-04-06 주식회사 아이에스시 Contact pin for test and contact device for test

Also Published As

Publication number Publication date
KR20240012895A (en) 2024-01-30
TW202405437A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2015012498A1 (en) Conductive connector and manufacturing method therefor
WO2016126024A1 (en) Test socket having conductive particles in coupled form
WO2016010383A1 (en) Test socket
WO2017196094A1 (en) Testing socket and conductive particles
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
JP2002139529A (en) Electric resistance measuring connector, and electric resistance measuring device and measuring method for circuit board
WO2017196092A1 (en) Testing socket and conductive particles
JP2000241485A (en) Electric resistance measuring device and its method for circuit board
WO2017196093A1 (en) Testing socket and conductive particles
WO2016068541A1 (en) Electrical connector including porous insulation sheet having through-hole and manufacturing method therefor
US20060134378A1 (en) Anisotropic conductive sheet and its manufacturing method, adaptor device and its manufacturing method, and circuit device electric test instrument
WO2021002690A1 (en) Test socket
WO2023128428A1 (en) Test socket for signal loss protection
WO2014104782A1 (en) Test socket and socket body
WO2020022745A1 (en) Conductive sheet for test
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2024019375A1 (en) Inspection connector
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
WO2018208117A1 (en) Inspection socket
WO2013077671A1 (en) Test socket provided with stopper portion
WO2020145493A1 (en) Signal transmission connector and manufacturing method therefor
WO2015182996A1 (en) Connection connector and connection connector manufacturing method
KR102590286B1 (en) Test socket
WO2022182133A1 (en) Connector for electrical connection
WO2015030357A1 (en) Anisotropic conductive connector, manufacturing method and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843226

Country of ref document: EP

Kind code of ref document: A1