WO2024018687A1 - 射出成形品及び射出成形品の製造方法 - Google Patents

射出成形品及び射出成形品の製造方法 Download PDF

Info

Publication number
WO2024018687A1
WO2024018687A1 PCT/JP2023/010257 JP2023010257W WO2024018687A1 WO 2024018687 A1 WO2024018687 A1 WO 2024018687A1 JP 2023010257 W JP2023010257 W JP 2023010257W WO 2024018687 A1 WO2024018687 A1 WO 2024018687A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection molded
molded product
injection
mold
injection molding
Prior art date
Application number
PCT/JP2023/010257
Other languages
English (en)
French (fr)
Inventor
晃寛 山口
聡 荒井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024018687A1 publication Critical patent/WO2024018687A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an injection molded product and a method for manufacturing an injection molded product.
  • Plastic (resin material) injection molded products are used in a wide range of applications.
  • injection molded products using bioplastics (a general term for plastics made from biomass and biodegradable plastics) have been developed in order to reduce the impact of plastic waste on the environment.
  • Patent Document 1 describes a method for producing an injection molding material that includes a mixing step of mixing fibrous cellulose, a hydrophobic biodegradable material, and starch in air.
  • bioplastics are generally expensive, it is desirable to provide bioplastic injection molded products with added value other than environmental value, such as high design, and to manufacture them at low cost.
  • An object of the present invention is to produce a bioplastic injection molded product with a high design quality at a low cost.
  • An injection molded product according to one embodiment of the present invention is an injection molded product containing a thermoplastic resin, a thermoplastic starch, and a compound having a carbodiimide group, and has a thick part and a thin part, and has a thick part and a thin part, and has a thick part and a thin part.
  • the brightness of the thick portion is higher than the brightness of the thin portion.
  • a highly designed bioplastic injection molded product can be manufactured at low cost.
  • FIG. 1 is a schematic cross-sectional view of an example of an injection molding apparatus used for manufacturing an injection molded article according to an embodiment.
  • FIG. 2 is an image diagram showing the appearance of the injection molded product of Example 1.
  • 1 is a photograph of an injection molded product manufactured using the material of Comparative Example 1.
  • 3 is a photograph of an injection molded product manufactured using the material of Comparative Example 2.
  • 1 is a photograph of an injection molded product manufactured using the material of Example 1.
  • 3 is a photograph of an injection molded product manufactured using the material of Example 2.
  • 2 is a graph showing the relative color difference of injection molded products made with materials of Examples 1 and 2 and Comparative Examples 1 and 2.
  • 1 is a graph showing the tensile strength of injection molded products made with materials of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 3 is an image diagram showing the appearance of the injection molded product of Example 3.
  • FIG. 3 is an image diagram showing the appearance of the injection molded product of Example 3.
  • FIG. 2 is a
  • the injection molded product according to the first embodiment includes a thermoplastic resin as a first component, a thermoplastic starch (hereinafter referred to as TPS) as a second component, and a compound having a carbodiimide group (hereinafter referred to as carbodiimide) as a third component. compounds). Furthermore, the injection molded product has at least one thick portion and one or more thin portions.
  • TPS thermoplastic starch
  • carbodiimide compound having a carbodiimide group
  • the injection molded article according to the first embodiment is an injection molded article containing a thermoplastic resin, a thermoplastic starch, and a compound having a carbodiimide group.
  • the injection molded product has a thick part 201 and a thin part 202.
  • the brightness of the thick portion 201 is greater than the brightness of the thin portion 202.
  • a resin in a fluid state is poured into a mold with a predetermined shape, and is cooled and solidified to produce an injection molded product with a desired three-dimensional shape.
  • the so-called shear heat generation caused by frictional heat between the fluid resin and the mold wall surface occurs significantly in the thin-walled part compared to the thick-walled part, so the resin in the thin-walled part 202 is It is molded at a higher temperature than the resin of the portion 201.
  • the temperature difference that can be realized due to shear heat generation is about 30° C. at most, and even if a general resin material is molded with this temperature difference, a clear difference in hue cannot be obtained.
  • the degree of hue change due to temperature difference is enhanced, and an injection molded product having a clear color difference depending on wall thickness is realized.
  • patterns, designs, and images can be formed without post-processes such as painting, and injection molded products with high design can be obtained at low cost.
  • TPS may include starch and plasticizer. TPS can be obtained by mixing starch and plasticizer.
  • Starch may be derived from plants, such as grains such as corn, wheat, and rice; legumes such as fava beans, mung beans, and adzuki beans; potatoes such as potatoes, sweet potatoes, and tapioca; wild plants such as Japanese staghorn, bracken, and kudzu; It may be derived from palms such as sago palm.
  • the plasticizer may be a compound having a functional group, such as a hydroxyl group, an amino group, a carboxyl group, which can form hydrogen bonds with the functional groups of starch.
  • plasticizers include Glycols such as glycerin, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, butylene glycol, polyglycerin, thiodiglycol, sugars such as glucose, fructose, sucrose, galactose, maltose, lactose, trehalose, sorbitol, Sugar alcohols such as maltitol, xylitol, erythritol, mannitol, lactitol, sugar derivatives such as sucralose, hydroxy acids such as tartaric acid, polyhydric alcohols such as polyvinyl alcohol, trehalose, polyhydroxy(meth)acrylate, urea, thiourea, etc. polyvalent amines, poly
  • TPS is derived from biomass, is biodegradable, and is inexpensive. Therefore, the injection molded product according to this embodiment can contribute to carbon neutrality, have at least a part of it biodegradable, and can be manufactured at low cost.
  • Granular starch that has not been thermoplasticized may clog the screw when used during compounding or in an injection molding device as described below, but pelletized TPS does not have such a risk. Therefore, the injection molded product according to this embodiment containing TPS can be manufactured using an injection molding apparatus as described below.
  • the first component thermoplastic resin is, for example, polypropylene (PP), polyethylene (PE), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), polymethyl methacrylate (PMMA), polylactic acid ( PLA), polybutylene succinate (PBS), hydroxybutyrate hydroxyhexanoate (PHBH), polyhydroxyalkanoic acid (PHA), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), polyvinyl alcohol ( PVA).
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PMMA polymethyl methacrylate
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PHBH hydroxybutyrate hydroxyhexanoate
  • PHA polyhydroxyalkanoic acid
  • PBSA poly
  • the first component thermoplastic resin may be biodegradable. Thereby, all or part of the injection molded article can be biodegradable. Examples of biodegradable resins include PLA, PBS, PHBH, PHA, PVA, PBSA, and PBAT.
  • the first component may be a thermoplastic resin or a polyester such as PLA, PBS, PHBH, PHA, PBSA, and PBAT.
  • the first component may be a thermoplastic resin or a biodegradable polyester.
  • the first component thermoplastic resin may be a mixture of a non-biodegradable thermoplastic resin and a biodegradation accelerator.
  • the biodegradation accelerator may be, for example, a microorganism involved in biodegradation, an enzyme, a substance that attracts microorganisms, or a substance that promotes hydrolysis of the resin. Thereby, all or part of the resin molded product can be biodegradable.
  • the first component thermoplastic resin may be derived from biomass. Thereby, carbon neutrality can be improved.
  • biomass-derived resins include biomass-derived PLA, PBS, PHBH, PHA, PE, PP, and PS.
  • carbodiimide compounds examples include (such as "Carbodilite” manufactured by Nisshinbo Chemical Co., Ltd.).
  • the injection molded product according to this embodiment may further contain additives.
  • the additive material is preferably a material that does not accelerate the yellowing of TPS or react with TPS to form a gel. Further, the additive material is preferably a material that is not derived from petroleum, such as an inorganic material.
  • Antibacterial agents are another example of additives.
  • a resin molded article containing an antibacterial agent can be applied to food-related uses (for example, food containers) because it prevents or reduces contamination with microorganisms in the environment in which it is used.
  • antibacterial agents suitable for food-related uses include antibacterial agents containing silver-based inorganic compounds or zinc oxide-based compounds as main components.
  • the content of the antibacterial agent may be set as appropriate depending on the mechanical properties of the resin molded product. .1 to 1.0 parts by weight.
  • additives include fillers, heat stabilizers, lubricants, mold release agents, nucleating agents, photodegradants, biodegradation promoters, antioxidants, UV stabilizers, antistatic agents, flame retardants, and deodorizers. Examples include agents.
  • the method for producing an injection molded article includes performing injection molding using pellets containing TPS and a carbodiimide compound.
  • a method of manufacturing an injection molded product using the injection molding apparatus shown in FIG. 1 will be described below.
  • raw material pellets 104 are supplied to the hopper 103 of the injection molding apparatus 100.
  • the raw material pellets 104 include pellets containing TPS.
  • the pellets containing TPS may be pellets containing TPS as a main component, or may be compound pellets containing TPS and at least one of the first component, a thermoplastic resin or a carbodiimide compound.
  • Pellets based on TPS can be produced by feeding starch and plasticizer into an extrusion molding device, mixing, extruding, and cutting. Commercially available TPS pellets can also be used.
  • a compound pellet containing at least one of a first component thermoplastic resin or a carbodiimide compound and TPS is obtained by supplying at least one of a first component thermoplastic resin or a carbodiimide compound and TPS pellets to an extrusion molding device, mixing them, and extruding them. It can be made by cutting.
  • the raw material pellets 104 include at least one of pellets of a first component thermoplastic resin, pellets containing a carbodiimide compound, or compound pellets containing a first component thermoplastic resin and a carbodiimide compound. It may further include. Furthermore, additives may be supplied to the hopper 103 as needed.
  • the screw 102 is moved backward by the motor 101, and the raw material pellets 104 are introduced from the hopper 103 into the cylinder 106.
  • the raw material pellets 104 are heated by the heater 105 while rotating the screw 102 to melt the raw material pellets 104.
  • the temperature of the heater 105 (molding temperature) is preferably 230°C or lower, more preferably 210°C or lower. Thereby, thermal deterioration and yellowing of TPS can be prevented or reduced.
  • a supercritical fluid such as nitrogen or carbon dioxide may be further introduced into the cylinder 106 and mixed with the melt of the raw material pellets 104. This facilitates the production of thin resin molded products and injection molded products with complex shapes.
  • the screw 102 is advanced by the motor 107 to inject the molten material in the cylinder 106 into the mold 109 through the nozzle 108.
  • further melt is supplied to the mold 109 under a predetermined pressure in order to compensate for volumetric shrinkage due to subsequent solidification of the melt.
  • the molten material is cooled to below the solidification temperature and solidified.
  • the mold clamping mechanism 111 is driven by the motor 110 to open the mold 109.
  • the ejector mechanism 113 is driven by the motor 112 to eject the solidified product (resin molded product) from the mold 109.
  • the mold 109 is closed in preparation for the next injection molding. In this way, the injection molded product according to the first embodiment is manufactured.
  • the first component thermoplastic resin is a mixture of two or more types of thermoplastic resins.
  • the two types of mixed thermoplastic resins may be made compatibilized to form a single phase, or may be separated and dispersed into multiple phases.
  • Examples of the two or more types of thermoplastic resins are the same as the examples of the first component thermoplastic resin described above.
  • the difference in solubility parameters (SP values) of two or more types of thermoplastic resins constituting the first component thermoplastic resin is 1.0 (J/cm 3 ) 0. It may be 5 or less.
  • the SP value in the present invention may be determined by a method of estimating from the molecular structure of the compound or a method of estimating from the physical property values of the compound.
  • methods for estimation from the molecular structure of a compound include Small's calculation method, Rheineck and Lin's calculation method, Krevelen and Hoftyzer's calculation method, and Fedors' calculation method (RF Fedors, Polym. Eng. Sci., 14 (2), 147 (1974)), Hansen's calculation method (CM Hansen, J. Paint Technol., 39., (505), 104 (1967)), and Hoy's calculation method (H.L. Hoy, J. Paint Technol., 42 (540), 76 (1970)).
  • Examples of methods for estimating from the physical property values of a compound include a method based on the latent heat of vaporization, and a method based on the Hildebrand Rule (J. Hildebrand and R. Scott, "The Solubility of Non-electrolytes", 3rd Ed., pp. 119-1) 33, Reinhold Publishing Corp. (1949)), a method based on surface tension, a method determined from a solubility value, a method determined from a refractive index, and a method determined from other physical property values.
  • the injection molded product according to the third embodiment may be arranged such that the thin portion 202 and the thick portion 201 have periodicity, as shown in FIGS. 9A and 9B. With such a configuration, parts with different hues appear periodically, and a highly designed pattern can be expressed on the surface of the injection molded product.
  • the thin portions 202 and the thick portions 201 may be arranged to form a periodic stripe pattern (see FIG. 9A) or a check pattern (see FIG. 9B).
  • a resin in a fluid state is poured into a mold 1010 having a predetermined shape, and is cooled and solidified to produce an injection molded product having a desired three-dimensional shape.
  • Shear heat generation forms a pattern unique to bioplastics (which tend to discolor due to heat).
  • a carbodiimide compound is added, color changes due to temperature are likely to be emphasized.
  • the frictional heat (shear heat generation) generated between the flowing resin and the wall surface becomes large, and the resin temperature increases by about 5-20°C at maximum. Since starch is sensitive to change in color depending on temperature, a pattern corresponding to the shape of the mold 1010 can be formed.
  • an injection molded product is manufactured using a mold 1010 having a predetermined shape. Specifically, as shown in FIG. 10, a mold 1010 having a thin portion and a thick portion is used. The thin section of the mold 1010 forms a hot section 1020 during injection molding. Additionally, the thick portion of the mold 1010 forms a low temperature section 1030 during injection molding.
  • a pattern corresponding to the shape of the mold 1010 is formed on the injection molded product.
  • the pattern according to the shape of the mold 1010 is, for example, a periodic stripe pattern (see FIG. 9A) or a check pattern (see FIG. 9B).
  • injection molding is performed with a high temperature part 1020 and a low temperature part 1030 formed in the injection molded product.
  • the low temperature part 1030 of the injection molded product is brighter than the high temperature part 1020 during injection molding.
  • the high temperature part 1020 (see FIG. 10) during injection molding of the injection molded product forms a thin wall part 202 (see FIG. 2) after injection molding.
  • the low temperature part 1030 (see FIG. 10) during injection molding of the injection molded product forms the thick part 201 (see FIG. 2) after injection molding.
  • Example 1 The amounts of PP pellets, TPS pellets, and carbodiimide compounds listed in Table 1 ("Carbodilite” manufactured by Nisshinbo Chemical Co., Ltd.) were fed into an extrusion molding machine, and extrusion molding was performed at a temperature of 160 to 180°C to form compound pellets. Obtained.
  • the compound pellets were supplied to an injection molding machine, and injection molding was performed to obtain an injection molded product.
  • in order to confirm the degree of hue change due to temperature change instead of producing an injection molded product with a thick wall part 201 and a thin wall part 202, we created a test piece in which the molding temperature was changed while keeping the wall thickness constant. I made several.
  • the temperature of the plurality of heaters in the injection molding machine was set to 170 to 210° C., and the closer to the injection nozzle the higher the temperature.
  • Example 2 PLA pellets, PBS pellets, TPS pellets, and a carbodiimide compound (Carbodilite manufactured by Nisshinbo Chemical Co., Ltd.) in the amounts listed in Table 1 were fed into an extrusion molding machine, and extrusion molding was performed at a temperature of 160 to 180°C to form compound pellets. I got it.
  • the compound pellets were supplied to an injection molding machine, and injection molding was performed to obtain an injection molded product.
  • in order to confirm the degree of hue change due to temperature change instead of producing an injection molded product with a thick wall part 201 and a thin wall part 202, we created a test piece in which the molding temperature was changed while keeping the wall thickness constant. I made several.
  • the temperature of the plurality of heaters in the injection molding machine was set to 170 to 210° C., and the closer to the injection nozzle the higher the temperature.
  • FIG. 1 An image diagram showing the appearance of the injection molded product of Example 1 is shown in FIG. Photographs of injection molded products produced using the materials of Comparative Example 1, Comparative Example 2, Example 1, and Example 2 with the molding temperature as a parameter are shown in FIGS. 3, 4, 5, and 6, respectively.
  • FIG. 2 in the injection molded product of Example 1, the brightness of the thick portion 201 is higher than the brightness of the thin portion 202, giving an appearance in which the pattern due to the hue difference can be recognized.
  • FIGS. 3 and 4 in the injection molded products made with the material compositions of Comparative Examples 1 and 2, almost no difference in hue is observed even when the molding temperature changes from 170° C. to 210° C.
  • FIGS. 3 In the injection molded products made with the material compositions of Comparative Examples 1 and 2, almost no difference in hue is observed even when the molding temperature changes from 170° C. to 210° C.
  • FIG. 7 shows the results of measuring the relative hues of the injection molded products made with the materials of Examples 1 and 2 and Comparative Examples 1 and 2 in the CIELAB color space.
  • the injection molded product made from the material of Example 1 had the same tensile strength as Comparative Example 1.
  • the injection molded article made with the material of Example 2 had the same tensile strength as Comparative Example 2.
  • Example of periodic pattern Image diagrams showing the appearance of the injection molded product of Example 3 are shown in FIGS. 9A and 9B.
  • the injection molded product with a periodic pattern may be, for example, an injection molded product with a stripe pattern shown in FIG. 9A or a check pattern shown in FIG. 9B.
  • a bioplastic injection molded product with a high design quality can be manufactured at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

熱可塑性樹脂と、熱可塑性デンプンと、カルボジイミド基を有する化合物と、を含む射出成形品であって、厚肉部と薄肉部とを有し、前記厚肉部の明度は前記薄肉部の明度より大きい。

Description

射出成形品及び射出成形品の製造方法
 本発明は、射出成形品及び射出成形品の製造方法に関する。
 プラスチック(樹脂材料)の射出成形品は幅広い用途で使用されている。近年、プラスチック廃棄物が環境へ及ぼす影響を軽減するために、バイオプラスチック(バイオマスを原料としたプラスチック、及び生分解性プラスチックの総称)を用いた射出成形品が開発されている。
 例えば、特許文献1において、繊維化されたセルロースと、疎水性生分解性材料と、澱粉と、を気中で混合する混合工程を含む、射出成形用材料の製造方法が記載されている。
特開2022-60697号公報
 バイオプラスチックは一般に高価であるから、バイオプラスチックの射出成形品に対しては高いデザイン性など環境価値以外の付加価値を付与した上で、低コストで製造することが望まれる。
 本発明の目的は、デザイン性の高いバイオプラスチック射出成形品を低コストで製造することにある。
 本発明の一態様の射出成形品は、熱可塑性樹脂と、熱可塑性デンプンと、カルボジイミド基を有する化合物と、を含む射出成形品であって、厚肉部と薄肉部とを有し、前記厚肉部の明度は、前記薄肉部の明度より大きいことを特徴とする。
 本発明の一態様によれば、デザイン性の高いバイオプラスチック射出成形品を低コストで製造することができる。
実施形態に係る射出成形品の製造に用いられる射出成形装置の一例の概略断面図である。 実施例1の射出成形品の外観を表すイメージ図である。 比較例1の材料により作製した射出成形品の写真である。 比較例2の材料により作製した射出成形品の写真である。 実施例1の材料により作製した射出成形品の写真である。 実施例2の材料により作製した射出成形品の写真である。 実施例1、2および比較例1、2の材料で作製した射出成形品の相対色差を表すグラフである。 実施例1、2および比較例1、2の材料で作製した射出成形品の引張強度を表すグラフである。 実施例3の射出成形品の外観を表すイメージ図である。 実施例3の射出成形品の外観を表すイメージ図である。 射出成形において用いる金型の構成を示す図である。
 以下、適宜図面を参照して実施形態を説明する。以下の説明で参照する図面において、同一の部材又は同様の機能を有する部材には同一の符号を付し、繰り返しの説明は省略する場合がある。また、図面の寸法比率が説明の都合上実際の比率とは異なったり、部材の一部が図面から省略されたりする場合がある。本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。なお、本発明は以下の実施形態に限定されず、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができる。
第一実施形態
 第一実施形態に係る射出成形品は、第一成分の熱可塑性樹脂と、第二成分の熱可塑性デンプン(以下、TPSと表記する)と、第三成分のカルボジイミド基を有する化合物(以下、カルボジイミド化合物)を含む。また、射出成形品には厚肉となった部分と薄肉となった部分が一か所以上存在する。
 図2を参照して、第一実施形態に係る射出成形品の構成について説明する。
  第一実施形態に係る射出成形品は、熱可塑性樹脂と、熱可塑性デンプンと、カルボジイミド基を有する化合物と、を含む射出成形品である。
 図2に示すように、射出成形品は、厚肉部201と薄肉部202を有する。そして、厚肉部201の明度は、薄肉部202の明度より大きい。具体的には、厚肉部201の相対色差と薄肉部202の相対色差の差分は、ΔE=1.0以上である。
 後述するような射出成形においては、所定形状の金型に流動状態の樹脂を流し込み、冷却、固化させることで所望の三次元形状を持つ射出成形品を作製する。その際、薄肉となった部分では流動樹脂と金型壁面の摩擦熱に起因する、所謂せん断発熱が、厚肉となった部分に比べて有意に発生するため、薄肉部202の樹脂は厚肉部201の樹脂に比べてより高い温度で成形されることとなる。しかしながら、せん断発熱により実現可能な温度差は高々30℃程度であり、この温度差で一般的な樹脂材料を成形しても明瞭な色相の差を得ることはできない。そのため、本発明においてはTPSとカルボジイミド化合物を成分として用いることで、温度差により色相変化の度合いを増強し、肉厚によって明瞭な色差が存在する射出成形品を実現する。これにより、塗装などの後工程なしでパターン、模様、イメージを形成することができ、低コストでデザイン性の高い射出成形品を得ることが出来る。
 TPSは、デンプン及び可塑剤を含んでよい。TPSはデンプンと可塑剤を混合することにより得ることができる。
 デンプンは、植物由来であってよく、例えば、トウモロコシ、小麦、米等の穀類、ソラマメ、緑豆、小豆等の豆類、ジャガイモ、サツマイモ、タピオカ等のイモ類、カタクリ、ワラビ、葛等の野草類、サゴヤシ等のヤシ類に由来してよい。
 可塑剤は、デンプンの官能基との間で水素結合を形成することができる官能基、例えば、水酸基、アミノ基、カルボキシル基を有する化合物であってよい。可塑剤の例として、
グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ブチレングリコール、ポリグリセリン、チオジグリコール等のグリコール類、グルコース、フルクトース、スクロース、ガラクトース、マルトース、ラクトース、トレハロース等の糖類、ソルビトール、マルチトール、キシリトール、エリスリトール、マンニトール、ラクチトール等の糖アルコール類、スクラロース等の糖誘導体、酒石酸等のヒドロキシ酸類、ポリビニルアルコール、トレハロース、ポリヒドロキシ(メタ)アクリレート等の多価アルコール、尿素、チオ尿素等の多価アミン、ヒアルロン酸等の多価カルボン酸、ポリビニルピロリドン、及びこれらの混合物が挙げられる。
 TPSは、バイオマス由来であり、生分解性を有し、安価である。そのため本実施形態に係る射出成形品は、カーボンニュートラルに寄与することができ、その少なくとも一部が生分解性を有することができ、低コストで製造することができる。
 熱可塑化されていない粒状のデンプンは、コンパウンド時や後述するような射出成形装置で使用するとスクリューを閉塞させるおそれがあるが、ペレット加工されたTPSはそのようなおそれがない。そのため、TPSを含む本実施形態に係る射出成形品は、後述するような射出成形装置により製造することが可能である。
 第一成分の熱可塑性樹脂はそれぞれ、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、ポリメタクリル酸メチル(PMMA)、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ヒドロキシブチレートヒドロキシヘキサノエート(PHBH)、ポリヒドロキシアルカン酸(PHA)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペートテレフタレート(PBAT)、ポリビニルアルコール(PVA)であってよい。
 第一成分の熱可塑性樹脂は、生分解性を有してよい。それにより、射出成形品の全部又は一部が生分解性を有することができる。生分解性を有する樹脂の例としては、PLA、PBS、PHBH、PHA、PVA、PBSA、及びPBATが挙げられる。第一成分の熱可塑性樹脂又は、PLA、PBS、PHBH、PHA、PBSA、及びPBAT等のポリエステルであってよい。第一成分の熱可塑性樹脂又は、生分解性を有するポリエステルであってもよい。
 第一成分の熱可塑性樹脂は、生分解性を有しない熱可塑性樹脂と生分解促進剤の混合物であってもよい。生分解促進剤は、例えば、生分解に関与する微生物、酵素、微生物を誘引する物質、樹脂の加水分解を促進する物質であってよい。それにより、樹脂成形物の全部又は一部が生分解性を有することができる。
 第一成分の熱可塑性樹脂は、バイオマス由来であってよい。それにより、カーボンニュートラル性を高めることができる。バイオマス由来の樹脂の例としては、バイオマス由来のPLA、PBS、PHBH、PHA、PE、PP、及びPSが挙げられる。
 カルボジイミド化合物の例としては、(日清紡ケミカル株式会社製「カルボジライト」等)が挙げられる。
 本実施形態に係る射出成形品は、添加材をさらに含んでもよい。添加材は、TPSの黄変を促進させたりTPSと反応してゲル化したりしない材料であることが好ましい。また、添加材は、石油に由来しない材料、例えば無機物であることが好ましい。
 添加材の別の例として抗菌剤が挙げられる。抗菌剤を含む樹脂成形物は、使用環境において微生物に汚染されることが防止又は軽減されるため、食品関連の用途(例えば食品容器)に適用することができる。食品関連の用途に適した抗菌剤の例として、銀系無機化合物又は酸化亜鉛系化合物を主成分とする抗菌剤が挙げられる。抗菌剤の含有量は、樹脂成形物の機械特性等に応じて適宜設定してよく、例えば、第一熱可塑性樹脂、第二熱可塑性樹脂、及びTPSの総重量100重量部に対して、0.1~1.0重量部であってよい。
 添加材のさらに別の例として、充填材、熱安定剤、滑剤、離型剤、核剤、光分解剤、生分解促進剤、酸化防止剤、紫外線安定剤、帯電防止剤、難燃剤、防臭剤が挙げられる。
 本実施形態に係る射出成形品においては、厚肉部201の色相と薄肉部202の色相とが、CIELAB色空間において、ΔE=1.0以上の相対色差を有していることが望ましい。このような相対色差を実現することで、厚肉部202と薄肉部202の色相を肉眼にて明瞭に識別することができる。
 本実施形態に係る射出成形品の製造方法を説明する。射出成形品の製造方法は、TPSおよびカルボジイミド化合物を含むペレットを用いて射出成形を行うことを含む。製造方法の一例として、図1に示す射出成形装置を用いて射出成形品を製造する方法を以下に説明する。
 まず、射出成形装置100のホッパー103に原料ペレット104を供給する。原料ペレット104は、TPSを含むペレットを含む。TPSを含むペレットは、TPSを主成分とするペレットであってもよいし、あるいは第一成分の熱可塑性樹脂又はカルボジイミド化合物の少なくとも一方及びTPSを含むコンパウンドペレットであってもよい。TPSを主成分とするペレットは、デンプン及び可塑剤を押出成形装置に供給し、混合し、押し出し、カットすることにより作製することができる。市販のTPSペレットを用いることもできる。第一成分の熱可塑性樹脂又はカルボジイミド化合物の少なくとも一方及びTPSを含むコンパウンドペレットは、第一成分の熱可塑性樹脂又はカルボジイミド化合物の少なくとも一方及びTPSペレットを押出成形装置に供給し、混合し、押し出し、カットすることにより作製することができる。
 原料ペレット104は、TPSを含むペレットに加えて、第一成分の熱可塑性樹脂のペレット、カルボジイミド化合物を含むペレット、又は第一成分の熱可塑性樹脂及びカルボジイミド化合物を含むコンパウンドペレットの少なくともいずれか一種をさらに含んでもよい。さらに、必要に応じて添加材をホッパー103に供給してもよい。
 モータ101によりスクリュー102を後退させて、ホッパー103からシリンダ106に原料ペレット104を導入する。スクリュー102を回転させながらヒータ105により原料ペレット104を加熱して、原料ペレット104を溶融させる。ヒータ105の温度(成形温度)は、好ましくは230℃以下とし、より好ましくは210℃以下とする。それにより、TPSの熱劣化及び黄変を防止又は軽減することができる。また、必要に応じて、シリンダ106に窒素、二酸化炭素等の超臨界流体をさらに導入し、原料ペレット104の溶融物に混合してもよい。それにより、厚みの小さい樹脂成形物及び複雑な形状を有する射出成形品の製造が容易になる。
 次いで、モータ107によりスクリュー102を前進させて、シリンダ106内の溶融物をノズル108を介して金型109内へ射出する。金型109が溶融物で充填された後、後続の溶融物の固化による体積収縮を補償するために、所定の圧力をかけてさらに溶融物を金型109に供給する。
 金型109を所定の温度に保持することにより、溶融物を固化温度以下に冷却して固化する。
 モータ110により型締機構111を駆動し、金型109を開く。次いで、モータ112によりエジェクタ機構113を駆動し、金型109から固化物(樹脂成形物)を取り出す。最後に、次の射出成形に備えて金型109を閉じる。このようにして、第一実施形態に係る射出成形品が製造される。
第二実施形態
 第二実施形態に係る射出成形品は、第一成分の熱可塑性樹脂が二種類以上の熱可塑性樹脂の混合物である。ここで、混合した二種類の熱可塑性樹脂は相溶化して単一相を形成してもよく、分離して複数相に分散してもよい。二種以上の熱可塑性樹脂の例は、上述した第一成分の熱可塑性樹脂の例と同様である。
 第二実施形態に係る射出成形品において、第一成分の熱可塑性樹脂を構成する二種類以上の熱可塑性樹脂の溶解度パラメーター(SP値)の差分は、1.0(J/cm0.5以下であってよい。
 なお、本発明におけるSP値は、化合物の分子構造から推算する方法又は化合物の物性値から推算する方法により求めてよい。化合物の分子構造から推算する方法の例として、Smallの計算方法、Rheineck及びLinの計算方法、Krevelen及びHoftyzerの計算方法、Fedorsの計算方法(R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974))、Hansenの計算方法(C.M.Hansen,J.Paint Technol.,39.,(505),104(1967))、及びHoyの計算方法(H.L.Hoy,J.Paint Technol.,42(540),76(1970))が挙げられる。化合物の物性値から推算する方法の例として、蒸発潜熱から求める方法、Hildebrand Ruleによる方法(J.Hildebrand及びR.Scott,”The Solubility of Non-electrolytes”,3rd Ed.,pp.119-133,Reinhold Publishing Corp.(1949))、表面張力による方法、溶解度の値から求める方法、屈折率から求める方法、及びその他の物性値から求める方法が挙げられる。
第三実施形態
 第三実施形態に係る射出成形品は、図9A、図9Bに示すように、薄肉部202と厚肉部201が周期性を有するように配置されていてよい。このような構成とすることで、色相が異なる部分が周期的に表れるようになり、射出成形品の表面にデザイン性の高いパターンを表現できる。
 第二実施形態に係る射出成形品において、薄肉部202と厚肉部201は周期性のあるストライプパターン(図9A参照)又はチェックパターン(図9B参照)を形成するように配置されていてよい。
第四実施形態
 第四実施形態では、図10を参照して、射出成形において用いる金型の構成について説明する。
  射出成形においては、所定形状の金型1010に流動状態の樹脂を流し込み、冷却、固化させることで所望の三次元形状を持つ射出成形品を作製する。
 せん断発熱によってバイオプラスチック(熱による変色が起こり易い)特有の模様が形成される。特に、カルボジイミド化合物を添加した際に温度による色変化を強調し易い。
 図10に示すように、金型が薄い部分では流動樹脂と壁面との間に発生する摩擦熱(せん断発熱)が大きくなり樹脂温度が最大5-20℃程度上昇する。でんぷんは、温度により色が敏感に変化し易いため金型1010の形状に応じたパターンを形成できる。
 このように、第4実施形態では、所定の形状の金型1010を用いて射出成形品を製造する。具体的には、図10に示すように、金型1010として、薄い部分と厚い部分を有する金型を用いる。金型1010の薄い部分により、射出成形中に高温部1020を形成する。また、金型1010の厚い部分により、射出成形中に低温部1030を形成する。
 このようにして、金型1010の形状に応じたパターンを射出成形品に形成する。金型1010の形状に応じたパターンは、例えば、周期性のあるストライプパターン(図9A参照)又はチェックパターン(図9B参照)である。
 そして、金型1010を用いて、射出成形品に高温部1020と低温部1030を形成した状態で射出成形を行う。この際、射出成形品の射出成形中の低温部1030は高温部1020より明度が大きい。
 射出成形品の射出成形中の高温部1020(図10参照)は、射出成形後に薄肉部202(図2参照)を形成する。射出成形品の射出成形中の低温部1030(図10参照)は、射出成形後に厚肉部201(図2参照)を形成する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (1)射出成形品の作製
 (比較例1)
 表1に記載の量のPPペレット、TPSペレットを押出成形機に供給して、160~180℃の温度で押出成形を行い、コンパウンドペレットを得た。コンパウンドペレットを射出成形機に供給し、射出成形を行って、射出成形品を得た。なお、今回は温度変化による色相変化の度合いを確認するため、厚肉部201と薄肉部202が存在する射出成形品を作製することにかわり、肉厚は一定として成形温度を変えた試験片を複数作製した。射出成型機の複数のヒータの温度は170~210℃とし、射出ノズルに近いほど高温とした。
 (比較例2)
 表1に記載の量のPLAペレット、PBSペレット、TPSペレットを押出成形機に供給して、160~180℃の温度で押出成形を行い、コンパウンドペレットを得た。コンパウンドペレットを射出成形機に供給し、射出成形を行って、射出成形品を得た。なお、今回は温度変化による色相変化の度合いを確認するため、厚肉部201と薄肉部202が存在する射出成形品を作製することにかわり、肉厚は一定として成形温度を変えた試験片を複数作製した。射出成型機の複数のヒータの温度は170~210℃とし、射出ノズルに近いほど高温とした。
 (実施例1)
 表1に記載の量のPPペレット、TPSペレット、及びカルボジイミド化合物を日清紡ケミカル株式会社製「カルボジライト」)を押出成形機に供給して、160~180℃の温度で押出成形を行い、コンパウンドペレットを得た。コンパウンドペレットを射出成形機に供給し、射出成形を行って、射出成形品を得た。なお、今回は温度変化による色相変化の度合いを確認するため、厚肉部201と薄肉部202が存在する射出成形品を作製することにかわり、肉厚は一定として成形温度を変えた試験片を複数作製した。射出成型機の複数のヒータの温度は170~210℃とし、射出ノズルに近いほど高温とした。
 (実施例2)
 表1に記載の量のPLAペレット、PBSペレット、TPSペレット、及びカルボジイミド化合物を日清紡ケミカル株式会社製カルボジライト)を押出成形機に供給して、160~180℃の温度で押出成形を行い、コンパウンドペレットを得た。コンパウンドペレットを射出成形機に供給し、射出成形を行って、射出成形品を得た。なお、今回は温度変化による色相変化の度合いを確認するため、厚肉部201と薄肉部202が存在する射出成形品を作製することにかわり、肉厚は一定として成形温度を変えた試験片を複数作製した。射出成型機の複数のヒータの温度は170~210℃とし、射出ノズルに近いほど高温とした。
 [表1]
Figure JPOXMLDOC01-appb-I000001

 *  PP、PLA、PBS、及びTPSの総重量に対する量
 ** PLA、PBS、及びTPSの総重量100重量部に対する量
 (2)外観観察および色相測定
 実施例1の射出成形品の外観を表すイメージ図を図2に示す。比較例1、比較例2、実施例1、実施例2、の材料を使用し、成形温度をパラメーターとして作製した射出成形品の写真を図3、4、5、6にそれぞれ示す。図2に示すように、実施例1の射出成形品は、厚肉部201の明度が薄肉部202の明度に比べて高く、色相差によるパターンを認識できる外観となる。図3、4に示すように、比較例1、2の材料組成で作製した射出成形品は、成形温度が170℃から210℃まで変化した場合にも、ほとんど色相の際が見られない。一方、図5、6に示すように、実施例1、2の材料組成で作製した射出成形品は、成形温度による色相変化が比較例1、2に比べて強調されている。実施例1、2および比較例1、2の材料で作製した射出成形品の相対色相をCIELAB色空間において測定した結果を図7に示す。比較例1、2の相対色差は温度差20℃あたりΔE=1.0以下しか変化していないが、実施例1、2の相対色差は温度差20℃あたりΔE=4.0以上変化しており、温度変化による相対色差が強調されてる。
 (3)機械特性評価
 実施例1、2および比較例1、2の材料で作製した射出成形品の引張強度を、ISO527に従って測定した。結果を図8に示す。
 実施例1の材料で作製した射出成形品は、比較例1と同等の引張強度を有していた。実施例2の材料で作製した射出成形品は、比較例2と同等の引張強度を有していた。
 (4)周期的パターンの例
 実施例3の射出成形品の外観を表すイメージ図を図9A、図9Bに示す。周期的パターンを形成した射出成形品としては、例えば図9Aに示すストライプパターンあるいは図9Bに示すチェックパターンが形成された射出成形品としてよい。
 上記実施形態によれば、デザイン性の高いバイオプラスチック射出成形品を低コストで製造することができる。
100 射出成形装置
101、107、110、112 モータ
102 スクリュー
103 ホッパー
104 原料ペレット
105 ヒータ
106 シリンダ
108 ノズル
109 金型
111 型締機構
113 エジェクタ機構

Claims (13)

  1.  熱可塑性樹脂と、熱可塑性デンプンと、カルボジイミド基を有する化合物と、を含む射出成形品であって、
     厚肉部と薄肉部とを有し、
     前記厚肉部の明度は、前記薄肉部の明度より大きいことを特徴とする射出成形品。
  2.  前記厚肉部の相対色差と前記薄肉部の相対色差の差分は、ΔE=1.0以上であることを特徴とする請求項1に記載の射出成形品。
  3.  前記熱可塑性樹脂は、ポリエステル樹脂であることを特徴とする請求項1に記載の射出成形品。
  4.  前記熱可塑性樹脂は、ポリオレフィン樹脂であることを特徴とする請求項1に記載の射出成形品。
  5.  前記熱可塑性樹脂は、複数の熱可塑性樹脂の混合物であることを特徴とする請求項1に記載の射出成形品。
  6.  前記厚肉部と前記薄肉部の配置が所定の周期性を有することを特徴とする請求項1に記載の射出成形品。
  7.  請求項1に記載の前記射出成形品を製造する射出成形品の製造方法であって、
     前記熱可塑性樹脂と、前記熱可塑性デンプンと、前記カルボジイミド基を有する化合物と、を含むペレットを用いて射出成形を行うことを特徴とする射出成形品の製造方法。
  8.  前記射出成形品に高温部と低温部を形成した状態で前記射出成形を行い、
     前記射出成形品の射出成形中の前記低温部は前記高温部より明度が大きいことを特徴とする請求項7に記載の射出成形品の製造方法。
  9.  前記射出成形品の前記射出成形中の前記高温部は、前記射出成形後に前記薄肉部を形成し、
     前記射出成形品の前記射出成形中の前記低温部は、前記射出成形後に前記厚肉部を形成することを特徴とする請求項8に記載の射出成形品の製造方法。
  10.  所定の形状の金型を用いて前記射出成形品を製造することを特徴とする請求項9に記載の射出成形品の製造方法。
  11.  前記金型として、薄い部分と厚い部分を有する金型を用い、
     前記金型の前記薄い部分により、前記射出成形中に前記高温部を形成し、
     前記金型の前記厚い部分により、前記射出成形中に前記低温部を形成することを特徴とする請求項10に記載の射出成形品の製造方法。
  12.  前記金型の形状に応じたパターンを前記射出成形品に形成することを特徴とする請求項10に記載の射出成形品の製造方法。
  13.  前記金型の形状に応じたパターンは、
     周期性のあるストライプパターン又はチェックパターンであることを特徴とする請求項12に記載の射出成形品の製造方法。
PCT/JP2023/010257 2022-07-22 2023-03-16 射出成形品及び射出成形品の製造方法 WO2024018687A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-117595 2022-07-22
JP2022117595A JP2024014628A (ja) 2022-07-22 2022-07-22 射出成形品及び射出成形品の製造方法

Publications (1)

Publication Number Publication Date
WO2024018687A1 true WO2024018687A1 (ja) 2024-01-25

Family

ID=89617548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010257 WO2024018687A1 (ja) 2022-07-22 2023-03-16 射出成形品及び射出成形品の製造方法

Country Status (2)

Country Link
JP (1) JP2024014628A (ja)
WO (1) WO2024018687A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258306B1 (en) * 1995-09-05 2001-07-10 John W. Von Holdt Method for adjustment of adjustable mold gate
JP2010100006A (ja) * 2008-10-27 2010-05-06 Japan Steel Works Ltd:The 車両用ミリ波レーダ用カバーの成形方法と成形用金型
JP2012030418A (ja) * 2010-07-29 2012-02-16 Toppan Cosmo Inc 内部凹凸を有するインサートおよびインモールド成形用化粧シート
JP2016210080A (ja) * 2015-05-08 2016-12-15 三菱レイヨン株式会社 成形体およびその製造方法
US20190112418A1 (en) * 2016-04-20 2019-04-18 Novamont S.P.A. New polyester and compositions containing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258306B1 (en) * 1995-09-05 2001-07-10 John W. Von Holdt Method for adjustment of adjustable mold gate
JP2010100006A (ja) * 2008-10-27 2010-05-06 Japan Steel Works Ltd:The 車両用ミリ波レーダ用カバーの成形方法と成形用金型
JP2012030418A (ja) * 2010-07-29 2012-02-16 Toppan Cosmo Inc 内部凹凸を有するインサートおよびインモールド成形用化粧シート
JP2016210080A (ja) * 2015-05-08 2016-12-15 三菱レイヨン株式会社 成形体およびその製造方法
US20190112418A1 (en) * 2016-04-20 2019-04-18 Novamont S.P.A. New polyester and compositions containing it

Also Published As

Publication number Publication date
JP2024014628A (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
US20200377705A1 (en) Renewable content carbohydrate-based polymeric materials with high density and increased strength
US8604123B1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
EP3548546B1 (en) Biaxially stretched starch-based foil
DE202005022027U1 (de) Polymilchsäure-Blasfolie und System zu deren Herstellung
CA2725222A1 (en) Thermoformed article made from bio-based biodegradable polymer composition
WO2013029018A1 (en) Macrophyte-based bioplastic
KR101000749B1 (ko) 생분해성 수지 조성물, 그의 제조방법 및 그로부터 제조되는 생분해성 필름
KR20150040673A (ko) 생분해성 수지 컴파운드 및 생분해성 포장재
CN104448402B (zh) 淀粉基塑料及其制备方法
US6462105B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film with the composition
KR20190062906A (ko) 표면 특성이 향상된 3차원 프린터 필라멘트용 폴리유산 수지 조성물
WO2024018687A1 (ja) 射出成形品及び射出成形品の製造方法
KR20200071816A (ko) 표면 특성이 향상된 3차원 프린터 필라멘트용 폴리유산 수지 조성물 및 이를 이용한 3차원 프린터용 필라멘트
US20220388217A1 (en) Manufacturing method for thermoplastic resin composition, manufacturing method for shaped body, and film
JP2013049760A (ja) 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
EP4137285A2 (en) Method for preparing a biodegradable polymeric composition comprising thermoplastic starch and a synthetic biodegradable polymer
WO2023162326A1 (ja) 樹脂成形物、及び樹脂成形物の製造方法
KR102221219B1 (ko) 생분해성 수지 컴파운드 및 이의 제조방법
CN114106419A (zh) 一种可生物降解的片材及其制备方法
KR102204708B1 (ko) 복합분해성 폴리올레핀계 수지 조성물 및 이의 제조방법
JP2021155629A (ja) 熱可塑性樹脂組成物及びその成形体
JPH09137069A (ja) 生分解性組成物
JP4841869B2 (ja) 樹脂組成物及び成形体
JP7246374B2 (ja) 樹脂組成物
JPH11279271A (ja) 樹脂ペレットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842624

Country of ref document: EP

Kind code of ref document: A1