WO2024019133A1 - 多層構造腸溶性硬質カプセル - Google Patents

多層構造腸溶性硬質カプセル Download PDF

Info

Publication number
WO2024019133A1
WO2024019133A1 PCT/JP2023/026717 JP2023026717W WO2024019133A1 WO 2024019133 A1 WO2024019133 A1 WO 2024019133A1 JP 2023026717 W JP2023026717 W JP 2023026717W WO 2024019133 A1 WO2024019133 A1 WO 2024019133A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
enteric
capsule
hard capsule
multilayer
Prior art date
Application number
PCT/JP2023/026717
Other languages
English (en)
French (fr)
Inventor
慎 麻生
Original Assignee
クオリカプス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クオリカプス株式会社 filed Critical クオリカプス株式会社
Publication of WO2024019133A1 publication Critical patent/WO2024019133A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention relates to a multilayer enteric-coated hard capsule.
  • Enteric coated is one of the dosage forms of orally administered preparations, and generally refers to a pharmaceutical characteristic that makes it difficult to dissolve in the stomach. Furthermore, the formulation has the characteristic that it is easily dissolved after passing into the intestines. Enteric-coated preparations do not release the active drug ingredient in the stomach, which is a strongly acidic environment, but release the active drug ingredient after the preparation moves into the intestine. For this reason, enteric-coated preparations are mainly used to protect active drug ingredients from gastric acid or gastric enzymes, or to release active drug ingredients continuously by utilizing the time it takes for the drug to move from the stomach to the small intestine. be done.
  • enteric coated In the field of pharmaceutical formulations, "enteric coated” is used in Japan (18th Pharmacopoeia, Section 6.10 Dissolution Test Methods, Section 4.3 Enteric Coated Preparations), the United States (US Pharmacopeia Monograph ⁇ 711>Dissolution 7, Delayed-Release Dosage). It is defined almost similarly in the European Pharmacopeia (European Pharmacopeia, 2.9.3, Delayed-release dosage forms). In particular, Japan, Europe, and the United States agree on the requirement for acid resistance to the level of being virtually insoluble for 2 hours at 37°C in an acidic (approximately pH 1.2, diluted hydrochloric acid) environment. . On the other hand, the dissolution characteristics required in the intestines vary depending on whether the release target site is the small intestine, colon, or large intestine, and whether the drug release characteristics are immediate or sustained release. be.
  • an "enteric-coated" formulation that satisfies the above requirements is prepared by coating the tablet with a solution in which an enteric polymer is dissolved or dispersed (spray coating). Furthermore, when the pharmaceutical dosage form is a hard capsule, attempts have been made to impart enteric properties through coating.
  • Patent Documents 1 and 2 A method in which hard capsules filled with contents are spray coated with enteric polymer similar to tablets
  • Patent Documents 3 to 5 A method in which empty hard capsules are spray coated with enteric polymer and then filled with contents
  • Patent Document 6 the dried hard capsule film is dip-coated again using a dipping solution of an enteric or acid-resistant polymer to obtain an enteric film
  • Patent Document 7 A method of obtaining an enteric coating by applying dip coating to a commercially available hard capsule (Patent Document 7); etc. have been done.
  • Patent Document 8 Using a conventional polymer such as gelatin that is water-soluble and has high film-forming ability as the main component, and partially using an enteric polymer (Patent Document 8);
  • a gelling agent capable of imparting acid resistance such as gellan gum, is used to maintain acid resistance while improving gelling properties and film performance (patented References 11 and 12); etc. have been done.
  • the conventional technology includes the following problems.
  • the preparation process is complicated because the contents are filled and the cap and body are fitted together before the surface is coated.
  • enteric coating is applied to the surface of the capsule after the contents are filled into the capsule, the coating liquid is excessively sprayed onto the surface of the filled capsule, causing the filled capsules to stick to each other, resulting in defective products, and even if all the filled capsules are There are concerns that this could lead to a situation in which the finished capsules would have to be discarded.
  • spray coating must be carried out for a long time, resulting in poor workability.
  • the spray coating method requires application of hot air to dry the film, it is difficult to apply it to contents that are sensitive to heat. Furthermore, the burden of work due to the complexity of the preparation process falls on the manufacturer who fills the capsules, rather than the hard capsule manufacturer. This impairs the convenience of hard capsules as a pharmaceutical form.
  • gelatin is used for the inner layer, and in addition to gelatin, calcium alginate, modified cellulose derivatives such as methyl cellulose, hydroxyalkyl -It is stated that hydroxyalkyl-alkyl cellulose ethers can be used.
  • the outer layer is a layer that dissolves at pH 3.5 or higher, and is composed of "phenyl salicylate, butyl stearate, carnauba wax, shellac" or "methacrylic acid polymer, partial esters of maleic anhydride/alkene copolymers, HPMC phthalate, cellulose benzoacetate and cellulose acetate phthalate". selected from.
  • Examples of solvents used in the second layer dipping step include acetone/ethanol mixture, methylene dichloride/methanol mixture, and isopropanol/acetone mixture. It is shown that the capsule film is formed by repeating the dipping and drying process twice. Although the acid resistance of the hard capsule film is improved, the thickness of the outer layer shown is as thin as 20 to 60 ⁇ m, so there is concern that the acid resistance is weak, and the effect of the film thickness has not been shown.
  • Enteric-coated preparations also need to be water resistant, as pharmaceuticals are generally taken with water. Since enteric polymers that have become chlorinated or neutralized salts dissolve in water, there is a problem that the contents may dissolve out in the stomach.
  • the acid-resistant base does not have strict pH-responsive characteristics, so it is difficult to release the contents at the targeted site.
  • the problem is that it is difficult to control.
  • Enteric polymers that are currently in general use are dispersed or dissolved in water (aqueous) or a mixture of water and an organic solvent (organic).
  • the water-based coating liquid has nano- to micro-order enteric polymers dispersed in it, and it is possible to form a film by mixing it with a plasticizer, but it only forms a pseudo film. Therefore, it has insufficient hardness or toughness as a coating for hard capsules.
  • An object of the present invention is to provide a hard capsule with a multilayer structure consisting of a membrane comprising a first layer (inner layer) that does not have enteric properties and a second layer (outer layer) that has enteric properties.
  • the present invention includes the following embodiments.
  • Item 1. It comprises a cap part and a body part, each of the cap part and the body part being entirely or partially composed of a capsule membrane having at least a first layer and a second layer, the first layer comprising a water-soluble base. a multilayered enteric-coated hard capsule, the second layer comprising an enteric polymer, the second layer covering the entire or part of the first layer.
  • Item 2. Item 2.
  • Item 3. Item 3.
  • the multilayer enteric hard capsule according to Item 2 wherein the combined thickness of the first layer and second layer of the capsule film is 70 to 150 ⁇ m.
  • Item 4. (1) an enteric polymer having a content of 50% by mass or more when the total content of film components excluding water is 100% by mass; (2) a film forming aid; Item 2.
  • the multilayer enteric hard capsule according to Item 4 wherein the enteric polymer is one selected from the group consisting of hydroxypropyl methylcellulose acetate succinate, hydroxypropyl methylcellulose phthalate, carboxymethylethylcellulose, and mixtures thereof. .
  • the proportion of neutralized acid residues in the enteric polymer in the capsule film is 0.0%, when the number of moles (base number) of acid residues in the enteric polymer before neutralization is taken as 100%.
  • Item 5. The multilayer enteric-coated hard capsule according to Item 4, wherein the enteric-coated hard capsule has a content of 0.01% or less. Section 7.
  • Item 5. The multilayer enteric hard capsule according to Item 4, wherein the film forming aid is at least one selected from the group consisting of a plasticizer, a surfactant, and a surface modifier. Section 8. 8.
  • Item 9. Item 2. The multilayer enteric hard capsule according to Item 1, wherein the water-soluble base is hydroxypropyl methylcellulose, gelatin, pullulan, or polyvinyl alcohol.
  • the multilayer enteric hard capsule according to Item 10 wherein the dissolution rate of the contents filled in the capsule after 2 hours is less than 1% in a dissolution test using a solution having a pH of 5.0 or 6.0.
  • Item 11. The multilayer enteric hard capsule according to Item 10, wherein the dissolution rate of the contents filled in the capsule after 30 minutes is 80% or more in a dissolution test using a solution having a pH of 6.8.
  • the second layer of the multilayer enteric hard capsule according to item 1 in which an enteric polymer or a solid component containing an enteric polymer and a film-forming aid is dissolved or dispersed in a mixed solvent of water and a hydrophilic organic solvent.
  • a second layer immersion liquid for forming a second layer wherein the proportion of anhydrous ethanol in the mixed solvent is 50% by mass or more and 95% by mass or less, and the shear viscosity of the second layer immersion liquid is 150 cP at 25°C.
  • the above is the second layer dipping liquid.
  • Item 15 wherein the content of the neutralizing agent contained in the second layer immersion liquid is 0.01% by mass or less when the entire second layer immersion liquid is 100% by mass. Immersion liquid. Section 18.
  • Item 16 The immersion liquid for the second layer according to Item 15, wherein the hydrophilic organic solvent is at least one selected from the group consisting of anhydrous ethanol, 2-propanol, and acetone.
  • Item 19 preparing a hard capsule for the first layer of the multilayer enteric hard capsule; The hard capsule for the first layer is immersed in the immersion liquid for the second layer according to item 14, the hard capsule for the first layer is taken out from the immersion liquid for the second layer, and the hard capsule for the first layer is immersed in the immersion liquid for the second layer according to item 14.
  • a method for producing a multilayered enteric-coated hard capsule comprising: Section 20. 20. The manufacturing method according to item 19, wherein the step of molding the second layer is performed multiple times.
  • a certain effect of the present invention is that the first layer includes as a base at least one selected from the group consisting of HPMC, gelatin, polyvinyl alcohol, and pullulan, which are immediate release bases, and the second layer includes an enteric polymer. It is possible to provide a multilayer structure hard capsule consisting of a capsule membrane having two layers.
  • One advantage of the present invention is that the second layer of enteric polymer can be formed without the use of a gelling agent.
  • An advantage of the present invention is that the multilayer enteric hard capsule can be filled using conventionally used capsule filling machines. According to the present invention, the dissolution rate in solutions with pH 4.0 to pH 6.0 is reduced.
  • FIG. 2 is a schematic diagram showing an example of the structure of second layers 11 and 21 and first layers 12 and 22 that constitute a capsule membrane of a multilayer enteric hard capsule.
  • A shows an embodiment in which the second layer covers the entire first layer of the cap and body.
  • B shows an embodiment in which the vicinity of the cut plane of the cap and body is composed of only the first layer, and the second layer covers the entire surface of the first layer other than that.
  • C shows an embodiment in which the portion of the body covered by the cap is composed of only the first layer.
  • An example of a multilayer enteric hard capsule sealed with a band seal is shown.
  • A) is an example in which a band seal is applied to the configuration of FIG. 2(A).
  • FIG. (B) is an example of the configuration shown in Figure 2 (B) with a band seal applied.
  • An optical microscope image of a cross section of a multilayered enteric-coated capsule without band sealing is shown.
  • An optical microscope image of a cross section of a band-sealed multilayer enteric capsule is shown.
  • the results of evaluating the solubility of each enteric polymer in water/absolute ethanol are shown.
  • the results of evaluating the solubility of each enteric polymer in water/hydrophilic organic solvent are shown.
  • the results of a dissolution test of a multilayer enteric-coated hard capsule are shown.
  • the results of a dissolution test of a multilayer enteric-coated hard capsule are shown.
  • the structure of a multilayer enteric hard capsule in which the second layer is composed of multiple layers and the results of a dissolution test are shown.
  • the structure of a multilayer enteric hard capsule in which the second layer is composed of multiple layers and the results of a dissolution test are shown.
  • 1 shows the dissolution rate of the multilayer enteric hard capsule according to the present disclosure in water, a pH 5.0 solution, or a pH 6.0 solution.
  • This figure shows the dissolution rate in water, a pH 5.0 solution, or a pH 6.0 solution of a multilayer enteric hard capsule having an outer layer prepared by dissolving an enteric polymer by alkali neutralization.
  • the ammonium ion concentration of the hard capsule coatings of Comparative Examples and Examples and the degree of neutralization of the carboxyl group of the base material contained in the coatings are shown.
  • a multilayer structure enteric coated hard capsule (sometimes simply referred to as a "hard capsule") has a capsule coating portion at least partially including a first layer and a second layer.
  • a "hard capsule” is an empty capsule for filling the manufactured capsule membrane with contents.
  • Hard capsules are also commonly referred to as two-piece capsules. These capsules are prepared by the so-called dipping method, in which a mold pin is immersed in a capsule preparation liquid, pulled up, and the capsule preparation liquid adhering to the mold pin is dried.
  • the hard capsule consists of a cap part 1 made of a capsule membrane and a body part 2, and the cap part and the body part are fitted together to prevent the contents filled inside from leaking out of the capsule. do.
  • An overlapping portion formed by fitting the cap portion and the body portion is called a fitting portion 3 (indicated by double-headed arrows in FIG. 1).
  • the "hard capsule” in the present invention has the same or similar shape as a conventional hard capsule commercially available, intended for oral administration to human or animal subjects.
  • the "hard capsules” of the present disclosure include soft capsules manufactured by filling the contents between two films and adhering the films together, and seamless capsules manufactured by dropping the contents into a coagulation liquid together with a coating solution. It does not include capsules or microcapsules prepared by incorporating active ingredients into the interior by precipitation or emulsification of a base. Furthermore, in the present disclosure, an empty hard capsule is simply referred to as a hard capsule or a capsule, and a filled capsule is referred to as a "hard capsule.”
  • the "hard capsule” is defined as, for example, as illustrated in FIG. 2, the capsule film of the cap portion 1 includes at least a second layer 11 and a first layer 12 in whole or in part. Further, the entire or part of the film of the body portion 2 includes at least the second layer 21 and the first layer 22.
  • the "first layer” is intended to be the side that comes into contact with the filling.
  • the “second layer” covers the entire or part of the outside of the first layer. Furthermore, the "second layer” may be composed of multiple layers.
  • the cap portion and the body portion may have the same or different layer structures. That is, in the present disclosure, the entire or part of the capsule coating of the hard capsule has a multilayer structure, preferably a two-layer structure. FIG.
  • the cap portion 1 and the body portion 2 are each prepared by a dipping method as described later, and after drying, the opening portion is cut.
  • the tip (end) of the cut portion of the capsule film of the cap portion 1 is represented by the reference numeral 15
  • the tip (end) of the cut portion of the capsule film of the body portion 2 is represented by the reference numeral 25 (see FIG. 1).
  • FIG. 2(A) shows an embodiment of a multilayer structure in which the entire first layer 12, 22 is substantially covered with the second layer 11, 21.
  • the second layers 11, 21 substantially cover the first layers 12, 22 up to (or beyond) the end 15 of the cap part 1 and the end 25 of the body part 2. .
  • “Substantially” indicates that some of the first layers 12, 22 of the end portions 15, 25 may have unintended uncovered portions.
  • FIG. 2(B) shows a multilayer structure in which the second layers 11 and 21 do not reach the ends 15 and 25 of the first layers 12 and 22 in the cap part 1 and the body part 2. However, at least the second layers 11 and 21 reach the fitting portion 3 of the first layers 12 and 22. Such an embodiment is useful because after drying, the opening portion is cut and the capsule film removed by cutting can be reused. Note that although FIG. 2B shows a state in which the first layers 12 and 22 of the cap part 1 and the body part 2 are covered with the second layers 11 and 21 to the same extent, The lengths of the non-covered portion of the first layer 12 and the non-covered portion of the first layer 22 in the body portion 2 may be different.
  • FIG. 2(C) shows an embodiment in which the multilayer structure in the cap part 1 and the multilayer structure in the body part 2 are different.
  • the cap part although the same multilayer structure as the cap part 1 shown in FIG. 2(B) is shown as an example, it may have the same multilayer structure as the cap part 1 shown in FIG. 2(B).
  • the first layer 22 of the fitting part 3 is not substantially covered with the second layer 21.
  • substantially means that the second layer 21 may be unintentionally attached to the first layer 22 of the fitting part 3.
  • the first layer 22 may have a portion not covered by the second layer 21 not only in the fitting portion 3 but also in a predetermined range distal from the end 15 of the cap portion 1. .
  • the predetermined range is, for example, a range of about 50 ⁇ m to 3000 ⁇ m from the end portion 15.
  • the capsule film structure shown in FIG. 2(B) is more preferable than the capsule film structure shown in FIG. 2(C), and the capsule film structure shown in FIG. 2(A) is even more preferable.
  • FIG. 2 shows an example in which the cap part and the body part have the same structure.
  • the cap portion shown in FIG. 2(A) and the body portion shown in FIG. 2(B) or FIG. 2(C) may be combined.
  • the cap portion shown in FIG. 2(B) and the body portion shown in FIG. 2(A) or FIG. 2(C) may be combined.
  • enterric-coated hard capsule refers to a hard capsule whose capsule body film itself has “enteric-coated” characteristics that meet the following conditions.
  • enteric coating refers to a property that satisfies at least the following condition (i).
  • enteric coating refers to a property that satisfies at least the following condition (i).
  • the test subject is immersed in the first solution at 37°C ⁇ 0.5°C for 2 hours.
  • the dissolution rate of the contents is 10% or less, preferably 5% or less, more preferably 2% or less, and still more preferably less than 1%.
  • the pH of the first liquid is approximately 1.2.
  • the first liquid can be prepared, for example, by adding 7.0 ml of hydrochloric acid and water to 2.0 g of sodium chloride to make 1000 ml.
  • the dissolution pH of enteric polymers is strictly controlled, and it is preferable that they do not dissolve below the dissolution pH.
  • HPMCAS-L which is expected to dissolve in the small intestine, dissolves at pH 5.5 or higher, but does not dissolve at pH 5.0 or lower. Therefore, in the dissolution test, the dissolution rate of the contents when the test subject is immersed in a pH 5.0 solution at 37°C ⁇ 0.5°C for 2 hours is 10% or less, preferably 5% or less, more preferably 2%. The content is preferably less than 1%.
  • a solution with pH 5.0 can be prepared using, for example, 0.05 mol/L sodium monohydrogen phosphate and 0.025 mol/L citric acid.
  • HPMCAS-H which is expected to dissolve in the large intestine, dissolves at pH 6.5 or higher, but does not dissolve at pH 6.0 or lower. Therefore, in the dissolution test, the dissolution rate of the contents when the test subject is immersed in a pH 6.0 solution at 37°C ⁇ 0.5°C for 2 hours is 10% or less, preferably 5% or less, more preferably 2%. The content is preferably less than 1%.
  • a solution with pH 6.0 can be prepared using, for example, 0.05 mol/L sodium monohydrogen phosphate and 0.025 mol/L citric acid.
  • the enteric polymer since pharmaceuticals are generally taken with water, it is preferable that the enteric polymer also has water resistance so that it can be dissolved at any site. Therefore, in the dissolution test, the dissolution rate of the contents when the test subject is immersed in purified water at 37°C ⁇ 0.5°C for 2 hours is 10% or less, preferably 5% or less, more preferably 2% or less, and Preferably it is less than 1%.
  • Enteric coated preferably satisfies the condition (ii) below in addition to the condition (i) above.
  • the pH of the second liquid is approximately 6.8.
  • the second solution can be prepared, for example, by adding 118 ml of 0.2 mol/l sodium hydroxide test solution and water to 250 ml of 0.2 mol/l potassium dihydrogen phosphate test solution to make 1000 ml.
  • the dissolution test was performed using the dissolution test method specified in the 18th Pharmacopoeia (18th Pharmacopoeia, 6.10-1.2 paddle method (paddle rotation speed 50 revolutions/min) and the use of sinkers corresponding to each size). It can be tested according to the following.
  • the contents used in the dissolution test are not limited as long as they are quickly dissolved in the test solution and can be quantified by a known method.
  • acetaminophen can be mentioned.
  • multilayer enteric-coated hard capsules include size 000, size 00, size 0, size 1, size 2, size 3, size 4, size 5, size 9, etc., just like the hard capsules currently on the market. According to the present invention, multilayer enteric-coated hard capsules of any size can be prepared.
  • the first layer 12, 22 of the multilayer enteric hard capsule is composed of a membrane used in general hard capsules.
  • a typical hard capsule has a capsule membrane that dissolves in the stomach and the contents are eluted.
  • the test subject was immersed in the first liquid at 37°C ⁇ 0.5°C for 30 minutes.
  • the dissolution rate of the contents is 80% or more.
  • the films constituting the first layers 12 and 22 contain a water-soluble base as a base.
  • the water-soluble base is a polymeric compound, and includes, for example, a water-soluble cellulose compound, gelatin, pullulan, polyvinyl alcohol, polyvinyl alcohol copolymer, and mixtures thereof.
  • Preferred water-soluble bases are hydroxypropylmethylcellulose or gelatin.
  • the hydroxypropyl methylcellulose used in the present invention includes hypromellose of substitution grade (type) 2910, 2906, and 2208 as defined in the 18th Pharmacopoeia. Furthermore, the hydroxypropyl methylcellulose of the present invention includes hypromellose, which is approved for use as a food additive in Japan.
  • hydroxypropyl methylcellulose includes Shin-Etsu Chemical's Japanese Pharmacopoeia METOLOSE (registered trademark) series, food additive Metrose (registered trademark) series, and Lotte Fine Chemicals' AnyCoat-C and AnyAddy (registered trademark). ) series, IFF's METHOCEL (trademark) series, Ashland's Benecel (trademark) series, and the like.
  • the water-soluble base is hydroxypropyl methylcellulose
  • a gelling agent or a gelling agent and a gelling aid can be used to form the film that constitutes the first layers 12 and 22.
  • gelling agent examples include those that can gel the hard capsule preparation liquid in combination with a gelling aid such as carrageenan and gellan gum. These can be used alone or in combination of two types.
  • carrageenan is the most suitable gelling agent because it has high gel strength and exhibits excellent gelling properties even when used in small amounts in the coexistence of specific ions.
  • three types of carrageenan are generally known: kappa-carrageenan, iota-carrageenan, and lambda-carrageenan.
  • kappa and iota-carrageenan having relatively high hardness and gelation ability can be preferably used, and kappa-carrageenan can be more preferably used.
  • Gellan gum can also be classified into acylated gellan gum (native gellan gum) and deacylated gellan gum depending on the presence or absence of acylation, but both can be used without distinction in the present invention.
  • carrageenans include CP Kelco's GENUGEL (registered trademark) series, GENUVISCO (registered trademark) series, GENULACTA (registered trademark) series, GENU (registered trademark) series, GENUTINE (registered trademark) series, Mitsubishi Examples include Soagina (trademark) and Soar Ace (trademark) by Chemical Company, Gelcarin (registered trademark) series, SeaSpen (registered trademark) series, and Viscarin (registered trademark) series by IFF.
  • gellan gums include the KELCOGEL (registered trademark) series manufactured by CP Kelco, the NEWGELIN (registered trademark) series manufactured by Mitsubishi Corporation Life Sciences, and the like.
  • the content of the gelling agent in the film constituting the first layers 12, 22 is not limited as long as the film can be molded by a cold gel method.
  • the content of the gelling agent is 0.05 to 10% by mass, preferably 0.1 to 5.0% when the total component of the film constituting the first layer 12, 22 excluding water is 100% by mass. % by mass, more preferably 0.2 to 2.5% by mass.
  • the gelling aid can be selected depending on the type of gelling agent used.
  • the gelling aid has the effect of promoting gelation of the gelling agent. Alternatively, it may contribute to promoting gelation by directly acting on the cellulose compound to raise or lower the gelation temperature or cloud point temperature.
  • gelling aids that can be used in combination include one or more of sodium ions, potassium ions, ammonium ions, and calcium ions in an aqueous solution for kappa-carrageenan. Mention may be made of the compounds that can be produced, such as sodium chloride, potassium chloride, potassium phosphate, ammonium chloride, ammonium acetate, calcium chloride.
  • it is a compound that generates sodium ions, potassium ions, or calcium ions in an aqueous solution.
  • iota-carrageenan mention may be made, for example, of calcium chloride, which can provide calcium ions in water.
  • gelling aids that can be used in combination when gellan gum is used as a gelling agent include compounds that can provide one or more of sodium ions, potassium ions, calcium ions, and magnesium ions in water. , for example, sodium chloride, potassium chloride, calcium chloride, magnesium sulfate.
  • citric acid or sodium citrate can also be used as an organic acid or its water-soluble salt.
  • the content of the gelling aid in the films constituting the first layers 12 and 22 may be set depending on the content of the gelling agent.
  • the content of the gelling aid is 0.05 to 10% by mass, preferably 0.1 to 5% by mass, when the total of the film components excluding water in the films constituting the first layers 12 and 22 is 100% by mass. 0.0% by weight, more preferably 0.2 to 2.5% by weight.
  • preferred examples of the gelling agent used in combination include carrageenan, particularly kappa-carrageenan, and potassium chloride as the gelling aid used together with the carrageenan.
  • the content of hydroxypropyl methyl cellulose in the films constituting the first layers 12 and 22 is based on the gelling agent, assuming that the total of the film components in the films constituting the first layers 12 and 22 excluding water is 100% by mass. ; Gelling agent and gelling auxiliary agent; This is the remainder excluding the contents of the plasticizer, lubricant, coloring agent, and light shielding agent, which will be described later.
  • Hard capsules based on hydroxypropyl methylcellulose are known and also available on a commercial basis.
  • hard capsules based on hydroxypropyl methylcellulose include Quali-V (registered trademark, Qualicaps), Vcaps series (registered trademark, Lonza), Embocaps VG series (registered trademark, Sohun), ACGCAPS series (trademark, ACG ) etc.
  • the gelatin used in this disclosure is animal-derived gelatin, and gelatin-based hard capsules are well known and commercially available.
  • Hard capsules containing pullulan, polyvinyl alcohol, or polyvinyl alcohol copolymer as a base are known.
  • Hard capsules that are commercially available include Plantcaps (trademark, Capsugel Co., Ltd.), which is a pullulan capsule, and PONDAC (trademark, Daido Kasei Kogyo Co., Ltd.), which is a polyvinyl alcohol copolymer capsule.
  • the films constituting the first layers 12 and 22 may contain a plasticizer, a lubricant, a coloring agent, a light shielding agent, and residual moisture in addition to a water-soluble base, a gelling agent, a gelling aid, and the like. can.
  • the film forming the first layer 12, 22 contains a plasticizer, a lubricant, a coloring agent, a light shielding agent, etc., the sum of the components other than the residual solvent component in the film forming the first layer 12, 22.
  • the mass is 100% by mass, it is 10% by mass or less, preferably 8% by mass or less, more preferably 6% by mass or less.
  • the plasticizer is not particularly limited as long as it can be used in pharmaceutical or food compositions, but suitable substances generally have a molecular weight (Mw) of 100 to 20,000 and contain one or more plasticizers in one molecule. It has a hydrophilic group such as a hydroxyl group, an ester group, or an amino group.
  • dioctyl adipate dioctyl adipate, polyester adipate, epoxidized soybean oil, epoxyhexahydrophthalic acid diester, kaolin, triethyl citrate, glycerin, glycerin fatty acid ester, sesame oil, dimethylpolysiloxane/silicon dioxide mixture, D-sorbitol, medium chain Fatty acid triglyceride, sugar alcohol solution derived from corn starch, triacetin, concentrated glycerin, castor oil, phytosterol, diethyl phthalate, dioctyl phthalate, dibutyl phthalate, butylphthalyl butyl glycolate, propylene glycol, polyoxyethylene (105) polyoxy Propylene (5) glycol, polysorbate 80, macrogol 1500, macrogol 400, macrogol 4000, macrogol 600, macrogol 6000, isopropyl myristate, cottonseed oil/soybean oil mixture,
  • the lubricant is not particularly limited as long as it can be used in pharmaceutical or food compositions.
  • examples include calcium stearate, magnesium stearate, sodium stearyl fumarate, carnauba wax, starch, sucrose fatty acid ester, light silicic anhydride, macrogol, talc, and hydrogenated vegetable oil.
  • the colorant and light shielding agent are not particularly limited as long as they can be used in pharmaceutical or food compositions.
  • acaenia tannin powder for example, acaenia tannin powder, turmeric extract, methylrosaniline chloride, yellow iron oxide, yellow iron sesquioxide, Opaspray K-1-24904, orange essence, brown iron oxide, carbon black, caramel, carmine, carotene liquid, ⁇ -carotene.
  • Photosensor No. 201 licorice extract, gold leaf, Kumazasa extract, black iron oxide, light silicic anhydride, keketsu, zinc oxide, titanium oxide, calcium carbonate, iron sesquioxide, disazo yellow, food blue No. 1 and its aluminum lake, Food Blue No. 2 and its aluminum lake, Food Yellow No.
  • talc Copper chlorophyne sodium, copper chlorophyll, Hadakamium green tea extract powder, Hadakamium green tea extract, phenol red, sodium fluorescein, d-borneol, malachite green, octyldodecyl myristate, methylene blue, medicinal charcoal, riboflavin butyrate, riboflavin, green tea powder,
  • Examples include manganese ammonium phosphate, sodium riboflavin phosphate, rose oil, turmeric pigment, chlorophyll, carminic acid pigment, and water-soluble annatto.
  • Second layer 11, 21 The second layers 11, 21, as described above, impart enteric properties to the hard capsule of the present disclosure.
  • the hard capsules forming the first layers 12 and 22 are immersed in a second layer dipping solution containing an enteric polymer by a dipping method, pulled up, and dried to form a film forming the second layers 11 and 21. It can be applied by forming.
  • the enteric polymer used in the present invention is an enteric cellulose compound (polymer). Specifically, it refers to a compound in which the hydrogen atom of a hydroxyl group in cellulose is etherified with phthalic acid, acetic acid, succinic acid, etc. containing a carboxyl group.
  • enteric cellulose compounds include hydroxypropylmethylcellulose acetate succinate (HPMCAS), hydroxypropylmethylcellulose phthalate (HPMCP), and carboxymethylethylcellulose (CMEC).
  • HPMCAS is also called hypromellose acetate succinate, hypromellose acetate succinate, and is produced by reacting HPMC (hypromellose) with acetic anhydride and succinic anhydride to form an acetyl group (-COCH 3 ) and succinoyl ( A group (-COC 2 H 4 COOH) (also referred to as “succinyl” or “succinyl”) is introduced.
  • HPMCAS products are available, for example, from Shin-Etsu Chemical as AQOAT (registered trademark) series products.
  • the series includes three substitution grades: AS-L, AS-M, and AS-H, depending on the degree of substitution of the succinoyl group and the acetyl group.
  • the succinoyl group content decreases in the order of grades (L, M, or H), while the acetyl group content is controlled to increase, and the dissolution pH is set to increase.
  • the dissolution pH of AS-L, M, and H is approximately pH 5.5, pH 6.0, and pH 6.5, respectively.
  • AS-L, M, and H are available as granular AS-LG, MG, and HG, and AS-LF, MF, and HF with an average particle size of 10 ⁇ m or less.
  • AS-LG, MG, and HG are preferred. Products with various degrees of substitution are available from Ashland as part of the AquaSolve® series.
  • HPMCP is also called hypromellose phthalate ester, and is obtained by reacting HPMC (hypromellose) with phthalic anhydride to give it enteric properties, and the dissolution pH can change depending on the amount of carboxybenzoyl group bonded.
  • the carboxybenzoyl group itself is hydrophobic and exhibits acid resistance, whereas the carboxybenzoyl group dissociates and dissolves in a weakly acidic to neutral region.
  • HP-55 substitution degree type 200731
  • HP-50 substitution degree type 220824
  • HP-55S which has a high degree of strength and excellent film strength, is available. Note that the dissolution pH of HP-50 and HP-55 is approximately pH 5.0 and pH 5.5, respectively.
  • CMEC also called carboxymethylethyl cellulose
  • carboxymethylethyl cellulose is an ether obtained by partially carboxymethylating and ethylating the hydroxyl groups of cellulose. Since it is difficult to dissolve at low pH and dissolves at high pH, it is used as an enteric polymer.
  • An example product is CMEC® available from Freund Industries.
  • the enteric polymer is preferably one selected from the group consisting of HPMCAS, HPMCP, CMEC, and mixtures thereof, and more preferably HPMCAS.
  • the enteric polymer is not substantially neutralized in the capsule film and in the second layer dipping solution.
  • Acid residues such as carboxyl groups contained in the enteric polymer are neutralized by a compound that exhibits alkalinity in water.
  • carboxyl groups when carboxyl groups are neutralized with NaOH, KOH, NH3 , they can stably exist in the capsule film or in the second layer dipping solution as chlorinated groups such as -COONa, -COOK, -COONH4 .
  • Substantially not neutralized means that the proportion of these neutralized acid residues is, for example, when the number of moles (base number) of acid residues before neutralization contained in the enteric polymer is 100%. 0.01% or less, 0.001% or less, 0.0001% or less, 0.00001% or less, 0.000001% or less, 0.000001% or less.
  • the content of the neutralizing agent contained per 100 g of the film including the first layer 12, 22 and the second layer 11, 21 is 0.06 g or less, preferably 0.01 g or less. , more preferably 0.001 g or less, still more preferably 0.001 g or less.
  • a film forming aid may be added to the film constituting the second layer 11, 21.
  • the film forming aid triethyl citrate (TEC), talc, sodium lauryl sulfate (SLS), and mixtures thereof may be used.
  • TEC triethyl citrate
  • SLS sodium lauryl sulfate
  • the content of each component is, for example, as follows.
  • TEC triethyl citrate
  • talc sodium lauryl sulfate
  • SLS sodium lauryl sulfate
  • the content of each component is, for example, as follows.
  • TEC is selected, it is specifically 5% by mass or more and 20% by mass or less
  • talc it is specifically 5% by mass or more and 40% by mass or less
  • sodium lauryl sulfate. is selected, it is 1% by mass or more and 3% by mass or less.
  • the film constituting the second layers 11 and 21 may contain a plasticizer, a lubricant, a colorant, a light shielding agent, a residual solvent, and the like.
  • Plasticizers, lubricants, colorants, and light shielding agents are those listed in 1. above. Those exemplified in (1) can be used in the exemplified contents.
  • the content of the enteric polymer in the film constituting the second layers 11, 21 is based on the gelling agent, assuming that the total of the film components in the films constituting the second layers 11, 21 excluding water is 100% by mass. ; gelling agent and gelling aid; the remainder excluding the content of plasticizer, lubricant, coloring agent, and light shielding agent.
  • the residual solvent after the capsule film is prepared is preferably 0.5% by mass or less, when the mass of the capsule film is 100% by mass.
  • the thickness of the film of the multilayer enteric hard capsule (including the first layer and the second layer) is usually 50 to 250 ⁇ m, preferably 70 to 150 ⁇ m, more preferably It is 80 to 120 ⁇ m.
  • the thickness of the first layer 12, 22 is 20 to 160 ⁇ m, more preferably 40 to 130 ⁇ m, and even more preferably 60 to 120 ⁇ m.
  • the film thickness of the film constituting the second layer 11, 21 is 20 to 100 ⁇ m, preferably 30 to 75 ⁇ m, and more preferably 30 to 70 ⁇ m.
  • the first layer has a thickness of 20 to 50 ⁇ m
  • the second layer has a thickness of 50 to 100 ⁇ m
  • the total thickness of the first and second layers is 70 to 150 ⁇ m. It is preferable to have a thickness of .
  • the first layer has a thickness of 50 to 100 ⁇ m
  • the second layer has a thickness of 20 to 50 ⁇ m
  • the first layer and the second layer have a thickness of 70 ⁇ m in total.
  • it has a thickness of ⁇ 150 ⁇ m.
  • Immersion liquid for preparing a hard capsule film (1) Immersion liquid for the first layer Since the first layers 12 and 22 are known hard capsule films, the immersion liquid for forming the first layers 12 and 22 (hereinafter referred to as , referred to as "first layer immersion liquid”) are well known.
  • the immersion liquid for the first layer is prepared by dissolving components other than the gelling agent, gelling aid, and water-soluble base as necessary in purified water heated to about 70 to 80°C, and then adding HPMC or gelatin. It can be prepared by dissolving a substance selected from the following and cooling it to the desired temperature of the immersion liquid (usually 35 to 65°C, more preferably 40 to 60°C).
  • Second layer immersion liquid The immersion liquid for forming the second layers 11 and 21 (hereinafter referred to as "second layer immersion liquid”) can be prepared by the following method. Since the enteric polymer is insoluble in purified water, a solvent containing a hydrophilic organic solvent is used to obtain a uniform solution. Purified water is water that has been "purified” by a system such as ion exchange, distillation, reverse osmosis, or ultrafiltration alone or in combination.
  • the hydrophilic organic solvent is not particularly limited as long as it can be used in pharmaceutical or food compositions, and examples thereof include ethanol, acetone, 1-propanol, 2-propanol, diethyl ether, dichloromethane, and methanol.
  • the hydrophilic organic solvent is preferably ethanol, and the ethanol is preferably anhydrous ethanol.
  • the hydrophilic organic solvent has a low risk to human health.
  • ethanol, acetone, and 2-propanol which are solvents that should be regulated by GMP or other quality standards and fall under Class 3 (18th Japanese Pharmacopoeia, 2.46 Residual Solvents), are preferred.
  • the second layer dipping solution is prepared by adding an enteric polymer or a solid component containing an enteric polymer and a film-forming aid to a mixed solvent of water at room temperature and a hydrophilic organic solvent, and then stirring for several hours to form an enteric polymer. They can be prepared by dissolving or dispersing solid components including polymers or enteric polymers and film-forming aids.
  • the content of the enteric polymer in the second layer dipping liquid is 10% by mass or more and 30% by mass or less, preferably 11% by mass or more and 25% by mass or less, when the second layer dipping solution is 100% by mass. , more preferably 13% by mass or more and 20% by mass or less.
  • the solvent of the second layer immersion liquid is preferably a mixed solvent of water and anhydrous ethanol, and the ethanol ratio in the mixed solvent (the ethanol content indicates the ethanol content converted to anhydrous ethanol) is Specifically, the content is 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 93% by mass or less, and more preferably 70% by mass or more and 90% by mass or less.
  • the immersion liquid for the second layer does not substantially contain a neutralizing agent such as an alkaline substance.
  • a neutralizing agent such as an alkaline substance.
  • the neutralizing agent include potassium hydroxide, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and ammonia.
  • Substantially not containing a neutralizing agent such as an alkaline substance means 0.01% by mass or less, 0.001% by mass or less, or 0.0001% by mass or less when the entire second layer immersion liquid is 100% by mass. % by mass or less.
  • the shear viscosity of the second layer immersion liquid at 25° C. and a shear rate of 1 sec -1 is specifically 150 cP or more and 10,000 cP or less, preferably 300 cP or more and 5,000 cP or less.
  • the present disclosure relates to a molding method for making a multilayer enteric hard capsule.
  • Molding of the first layer The first layers 12 and 22 of the multilayer enteric hard capsule can be molded by a dipping method similar to the preparation method of hard capsules using a general water-soluble base. . Above 2.
  • a mold pin capsule molding pin
  • the temperature of the first layer dipping liquid that adheres to it when pulled up is lowered.
  • the desired capsule shape and thickness are obtained by thickening and drying. After drying, the film of a typical hard capsule is pulled out by a mold pin and cut into a predetermined length, but in the multilayer structure enteric hard capsule, this cutting is performed after forming the second layer in the next step. I do.
  • the first layer of the multilayer enteric hard capsule may be a commercially available hard capsule containing a water-soluble base. Further, it is not necessary that the same facility performs molding of the first layer and molding of the second layer, which will be described later. Therefore, in this specification, including the molding of the hard capsule for the first layer, the purchase of the hard capsule for the first layer, and the acquisition of the hard capsule for the first layer from other facilities, "Prepare hard capsules.”
  • the molding of the second layers 11 and 21 of the multilayer enteric hard capsule is also performed by the dipping method. Above 3.
  • the hard capsule for the first layer prepared in (1) was combined with the hard capsule for the first layer prepared in step (1) above.
  • the entire outside or part of the outside of the first layer hard capsule is immersed in the second layer immersion liquid described in (2), and the first layer hard capsule is taken out from the second layer immersion liquid.
  • the immersion liquid for the second layer is attached to the hard capsule for the first layer.
  • the required film thickness of the second layer dipping liquid is thinner than that of the first layer, so the amount of adhesion is small, and the hydrophilic organic solvent used as the solvent dries quickly and thickens rapidly, so that the desired thickness can be achieved.
  • the mixed solvent in the second layer immersion liquid adhering to the first layer hard capsule is removed, and the second layer of the hard capsule of the multilayer enteric hard capsule is molded.
  • the mixed solvent is preferably removed by drying, more preferably at room temperature (about 18° C. to 30° C.).
  • the second layer can be made into a multilayer structure by repeating the dipping process multiple times using a second layer dipping liquid with the same composition or a second layer dipping liquid with a different composition. , the thickness of the second layer can be adjusted to a desired thickness.
  • the film of the dried multilayer enteric hard capsule is pulled out from the mold pin and cut into a predetermined length.
  • a capsule filling machine known per se such as a fully automatic capsule filling machine (model name: LIQFIL super 80/150, Qualicaps (model name: LIQFIL super 80/150, Qualicaps).
  • a capsule filling/sealing machine model name: LIQFILsuperFS, manufactured by Qualicaps Co., Ltd.
  • a capsule filling/sealing machine model name: LIQFILsuperFS, manufactured by Qualicaps Co., Ltd.
  • a capsule filling/sealing machine model name: LIQFILsuperFS, manufactured by Qualicaps Co., Ltd.
  • the body part and the cap part of the hard capsule obtained in this way are bonded by filling the body part with the contents and then covering the body part with the cap part and fitting them together. Obtain capsules.
  • the hard capsule can be made tamper-proof by using a suitable technique for sealing at least the end 15 of the cap part 1 and the body part 2.
  • sealing or banding techniques are used, as shown in FIG. FIG. 3(A) is an example in which a band seal is applied to the configuration of FIG. 2(A).
  • FIG. 3(B) is an example in which a band seal is applied to the configuration of FIG. 2(B).
  • a sealing agent of a polymer solution is applied once to multiple times, preferably on the surface of the body portion and the surface of the cap portion in the circumferential direction of the body portion and the cap portion in a constant width centered on the end portion 15 of the cap portion 1.
  • the fitting portion can be sealed to form an enteric-coated hard capsule.
  • the polymer solution a solution in which the enteric polymer is dispersed in water or dissolved in a mixed solvent of water and a hydrophilic organic solvent can be used.
  • the band seal preparation solution can generally be used at room temperature or under heating. From the viewpoint of preventing leakage of the hard capsule, it is desirable to use a seal preparation liquid having a temperature range of preferably about 23 to 45°C, more preferably about 23 to 35°C, and most preferably about 25 to 35°C.
  • the temperature of the seal preparation liquid can be controlled by a method known per se, such as using a panel heater or a hot water heater. It is preferable to adjust the temperature using a modified hot water heater or the like because the temperature range can be finely adjusted.
  • the enteric-coated hard capsule formulation of the present invention obtained in this manner When the enteric-coated hard capsule formulation of the present invention obtained in this manner is administered and ingested into the human or animal body, it exhibits acid resistance in the stomach and mainly passes into the intestine where the capsule coating dissolves and the contents are released. Designed to be released. For this reason, it is suitable as a preparation for filling pharmaceuticals and foods whose release in the stomach is undesirable.
  • Gelatin Gelatin used was 230NV manufactured by Nitta Gelatin Co., Ltd. (hereinafter referred to as "gelatin").
  • the nonionic water-soluble cellulose compound hydroxypropyl methyl cellulose was a combination of Shin-Etsu Chemical Co., Ltd.'s TC-5M and TC-5R series, or a substitution grade of 2208 (viscosity grade of 4.0) was used. (Hereinafter referred to as "TC-5M” and “TC-5R” respectively).
  • Polyvinyl Alcohol As polyvinyl alcohol, EG-05P manufactured by Mitsubishi Chemical Corporation was used (hereinafter sometimes referred to as “EG-05P” or "PVA").
  • Gelling agent The gelling agent used was CP Kelco's Genugel SWG-J (hereinafter referred to as "CA”) as ⁇ -carrageenan, and the gelling agent used potassium chloride (hereinafter referred to as "KCl”). ).
  • CA CP Kelco's Genugel SWG-J
  • KCl potassium chloride
  • GE KELCOGEL (registered trademark) manufactured by CP Kelco was used (hereinafter referred to as "GE”).
  • Solvent ethanol Anhydrous ethanol “Nikko” manufactured by Nikko Pharmaceutical Co., Ltd. was used (hereinafter referred to as "EtOH”).
  • the acetone used was for pharmaceutical testing, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • 2-propanol used was for pharmaceutical testing manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. (hereinafter referred to as "IPA”).
  • the ammonia water used was for pharmaceutical testing, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Tipeque A-100 manufactured by Ishihara Sangyo Co., Ltd. was used (hereinafter referred to as "TiO 2 ").
  • TiO 2 Tipeque A-100 manufactured by Ishihara Sangyo Co., Ltd.
  • talc MICRO ACE P-3 manufactured by Nippon Talc Co., Ltd. was used (hereinafter referred to as "Talc”).
  • sodium lauryl sulfate sodium lauryl sulfate [for manufacturing purposes only] manufactured by Kokusan Kagaku Co., Ltd. was used (hereinafter referred to as "SLS").
  • Blue No. 1 Blue No. 1 manufactured by Daiwa Kasei Co., Ltd. was used (hereinafter referred to as “Blue No. 1”).
  • Red No. 102 manufactured by Daiwa Kasei Co., Ltd. was used (hereinafter referred to as "Red No. 102").
  • Elution test reagent Acetaminophen from Yamamoto Chemical Co., Ltd. was used (hereinafter referred to as "AA"), lactose was Pharmatose 100M from DFE Pharma, and sodium starch glycolate was from JRS Pharma. EXPLOTAB was used.
  • Gelatin immersion liquid Add 183.33 g of gelatin to 316.67 g of purified water and leave to swell for about 1 hour. The swollen solution was allowed to stand at 60°C, and complete dissolution was confirmed. It was further left to stand at 60°C, and it was confirmed that all the bubbles had disappeared. 31.8 g of a 22% by mass TiO 2 dispersion at 55° C. and 100.3 g of purified water at 55° C. were added and stirred for about 15 minutes to obtain an aqueous gelatin solution.
  • HPMC immersion solution The HPMC aqueous solution was prepared by the following method. 0.45 g of KCl was added to 386.60 g of purified water and dissolved by stirring. After adding CA0.45 and dispersing it, the temperature was raised to about 80°C and it was confirmed that it was completely dissolved. 90 g of TC-5M and 22.5 g of TC-5R were added, dispersed, and left to stand for defoaming. The temperature was lowered to 50°C and stirred for about 1 hour, and further stirred at 55°C for about 1 hour.
  • the HPMC aqueous solution containing GE used in Examples 38 to 40 was prepared by the following method. After 4 g of GE was added to 956 g of purified water and dispersed, the temperature was raised to about 80° C. and complete dissolution was confirmed. 192 g of TC-5R and 48 g of HPMC with a degree of substitution grade of 2208 (viscosity grade of 4.0) were introduced, dispersed, and left to stand for defoaming. The temperature was lowered to 50°C and stirred for about 1 hour, and further stirred at 55°C for about 1 hour. 1.2 g of a 10% by mass KCl aqueous solution at 55°C and 151.2 g of purified water at 55°C were added and stirred for about 15 minutes to obtain an HPMC aqueous solution.
  • Pullulan immersion liquid 1.2 g of KCl was added to 990 g of purified water and dissolved by stirring. After 5.1 g of CA was added and dispersed, the temperature was raised to about 80°C to completely dissolve the CA. 204 g of pullulan was added, stirred to dissolve the pullulan, and left to stand for defoaming. The temperature was lowered to 55° C. and stirred for about 1 hour to obtain a pullulan aqueous solution.
  • PVA immersion liquid 1.2 g of KCl was added to 953 g of purified water and stirred to dissolve the KCl. After 240 g of PVA and 6 g of CA were added and dispersed, the temperature was raised to about 80° C., it was confirmed that PVA and CA were completely dissolved, and the mixture was left to stand for degassing. The temperature was lowered to 55° C. and stirred for about 1 hour to obtain a PVA aqueous solution.
  • Dipping liquid for enteric polymer outer layer A dipping liquid for enteric polymer outer layer containing water and absolute ethanol as solvents was prepared by the following method. After mixing 40 g of purified water and 360 g of absolute ethanol, 100 g of AS-LG was added and stirred to dissolve. After adjusting the concentration by adding a mixed solvent of purified water and EtOH in the same ratio, it was visually confirmed that the enteric polymer was uniformly dissolved, and the mixture was used in the molding process. Solutions of AS-MG, AS-HG, HP-50, HP-55, HP-55S, and CMEC were also prepared using the same procedure.
  • An enteric polymer outer layer dipping solution containing water and IPA or acetone as a solvent was prepared by the following method. After mixing 40 g of purified water and 360 g of IPA, 100 g of AS-LG was added and stirred to dissolve. After adjusting the concentration by adding a mixed solvent of the above ratio, it was visually confirmed that the enteric polymer was uniformly dissolved, and the mixture was used in the molding process. The same procedure was followed when acetone was used as the solvent. Solutions of AS-HG and CMEC were also prepared using the same procedure.
  • An enteric polymer outer layer dipping solution containing water, absolute ethanol, and IPA as solvents was prepared by the following method. After mixing 40 g of purified water, 180 g of EtOH, and 180 g of IPA, 100 g of AS-LG was added and stirred to dissolve. After adjusting the concentration by adding a mixed solvent of the same ratio, it was visually confirmed that the enteric polymer was uniformly dissolved, and then used in the molding process.
  • a dipping liquid for outer layer of enteric polymer containing AS-LG using aqueous ammonia as solvent was prepared by the following method. After 70.0 g of AS-LG was added to 506.3 g of purified water and dispersed by stirring, 7.4 g of ammonia water was added dropwise, and it was visually confirmed that AS-LG was uniformly dissolved. Purified water was added to adjust the viscosity and used in the molding process.
  • An enteric polymer outer layer dipping solution containing AS-HG using aqueous ammonia as a solvent was prepared by the following method. After 70.0 g of AS-HG was added to 492.7 g of purified water and dispersed by stirring, 3.9 g of ammonia water was added dropwise, and it was visually confirmed that AS-HG was uniformly dissolved. Purified water was added to adjust the viscosity and used in the molding process.
  • Molding method of inner layer film above II Using the gelatin, HPMC, PVA, or pullulan inner layer dipping solution prepared in Example 1, the inner layer of a multilayer enteric hard capsule was prepared by the cold pin dipping method. A mold pin (size 2) that had been left at room temperature (about 25°C) was immersed in the inner layer dipping solution at about 55°C for several seconds, and then lifted into the atmosphere. The molding pin to which the inner layer dipping liquid had adhered was turned upside down, and air was blown at room temperature to dry it for over 1 hour.
  • the membrane of the multilayer enteric hard capsule with the outermost layer dried was pulled out from the mold pin and cut into a predetermined length.
  • Immersion solution for enteric polymer outer layer of Immersion solution for outer layer of enteric polymer A mold pin (size 2) left at room temperature (approximately 25° C.) with the inner layer film of molded HPMC attached is soaked in the above II. 8. After being immersed for several seconds in the enteric polymer outer layer dipping solution prepared above, it was lifted into the atmosphere. The molding pin to which the outer layer dipping liquid had adhered was turned upside down and dried at 30° C./7% RH for 2 hours or more, and then dried overnight at 60° C./6% RH. The membrane of the multilayer enteric hard capsule with the outermost layer dried was pulled out from the mold pin and cut into a predetermined length.
  • Opt-Diss410 manufactured by Distek or OD LITE UV FiberOptic manufactured by Leap Technologies was used for absorbance measurement.
  • the absorbance at 244 nm when the same volume of aminoacetophene is separately dissolved in the solution in the dissolution tester bath is taken as 100%, and the absorbance of the solution in the dissolution tester bath increases as AA elutes from the capsule.
  • the elution rate was determined from the absorbance at 244 nm.
  • n 1 to 6.
  • the following aqueous solutions were used as the first liquid, the second liquid, the pH 5.0 solution, and the pH 6.0 solution. In both cases, the temperature of the solution in the bath was 37 ⁇ 0.5°C.
  • the first liquid was prepared by adding 7.0 mL of hydrochloric acid and water to 2.0 g of sodium chloride, dissolving it, and adjusting the volume to 1000 mL (pH: approximately 1.2).
  • the second solution was prepared by adding 118 mL of 0.2 mol/L sodium hydroxide TS and water to 250 mL of 0.2 mol/L potassium dihydrogen phosphate TS and dissolving the solution to 1000 mL (pH approximately 6.8). .
  • a solution with pH 5.0 and a solution with pH 6.0 were prepared by adjusting the pH using 0.05 mol/L sodium monohydrogen phosphate and 0.025 mol/L citric acid.
  • the criteria for determining the results were that when the dissolution rate was 1% or more, it was considered “dissolved”, and when the dissolution rate was 80% or higher, it was defined as "high dissolution rate”.
  • Shear viscosity of dipping solution for enteric coated polymer outer layer was measured using a rheometer (MCR102) manufactured by Anton Paar Japan Co., Ltd. A jig (CC27) and a coaxial cylindrical tube (CC27/T200/SS) were used for the measurement.
  • MCR102 rheometer
  • a jig (CC27) and a coaxial cylindrical tube (CC27/T200/SS) were used for the measurement.
  • For the shear viscosity the value at a temperature of 25° C. and a shear rate of 1 sec ⁇ 1 was used.
  • Film thickness of inner layer and outer layer The thickness of the dried film was measured using a dimension measuring device (LS-9030) manufactured by Keyence Corporation. The cap was measured 5 mm from the top of the mold pin, and the body was measured 8 mm from the top of the mold pin.
  • the film thickness of the inner layer and outer layer (the thickness of one film) was calculated using the formula below by measuring the outer diameters of the mold pin, the mold pin to which the inner layer was attached, and the mold pin to which the outer layer and inner layer were attached. The film thicknesses of five caps and five bodies were averaged to determine the average film thickness of the capsule.
  • FIGS. 4 and 5 show microscopic images without band sealing.
  • FIG. 4(A) corresponds to FIG. 2(A).
  • FIG. 4(B) corresponds to FIG. 2(B).
  • FIG. 5(A) corresponds to FIG. 3(A).
  • FIG. 5(B) corresponds to FIG. 3(B).
  • FIG. 7 shows the results when the solvent of the dipping liquid for the outer layer of the enteric polymer was a mixed solvent of water and EtOH.
  • the dissolution rate after 2 hours in the first liquid was all 1% or more, and it was confirmed that the acid resistance to acidic solutions was insufficient.
  • capsules with an outer layer thickness of 20 ⁇ m or more have sufficient acid resistance, with the dissolution rate in the first liquid after 2 hours being less than 1%, and the dissolution rate in the second liquid after 30 minutes.
  • FIG. 7-2 shows the results of an elution test for a capsule using AS-HG as an enteric polymer and having an outer layer thickness of 10 ⁇ m or less as Comparative Example 19. Even if the enteric polymer is AS-HG, capsules with an outer layer thickness of 10 ⁇ m or less have a dissolution rate of 1% or more after 2 hours in the first liquid, indicating insufficient acid resistance to acidic solutions. Ta.
  • the outer layer film contains a film-forming aid other than the enteric polymer, but the dissolution rate after 2 hours in the first liquid was less than 1%, and the dissolution rate after 30 minutes in the second liquid was less than 1%. Since the dissolution rate was 80% or more in all cases, it was shown that the enteric properties were not affected.
  • the influence of the inner layer film components was evaluated.
  • the dissolution rate after 2 hours in the first liquid was less than 1%, and the dissolution rate after 30 minutes in the second liquid was was also over 80%.
  • Examples 33 to 35 shown in FIG. 7-2 contain PVA as the base material for the inner layer
  • Examples 36 to 37 contain pullulan as the base material for the inner layer
  • Examples 38 to 40 contain HPMC as the base material for the inner layer.
  • a gelling agent containing gellan gum for all of the multilayer enteric hard capsules, the dissolution rate after 2 hours in the first liquid was less than 1%, and the dissolution rate after 30 minutes in the second liquid was 80% or more.
  • the film is formed by repeating the dipping and drying process twice using a dipping solution, but the dissolution rate after 2 hours in the first solution is less than 1%, and the dissolution rate after 30 minutes in the second solution is less than 1%. Since the elution rate of each of these was 80% or higher, it was shown that the enteric properties were not affected.
  • Example 43 shown in FIG. 8 has a multilayer structure in which the first layer (inner layer) is HPMC, the second layer (first outer layer) is HPMCAS-HG, and the third layer (second outer layer) is HPMCAS-LG.
  • the dissolution rate after 2 hours in the first liquid is less than 1%
  • the dissolution rate after 30 minutes in the second liquid is 80% or more, so it has excellent enteric properties. It was shown that
  • Figure 8-2 shows the dissolution rate of a three-layer capsule in which the base material of the inner layer was replaced with PVA.
  • the first layer (inner layer) of Examples 44 to 45 was based on PVA, and the second layer (first outer layer) and third layer (second outer layer) were formed using the same outer layer dipping liquid.
  • the film is formed by repeating the dipping and drying process twice, but the elution rate after 2 hours in the first solution is less than 1%, and the elution rate after 30 minutes in the second solution is less than 1%. Since both values were 80% or more, it was shown that the enteric properties were not affected.
  • Figure 9 shows the results. Above II. 5-7.
  • These results show that the resistance remains the same whether the enteric polymer contained in the outer layer is AS-LG, CMEC, or AS-HG. Furthermore, it is shown that there is no difference in the base material of the inner layer.
  • the ammonium ion (NH4+) concentration in the film was measured by the following method. 10 mg of the film was collected in a volumetric flask, 50 mL of pure water was added, and the mixture was shaken for 10 minutes for extraction. NH4+ in the extract was measured using an ion chromatograph, and quantified using the absolute calibration curve method based on the actual peak intensity.
  • the ion chromatograph used was ICS-5000+ model manufactured by Thermo Fisher Scientific. The detection accuracy of this measurement system is 0.0010 g (10 ppm).
  • FIG. 11 shows the content of ammonium ions in 100 g of the films of Comparative Examples 20 and 21 and Examples 1, 30, 12, 32, 34, 20, and 22, and the degree of neutralization.
  • 100 g of coating includes inner and outer layers.
  • the ammonium ion content per 100 g of the film was 0.1100 g (1,100 ppm) in Comparative Example 20 and 0.0630 g (630 ppm) in Comparative Example 21.
  • the ammonium ion content per 100 g of the film was 0.0011 g (11 ppm) or 0.0010 g (10 ppm) or less.
  • ammonium ions or compounds that can generate ammonium ions were not intentionally added, so if ammonium ions are at least 0.0015 g (15 ppm) or less, it is considered that ammonium ions are not substantially contained.
  • the degree of neutralization of the carboxyl group of the base material in the film was 16.09 mol% in Comparative Example 20 and 16.67 mol% in Comparative Example 21. On the other hand, in Examples, it was in the range of 0.09 to 0.29 mol%.

Abstract

腸溶性特性を有しない第1層と、腸溶性特性を有する硬質カプセル第2層からなる多層構造腸溶性硬質カプセルを提供する。 キャップ部とボディ部を備え、前記キャップ部とボディ部はそれぞれが、その全体または一部が少なくとも第1層と第2層を備えるカプセル皮膜から構成され、前記第1層が水溶性基剤を含み、第2層が腸溶性ポリマーを含み、第2層は第1層の全体または一部の外側を被覆する、多層構造腸溶性硬質カプセル。

Description

多層構造腸溶性硬質カプセル
 本発明は、多層構造腸溶性硬質カプセルに関する。
 「腸溶性」とは、経口投与される製剤の剤形の一つであり、一般に、胃内では溶解しにくい製剤上の特性を意味する。また、前記製剤は、腸に移行してからは溶解しやすいという特性を有する。腸溶性製剤は、強酸性環境下である胃内では薬物活性成分を放出せず、腸内に該製剤が移動してから薬物活性成分を放出する。このため、腸溶性製剤は、主として、胃酸又は胃内酵素から薬物活性成分を保護する目的や、胃から小腸に製剤が移動する時間を利用して持続的に薬物活性成分を放出する目的で使用される。
 医薬製剤分野において、「腸溶性」は、日本(第18局方、6.10溶出試験法、4.3腸溶性製剤の項)、米国(US Pharmacopeia Monograph<711>Dissolution 7, Delayed-Release Dosage Formsの項)、欧州(European Pharmacopeia, 2.9.3、Delayed-release dosage formsの項)のPharmacopeiaにおいてほぼ同様に定義されている。特に、37℃、酸性(約pH1.2、塩酸希釈液)環境下で、2時間、実質的に不溶と言えるレベルの耐酸性を要求する点については、日本、欧州及び米国で一致している。他方、腸内における溶出特性には、放出ターゲット部位が小腸、結腸、大腸であるか、薬物放出特性が即放的であるか、徐放的であるかなどによって要求される溶出特性はさまざまである。
 製剤剤形が錠剤である場合、腸溶性ポリマーが溶解あるいは分散した溶液を吹き付けることによってコーティングする(スプレーコーティング)ことにより、上記要求を満足する「腸溶性」製剤が調製されている。
 また、製剤剤形が硬質カプセルである場合、コーティングにより腸溶性を付与する試みもなされている。このような従来技術としては、
(1)内容物を充填した硬質カプセルに、錠剤と同様の腸溶性ポリマーのスプレーコーティングを施す方法(特許文献1及び2);
(2)空の硬質カプセルに腸溶性ポリマーのスプレーコーティングを施した後、内容物を充填する方法(特許文献3~5);
(3)空の硬質カプセルを製造する過程で、乾燥した硬質カプセル皮膜上に、腸溶性または耐酸性ポリマーの浸漬溶液を用いて再度ディップコーティングを施すことで、腸溶性皮膜を得る方法(特許文献6);
(4)市販の硬質カプセルにディップコーティングを施すことで、腸溶性皮膜を得る方法(特許文献7);
等がなされている。
 さらに、硬質カプセル皮膜全体を腸溶性とする試みもなされている。このような従来技術としては、
(5)従来の水溶性かつ皮膜形成能の高いゼラチンなどのポリマーを主成分として、腸溶性ポリマーを部分的に使用すること(特許文献8);
(6)ポリマーの水溶性誘導体を得るために、腸溶性ポリマーの酸基(主にカルボキシル基)の全て、あるいは一部を塩基性中和剤で中和すること(特許文献9及び10);
(7)腸溶性ポリマーの代わりに、又は併用して、ジェランガムのような耐酸性を付与できるゲル化剤を使用し、ゲル化性、皮膜性能を改善しつつ、耐酸性を維持すること(特許文献11及び12);
等がなされている。
米国特許第6309666号明細書 米国特許第7094425号明細書 国際公開第2020/229178号 国際公開第2020/229192号 特開2003-325642号公報 米国特許第3927195号明細書 特許第5686802号公報 特開2006-16372号公報 国際公開第2019/245031号 特表2015-518005号公報 特開2010-202550号公報 特開2009-196961号公報
 しかしながら、従来技術は以下の問題を含んでいる。上記(1)の従来技術は、表面をコーティングする前に、内容物を充填してキャップとボディを嵌め合わせ、調製プロセスが複雑である。内容物をカプセルに充填後、表面を腸溶性コーティングする際に、コーティング液が充填カプセル表面に過剰に噴霧され、仕込んだ充填済みカプセル同士が付着し、不良品が発生し、さらには全ての充填済みカプセルを廃棄せざるを得ない事態になる懸念がある。また、カプセル表面に均一に腸溶性皮膜を形成させるためには、スプレーコーティングを長時間行う必要があり、作業性に劣る。また、スプレーコーティング法は皮膜を乾燥させるために熱風を当てる必要があるため、熱に弱い内容物に対しての適用は困難である。さらに、調製プロセスが複雑になったことによる作業の負担は、硬質カプセルの製造者ではなく、内容物を充填するメーカー側が担うことになる。このことは、製剤形態としての硬質カプセルの利便性を損ねることになる。
 次に、上記(2)の従来技術においては、腸溶性硬質カプセル剤を調製後、ボディとキャップを分離して内容物を充填することが必要である。ボディとキャップを分離する工程では、スプレーコーティングされた膜を引きちぎることになり、切断部位が不均一になり外観不良が生じる恐れがある。さらに不均一な箇所に起因し、本来の腸溶性特性を損なう恐れもある。また目詰まりせずに効率良くスプレーコーティングを実施するために、コーティング液中の固形分の濃度は5~10wt%になっており、ディップコーティング法についての記載はない。
 次に、上記(3)の従来技術においては、内層はゼラチンが使用され、ゼラチン以外には、アルギン酸カルシウム(calcium alginate)、変性セルロース誘導体(modified cellulose derivatives)として、メチルセルロース(methyl cellulose)、ヒドロキシアルキル-アルキルセルロースエーテル(hydroxyalkyl-alkyl cellulose ethers)が使用できるとの記載がある。外層はpH3.5以上で溶解する層であり、「サリチル酸フェニル、ステアリン酸ブチル、カルナウバロウ、シェラック」又は「methacrylic acid polymer, partial esters of maleic anhydride/alkene copolymers, HPMC phthalate, cellulose benzoacetate and cellulose acetate phthalate 」から選択される。2層目の浸漬工程の例示に用いられる溶媒は、アセトン/エタノール混液、二塩化メチレン/メタノール混液、イソプロパノール/アセトン混液が用いられている。カプセル皮膜はディッピングと乾燥のプロセスを2回繰り返すことで形成されることが図示されている。硬質カプセル皮膜の耐酸性は改善されるものの、示される外層の膜厚は、2重膜厚 20~60μmと薄いため、耐酸性が弱いことが懸念され、膜厚の影響は示されていない。
 次に、上記(4)の従来技術においては、膜厚の影響は示されておらず、内層の皮膜としてはゼラチンしか示されていない。
 次に、上記(5)の従来技術においては、水溶性の高分子が含まれているため、腸溶性ポリマーのみからなる硬質カプセル皮膜に比べ、耐酸性が損なわれるという問題がある。
 次に、上記(6)の従来技術においては、耐水性の低下が懸念される。医薬品は水で服用することが一般的であるため、腸溶性製剤は耐水性も必要とされる。塩化あるいは中和塩となった腸溶性ポリマーは水に溶解するため、胃内で内容物が溶け出てしまう恐れがあるといった問題を有する。
 次に、上記(7)の従来技術においては、耐酸性の基剤は、腸溶性ポリマーと異なり、厳密なpH応答性の特性を有していないため、狙った部位における内容物の放出性を制御することが困難といった問題を有する。
 現在一般に流通している腸溶性ポリマーは、水(水系)、あるいは水・有機溶媒の混液(有機系)を用いて分散もしくは溶解させて用いられている。水系コーティング液は、ナノ~マイクロオーダーの腸溶性ポリマーが分散しており、可塑剤を一緒に混合することで皮膜を形成することが可能であるが、あくまで擬似的な皮膜を形成しているだけであるため、硬質カプセルの皮膜としては硬度あるいは靭性不十分である。
 本発明は、腸溶性特性を有しない第1層(内層)と、腸溶性特性を有する第2層(外層)を備える皮膜からなる多層構造硬質カプセルを提供することを課題とする。
 本発明は、以下の実施形態を含む。
項1.
 キャップ部とボディ部を備え、前記キャップ部とボディ部はそれぞれが、その全体または一部が少なくとも第1層と第2層を備えるカプセル皮膜から構成され、前記第1層が水溶性基剤を含み、第2層が腸溶性ポリマーを含み、第2層は第1層の全体または一部の外側を被覆する、多層構造腸溶性硬質カプセル。
項2.
 前記カプセル皮膜の第1層の厚みが20~160μmであり、第2層の厚みが20~70μmである、項1に記載の多層構造腸溶性硬質カプセル。
項3.
 前記カプセル皮膜の第1層と第2層を合わせた厚みが、70~150μmである、項2に記載の多層構造腸溶性硬質カプセル。
項4.
 (1)水分を除く皮膜成分の含有量の合計を100質量%とした時に、含有量が50質量%以上である腸溶性ポリマーと、
 (2)膜形成助剤と、
を含む、第2層からなる、項1に記載の多層構造腸溶性硬質カプセル。
項5.
 前記腸溶性ポリマーは、ヒドロキシプロピルメチルセルロースアセテートスクシネート、ヒドロキシプロピルメチルセルロースフタレート、カルボキシメチルエチルセルロース、およびこれらの混合物からなる群より選択される1つである、項4に記載の多層構造腸溶性硬質カプセル。
項6.
 前記カプセル皮膜中の腸溶性ポリマーにおいて中和されている酸残基の割合は、腸溶性ポリマーに含まれる中和前の酸残基のモル数(基数)を100%としたときに、0.01%以下である、項4記載の多層構造腸溶性硬質カプセル。
項7.
 前記膜形成助剤が、可塑剤、界面活性剤、表面改質剤なる群より選択される少なくとも1つである、項4に記載の多層構造腸溶性硬質カプセル。
項8.
 前記膜形成助剤が、クエン酸トリエチル、タルク、及びラウリル硫酸ナトリウムからなる群より選択される少なくとも1つである、項7に記載の多層構造腸溶性硬質カプセル。
項9.
 前記水溶性基剤がヒドロキシプロピルメチルセルロース、ゼラチン、プルラン、又はポリビニルアルコールである、項1に記載の多層構造腸溶性硬質カプセル。
項10.
 pH1.2を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満である、項1に記載の多層構造腸溶性硬質カプセル。
項11.
 pH5.0または6.0を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満である、項10に記載の多層構造腸溶性硬質カプセル。
項12.
 pH6.8を有する溶液を用いた溶出試験において、カプセルに充填した内容物の30分後の溶出率が、80%以上である、項10に記載の多層構造腸溶性硬質カプセル。
項13.
 pH1.2を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満であり、
 pH5.0または6.0を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満であり。かつ
 pH6.8を有する溶液を用いた溶出試験において、カプセルに充填した内容物の30分後の溶出率が、80%以上である、項1に記載の多層構造腸溶性硬質カプセル。
項14.
 カプセル皮膜100g当たりに含まれる中和剤の含有量が、0.06g以下である、項1に記載の多層構造腸溶性硬質カプセル。
項15.
 腸溶性ポリマー、又は腸溶性ポリマー及び膜形成助剤を含む固形成分を、水と親水性有機溶媒の混合溶媒に溶解又は分散させた、項1に記載の多層構造腸溶性硬質カプセルの第2層を形成するための第2層用浸漬液であって、前記混合溶媒中の無水エタノール比率が50質量%以上95質量%以下であり、前記第2層用浸漬液のせん断粘度が25℃で150cP以上である、第2層用浸漬液。
項16.
 前記第2層用浸漬液に含まれる腸溶性ポリマーの濃度が10質量%以上である、項15に記載の第2層用浸漬液。
項17.
 第2層用浸漬液に含まれる中和剤の含有量は、第2層用浸漬液全体を100質量%としたときに0.01質量%以下である、項15に記載の第2層用浸漬液。
項18.
 前記親水性有機溶媒が、無水エタノール、2-プロパノール、及びアセトンよりなる群から選択される少なくとも一種である、項15に記載の第2層用浸漬液。
項19.
 多層構造腸溶性硬質カプセルの第1層用の硬質カプセルを準備する工程と、
 前記第1層用の硬質カプセルを、項14に記載の第2層用浸漬液に浸漬し、前記第1層用の硬質カプセルを第2層用浸漬液から取り出し、前記第1層用の硬質カプセルに付着した第2層用浸漬液中の混合溶媒を除去し、多層構造腸溶性硬質カプセルの硬質カプセルの第2層を成型する工程、
を含む多層構造腸溶性硬質カプセルの製造方法。
項20.
 前記第2層を成型する工程が複数回である、項19に記載の製造方法。 
 本発明のある効果は、即放性基剤であるHPMC、ゼラチン、ポリビニルアルコール、及びプルランよりなる群から選択される少なくとも一種を基剤として含む第1層と、腸溶性を有するポリマーを含む第2層を備えるカプセル皮膜からなる多層構造硬質カプセルを提供できることである。本発明のある効果は、ゲル化剤を用いずに腸溶性ポリマーからなる第2層を形成できることである。本発明のある効果は、当該多層構造腸溶性硬質カプセルは、従来使用されているカプセル充填機を使用して内容物を充填できることである。本発明によれば、pH4.0~pH6.0の溶液中での溶出率を低減することである。
多層構造腸溶性硬質カプセルの外観を示す。 多層構造腸溶性硬質カプセルのカプセル皮膜を構成する第2層11,21と第1層12,22の構造の例の模式図を示す。(A)はキャップとボディの第1層全面を第2層が覆っている態様を示す。(B)はキャップとボディの切断面付近が第1層のみで構成されており、それ以外の第1層全面を第2層が覆っている態様を示す。(C)はキャップで覆われる部分のボディが第1層のみで構成されている態様を示す。 多層構造腸溶性硬質カプセルをバンドシールによって封緘した例を示す。(A)は、図2(A)の構成にバンドシールを施した例である。(B)は、図2(B)の構成にバンドシールを施した例である バンドシールを施していない多層構造腸溶性カプセルの断面の光学顕微鏡像を示している。 バンドシールを施した多層構造腸溶性カプセルの断面の光学顕微鏡像を示している。 各腸溶性ポリマーの水/無水エタノールに対する溶解性の評価結果を示す。 各腸溶性ポリマーの水/親水性有機溶媒に対する溶解性の評価結果を示す。 多層構造腸溶性硬質カプセルの溶出試験の結果を示す。 多層構造腸溶性硬質カプセルの溶出試験の結果を示す。 第2層が複数層から成る多層構造腸溶性硬質カプセルの構成、及び溶出試験の結果を示す。 第2層が複数層から成る多層構造腸溶性硬質カプセルの構成、及び溶出試験の結果を示す。 本開示にかかる多層構造腸溶性硬質カプセルの水、pH5.0の溶液、またはpH6.0の溶液における溶出率を示す。 腸溶性ポリマーをアルカリ中和により溶解し調製した外層を備える多層構造腸溶性硬質カプセルの水、pH5.0の溶液、またはpH6.0の溶液における溶出率を示す。 比較例及び実施例の硬質カプセル皮膜のアンモニウムイオン濃度と、皮膜に含まれる基剤のカルボキシル基の中和度を示す。
1.多層構造腸溶性硬質カプセル
 本開示において、多層構造腸溶性硬質カプセル(単に、「硬質カプセル」と称する場合がある)は、カプセル皮膜部分が少なくとも一部が第1層と第2層とを有する。
 本開示において、「硬質カプセル」とは、製造されたカプセル皮膜に内容物を充填するための空のカプセルである。通常、硬質カプセルは、ツーピースカプセルとも呼ばれる。これらのカプセルは、カプセル調製液にモールドピンを浸漬し、引き上げ、モールドピンに付着したカプセル調製液を乾燥させる、いわゆる浸漬法によって調製される。また、硬質カプセルは、図1に示すようにカプセル皮膜からなるキャップ部1とボディ部2とからなり、内部に充填させた内容物がカプセル外に漏れないようにキャップ部とボディ部を嵌合する。キャップ部とボディ部を嵌合させて生じる重なり部分を嵌合部3(図1において両矢印により示される)と呼ぶ。本発明における「硬質カプセル」は、ヒト又は動物の対象への経口投与を意図した、市販されている従来の硬質カプセルと同一又は類似の形状を有する。
 なお、本開示の「硬質カプセル」には、2枚のフィルムの間に内容物を充填し、フィルム同士を接着して製造するソフトカプセル、内容物を皮膜溶液と共に凝固液に滴下して製造するシームレスカプセル、及び基剤の析出やエマルジョン化によって内部に有効成分を取り込ませて調製するマイクロカプセルは含まれない。
 また、本開示では、空の硬質カプセルを単に硬質カプセル若しくはカプセルと呼び、内容物を充填したものを「硬質カプセル剤」と呼ぶ。
 本開示において、「硬質カプセル」は、例えば、図2に例示するように、キャップ部1のカプセル皮膜は、その全体または一部が少なくとも第2層11と第1層12を備える。また、ボディ部2の皮膜も、その全体または一部が少なくとも第2層21と第1層22を備える。ここで「第1層」は充填物と接触する側を意図する。また「第2層」は、第1層の外側の全体または一部を被覆する。さらに、「第2層」は複数の層から構成されていてもよい。キャップ部とボディ部は、それぞれ同じ層構造であっても異なる層構造であってもよい。すなわち、本開示において、硬質カプセルはカプセル皮膜の全体または一部が多層構造、好ましくは二層構造を有する。図2に二層構造を有するカプセル皮膜の構造の例を示す。キャップ部1およびボディ部2は、後述するようにそれぞれ浸漬法により調製され、乾燥後開口部分が切断される。キャップ部1のカプセル皮膜の切断部の先端(端部)を符号15で表し、ボディ部2のカプセル皮膜の切断部先端(端部)を符号25で表す(図1参照)。
 図2(A)は、第1層12,22全体が、実質的に第2層11,21により被覆されているに多層構造からなる態様である。キャップ部1の端部15とボディ部2の端部25まで(あるいは、端部25を越えて)、第2層11,21が第1層12,22を実質的に被覆が到達している。「実質的に」とは、端部15,25の一部の第1層12,22に意図しない非被覆箇所が存在してもよいことを示す。
 図2(B)は、キャップ部1とボディ部2において、第2層11,21が第1層12,22の端部15,25に達していない多層構造からなる態様である。しかし、少なくとも第2層11,21は、第1層12,22の嵌合部3には達している。このような態様は、乾燥後開口部分を切断した後、切断により除去されたカプセル皮膜を再利用でき有用である。なお、図2(B)では、キャップ部1とボディ部2の第1層12,22が、同程度第2層11,21に被覆されている状態を示しているが、キャップ部1における第1層12の非被覆部分と、ボディ部2における第1層22の非被覆部分の長さは異なっていてもよい。
 図2(C)は、キャップ部1における多層構造と、ボディ部2における多層構造が異なる態様である。キャップ部1については、例示的に図2(B)に示すキャップ部1と同様の多層構造を示しているが、図2(B)に示すキャップ部1と同様の多層構造であってもよい。一方、ボディ部2は、実質的に嵌合部3の第1層22が、第2層21によって被覆されていない。ここで、「実質的に」とは、嵌合部3の第1層22に意図しない第2層21の付着があってもよいこととする。この態様において、第1層22は、嵌合部3だけでなく、キャップ部1の端部15から遠位側の所定範囲において、第2層21によって被覆されていない部分を有してもよい。所定範囲は、例えば、端部15から50μmから3000μm程度の範囲である。
 耐酸性を考慮すると、図2(C)に示すカプセル皮膜構造よりも図2(B)に示すカプセル皮膜構造が好ましく、図2(A)に示すカプセル皮膜構造さらに好ましい。
 なお、図2では、キャップ部とボディ部が同じ構造である例を示している。しかし、例えば、図2(A)に示すキャップ部と、図2(B)又は図2(C)に示すボディ部を組み合わせてもよい。また、図2(B)に示すキャップ部と、図2(A)又は図2(C)に示すボディ部を組み合わせてもよい。
 本開示において、「腸溶性硬質カプセル」とは、カプセル本体の皮膜自体が下記条件に適合する「腸溶性」の特性を有する硬質カプセルをいう。
 すなわち、「腸溶性」とは、少なくとも下記(i)の条件を満たす特性をいう。
 (i)第18改正日本薬局方(以下、単に「第18局方」ということがある)に記載の溶出試験において、被験対象を37℃±0.5℃の第1液中に2時間浸漬した時の内容物の溶出率が10%以下、好ましくは5%以下、より好ましくは2%以下、さらに好ましくは1%未満である。第1液のpHは約1.2である。第1液は、例えば塩化ナトリウム2.0gに塩酸7.0ml及び水を加えて1000mlとすることで調製することができる。
 また腸溶性ポリマーは溶解pHが厳密に制御されており、溶解pH未満では溶解しないことが好ましい。例えば小腸での溶解が期待されるHPMCAS-Lは、pH5.5以上では溶解するが、pH5.0以下では溶解しない。したがって前記溶出試験において、被験対象を37℃±0.5℃のpH5.0の溶液に2時間浸漬した時の内容物の溶出率が10%以下、好ましくは5%以下、より好ましくは2%以下、さらに好ましくは1%未満である。pH5.0の溶液は、例えば0.05mol/Lのりん酸一水素ナトリウムと0.025mol/Lのクエン酸を用いて調製することができる。
 また大腸での溶解が期待されるHPMCAS-Hは、pH6.5以上では溶解するが、pH6.0以下では溶解しない。したがって前記溶出試験において、被験対象を37℃±0.5℃のpH6.0の溶液に2時間浸漬した時の内容物の溶出率が10%以下、好ましくは5%以下、より好ましくは2%以下、さらに好ましくは1%未満である。pH6.0の溶液は、例えば0.05mol/Lのりん酸一水素ナトリウムと0.025mol/Lのクエン酸を用いて調製することができる。
 さらに医薬品は水で服用することが一般的であるため、腸溶性ポリマーが任意の部位で溶解するためには耐水性も兼ね備えていることが好ましい。したがって前記溶出試験において、被験対象を37℃±0.5℃の精製水に2時間浸漬した時の内容物の溶出率が10%以下、好ましくは5%以下、より好ましくは2%以下、さらに好ましくは1%未満である。
 「腸溶性」とは、好ましくは上記(i)の条件に加え、下記(ii)の条件も満たす。 (ii)前記溶出試験において、被験対象を37℃±0.5℃の第2液中に浸漬した時に内容物が溶出される。第2液のpHは約6.8である。第2液は、例えば、0.2mol/lりん酸二水素カリウム試液250mlに0.2mol/l水酸化ナトリウム試液118ml及び水を加えて1000mlとすることで調製することができる。ここで、第2液中での内容物の溶出率を測定する時間に制限はない。例えば、腸に到達後、比較的速やかに溶出することが求められる場合には、第2液に被験対象を浸漬してから、30分後の溶出率が、50%以上、好ましくは70%以上、さらに好ましくは80%以上である。
 溶出試験は、第18局方に定められた溶出試験法(第18局方、6.10-1.2パドル法(パドル回転数50回転/分)、及び、サイズ毎に対応するシンカー使用)に従い試験することができる。
 溶出試験に使用する内容物は、それ自身が試験溶液中で速やかに溶解される内容物であって、公知の方法によって定量できるものである限り制限されない。例えば、アセトアミノフェンを挙げることができる。
 多層構造腸溶性硬質カプセルのサイズは、現在市販されている硬質カプセルと同じく、000号、00号、0号、1号、2号、3号、4号、5号、9号等があるが、本発明ではいずれのサイズの多層構造腸溶性硬質カプセルも調製することができる。
(1)第1層12,22
 多層構造腸溶性硬質カプセルの第1層12,22は、一般的な硬質カプセルに使用される皮膜から構成される。一般的な硬質カプセルの皮膜は、胃内において溶解し内容物が溶出されるカプセル皮膜である。言い換えると第18改正日本薬局方(以下、単に「第18局方」ということがある)に記載の溶出試験において、被験対象を37℃±0.5℃の第1液中に30分浸漬した時の内容物の溶出率が80%以上である。
 第1層12,22を構成する皮膜は、基剤として水溶性基剤を含む。水溶性基剤は、高分子化合物であり、例えば、水溶性セルロース化合物、ゼラチン、プルラン、ポリビニルアルコール、ポリビニルアルコール共重合体、およびこれらの混合物を含む。水溶性基剤として好ましくは、ヒドロキシプロピルメチルセルロース、またはゼラチンである。
 本発明で使用されるヒドロキシプロピルメチルセルロースには、第18局方で定められる置換度グレード(タイプ)2910、2906、2208のヒプロメロースが含まれる。
 また、本発明のヒドロキシプロピルメチルセルロースには、日本国で食品添加剤としての使用が認められているヒプロメロースが含まれる。
 商業的に入手可能なヒドロキシプロピルメチルセルロースとしては、信越化学社の日本薬局方METOLOSE(登録商標)シリーズ、食品添加物用メトローズ(登録商標)シリーズ、ロッテ精密化学社のAnyCoat―C・AnyAddy(登録商標)シリーズ、IFF社のMETHOCEL(商品商標)シリーズ、Ashland社のBenecel(商品商標)シリーズ等、を挙げることができる。
 水溶性基剤がヒドロキシプロピルメチルセルロースである場合、第1層12,22を構成する皮膜を形成させるため、ゲル化剤、またはゲル化剤およびゲル化補助剤を使用することができる。
 ゲル化剤として、カラギーナンおよびジェランガムなどゲル化補助剤と組み合わせて硬質カプセル調製液をゲル化させることができるものを例示することができる。これらは1種単独で使用しても、2種を組み合わせて使用することもできる。
 上記ゲル化剤のなかでもカラギーナンは、ゲル強度が高く、しかも特定イオンとの共存下で少量の使用で優れたゲル化性を示すことから最適なゲル化剤である。なお、カラギーナンには、一般にカッパ-カラギーナン、イオタ-カラギーナンおよびラムダ-カラギーナンの3種が知られている。本発明では、比較的硬度の高いゲル化能を有するカッパおよびイオタ-カラギーナンを好適に使用することができ、より好適にはカッパ-カラギーナンが使用できる。分類でき、ジェランガムもアシル化の有無によってアシル化ジェランガム(ネイティブジェランガム)と脱アシル化ジェランガムに分類することができるが、本発明ではいずれも区別することなく使用することができる。
 商業的に入手可能なカラギーナンとしては、CP Kelco社のGENUGEL(登録商標)シリーズ、GENUVISCO(登録商標)シリーズ、GENULACTA(登録商標)シリーズ、GENU(登録商標)シリーズ、GENUTINE(登録商標)シリーズ、三菱ケミカル社のソアギーナ(商品商標)、ソアエース(商品商標)、IFF社のGelcarin(登録商標)シリーズ、SeaSpen(登録商標)シリーズ、Viscarin(登録商標)シリーズ等、を挙げることができる。
 商業的に入手可能なジェランガムとしては、CP Kelco社のKELCOGEL(登録商標)シリーズ、三菱商事ライフサイエンス社のNEWGELIN(登録商標)シリーズ等、を挙げることができる。
 第1層12,22を構成する皮膜におけるゲル化剤の含有量は、前記皮膜を冷ゲル法により成型できる限り制限されない。ゲル化剤の含有量としては、水分を除く第1層12,22を構成する皮膜の成分合計を100質量%とした場合、0.05~10質量%、好ましくは0.1~5.0質量%、より好ましくは0.2~2.5質量%を挙げることができる。
 ゲル化補助剤は、使用するゲル化剤の種類に応じて選択することができる。ゲル化補助剤には、ゲル化剤のゲル化を促進する効果がある。あるいは、セルロース化合物に直接作用してのゲル化温度もしくは曇点温度を上下させることで、ゲル化の促進に寄与する場合もある。ゲル化剤としてカラギーナンを使用する場合に組み合わせて用いることができるゲル化補助剤としては、カッパ-カラギーナンについては水溶液中でナトリウムイオン、カリウムイオン、アンモニウムイオンおよびカルシウムイオンの1種又は2種以上を生じることのできる化合物、例えば塩化ナトリウム、塩化カリウム、リン酸カリウム、塩化アンモニウム、酢酸アンモニウム、塩化カルシウムを挙げることができる。好ましくは、水溶液中でナトリウムイオン、カリウムイオン又はカルシウムイオンを生ずる化合物である。またイオタ-カラギーナンについては水中でカルシウムイオンを与えることのできる、例えば塩化カルシウムを挙げることができる。またゲル化剤としてジェランガムを使用する場合に組み合わせて用いることができるゲル化補助剤としては、水中でナトリウムイオン、カリウムイオン、カルシウムイオンおよびマグネシウムイオンの1種又は2種以上を与えることのできる化合物、例えば塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸マグネシウムを挙げることができる。加えて有機酸やその水溶性塩としてクエン酸またはクエン酸ナトリウムを使用することもできる。
 第1層12,22を構成する皮膜におけるゲル化補助剤の含有量は、ゲル化剤の含有量に応じて設定してもよい。ゲル化補助剤の含有量は、第1層12,22を構成する皮膜における水分を除く皮膜成分の合計を100質量%とした場合、0.05~10質量%、好ましくは0.1~5.0質量%、より好ましくは0.2~2.5質量%を挙げることができる。
 本発明では、併用するゲル化剤としてはカラギーナン、特にカッパ-カラギーナン、またこれと併用するゲル化補助剤としては塩化カリウムを好適に挙げることができる。
 なお、第1層12,22を構成する皮膜におけるヒドロキシプロピルメチルセルロースの含有量は、水分を除く第1層12,22を構成する皮膜における皮膜成分の合計を100質量%とした場合、ゲル化剤;ゲル化剤およびゲル化補助剤;後述する可塑剤、滑沢剤、着色剤、および遮光剤の含有量を除いた残部である。
 ヒドロキシプロピルメチルセルロースを基剤とする硬質カプセルは、公知であり、商業ベースでも入手できる。例えば、ヒドロキシプロピルメチルセルロースを基剤とする硬質カプセルとして、Quali-V(登録商標、クオリカプス)、Vcapsシリーズ(登録商標、ロンザ)、Embocaps VGシリーズ(登録商標、ソーフン)、ACGCAPSシリーズ(商品商標、ACG)等を挙げることができる。
 本開示で使用されるゼラチンは、動物由来のゼラチンであり、ゼラチンを基剤とする硬質カプセルは、公知であり、商業ベースでも入手できる。例えば、ゼラチンを基剤とする硬質カプセルとして、Quali-G(商品商標、クオリカプス)、Coni-Snaps(登録商標、ロンザ)Embocapsシリーズ(登録商標、ソーフン)、ACGCAPSシリーズ(商品商標、ACG)等を挙げることができる。
 プルラン、ポリビニルアルコール、又はポリビニルアルコール共重合体を基剤として含む硬質カプセルは公知である。商業ベースでも入手できる硬質カプセルとして、プルランカプセルであるPlantcaps(商標、カプスゲル社)、ポリビニルアルコール共重合体カプセルであるPONDAC(商標、大同化成工業(株))を挙げることができる。
 第1層12,22を構成する皮膜は、水溶性基剤、ゲル化剤、およびゲル化補助剤等に加えて、可塑剤、滑沢剤、着色剤、遮光剤及び残留水分を含むことができる。
 第1層12,22を構成する皮膜が、可塑剤、滑沢剤、着色剤、遮光剤等を含む場合には、第1層12,22を構成する皮膜における残留溶媒成分以外の成分の合計質量を100質量%としたときに、10質量%以下、好ましくは8質量%以下、より好ましくは6質量%以下である。
 可塑剤としては、医薬品または食品組成物に使用できるものであれば特に制限されないが、適当な物質は、一般に分子量(Mw)が100~20,000であり、かつ1分子中に1つ又は複数の親水基、例えばヒドロキシル基、エステル基、又はアミノ基を有するものである。例えば、アジピン酸ジオクチル、アジピン酸ポリエステル、エポキシ化ダイズ油、エポキシヘキサヒドロフタル酸ジエステル、カオリン、クエン酸トリエチル、グリセリン、グリセリン脂肪酸エステル、ゴマ油、ジメチルポリシロキサン・二酸化ケイ素混合物、D-ソルビトール、中鎖脂肪酸トリグリセリド、トウモロコシデンプン由来糖アルコール液、トリアセチン、濃グリセリン、ヒマシ油、フィトステロール、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジブチル、ブチルフタリルブチルグリコレート、プロピレングリコール、ポリオキシエチレン(105)ポリオキシプロピレン(5)グリコール、ポリソルベート80、マクロゴール1500、マクロゴール400、マクロゴール4000、マクロゴール600、マクロゴール6000、ミリスチン酸イソプロピル、綿実油・ダイズ油混合物、モノステアリン酸グリセリン、リノール酸イソプロピルなどを挙げることができる。
 滑沢剤としては、医薬品または食品組成物に使用できるものであれば特に制限されない。例えば、ステアリン酸カルシウム、ステアリン酸マグネシウム、フマル酸ステアリルナトリウム、カルナウバロウ、でんぷん、ショ糖脂肪酸エステル、軽質無水ケイ酸、マクロゴール、タルク、水素添加植物油等を挙げることができる。
 着色剤、遮光剤としては、医薬品または食品組成物に使用できるものであれば特に制限されない。例えば、アセンヤクタンニン末、ウコン抽出液、塩化メチルロザニリン、黄酸化鉄、黄色三二酸化鉄、オパスプレーK-1-24904、オレンジエッセンス、褐色酸化鉄、カーボンブラック、カラメル、カルミン、カロチン液、β-カロテン、感光素201号、カンゾウエキス、金箔、クマザサエキス、黒酸化鉄、軽質無水ケイ酸、ケッケツ、酸化亜鉛、酸化チタン、炭酸カルシウム、三二酸化鉄、ジスアゾイエロー、食用青色1号およびそのアルミニウムレーキ、食用青色2号およびそのアルミニウムレーキ、食用黄色4号およびそのアルミニウムレーキ、食用黄色5号およびそのアルミニウムレーキ、食用緑色3号およびそのアルミニウムレーキ、食用赤色2号およびそのアルミニウムレーキ、食用赤色3号およびそのアルミニウムレーキ、食用赤色102号およびそのアルミニウムレーキ、食用赤色104号およびそのアルミニウムレーキ、食用赤色105号およびそのアルミニウムレーキ、食用赤色106号およびそのアルミニウムレーキ、食用赤色40号およびそのアルミニウムレーキ、タルク、銅クロロフィンナトリウム、銅クロロフィル、ハダカムギ緑茶エキス末、ハダカムギ緑茶抽出エキス、フェノールレッド、フルオレセインナトリウム、d-ボルネオール、マラカイトグリーン、ミリスチン酸オクチルドデシル、メチレンブルー、薬用炭、酪酸リボフラビン、リボフラビン、緑茶末、リン酸マンガンアンモニウム、リン酸リボフラビンナトリウム、ローズ油、ウコン色素、クロロフィル、カルミン酸色素、水溶性アナトーなどを挙げることができる。
(2)第2層11,21
 第2層11,21は、上述のとおり、本開示の硬質カプセルに腸溶性を付与する。
 腸溶性は、上記2.(1)において第1層12,22となる硬質カプセルを浸漬法により腸溶性ポリマーを含む第2層用浸漬液に浸漬し、引き上げ、乾燥させることにより、第2層11,21を構成する皮膜を形成することにより付与することができる。
 本発明において使用される腸溶性ポリマーは、腸溶性セルロース化合物(ポリマー)である。具体的にはセルロースのヒドロキシ基の水素原子が、カルボキシル基を含むフタル酸、酢酸、コハク酸等でエーテル化された化合物をいう。腸溶性セルロース化合物としては、例えば、ヒドロキシプロピルメチルセルロースアセテートスクシネート(HPMCAS)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、カルボキシメチルエチルセルロース(CMEC)を挙げることができる。
 HPMCASは、ヒプロメロース酢酸エステルコハク酸エステル、ヒプロメロースアセテートスクシネートとも呼ばれ、HPMC(ヒプロメロース)に無水酢酸、無水コハク酸を反応させるなどして、さらにアセチル基(‐COCH)とスクシノイル(「サクシニル」または「スクシニル」ともいう)基(‐COCCOOH)を導入したものである。
 HPMCASの製品の例としては、例えば、信越化学工業からAQOAT(登録商標)シリーズ製品として入手可能である。同シリーズには、AS-L、AS-MおよびAS-Hとして、スクシノイル基及びアセチル基の置換度により3種類の置換度グレードがある。グレード(L、M又はH)の順にスクシノイル基含量が低くなる一方で、アセチル基含量が高くなるように制御され、溶解pHが高くなるように設定されている。なお、AS-L、M、及びHの溶解pHは、それぞれ概ねpH5.5、pH6.0、とpH6.5である。AS-L、M、及びHは、粒状のAS-LG、MG、及びHG、平均粒子径10μm以下のAS-LF、MF、及びHFとして入手可能である。親水性有機溶媒に溶解させる場合は、AS-LG、MG、HGが好ましい。Ashland社からはAquaSolve(登録商標)シリーズの一つとして種々の置換度の製品が入手可能である。
 HPMCPは、ヒプロメロースフタル酸エステルとも呼ばれ、HPMC(ヒプロメロース)に無水フタル酸を反応させて腸溶性を持たせたもので、カルボキシベンゾイル基の結合量により溶解pHが変わりうる。カルボキシベンゾイル基は、それ自身が疎水性で耐酸性を示すのに対して、弱酸性から中性領域ではカルボキシベンゾイル基が解離することで溶解する。
 製品の例としては、信越化学工業社及びロッテ精密化学社から、溶解pHの異なるHP-55(置換度タイプ200731)、HP-50(置換度タイプ220824)の2品種及び、HP-55より重合度が高く、フィルム強度に優れるHP-55Sが入手可能である。なお、HP-50及びHP-55の溶解pHは、それぞれ概ねpH5.0とpH5.5である。
 CMECは、カルボキシメチルエチルセルロースとも呼ばれ、セルロースの水酸基を部分的にカルボキシメチル化およびエチル化して得られるエーテルである。低pHでは溶解しにくく、高pHでは溶解するため、腸溶性ポリマーとして用いられる。
 製品の例としては、フロイント産業社からCMEC(登録商標)が入手可能である。
 前記腸溶性ポリマーとして、好ましくは、HPMCAS、HPMCP、CMECおよびこれらの混合物からなる群より選択される1つであり、より好ましくは、HPMCASを挙げることができる。
 前記腸溶性ポリマーは、カプセル皮膜中、及び第2層用浸漬液中において実質的に中和されていない。腸溶性ポリマーに含まれるカルボキシル基等の酸残基は、水中でアルカリ性を示す化合物により中和される。例えば、NaOH、KOH、NHでカルボキシル基を中和すると、-COONa、-COOK、―COONHなどの塩化された基としてカプセル皮膜中、または第2層用浸漬液中に安定に存在しうる。実質的に中和されていないとは、これら中和された酸残基の割合が、例えば、腸溶性ポリマーに含まれる中和前の酸残基のモル数(基数)を100%としたときに、0.01%以下、0.001%以下、0.0001%以下、0.00001%以下、0.000001%以下、0.000001%以下であることを意図する。
 酸残基を中和するために、第1層12,22及び第2層11,21を含む皮膜100gあたりに含まれる中和剤の含有量は、0.06g以下、好ましくは0.01g以下、より好ましくは0.001g以下、さらに好ましくは、0.001g以下である。
 第2層11,21を構成する皮膜は、上記腸溶性ポリマーに加えて、膜形成助剤を添加してもよい。前記膜形成助剤としては、クエン酸トリエチル(TEC)、タルク、及びラウリル硫酸ナトリウム(SLS)及びそれらの混合物が使われてもよい。水分を除く第2層11,21を構成する皮膜における皮膜成分の合計を100質量%とした場合、各成分の含有量は、例えば以下のとおりである。TECが選択される場合には、具体的には5質量%以上20質量以下であり、タルクが選択される場合には、具体的には5質量%以上40質量%以下であり、ラウリル硫酸ナトリウムが選択される場合には、1質量%以上3質量%以下である。
 第2層11,21を構成する皮膜は、可塑剤、滑沢剤、着色剤、遮光剤、残留溶媒等を含んでいてもよい。可塑剤、滑沢剤、着色剤、遮光剤は、上記1.(1)において例示したものを、例示した含有量において使用することができる。
 なお、第2層11,21を構成する皮膜における腸溶性ポリマーの含有量は、水分を除く第2層11,21を構成する皮膜における皮膜成分の合計を100質量%とした場合、ゲル化剤;ゲル化剤およびゲル化補助剤;可塑剤、滑沢剤、着色剤、および遮光剤の含有量を除いた残部である。
 第1層12,22及び第2層11,21とも、カプセル皮膜調製後の残留溶媒は、カプセル皮膜の質量を100質量%とした時に、0.5質量%以下であることが好ましい。
 多層構造腸溶性硬質カプセルの皮膜の厚み(第1層と第2層を含む)は、現在市販されている硬質カプセルと同じく、通常、50~250μmであり、好ましくは70~150μm、より好ましくは80~120μmである。
 第1層12,22の厚みは、20~160μm、より好ましくは40~130μm、さらに好ましくは60~120である。
 第2層11,21を構成する皮膜の膜厚は、20~100μmであり、好ましくは30~75μmであり、より好ましくは30~70μmである。
 多層構造腸溶性硬質カプセルの皮膜として、第1層が20~50μmの厚みを有し、かつ第2層が50~100μmの厚みを有し、第1層と第2層をあわせて70~150μmの厚みを有することが好ましい。あるいは、多層構造腸溶性硬質カプセルの皮膜として、第1層が50~100μmの厚みを有し、かつ第2層が20~50μmの厚みを有し、第1層と第2層をあわせて70~150μmの厚みを有することが好ましい。
2.硬質カプセル皮膜調製のための浸漬液
(1)第1層用浸漬液
 第1層12,22は、公知の硬質カプセル皮膜であるため、第1層12,22を形成するための浸漬液(以下、「第1層用浸漬液」と呼ぶ)は、公知である。
 第1層用浸漬液は、例えば約70~80℃程度に加熱した精製水に、必要に応じてゲル化剤やゲル化補助剤および水溶性基剤以外の成分を溶解した後、HPMC又はゼラチンから選択される物質を溶解し、これを所望の浸漬液の温度(通常35~65℃、より好ましくは40~60℃)まで冷却することで調製できる。
(2)第2層用浸漬液
 第2層11,21を形成するための浸漬液(以下、「第2層用浸漬液」と呼ぶ)は、以下の方法により調製することができる。
 上記腸溶性ポリマーは、精製水には不溶であるため、均一な溶液を得るためには親水性有機溶媒を含む溶媒を使用する。精製水は、イオン交換、蒸留、逆浸透又は限外ろ過などを単独あるいは組み合わせたシステムにより、「浄水」した水を意図する。
 親水性有機溶媒としては、医薬品または食品組成物に使用できるものであれば特に制限されないが、例えば、エタノール、アセトン、1-プロパノール、2-プロパノール、ジエチルエーテル、ジクロロメタン、メタノールが挙げられる。親水性有機溶媒として、好ましくはエタノールであり、エタノールとして好ましくは無水エタノールである。
 上記親水性有機溶媒は、ヒトの健康に及ぼすリスクが低いものが好ましい。例えば、GMPまたはその他の品質基準により規制されるべき溶媒であり、例えばクラス3(第18局方、2.46 残留溶媒)に該当するエタノール、アセトン、2-プロパノールが好ましい。
 第2層用浸漬液は、腸溶性ポリマー、又は腸溶性ポリマー及び膜形成助剤を含む固形成分を室温の水と親水性有機溶媒の混合溶媒に添加したのち、数時間程度撹拌し、腸溶性ポリマー、又は腸溶性ポリマー及び膜形成助剤を含む固形成分を溶解、又は分散させることによって調製できる。第2層用浸漬液中の腸溶性ポリマーの含有量は、第2層用浸漬液を100質量%としたときに、10質量%以上30質量%以下、好ましくは11質量%以上25質量%以下、より好ましくは13質量%以上20質量%以下である。第2層用浸漬液の溶媒は、好ましくは水と無水エタノールの混合溶媒であり、前記混合溶媒中のエタノール比率(エタノールの含有量は、無水エタノールに換算したエタノール含有量を示す)は、具体的には50質量%以上95質量%以下、好ましくは60質量%以上93質量%以下、より好ましくは70質量%以上90質量%以下である。
 第2層用浸漬液は、実質的にアルカリ性物質等の中和剤を含まない。中和剤として、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化アンモニウム、アンモニア等を挙げることができる。実質的にアルカリ性物質等の中和剤を含まないとは、第2層用浸漬液全体を100質量%としたときに、0.01質量%以下、0.001質量%以下、または0.0001質量%以下である。
 第2層用浸漬液の25℃、せん断速度1sec-1におけるせん断粘度は、具体的には150cP以上10000cP以下、好ましくは300cP以上5000cP以下である。
3.多層構造腸溶性硬質カプセルの調製方法
 本開示は、多層構造腸溶性硬質カプセルを作製するための成型方法に関する。
(1)第1層の成型
 多層構造腸溶性硬質カプセルの第1層12,22の成型は、一般的な水溶性基剤を用いた硬質カプセルの調製方法と同様に浸漬法により行うことができる。上記2.(1)において述べた第1層用浸漬液に、カプセルの鋳型となるモールドピン(カプセル成型用ピン)を浸漬させ、引き上げた時に付着してくる第1層用浸漬液の温度が低下して増粘し、乾燥させることで所望のカプセル形状と厚みを得る。一般的な硬質カプセルの皮膜は、乾燥後にモールドピンか引き抜き、所定の長さに切断されるが、前記多層構造腸溶性硬質カプセルにおいては、次の工程において第2層を形成した後に、この切断を行う。
 しかし、多層構造腸溶性硬質カプセルの第1層は、商業ベースで入手可能な、水溶性基剤を含む、硬質カプセルであってもよい。また、第1層の成型と後述する第2層の成型を同一施設が行う必要はない。したがって、本明細書では、第1層用の硬質カプセルの成型、第1層用の硬質カプセルの購入、他施設からの第1層用の硬質カプセルの取得を含めて、「第1層用の硬質カプセルを準備する」と記載する。
(2)第2層の成型
 多層構造腸溶性硬質カプセルの第2層11,21の成型もまた、浸漬法により行う。上記3.(1)において準備した第1層用の硬質カプセルを、上記2.(2)において述べた第2層用浸漬液に第1層用の硬質カプセルの外側全体、あるいは外側の一部を浸漬し、第1層用の硬質カプセルを第2層用浸漬液から取り出す。この工程により第1層用の硬質カプセルに第2層用浸漬液を付着させる。第2層用浸漬液は必要な膜厚が第1層に比べて薄いため付着量は少なくすみ、なおかつ溶媒である親水性有機溶媒の乾燥が速やかに起こり急激に増粘することで、所望のカプセル形状と厚みを得る。前記第1層用の硬質カプセルに付着した第2層用浸漬液中の混合溶媒を除去し、多層構造腸溶性硬質カプセルの硬質カプセルの第2層を成型する。混合溶媒の除去は、好ましくは乾燥であり、より好ましくは室温(18℃~30℃程度)での乾燥である。第2層を成型後、同じ組成の第2層用浸漬液、もしくは異なる組成の第2層用浸漬液を用いた浸漬プロセスを複数回繰り返すことにより、第2層を多層構造とすることができ、第2層の膜厚を所望の厚みに調整することができる。
 乾燥した多層構造腸溶性硬質カプセルの皮膜は、乾燥後にモールドピンか引き抜き、所定の長さに切断される。
4.多層構造腸溶性硬質カプセルへの内容物の充填
 多層構造腸溶性硬質カプセルへの内容物の充填は、それ自体公知のカプセル充填機、例えば全自動カプセル充填機(型式名:LIQFILsuper80/150、クオリカプス(株)社製)、カプセル充填・シール機(型式名:LIQFILsuperFS、クオリカプス(株)社製)等を用いて実施することができる。こうして得られる硬質カプセルのボディ部とキャップ部は、内容物をボディ部に充填したのち、該ボディ部にキャップ部を被覆して両者を嵌合させることによりボディ部とキャップ部を接合させ、硬質カプセル剤を得る。
5.充填後の硬質カプセル剤のシーリング
 必要に応じて硬質カプセル剤は、少なくともキャップ部1の端部15とボディ部2を封止するための適切な技術を使用することによって不正開封防止にされ得る。典型的に、図3に示すように、シーリング又はバンディング技術が使用される。図3(A)は、図2(A)の構成にバンドシールを施した例である。図3(B)は、図2(B)の構成にバンドシールを施した例である。これらの技術はカプセルの分野の当業者に周知である。キャップ部1の端部15を中心とした一定幅でボディ部の表面とキャップ部の表面にボディ部とキャップ部との円周方向に、ポリマー溶液のシール剤を1回~複数回、好ましくは1~2回塗布することにより嵌合部を封緘して腸溶性硬質カプセル剤とすることができる。ポリマー溶液は、腸溶性ポリマーを水に分散、あるいは、水と親水性有機溶媒の混合溶媒に溶解した液を用いることができる。
 カプセル封緘時、バンドシール調製液は、一般に室温あるいは加温下で使用することができる。硬質カプセルの液漏れ防止という観点から、好ましくは約23~45℃、さらに好ましくは約23~35℃、最も好ましくは約25~35℃の温度範囲内にあるシール調製液を用いることが望ましい。なお、シール調製液の温度調節は、パネルヒーター、温水ヒーター等のそれ自体公知の方法で実施することができるが、例えば循環式温水ヒーターあるいは前記一体型カプセル充填シール機のシールパンユニットを循環式温水ヒーター型に改造したもの等で調節するのが、温度幅が微妙に調節できるので好ましい。
 こうして得られる本発明の腸溶性硬質カプセル製剤は、ヒトまたは動物の体内に投与および摂取されたときに、胃内では耐酸性を示し、主に腸に移行してカプセル皮膜が溶解し内容物が放出されるように設計されている。このため、胃内での放出が好ましくない医薬品や食品を充填した製剤として好適である
 以下に実施例を示して本発明をより具体的に説明する。しかし、本発明は、実施例に限定して解釈されるものではない。
I.使用材料
 実施例、比較例、処方例に用いる材料は下記のとおりである。
1.ゼラチン
 ゼラチンは新田ゼラチン(株)の230NVを使用した(以下、「ゼラチン」と表記する)。
2.非イオン性水溶性セルロース化合物
 ヒドロキシプロピルメチルセルロース(HPMC)は信越化学工業(株)のTC-5M及びTC-5Rシリーズを組み合わせて、又は置換度グレード2208(粘度グレード4.0)のものを使用した(以下、それぞれ「TC-5M」「TC-5R」と表記する)。
3.プルラン
 プルランは、東京化成工業(株)を使用した。
4.ポリビニルアルコール
 ポリビニルアルコールは、三菱ケミカル(株)のEG-05Pを使用した(以下、「EG-05P」、又は「PVA」と表記することがある)。
5.ゲル化剤
 ゲル化剤は、κ-カラギーナンとしてCP Kelco社のゲニューゲルSWG-J(以下、「CA」と表記する)、ゲル化補助剤は塩化カリウムを使用した(以下、「KCl」と表記する)。ジェランガムとして、CP Kelco社のKELCOGEL(登録商標)を使用した(以下、「GE」と表記する)。
6.腸溶性ポリマー
(1)ヒドロキシプロピルメチルセルロースアセテートサクシネート(HPMCAS) 信越化学工業(株)AQOATシリーズのLG、MG、HGグレードを使用した(以下、それぞれ「AS-LG」、「AS-MG」、「AS-HG」と表記する)。
(2)ヒドロキシプロピルセルロースフタレート(HPMCP)
 信越化学工業(株)のHPMCPシリーズ、HP-50、HP-55、HP-55Sグレードを使用した(以下、それぞれ「HP-50」、「HP-55」、「HP-55S」と表記する)。
(3)カルボキシメチルエチルセルロース(CMEC)
 フロイント産業(株)のカルボキシメチルセルロースを使用した(以下、「CMEC」と表記する)。
7.溶媒
 エタノールは。日興製薬(株)の無水エタノール「ニッコー」を使用した(以下、「EtOH」と表記する)。アセトンは、富士フイルム和光純薬(株)の医薬品試験用を使用した。2-プロパノールは、富士フイルム和光純薬(株)の医薬品試験用を使用した(以下、「IPA」と表記する)。アンモニア水は、富士フイルム和光純薬(株)の医薬品試験用を使用した。
8.その他
 酸化チタンは、石原産業(株)のタイペークA-100を使用した(以下、「TiO」と表記する)。タルク、は日本タルク(株)のMICRO ACE P-3を使用した(以下、「Talc」と表記する)。ラウリル硫酸ナトリウムは、国産化学(株)のラウリル硫酸ナトリウム[製造専用]を使用した(以下、「SLS」と表記する)。青色1号は、ダイワ化成株(株)の青色1号を使用した(以下、「青色1号」と表記する)。赤色102号はダイワ化成(株)の赤色102号を使用した(以下、「赤色102号」と表記する)。
9.溶出試験試薬
 アセトアミノフェンは、山本化学工業(株)のアセトアミノフェンを使用した(以下、「AA」と表記する)、乳糖は、DFE Pharma社のPharmatose 100M、デンプングリコール酸ナトリウムは、JRS PharmaのEXPLOTABを用いた。
II.浸漬液の調製方法
実施例、処方例、比較例に用いる浸漬液の調製方法は下記のとおりである。
1.ゼラチン浸漬液
 精製水316.67gにゼラチン183.33gを投入し、約1時間静置して膨潤させる。膨潤した溶液を60℃で静置し、完全に溶解したことを確認した。さらに60℃で静置し、泡が抜けきったことを確認した。55℃の22質量%のTiO分散液31.8g、55℃の精製水100.3gを投入し、約15分撹拌し、ゼラチン水溶液とした。
2.HPMC浸漬液
 HPMC水溶液は、次の方法により調製した。精製水386.60gに、KCl0.45gを投入し、撹拌して溶解させた。CA0.45を投入して分散させたのち、約80℃まで昇温して完全に溶解したことを確認した。TC-5Mを90g、TC-5Rを22.5gを投入し、分散したのち静置して脱泡した。50℃まで降温し約1時間撹拌し、さらに55℃で約1時間撹拌した。55℃の22質量%のTiO分散液16.73g、55℃の10質量%KCl水溶液3.91g、55℃の精製水109.48gを投入し、約15分撹拌し、HPMC水溶液とした。
 実施例38~40において使用したGEを含むHPMC水溶液は、次の方法により調製した。精製水956gに、GE4gを投入して分散させたのち、約80℃まで昇温して完全に溶解したことを確認した。TC-5Rを192g、置換度グレード2208(粘度グレード4.0)のHPMCを48g投入し、分散したのち静置して脱泡した。50℃まで降温し約1時間撹拌し、さらに55℃で約1時間撹拌した。55℃の10質量%KCl水溶液1.2g、55℃の精製水151.2gを投入し、約15分撹拌し、HPMC水溶液とした。
3.プルラン浸漬液
 精製水990gに、KCl1.2gを投入し、撹拌して溶解させた。CA5.1gを投入して分散させたのち、約80℃まで昇温してCAが完全に溶解させた。プルラン204gを投入し、攪拌してプルランを溶解させ、静置して脱泡した。55℃まで降温し約1時間撹拌し、プルラン水溶液とした。
4.PVA浸漬液
 精製水953gに、KCl1.2gを投入し、撹拌してKClを溶解させた。PVA240gとCA6gを投入して分散させたのち、約80℃まで昇温してPVAとCAが完全に溶解したことを確認し、静置して脱泡した。55℃まで降温し約1時間撹拌し、PVA水溶液とした。
5.腸溶性ポリマー外層用浸漬液
 水と無水エタノールを溶媒に含む腸溶性ポリマー外層用浸漬液は、次の方法により調製した。精製水40gと無水エタノール360gを混合したのち、AS-LG100gを投入し、撹拌して溶解させた。濃度は同比率の精製水とEtOHの混合溶媒を投入することで調整したのち、腸溶性ポリマーが均一に溶解したことを目視で確認し、成型工程に用いた。AS-MG、AS-HG、HP-50、HP-55、HP-55S、CMECの溶液も同じ手順で調製した。
 水と、IPA又はアセトンを溶媒に含む腸溶性ポリマー外層用浸漬液は、次の方法により調製した。精製水40gとIPA360gを混合したのち、AS-LG100gを投入し、撹拌して溶解させた。濃度は上記比率の混合溶媒を投入することで調整したのち、腸溶性ポリマーが均一に溶解したことを目視で確認し、成型工程に用いた。溶媒にアセトンを用いたときも同じ手順で調製した。AS-HG、CMECの溶液も同じ手順で調製した。
 水、無水エタノール及びIPAを溶媒に含む腸溶性ポリマー外層用浸漬液は、次の方法により調製した。精製水40gとEtOH180gとIPA180gを混合したのち、AS-LG100gを投入し、撹拌して溶解させた。濃度は同比率の混合溶媒を投入することで調整したのち、腸溶性ポリマーが均一に溶解したことを目視で確認し、成型工程に用いた。
6.膜形成助剤を含む腸溶性ポリマー外層用浸漬液
 精製水40gとEtOH360gを混合したのち、SLS2gを投入し、撹拌して溶解させた。Talc40gを投入して撹拌して分散させたのち、AS-LG58gを投入し、撹拌して溶解させた。濃度は同比率の精製水とEtOHの混合溶媒を投入することで調整したのち、腸溶性ポリマーが均一に溶解したことを目視で確認し、成型工程に用いた。AS-MG、AS-HG、HP-50、HP-55、HP-55S、CMECの溶液も同じ手順で調製した。
7.水溶性色素を含む腸溶性ポリマー外層用浸漬液
 精製水40gとEtOH360gを混合したのち、青色1号あるいは赤色102号を0.5g投入し、撹拌して溶解させた。AS-LG99.5gを投入し、撹拌して溶解させた。濃度は同比率の精製水とEtOHの混合溶媒を投入することで調整したのち、腸溶性ポリマーが均一に溶解したことを目視で確認し、成型工程に用いた。AS-HGの溶液も同じ手順で調製した。
8.アンモニア水を溶媒とした腸溶性ポリマー外層用浸漬液
 アンモニア水を溶媒としたAS-LGを含む腸溶性ポリマー外層用浸漬液は、次の方法により調製した。精製水506.3gにAS-LGを70.0g投入し、撹拌して分散させたのち、アンモニア水を7.4g滴下して、AS-LGが均一に溶解したことを目視で確認した。精製水を投入し、粘度を調整して、成型工程に用いた。
 アンモニア水を溶媒としたAS-HGを含む腸溶性ポリマー外層用浸漬液は、次の方法により調製した。精製水492.7gにAS-HGを70.0g投入し、撹拌して分散させたのち、アンモニア水を3.9g滴下して、AS-HGが均一に溶解したことを目視で確認した。精製水を投入し、粘度を調整して、成型工程に用いた。
9.外層用浸漬液の濃度表記
 上記5.で調製された腸溶性ポリマーのみから成る外層用浸漬液の濃度はポリマー濃度、上記6.で調製された膜形成助剤を含む外層用浸漬液の濃度は固形成分濃度と表記する。
III.多層構造腸溶性硬質カプセルの成型方法
 実施例、参考例、比較例に用いる多層構造腸溶性硬質カプセルの成型方法は下記のとおりである。
1.内層皮膜の成型方法
 上記II.で調製されたゼラチン、HPMC、PVA、又はプルラン内層用浸漬液を用いて、コールドピン浸漬法により多層構造腸溶性硬質カプセルの内層を調製した。約55℃の内層用浸漬液に、室温(25℃程度)に放置したモールドピン(サイズ2号)を数秒間浸漬させたのち、大気中に引き上げた。内層用浸漬液が付着した成型ピンを上下反転させ、室内雰囲気温度で送風して1時間以上乾燥させた。
2.外層皮膜の成型方法
(1)II.5.~7.の腸溶性ポリマー外層用浸漬液
 上記II.1.~4.で成型された内層皮膜が付着したまま、室温(25℃程度)に放置したモールドピン(サイズ2号)を、上記II.で調製された腸溶性ポリマー外層用浸漬液に、数秒間浸漬させたのち、大気中に引き上げた。外層用浸漬液が付着した成型ピンを上下反転させ、室内雰囲気温度で送風して1時間以上乾燥させた。
 外層の膜厚をさらに厚く、または複数の基剤を積層する際には、上記II.で調製された腸溶性ポリマー外層用浸漬液を用いて、成型工程を繰り返した。
 最外層が乾燥した多層構造腸溶性硬質カプセルの皮膜は、モールドピンから引き抜き、所定の長さに切断した。
(2)II.8.の腸溶性ポリマー外層用浸漬液
 成型されたHPMCの内層皮膜が付着したまま、室温(25℃程度)に放置したモールドピン(サイズ2号)を、上記II.8.で調製された腸溶性ポリマー外層用浸漬液に、数秒間浸漬させたのち、大気中に引き上げた。外層用浸漬液が付着した成型ピンを上下反転させ、30℃/7%RHで2時間以上乾燥させたのち、60℃/6%RHで終夜乾燥した。最外層が乾燥した多層構造腸溶性硬質カプセルの皮膜は、モールドピンから引き抜き、所定の長さに切断した。
IV.評価用カプセルの作製方法
 実施例、比較例に用いる評価用カプセルの作製方法は下記のとおりである。
 本発明では、即溶性のアミノアセトフェンの溶出を評価することによって、カプセル自体の溶解性(溶出特性)を評価した。アミノアセトフェン20質量%、乳糖70質量%、デンプングリコール酸ナトリウム10質量%の混合粉末を調製し、1カプセルあたり200mgをボディに充填したのち、キャップを本嵌合して評価用カプセルとした。
 さらにバンドシールを施すときは、上記本嵌合したカプセルの最外層の浸漬に用いた腸溶性ポリマー外層用浸漬液をバンドシールとしてキャップとボディの嵌合部に塗布し、室内雰囲気温度で風乾することで、評価用カプセルとした。
V.測定及び試験方法
1.カプセルの溶出試験
 本発明においては、原則、第18改正日本薬局方における溶出試験を適用した。ただし、日本薬局方は、空の硬質カプセル自体の溶解性を規定しているわけではないので、日本薬局方に定められた溶出試験法(第18局方、6.10-1.2パドル法(パドル回転数50回転/分)、及び、同図6.10-2aに対応するシンカー使用)に従い試験し、アミノアセトフェン(AA)の溶出率の時間変化を測定した。溶出試験にはDistek社製バス型溶出試験器Model2100あるいはModel2500を用いた。吸光度測定にはDistek社製のOpt-Diss410あるいはLeap Technologies社のOD LITE UV FiberOpticを用いた。同容量のアミノアセトフェンを別途、全量、溶出試験器バス内の溶液に溶解させたときの244nmにおける吸光度を100%とし、カプセルからのAAの溶出に伴って上昇する溶出試験器バス内の溶液の244nmにおける吸光度から溶出率を求めた。n数に関しては、n=1~6とした。なお、ここで第1液、第2液、pH5.0の溶液、およびpH6.0の溶液として、下記の水溶液が使用した。いずれもバス内の溶液の温度は37±0.5℃とした。
 第1液は、塩化ナトリウム2.0gに塩酸7.0mLおよび水を加えて溶かし1000mLに調整した(pHは、約1.2)。
 第2液は、0.2mol/Lのリン酸二水素カリウム試液250mLに、0.2mol/Lの水酸化ナトリウム試液118mL及び水を加えて溶かし1000mLに調整した(pHは、約6.8)。
 pH5.0の溶液、およびpH6.0の溶液は、0.05mol/Lのりん酸一水素ナトリウムと0.025mol/Lのクエン酸を用いてpHを調整し、調製した。
 結果の判定基準は、溶出率が1%以上の場合を「溶出あり」とし、溶出率が80%以上の場合を「溶出率が高い」とした。
2.腸溶性ポリマー外層用浸漬液のせん断粘度
 腸溶性外層用浸漬液のせん断粘度は、(株)アントンパール・ジャパンのレオメーター(MCR102)を使用して測定した。測定には治具(CC27)、共軸円筒管(CC27/T200/SS)を使用した。せん断粘度は、温度25℃、せん断速度1sec-1の時の値を用いた。
3.内層と外層の皮膜厚
 乾燥した皮膜の厚みは、(株)キーエンスの寸法測定器(LS-9030)を用いた。キャップはモールドピンの頭頂部から5mm、ボディはモールドピンの頭頂部から8mmを測定箇所とした。内層と外層の膜厚(皮膜1枚の厚み)はモールドピン、内層が付着したモールドピン、外層と内層が付着したモールドピンの外径を測定し、下式で算出した。キャップ5個、ボディ5個の膜厚を平均して、当該カプセルの平均膜厚とした。
Figure JPOXMLDOC01-appb-M000001
 
4.皮膜構造の観察
 光学顕微鏡は、ライカ マイクロシステムズ社製DM5000Bを使用した。カプセル皮膜の断面を観察するため、ボディとキャップをエポキシ樹脂で接着したカプセル皮膜を輪切りにした小片に切り出し、エポキシ樹脂に包埋後、ミクロトームで薄切し観察用の切片(およそ2000~3000μm四方で約10μm厚み)を作製した。作製した切片をオイルと共にスライドガラスとカバーガラスに挟み、試料を作製した。作製した試料をコントラスト法により明視野で顕微鏡観察した。図4、及び図5にバンドシールを施していない顕微鏡画像を示す。図4(A)は、図2(A)に対応する。図4(B)は、図2(B)に対応する。図5(A)は、図3(A)に対応する。図5(B)は、図3(B)に対応する。
5.アンモニア含有量の定量
 試料10mgをメスフラスコに採取し、純水50mLを添加し10分間振とうして抽出した。抽出液中のアンモニウムイオンをイオンクロマトグラフで測定し、絶対検量線法で定量した。イオンクロマトグラフはThermo Fisher Scientific社製ICS-5000+型を使用した。
 各腸溶性ポリマーの水とEtOHの混合溶媒に対する溶解性の評価結果を、図6に示す。EtOH比率が50質量%未満、あるいは96質量%以上のときに、全ての腸溶性ポリマーは不溶であることが示され、腸溶性ポリマー外層用浸漬液として使用することができないことが確認された(比較例1~14)。一方で、EtOH比率が50質量%以上95質量%以下のときに、全ての腸溶性ポリマーが溶解することが示され、せん断粘度が全て150cP以上であることが確認された(処方例1~29)。また、図6-2に、水とEtOHの混合溶媒に替えて、水とIPAの混合溶媒、水とアセトンの混合溶媒、又は水、EtOH及びIPAの混合溶媒を使用した結果を示す。有機溶媒比率が50質量%以上95質量%以下のときに、全ての腸溶性ポリマーが溶解することが示され、せん断粘度が全て150cP以上であることが確認された(処方例30~54)。
 続いて、得られた各カプセルについて、上記V-1.にしたがって第1液及び第2液における溶出試験を行った。腸溶性ポリマー外層用浸漬液の溶媒が水とEtOHの混合溶媒である場合の結果を図7に示す。外層の膜厚が10μm以下のカプセルは、第1液における2時間後の溶出率は、いずれも1%以上であり、酸性溶液に対する耐酸性が不十分であることが確認された。(比較例15~18)。一方で、外層の膜厚が20μm以上のカプセルは、第1液における2時間後の溶出率は、いずれも1%未満で十分な耐酸性を有しており、第2液における30分後の溶出率は、いずれも80%以上であることから、酸性域における耐酸性と中性域における即放性を兼ね備えた腸溶性硬質カプセルであることが示された(実施例1~15)。また、図7-2に比較例19として、AS-HGを腸溶性ポリマーとして用いた、外層の膜厚が10μm以下のカプセルの溶出試験の結果を示す。腸溶性ポリマーがAS-HGであっても、外層の膜厚が10μm以下のカプセルは、第1液における2時間後の溶出率は1%以上であり、酸性溶液に対する耐酸性が不十分であった。
 次に、皮膜構造の影響を評価した。実施例16と17は内層の一部が腸溶性の外層でディップコーティングされていないものになるが、第1液における2時間後の溶出率はいずれも1%未満であり、優れた耐酸性を有していることが示された。
 次に、バンドシールの有無の影響を評価した。バンドシールがないときはキャップとボディの嵌合部から酸性溶液が浸透することが懸念されたが、実施例16と17、実施例7と18をそれぞれ比較すると、第1液における2時間後の溶出率はいずれも1%未満であったため、バンドシールの有無を問わず、優れた耐酸性を有していることが示された。
 次に、膜形成助剤の影響を評価した。実施例19~24は外層皮膜に腸溶性ポリマー以外の膜形成助剤を含んでいるが、第1液における2時間後の溶出率はいずれも1%未満で、第2液における30分後の溶出率はいずれも80%以上であることから、腸溶性特性に影響を与えないことが示された。
 水とEtOHの混合溶媒に替えて、水とIPAの混合溶媒、水とアセトンの混合溶媒、又は水、EtOH及びIPAの混合溶媒を使用した腸溶性ポリマー外層用浸漬液を使用した各カプセルの溶出試験の結果を図7-2に示す。実施例26~32に示すように、外層の膜厚が20μm以上のカプセルは第1液における2時間後の溶出率はいずれも1%未満で、第2液における30分後の溶出率はいずれも80%以上であった。このことから、EtOHに替えて他の親水性有機溶媒を使用できることが示された。
 次に、内層の皮膜成分の影響を評価した。図7に示す実施例25のゼラチンを内層とする多層構造腸溶性硬質カプセルは、第1液における2時間後の溶出率は1%未満であり、第2液における30分後の溶出率はいずれも80%以上であった。
 また、図7-2に示す実施例33~35は内層の基剤としてPVAを含み、実施例36~37は内層の基剤としてプルランを含み、実施例38~40は内層の基剤としてHPMCを含み、かつゲル化剤がジェランガムを含む多層構造腸溶性硬質カプセルである。いずれの多層構造腸溶性硬質カプセルも、第1液における2時間後の溶出率は1%未満であり、第2液における30分後の溶出率はいずれも80%以上であった。
 これらの結果は、第1層がHPMCである他の実施例と同様であることから、第1層のカプセル皮膜にふくまれる基剤の種類は、腸溶性特性に影響を与えないことを示している。
 次に、3層構造の影響を評価した。図8に示す実施例41~42の第1層(内層)の皮膜はHPMCを基剤とし、第2層(第1の外層)と第3層(第2の外層)は、それぞれ同じ外層用浸漬液を用いて、浸漬と乾燥の工程を二度繰り返すことで皮膜を成型しているが、第1液における2時間後の溶出率はいずれも1%未満となり、第2液における30分後の溶出率はいずれも80%以上であることから、腸溶性特性に影響を与えないことが示された。
 さらに、第1の外層(第2層)と第2の外層(第3層)が異なる複数種の腸溶性ポリマーを含む硬質カプセルについて評価した。図8に示す実施例43は第1層(内層)がHPMC、第2層(第1の外層)がHPMCAS-HG、第3層(第2の外層)がHPMCAS-LGを含む多層構造を有しているが、第1液における2時間後の溶出率は1%未満となり、第2液における30分後の溶出率はいずれも80%以上であることから、優れた腸溶性特性を有していることが示された。
 図8-2に、内層の基剤をPVAに替えた3層構造のカプセルの溶出率を示す。実施例44~45の第1層(内層)の皮膜はPVAを基剤とし、第2層(第1の外層)と第3層(第2の外層)は、それぞれ同じ外層用浸漬液を用いて、浸漬と乾燥の工程を二度繰り返すことで皮膜を成型しているが、第1液における2時間後の溶出率はいずれも1%未満となり、第2液における30分後の溶出率はいずれも80%以上であることから、腸溶性特性に影響を与えないことが示された。
 次に、第1液、及び第2液以外の溶液(水(精製水)、pH5.0の溶液、およびpH6.0の溶液)を使用した溶出試験を行った。この試験は、水と共にカプセル剤を服用すること、例えば、飲食後の胃内のpHが、pH4~6程度まで上昇することを考慮したものである。もし、このpHの範囲において溶出率が上がってしまう場合、カプセルが胃内で溶出する可能性があり、食後使用が難しくなる可能性がある。
 図9に、結果を示す。上記II.5~7.において調製した腸溶性ポリマー外層用浸漬液を外層とするカプセル(実施例44~51)は、水、pH5.0の溶液、又はpH6.0の溶液における2時間後の溶出率はいずれも1%未満となり良好な耐性を有していた。これらの結果は、外層に含まれる腸溶性ポリマーがAS-LG、CMEC、又はAS-HGであっても、耐性が変わらないことを示している。さらに、内層の基剤についても差がないことを示している。
 疎水性である腸溶性ポリマーを親水性溶媒に溶解する方法として、アンモニア等のアルカリ性溶液を使用し、腸溶性ポリマーの疎水基を中和して溶解する方法がある。
 上記II.II.8.の腸溶性ポリマー外層用浸漬液を使用し、上記III.2.(2)の方法により調製した図10に示す比較例20~21のカプセルについて、水、pH5.0の溶液、およびpH6.0の溶液を使用して溶出試験を行った。比較例20~21のカプセルの中和度をアンモニア含有量から算出したところ、腸溶性ポリマーのカルボキシル基100モル中約16モルが中和されていた。その結果、中和により腸溶性ポリマーを溶解した腸溶性ポリマー外層用浸漬液を外層に使用したカプセルでは、上記II.5~7.において調製した腸溶性ポリマー外層用浸漬液を外層とするカプセルと比較して、水、pH5.0の溶液、およびpH6.0の溶液において溶出率が高くなることが示された。これらの結果は、アルカリ中和により、AS-LG、及びAS-HGといった腸溶性ポリマーの耐酸性機能が損なわれることを示している。
 したがって、上記II.5~7.において調製した腸溶性ポリマー外層用浸漬液を外層とするカプセルの方が、実際に服用する状況を考慮した場合、より確実にカプセル内の充填物を腸内で放出できることが明らかとなった。 
 皮膜(内層及び外層を含む)中のアンモニウムイオン(NH4+)濃度を、以下の方法により測定した。
 皮膜10mgをメスフラスコに採取し、純水50mLを添加し10分間振盪して抽出した。
抽出液中のNH4+をイオンクロマトグラフで測定し、実際のピーク強度から絶対検量線法で定量した。イオンクロマトグラフはThermo Fisher Scientific社製 ICS-5000+型を使用した。本測定系の検出加減は、0.0010 g (10 ppm)である。
 図11に比較例20、21と実施例1、30、12、32、34、20、及び22の皮膜100g中におけるアンモニウムイオンの含有量と、中和度を示す。皮膜100 gは、内層及び外層を含む。皮膜100gあたりのアンモニウムイオンの含有量は、比較例20が0.1100 g (1,100 ppm)、比較例21が0.0630 g (630 ppm)であった。一方、実施例では、皮膜100gあたりのアンモニウムイオンの含有量は、0.0011g  (11 ppm)又は0.0010 g (10 ppm)以下であった。実施例では、意図的にアンモニウムイオン、又はアンモニウイオンを発生しうる化合物は加えていないため、少なくともアンモニウムイオンが0.0015g (15ppm)以下であれば、実質的にアンモニウムイオンを含んでないと考えられる。
 また、皮膜中の基剤のカルボシキル基の中和度は、比較例20が16.09 mol%、比較例21が16.67 mol%であった。一方、実施例では、0.09~0.29 mol%の範囲であった。 

Claims (20)

  1.  キャップ部とボディ部を備え、前記キャップ部とボディ部はそれぞれが、その全体または一部が少なくとも第1層と第2層を備えるカプセル皮膜から構成され、前記第1層が水溶性基剤を含み、第2層が腸溶性ポリマーを含み、第2層は第1層の全体または一部の外側を被覆する、多層構造腸溶性硬質カプセル。
  2.  前記カプセル皮膜の第1層の厚みが20~160μmであり、第2層の厚みが20~70μmである、請求項1に記載の多層構造腸溶性硬質カプセル。
  3.  前記カプセル皮膜の第1層と第2層を合わせた厚みが、70~150μmである、請求項2に記載の多層構造腸溶性硬質カプセル。
  4.  (1)水分を除く皮膜成分の含有量の合計を100質量%とした時に、含有量が50質量%以上である腸溶性ポリマーと、
     (2)膜形成助剤と、
    を含む、第2層からなる、請求項1に記載の多層構造腸溶性硬質カプセル。
  5.  前記腸溶性ポリマーは、ヒドロキシプロピルメチルセルロースアセテートスクシネート、ヒドロキシプロピルメチルセルロースフタレート、カルボキシメチルエチルセルロース、およびこれらの混合物からなる群より選択される1つである、請求項4に記載の多層構造腸溶性硬質カプセル。
  6.  前記カプセル皮膜中の腸溶性ポリマーにおいて中和されている酸残基の割合は、腸溶性ポリマーに含まれる中和前の酸残基のモル数(基数)を100%としたときに、0.01%以下である、請求項4記載の多層構造腸溶性硬質カプセル。
  7.  前記膜形成助剤が、可塑剤、界面活性剤、表面改質剤なる群より選択される少なくとも1つである、請求項4に記載の多層構造腸溶性硬質カプセル。
  8.  前記膜形成助剤が、クエン酸トリエチル、タルク、及びラウリル硫酸ナトリウムからなる群より選択される少なくとも1つである、請求項7に記載の多層構造腸溶性硬質カプセル。
  9.  前記水溶性基剤がヒドロキシプロピルメチルセルロース、ゼラチン、プルラン、又はポリビニルアルコールである、請求項1に記載の多層構造腸溶性硬質カプセル。
  10.  pH1.2を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満である、請求項1に記載の多層構造腸溶性硬質カプセル。
  11.  pH5.0または6.0を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満である、請求項10に記載の多層構造腸溶性硬質カプセル。
  12.  pH6.8を有する溶液を用いた溶出試験において、カプセルに充填した内容物の30分後の溶出率が、80%以上である、請求項10に記載の多層構造腸溶性硬質カプセル。
  13.  pH1.2を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満であり、
     pH5.0または6.0を有する溶液を用いた溶出試験において、カプセルに充填した内容物の2時間後の溶出率が、1%未満であり。かつ
     pH6.8を有する溶液を用いた溶出試験において、カプセルに充填した内容物の30分後の溶出率が、80%以上である、請求項1に記載の多層構造腸溶性硬質カプセル。
  14.  カプセル皮膜100g当たりに含まれる中和剤の含有量が、0.06g以下である、請求項1に記載の多層構造腸溶性硬質カプセル。
  15.  腸溶性ポリマー、又は腸溶性ポリマー及び膜形成助剤を含む固形成分を、水と親水性有機溶媒の混合溶媒に溶解又は分散させた、請求項1に記載の多層構造腸溶性硬質カプセルの第2層を形成するための第2層用浸漬液であって、前記混合溶媒中の無水エタノール比率が50質量%以上95質量%以下であり、前記第2層用浸漬液のせん断粘度が25℃で150cP以上である、第2層用浸漬液。
  16.  前記第2層用浸漬液に含まれる腸溶性ポリマーの濃度が10質量%以上である、請求項15に記載の第2層用浸漬液。
  17.  第2層用浸漬液に含まれる中和剤の含有量は、第2層用浸漬液全体を100質量%としたときに0.01質量%以下である、請求項15に記載の第2層用浸漬液。
  18.  前記親水性有機溶媒が、無水エタノール、2-プロパノール、及びアセトンよりなる群から選択される少なくとも一種である、請求項15に記載の第2層用浸漬液。
  19.  多層構造腸溶性硬質カプセルの第1層用の硬質カプセルを準備する工程と、
     前記第1層用の硬質カプセルを、請求項15に記載の第2層用浸漬液に浸漬し、前記第1層用の硬質カプセルを第2層用浸漬液から取り出し、前記第1層用の硬質カプセルに付着した第2層用浸漬液中の混合溶媒を除去し、多層構造腸溶性硬質カプセルの硬質カプセルの第2層を成型する工程、
    を含む多層構造腸溶性硬質カプセルの製造方法。
  20.  前記第2層を成型する工程が複数回である、請求項19に記載の製造方法。 
PCT/JP2023/026717 2022-07-22 2023-07-21 多層構造腸溶性硬質カプセル WO2024019133A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022117058 2022-07-22
JP2022-117058 2022-07-22
JP2023033057 2023-03-03
JP2023-033057 2023-03-03
JP2023-090161 2023-05-31
JP2023090161 2023-05-31

Publications (1)

Publication Number Publication Date
WO2024019133A1 true WO2024019133A1 (ja) 2024-01-25

Family

ID=89617866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026717 WO2024019133A1 (ja) 2022-07-22 2023-07-21 多層構造腸溶性硬質カプセル

Country Status (1)

Country Link
WO (1) WO2024019133A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930524A (ja) * 1972-07-17 1974-03-19
JPS61221117A (ja) * 1985-03-26 1986-10-01 Fujisawa Pharmaceut Co Ltd 腸溶性硬カプセル剤
JPS6322014A (ja) * 1986-03-07 1988-01-29 Shionogi & Co Ltd 胃内浮遊性持続型カプセル剤
JPS63117761A (ja) * 1986-11-07 1988-05-21 辻 新次郎 ゼラチン硬カプセルのフイルムコ−テイング方法
JP2003306428A (ja) * 2002-04-17 2003-10-28 Zensei Yakuhin Kogyo Kk 服用性を改善した硬カプセル剤
JP2007230948A (ja) * 2006-03-02 2007-09-13 Univ Meijo 腸溶性化硬カプセル
JP2021503463A (ja) * 2017-11-17 2021-02-12 エボニック オペレーションズ ゲーエムベーハー コーティングされた硬カプセルを製造する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930524A (ja) * 1972-07-17 1974-03-19
JPS61221117A (ja) * 1985-03-26 1986-10-01 Fujisawa Pharmaceut Co Ltd 腸溶性硬カプセル剤
JPS6322014A (ja) * 1986-03-07 1988-01-29 Shionogi & Co Ltd 胃内浮遊性持続型カプセル剤
JPS63117761A (ja) * 1986-11-07 1988-05-21 辻 新次郎 ゼラチン硬カプセルのフイルムコ−テイング方法
JP2003306428A (ja) * 2002-04-17 2003-10-28 Zensei Yakuhin Kogyo Kk 服用性を改善した硬カプセル剤
JP2007230948A (ja) * 2006-03-02 2007-09-13 Univ Meijo 腸溶性化硬カプセル
JP2021503463A (ja) * 2017-11-17 2021-02-12 エボニック オペレーションズ ゲーエムベーハー コーティングされた硬カプセルを製造する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUYGHEBAERT N, VERMEIRE A, REMON J P: "Alternative method for enteric coating of HPMC capsules resulting in ready-to-use enteric-coated capsules", EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, ELSEVIER AMSTERDAM, NL, vol. 21, no. 5, 1 April 2004 (2004-04-01), NL , pages 617 - 623, XP002560461, ISSN: 0928-0987, DOI: 10.1016/j.ejps.2004.01.002 *

Similar Documents

Publication Publication Date Title
US10874619B2 (en) Acid resistant capsules
JP5248739B2 (ja) 腸溶性調製物
EP1951209A2 (en) Multi-layered coating technology for taste masking
JP7198205B2 (ja) 腸溶性硬質カプセル
TW201231094A (en) Bulk enteric capsule shells
WO2024019133A1 (ja) 多層構造腸溶性硬質カプセル
TW202412746A (zh) 多層構造腸溶性硬質膠囊
JP2022123274A (ja) 腸溶性硬質カプセル
JP7366893B2 (ja) 腸溶性硬質カプセル
US20220370369A1 (en) Formulation of intrinsically acid-resistant vegetarian-based and gelatin-based soft gel capsules for pharmaceutical/ nutraceutical products
JP2018536622A (ja) 耐酸性のツーピースハードカプセル用の耐酸性バンディング溶液又はシーリング溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843056

Country of ref document: EP

Kind code of ref document: A1