WO2024016881A1 - 一种电致变色器件 - Google Patents

一种电致变色器件 Download PDF

Info

Publication number
WO2024016881A1
WO2024016881A1 PCT/CN2023/099093 CN2023099093W WO2024016881A1 WO 2024016881 A1 WO2024016881 A1 WO 2024016881A1 CN 2023099093 W CN2023099093 W CN 2023099093W WO 2024016881 A1 WO2024016881 A1 WO 2024016881A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrochromic
bus bar
base layer
conductive layer
Prior art date
Application number
PCT/CN2023/099093
Other languages
English (en)
French (fr)
Inventor
钟卓洪
Original Assignee
光羿智能科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221910877.0U external-priority patent/CN218446305U/zh
Priority claimed from CN202210863777.5A external-priority patent/CN116256920A/zh
Application filed by 光羿智能科技(苏州)有限公司 filed Critical 光羿智能科技(苏州)有限公司
Publication of WO2024016881A1 publication Critical patent/WO2024016881A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details

Definitions

  • the present application relates to the field of electrochromism, and in particular to an electrochromic device.
  • Electrochromism refers to the phenomenon in which charged ions are doped and de-doped with the material under the action of an external voltage, causing an oxidation-reduction reaction in the material, and the optical properties of the material change reversibly in the visible infrared absorption region.
  • ITO indium tin oxide
  • the conductive layer which is arranged on the upper and lower surfaces of the electrochromic material to form a potential difference (electric field) on the two surfaces to drive the redox process; however, the surface of ITO
  • the resistance is large, and electrical conduction takes a long time. Especially for some electrochromic devices with larger areas, it takes a long time to achieve all the color change, and the color change rate is slow.
  • the purpose of this application is to overcome the deficiencies in the prior art and provide an electrochromic device that can increase the color change rate.
  • an electrochromic device including a first base layer, a first conductive layer, an electrochromic layer, a second conductive layer and a second base layer stacked in sequence; the electrochromic device has The edge is provided with a plurality of staggered first grooves and second grooves, the first grooves are located on the side of the second conductive layer away from the second base layer, and the second grooves are located on the side of the second conductive layer away from the second base layer.
  • the side of the first conductive layer away from the first base layer; the side of the first base layer away from the electrochromic layer is provided with at least one first bus bar, and each of the first bus bars passes through At least one of the first grooves is electrically connected to the second conductive layer; at least one second bus bar is provided on the side of the second base layer away from the electrochromic layer, and each of the second bus bars
  • the strip is electrically connected to the first conductive layer through at least one of the second grooves.
  • a plurality of staggered first grooves and second grooves are provided on the edge of the electrochromic device to expose the conductive layer on the opposite side through the grooves, forming an edge on both sides of the electrochromic device. It has a multi-electrode structure, and the first bus bar is electrically connected to the second conductive layer through the first groove, and the second bus bar is electrically connected to the first conductive layer through the second groove. External power can be introduced through the bus bar.
  • the voltage or current is conducted to the conductive layer, thereby increasing the electrical conduction rate on the first conductive layer and the second conductive layer, thereby increasing the discoloration rate of the electrochromic device; in addition, the first bus bar is disposed away from the first base layer On one side of the electrochromic layer, the second bus bar is disposed on a side of the second base layer away from the electrochromic layer, whereby the first base layer and the second base layer can respectively support the first bus bar and the second base layer.
  • the second bus bar forms a good supporting effect
  • the base layer can also have an electrical isolation effect, so that in areas without grooves, the base layer can block the electrical connection between the bus bar and the conductive layer, such as the first base layer
  • the electrical connection between the first bus bar and the first conductive layer can be blocked, and the second base layer can block the electrical connection between the second bus bar and the second conductive layer, thereby preventing the first conductive layer and the second conductive layer from being
  • the occurrence of short circuit due to electrical connection improves the stability and reliability of electrochromic devices.
  • first bus bars there are two first bus bars, and the two first bus bars are arranged on the edges of two opposite sides of the first base layer; there are two second bus bars, and the two first bus bars are The second bus bars are disposed on edges of two opposite sides of the second base layer; preferably, each of the second bus bars and one of the first bus bars are located on the same side of the electrochromic layer.
  • each second bus bar and a first bus bar are located on the same side of the electrochromic layer, that is, the first bus bar and the second bus bar are present on any side of the electrochromic layer. Therefore, Positive and negative voltages can be applied to the first bus bar and the second bus bar respectively, so that the current or voltage can gradually change from the same side of the device to the other side or from the surrounding edges of the device to the central area, thereby causing the device to change color. Areas are more coordinated, improving the coordination of color changes, etc.
  • At least one first supplementary bus bar is provided on a side of the first base layer away from the electrochromic layer, and the first supplementary bus bar and the first bus bar are respectively provided on the first The opposite side of a base layer; the side of the second base layer away from the electrochromic layer is provided with at least one second supplementary bus bar, and the second supplementary bus bar and the second bus bar are respectively provided On the opposite side of the second basal layer. Therefore, by supplementing the setting of the bus bar, you can further change the current or voltage of the device by setting the device's current or voltage change rules, enrich the device's color-changing effect, and improve the practicality of the electrochromic device to meet the needs of different users or scenarios.
  • At least one partition area is included, and the partition area penetrates and blocks at least one of the first conductive layer and the second conductive layer to separate the electrochromic layer to form a plurality of color changing areas.
  • multiple discoloration areas are formed by dividing the conductive layer into multiple areas, thereby reducing the area of the conductive layer in each area, thereby facilitating rapid discoloration of the device, and the multiple discoloration areas can be adjusted according to the Different application scenarios or user needs can achieve different color changing effects, enrich the color rendering effect of the device, and further enhance the practicality of the device.
  • each partition area there are multiple partition areas, and no two partition areas intersect. Further, any two partition areas are arranged parallel to each other. Therefore, the existence of each partition area allows the electrochromic device to form multiple independent color-changing areas, which is more conducive to realizing the independent or coordinated color-changing effect of each color-changing area.
  • first bus bars there are a plurality of first bus bars, a plurality of first bus bars are arranged at intervals, and each first bus bar is arranged on an edge of the first base layer;
  • second bus bars There are a plurality of second bus bars, a plurality of second bus bars are arranged at intervals, and each of the second bus bars is arranged on the edge of the second base layer.
  • a plurality of first bus bars and a plurality of second bus bars are staggered to form a structure in which the first bus bars and the second bus bars are adjacent to each other.
  • the discoloration rate of the electrochromic device can be further improved, and by arranging the bus bars at the edge of the base layer, the area of the discoloration area in the middle can be expanded to increase the practical area of the device. Improve user experience, etc.
  • each of the first bus bars and each of the second bus bars are disposed on the same side of the electrochromic layer.
  • the first bus bar and the second bus bar are provided on the peripheral sides of the electrochromic layer, and the first bus bar and the second bus bar are provided on each side of the electrochromic layer.
  • the second bus bar is provided on the same side of the electrochromic layer.
  • the electrochromic layer can be further ensured.
  • the synchronization of color change on the surrounding sides improves the uniformity of the overall color change of the electrochromic device. Moreover, by simultaneously setting bus bars on the surrounding sides, the color changing efficiency of the device can be further improved.
  • first bus bars there are a plurality of first bus bars, and the plurality of first bus bars are spaced apart on two opposite sides of the first base layer; there are a plurality of second bus bars, and a plurality of second bus bars are provided at intervals on two opposite sides of the first base layer.
  • the second bus bars are spaced apart on two opposite sides of the second base layer.
  • each of said first bus bars and at least one said second bus bar are located on the same side of said electrochromic layer.
  • the first bus bar and the second bus bar are arranged adjacently. Therefore, by arranging multiple first bus bars or multiple second bus bars, or staggering the first bus bars and the second bus bars at adjacent positions, the richness of the bus bar layout can be increased to further Improve the diversity of device discoloration.
  • the discoloration area includes a plurality of first discoloration areas arranged at intervals, the discoloration area further includes a plurality of second discoloration areas arranged at intervals, and the first discoloration area and the second discoloration area are in phase with each other.
  • the first color-changing area is an odd-numbered color-changing area
  • the second color-changing area is an even-numbered color-changing area
  • the first bus bar in the second color-changing area is electrically connected through a first connection line
  • the second color-changing area is electrically connected through a first connection line.
  • the second bus bars in the color changing area are electrically connected through second connection lines. More preferably, the first bus bar in the first discoloration area is electrically connected through a third connection line, and the second bus bar in the first discoloration area is electrically connected through a fourth connection line.
  • the bus bars in the two spaced color-changing areas are electrically connected through the first connection line and the second connection line, so that the two spaced-apart color-changing areas can be controlled simultaneously, thereby realizing the two spaced-apart color-changing areas.
  • the color-changing areas change color synchronously; further, through the third connecting line and the fourth connecting line, the bus bars in the other spaced color-changing areas can be electrically connected, so as to realize the color changing control of each interval area more conveniently and effectively, and improve the electrical connection.
  • the color change control of photochromic devices is precise and diversified.
  • a plurality of first bus bars are respectively located on opposite sides of the electrochromic layer, and a plurality of second bus bars are respectively located on opposite sides of the electrochromic layer.
  • each of the second bus bars is located on the same side of the electrochromic layer as at least one of the first bus bars; further, each of the first bus bars is disposed on the electrochromic layer.
  • one side of the electrochromic layer, each of the second bus bars is disposed on the other side of the electrochromic layer, wherein one side of the electrochromic layer and the other side of the electrochromic layer are opposite to each other. both sides.
  • the electrochromic layer can be used to simultaneously disposing the first bus bar on the opposite sides of the electrochromic layer and the second bus bar on the opposite sides of the electrochromic layer, when an external power supply is introduced through the bus bar, the electrochromic layer can The voltage or current conducted by the first bus bar can be introduced simultaneously on the opposite sides of the electrochromic layer.
  • the voltage or current conducted by the second bus bar can also be introduced on the opposite sides of the electrochromic layer at the same time.
  • the voltage or current conducted by the second bus bar can be introduced on the opposite sides and in the middle of the electrochromic layer.
  • a voltage gradient is formed to achieve a gradient color effect; further, the first bus bar and the second bus bar can also be arranged on opposite sides of the electrochromic layer to achieve other gradient color effects, thereby improving the electrochromic effect. Variety of device color changes.
  • the partition area penetrates and blocks the first conductive layer, the electrochromic layer and the second conductive layer; or the partition area penetrates and blocks the first base layer and the first conductive layer. , the electrochromic layer and the second conductive layer; or the partition area penetrates and blocks the first conductive layer, the electrochromic layer, the second conductive layer and the second base layer; Or the isolation area penetrates to isolate the first base layer, the first conductive layer, the electrochromic layer, the second conductive layer and the second base layer.
  • the partition area can block the first conductive layer and the second conductive layer at the same time, so as to more effectively form multiple color-changing areas in the electrochromic device, and the color change of the multiple color-changing areas can be completely independently controlled. Improve the discoloration reliability and stability of the device.
  • the electrochromic layer includes an electrochromic material layer, an electrolyte layer and an ion storage layer stacked in sequence; the first conductive layer and the electrochromic material layer are provided with the partition area, or the The second conductive layer and the ion storage layer are provided with the isolation area; or the first conductive layer and the electrochromic material layer are provided with the isolation area, and the second conductive layer and the ion
  • the storage layer is provided with the partition area, and the two partition areas overlap with the orthographic projection of the plane where the electrochromic layer is located.
  • the partition of the conductive layer can be formed more conveniently, and the electrolyte layer can be retained without partition.
  • the electrolyte can also be filled in the partition area.
  • the electrolyte Since the electrolyte has insulating properties, the electrolyte is not blocked or even filled in the partition area. In the partition area, the insulation performance between the first conductive layer and the second conductive layer can be improved, preventing the two from being electrically connected and causing a short circuit, and improving the stability and reliability of the electrochromic device.
  • the orthographic projection of each first groove on the plane of the first base layer is located at the edge of the first base layer, and each of the second grooves is on the edge of the second base layer.
  • the orthographic projection of the plane of the first groove is located on the edge of the second base layer; or the orthographic projection of each first groove on the plane of the first base layer is located inside the first base layer, and each of the first grooves is located on the inner side of the first base layer.
  • the orthographic projection of the second groove on the plane of the second base layer is located inside the second base layer.
  • locating the groove at the edge of the base layer can maximize the area of the discoloration area in the middle and increase the effective discoloration area of the electrochromic device; locating the groove inside the base layer, for example, can form the groove through openings. , in order to improve the supporting effect of the base layer on the bus bar and improve the performance of the electrochromic device. Stability and reliability of use.
  • each of the color changing areas includes at least one first bus bar and at least one second bus bar.
  • the electrochromic layer is separated to form multiple color-changing areas.
  • the area of the conductive layer in each color-changing area is reduced, which can facilitate the rapid discoloration of the device; Therefore, by including both the first bus bar and the second bus bar in each color-changing area, the rapid color-changing effect of the device can be further improved, and individual control of each color-changing area can be realized more effectively and conveniently, enriching the display of the device. color effect, improving the practicality of electrochromic devices.
  • an insulating layer is also provided in the partition area, and at least one of the first base layer, the first conductive layer, the electrochromic layer, the second conductive layer or the second base layer The optical properties of one of them match the optical properties of the insulating layer.
  • the insulating layer and the electrolyte layer have the same material composition. More preferably, the insulating layer is an electrolyte layer.
  • the electrical isolation effect of the partition area can be improved through the arrangement of the insulating layer, ensuring the discoloration independence between each color-changing area, and matching the optical properties of the insulating layer with the optical properties of other layers of the device, which can reduce the insulation The optical difference between the insulation layer and other layers, or there is no optical difference between the insulation layer and other layers, thus ensuring that the partition area does not affect the user's visual experience and improving the user's comfort.
  • the electrochromic device further includes a first high-temperature glue and a second high-temperature glue
  • the first high-temperature glue is located on one side of the first base layer and at least partially covers the first groove
  • the second high-temperature glue is located on one side of the second base layer and at least partially covers the second groove.
  • the first high-temperature glue at least partially covers the first bus bar and at least partially covers the first groove
  • the second high-temperature glue at least partially covers the second bus bar and at least partially covers the Second groove. More preferably, the first high-temperature glue completely covers the first bus bar and the first groove, and the second high-temperature glue completely covers the second bus bar and the second groove.
  • the width of the first high-temperature glue is greater than the width of the first groove
  • the width of the second high-temperature glue is greater than the width of the second groove.
  • the preparation process can be simplified, without disturbing the electrical connection between the bus bar and the conductive layer, while improving the inter-layer bonding force of the device, avoiding Demolding and other situations may occur; in addition, by making the width of the high-temperature glue larger than the width of the groove, part of the high-temperature glue can be extended inward (visible area) to fit on the base layer, and the other part can be attached to the base layer through the groove. on the conductive layer, thereby further ensuring that multiple sides of the groove are attached with high-temperature glue to more comprehensively and effectively ensure that the edges of the groove will not be demolded, thereby improving the stability and reliability of the electrochromic device. .
  • Embodiments of the present application have the following advantages: by arranging a plurality of interleaved first grooves and second grooves on the edge of the electrochromic device, multiple electrodes are formed on the edge of the electrochromic device, and at the same time, the first bus The strips are electrically connected to the second conductive layer, and the second bus bar is electrically connected to the first conductive layer to form a multi-electrode connection to increase the electrical conduction rate on the first conductive layer and the second conductive layer, thereby improving the electrochromic device. color change rate.
  • Figure 1 shows a schematic structural diagram of an electrochromic device provided by some embodiments of the present application from one perspective
  • Figure 2 shows a cross-sectional view of part A-A in Figure 1;
  • Figure 3 shows an enlarged view of part B in Figure 2;
  • Figure 4 shows a structural schematic diagram 1 from a perspective of other structures of an electrochromic device provided by some embodiments of the present application;
  • Figure 5 shows a structural schematic diagram 2 of another structure of an electrochromic device provided by some embodiments of the present application from a perspective;
  • Figure 6 shows a structural schematic view 3 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 7 shows a structural schematic diagram 4 of another structure of an electrochromic device provided by some embodiments of the present application from a perspective;
  • Figure 8 shows a structural schematic view 5 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 9 shows a structural schematic view 6 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 10 shows a structural schematic view 7 of other structures of an electrochromic device provided by some embodiments of the present application.
  • Figure 11 shows a structural schematic diagram 8 of another structure of an electrochromic device provided by some embodiments of the present application from one perspective;
  • Figure 12 shows a structural schematic view 9 of other structures of an electrochromic device provided by some embodiments of the present application.
  • Figure 13 shows a structural schematic view 10 of other structures of an electrochromic device provided by some embodiments of the present application.
  • Figure 14 shows a structural schematic view 11 of other structures of an electrochromic device provided by some embodiments of the present application.
  • Figure 15 shows a structural schematic diagram 1 of a perspective view of a partition region in an electrochromic device provided by some embodiments of the present application;
  • Figure 16 shows a structural schematic view 2 of a partition region in an electrochromic device provided by some embodiments of the present application
  • Figure 17 shows a structural schematic view three of a partition region in an electrochromic device provided by some embodiments of the present application.
  • Figure 18 shows a structural schematic diagram 4 of a perspective view of a partition region in an electrochromic device provided by some embodiments of the present application;
  • Figure 19 shows a structural schematic view 5 of a partition region in an electrochromic device provided by some embodiments of the present application.
  • Figure 20 shows a structural schematic view 6 of a partition region in an electrochromic device provided by some embodiments of the present application.
  • Figure 21 shows a structural schematic view 7 of a partition region in an electrochromic device provided by some embodiments of the present application.
  • Figure 22 shows a structural schematic view 8 of a partition region in an electrochromic device provided by some embodiments of the present application.
  • Figure 23 shows a structural schematic view 9 of a partition region in an electrochromic device provided by some embodiments of the present application.
  • Figure 24 shows a structural schematic diagram 10 of a perspective view of a partition region in an electrochromic device provided by some embodiments of the present application;
  • Figure 25 shows a structural schematic diagram 12 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 26 shows a structural schematic diagram 13 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 27 shows a structural schematic diagram 14 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 28 shows a structural schematic diagram 15 of another structure of an electrochromic device provided by some embodiments of the present application.
  • Figure 29 shows a top view of the structure of an electrochromic device containing high-temperature glue provided by some embodiments of the present application
  • Figure 30 shows an electrochromic device containing high-temperature glue provided by some embodiments of the present application.
  • 10-electrochromic device 10a-first groove; 10b-second groove; 10c-partition area; 10d-color changing area; 100-first base layer; 200-first conductive layer; 300-electrochromic layer; 310-electrochromic material layer; 320-electrolyte layer; 330-ion storage layer; 400-second conductive layer; 500-second base layer; 600-first bus bar; 600a-first supplementary bus bar; 700-second bus bar; 700a-second supplementary bus bar; 800-first connecting wire; 900-second connecting wire; 1000-first high-temperature glue; 1100-second high-temperature glue.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • an electrochromic device 10 which is used to change the color of architectural glass and car window glass, realize the patterning and color gradient of the electrochromic device, and improve the electrochromic device. Diversity of color changes of the chromic device 10 .
  • the electrochromic device 10 includes a first base layer 100, a first conductive layer 200, an electrochromic layer 300, a second conductive layer 400 and a second base layer 500 stacked in sequence.
  • first grooves 10a and second grooves 10b are provided on the edge of the electrochromic device 10.
  • at least one first groove 10a and at least one second groove 10b are formed on any side of the edge of the electrochromic device 10.
  • the number of the first grooves 10a and the number of the second grooves 10b are multiple respectively, which can be any number greater than the value two, and can be specifically set according to the actual situation, and the number of the first grooves The number 10a is equal to the number of second grooves 10b.
  • first grooves 10a are spaced apart on the edge of the electrochromic device 10, and each first groove 10a is located on the side of the second conductive layer 400 away from the second base layer 500.
  • first groove 10a is simultaneously formed on the first base layer 100, the first conductive layer 200 and the electrochromic layer 300 by etching or laser engraving.
  • each second groove 10b is located on the side of the first conductive layer 200 away from the first base layer 100, and a plurality of second grooves 10b are spaced apart on the edge of the electrochromic device 10.
  • the second groove 10b is simultaneously formed in the second base layer 500, the second conductive layer 400 and the electrochromic layer 300 by etching or laser engraving.
  • each first groove 10a and each second groove 10b have a gap between orthographic projections of the plane where the electrochromic layer 300 is located.
  • At the same time, at least one first bus bar 600 is provided on a side of the first base layer 100 away from the electrochromic layer 300 . It can be understood that the number of the first bus bars 600 can be one, two, or any number of more than two, and can be specifically set according to the actual situation.
  • Each first bus bar 600 is electrically connected to the second conductive layer 400 through at least one first groove 10a.
  • a first bus bar 600 is electrically connected to the second conductive layer 400 through a conductive copper foil, and the conductive copper foil is located in the first groove 10a.
  • a first bus bar 600 is electrically connected to the second conductive layer 400 through a plurality of conductive copper foils, and each conductive copper foil is respectively disposed in a first groove 10a.
  • At the same time, at least one second bus bar 700 is provided on the side of the second base layer 500 away from the electrochromic layer 300 . It can be understood that the number of the second bus bars 700 can be one, two, or any number of more than two, and can be specifically set according to the actual situation.
  • Each second bus bar 700 is electrically connected to the first conductive layer 200 through at least one second groove 10b. Specifically, a second bus bar 700 is electrically connected to the first conductive layer 200 through a conductive copper foil, and the conductive copper foil is located in the second groove 10b. Optionally, a second bus bar 700 is electrically connected to the first conductive layer 200 through a plurality of conductive copper foils, and one conductive copper foil is disposed in each second groove 10b.
  • the second bus bar By arranging a plurality of staggered first grooves 10a and second grooves 10b on the edge of the electrochromic device, and electrically connecting the first bus bar 600 to the second conductive layer 400 through the first grooves 10a, the second bus bar
  • the strip 700 is electrically connected to the first conductive layer 200 through the second groove 10b to avoid contact short circuit between the first bus bar 600 and the second bus bar 700, thereby improving the stability of the electrochromic device.
  • first bus bars 600 there may be two first bus bars 600 , and the two first bus bars 600 are disposed at edges on opposite sides of the first base layer 100 .
  • each second bus bar 700 and one first bus bar 600 are located on the electrical the same side of the color changing layer 300 .
  • one of the first bus bars 600 and one of the second bus bars 700 are located on the same side of the electrochromic layer 300, and the other first bus bar 600 and the other second bus bar 700 are both located on the electrochromic layer 300. The other side of layer 300.
  • At least one first supplementary bus bar 600a is provided on the side of the first base layer 100 away from the electrochromic layer 300, and the first supplementary bus bar 600a and the first bus bar 600 are respectively arranged on opposite sides of the first base layer 100;
  • first supplementary bus bars 600a is equal to the number of second supplementary bus bars 700a.
  • the first supplementary bus bar 600a and the number of the second supplementary bus bar 700a are both located on the electrochromic layer 300
  • the first supplementary bus bar 600a and the second supplementary bus bar 700a are respectively connected to the external power supply, and the voltages connected to the first supplementary bus bar 600a and the second supplementary bus bar 700a are adjusted to control the first conductive layer 200 and the second conductive layer 400, thereby improving the color changing efficiency of the electrochromic layer 300 and enriching the color change of the electrochromic layer 300. color effect.
  • the two first supplementary bus bars 600a and the number of the second supplementary bus bars 700a are two respectively, the two first supplementary bus bars 600a are arranged at intervals, and the two second supplementary bus bars 700a are arranged at intervals, And the two first supplementary bus bars 600a and the two second supplementary bus bars 700a are respectively located on the same side of the electrochromic layer 300.
  • One of the first supplementary bus bars 600a is electrically connected to one of the first bus bars 600
  • the other first supplementary bus bar 600a is electrically connected to the other first bus bar 600
  • the one of the second supplementary bus bars 700a is electrically connected to one of the first bus bars 600.
  • the two bus bars 700 are electrically connected, and the other second supplementary bus bar 700a is electrically connected to the other second bus bar 700.
  • the electric field distribution range at the edge of the electrochromic layer 300 is increased, thereby improving the electrochromic The color changing efficiency of the color changing layer 300.
  • two first supplementary bus bars 600a are respectively provided on two opposite sides of the first base layer 100, and two second supplementary bus bars 700a are respectively provided on two opposite sides of the second base layer 500.
  • a first supplementary bus bar 600a and a second supplementary bus bar 700a are located on the same side of the electrochromic layer 300, and the other first supplementary bus bar 600a and the other second supplementary bus bar 700a are located on the electrochromic layer 300
  • the electrochromic Four sets of electric fields are formed at the edge of the layer, which not only increases the electric field distribution range at the edge of the electrochromic layer 300, improves the color-changing efficiency of the electrochromic layer 300, but also enriches the diversity of color-changing of the electrochromic layer 300.
  • the electrochromic device 10 further includes at least one partition area 10c, wherein the number of partition areas 10c can be one, two, or any number of more than two. The number of items can be set according to the actual situation.
  • Each partition area 10c is located between the first base layer 100 and the second base layer 500, so that the electrochromic layer 300 is separated by the partition area 10c to form a plurality of color-changing areas 10d.
  • each color changing area 10d includes at least one first bus bar 600 and at least one second bus bar 700.
  • the shape of the orthographic projection of the partition area 10c on the plane where the electrochromic layer 300 is located can be any one, any two or more combinations of straight lines, broken lines, arcs and curves, so that the partition area 10c can
  • the electrochromic layer 300 is separated to form various patterns, thereby forming the patterned electrochromic device 10 .
  • partition area 10c there is one partition area 10c.
  • One partition area 10c separates the electrochromic layer 300 to form two color-changing areas 10d.
  • the area and shape of the two color-changing areas 10d can be set according to actual conditions.
  • each color changing area 10d by disposing the first bus bar 600 and the second bus bar 700 on two opposite sides of each color changing area 10d, by connecting the first bus bar 600 and the second bus bar at both ends of each color changing area 10d 700 is electrically connected to an external power supply to form different voltages on the two opposite sides of each color-changing area 10d to control the color change of the color-changing area, thereby controlling the zoned color change of the electrochromic layer.
  • the number of partition areas 10c is two or more than two arbitrary values.
  • the orthographic projection of the partition area 10c on the plane where the electrochromic layer 300 is located is linear.
  • the partition areas 10c are marked as N strips, and the electrochromic layer 300 is separated by the N strips of partition areas 10c to form (N+1) discoloration areas 10d, thereby forming partitioned discoloration of (N+1) discoloration areas 10d.
  • N is a positive integer.
  • Each color-changing area 10d is electrically connected to at least a first bus bar 600 and a second bus bar 700, so that each color-changing area is adjusted by controlling the voltage of the first bus bar 600 and the second bus bar 700. Color change in zone 10d.
  • first bus bars 600 there are multiple first bus bars 600, the plurality of first bus bars 600 are arranged at intervals, and each first bus bar 600 is arranged on the first base layer.
  • second bus bars 700 on the same side of the second base layer 100 .
  • the plurality of second bus bars 700 are arranged at intervals, and each second bus bar 700 is arranged on the same side of the second base layer 500 .
  • each first bus bar 600 and each second bus bar 700 are respectively provided on the electrochromic layer 300 of the same side.
  • the number of the first bus bars 600 and the number of the second bus bars 700 may be two or more than two arbitrary values, and may be specifically set according to the actual situation.
  • the number of partition areas 10c is two to separate the electrochromic layer 300 to form three color-changing areas 10d.
  • the areas and shapes of the three color changing areas 10d can be specifically set according to actual conditions.
  • the three color changing areas 10d are marked as area A, area B and area C respectively, and the first bus bar 600 and the second bus bar 700 connected to the area A are respectively connected with the external
  • the power supply is connected to create a voltage difference between the first bus bar 600 and the second bus bar 700 in area A and is recorded as U1.
  • U1 and U2 are not equal, and U2 and U3 are not equal, and U1, U2 and U3 are all greater than 0v, thereby realizing the partitioned color change of the three color changing areas 10d of area A, area B and area B.
  • two first bus bars 600 in two spaced color changing areas 10d are connected through a first The wire 800 is electrically connected, and at the same time, the two second bus bars 700 are electrically connected through the second connecting wire 900 to form an electrical connection between the spaced color-changing areas 10d, so as to realize the simultaneous regulation of the two spaced-apart color-changing areas 10d, thereby Realize the simultaneous color change of two spaced color changing areas 10d.
  • connection lines 800 and the second connection lines 900 are equal.
  • the number of color changing areas 10d is set to
  • the bus bar 600 is electrically connected through the first connecting line 800, and at the same time, the second bus bar 700 in the (X-Y)th color changing area 10d and the second bus bar 700 in the (X-Y+Z)th color changing area 10d are passed through
  • the second connection line 900 is electrically connected.
  • the first bus bar 600 in the remaining discoloration area 10d is electrically connected through the third connection line
  • the second bus bar 700 is electrically connected through the fourth connection line.
  • X-Y ⁇ 1 and Y ⁇ Z ⁇ 2 are all integers not less than 2.
  • the bus bar 700 in the first color changing area 10d and the second bus bar 600 in the third color changing area 10d are electrically connected.
  • the bus bar 700 is electrically connected through the second connection wire 900 .
  • the value of Z can only be 2, that is, among the four color changing areas 10d, the first bus bar 600 in the second color changing area 10d and the first bus bar 600 in the fourth color changing area 10d
  • the bus bar 600 is electrically connected through a first connection line 800
  • the second bus bar 700 in the second color changing area 10 d and the second bus bar 700 in the fourth color changing area 10 d are electrically connected through a second connection line 900 .
  • first bus bar 600 in the first color changing area 10d and the first bus bar 600 in the third color changing area 10d are electrically connected through the third connection line, and the second bus bar 600 in the first color changing area 10d is electrically connected.
  • the strip 700 and the second bus bar 700 in the third color changing area 10d are electrically connected through a fourth connection line.
  • the first bus bar 600 in the two color changing areas 10d and the first bus bar 600 in the third color changing area 10d are electrically connected through a third connection line, and at the same time, the second bus bar 700 in the first color changing area 10d and The second bus bar 700 in the third color changing area 10d is electrically connected through a fourth connection line.
  • first bus bars 600 are respectively disposed on opposite sides of the electrochromic layer 300
  • second bus bars 700 are respectively disposed on opposite sides of the electrochromic layer 300
  • each second bus bar 700 is at least
  • the first bus bar 600 is located on the same side of the electrochromic layer 300
  • each first bus bar 600 is located on the same side of the electrochromic layer 300 as at least one second bus bar 700 .
  • first bus bar 600 and the second bus bar 700 By connecting the first bus bar 600 and the second bus bar 700 on one side of each color changing area 10d to the external power supply respectively, and at the same time connecting the first bus bar 600 and the second bus bar 700 on the other side of each color changing area 10d respectively.
  • An external power supply is connected to form two electric fields on two opposite sides of each color-changing area 10d, and the color change of the electrochromic layer 300 in each color-changing area 10d is controlled by adjusting the magnitude of the two electric fields.
  • each color-changing area 10d can be specifically adjusted according to the actual situation. While realizing the partitioned color change of each color-changing area 10d, the voltage on both sides of each color-changing area 10d is different. Gradient color of each color changing area 10d, thereby realizing zone color changing and gradient color of each color changing area 10d.
  • the isolation area penetrates to isolate at least one of the first conductive layer 200 and the second conductive layer 400 .
  • the partition area is only provided on the first conductive layer 200, and the first conductive layer 200 is penetrated by the partition area, so as to separate the electrochromic layer 300 to form at least two color changing areas 10d.
  • the depth of the isolation area is equal to the thickness of the first conductive layer 200 .
  • the partition area can also be provided only on the second conductive layer 400 and penetrate through the second conductive layer 400 to separate the electrochromic layer 300 to form at least two color changing areas 10d.
  • the depth of the isolation area is equal to the thickness of the second conductive layer 400 .
  • the partition areas can also be provided on the first conductive layer 200 and the second conductive layer 400 respectively, and the first conductive layer 200 can be penetrated and blocked by the partition areas provided on the first conductive layer 200 , and at the same time, the first conductive layer 200 can be cut off through the partition areas.
  • the partition area provided on the second conductive layer 400 penetrates the second conductive layer 400 to separate the electrochromic layer to form at least two color changing areas 10d.
  • the isolation area 10c is formed by etching or laser engraving.
  • the isolation area penetrates and isolates the first conductive layer 200 , the electrochromic layer 300 and the second conductive layer 400 .
  • isolation areas are formed simultaneously on the first conductive layer 200, the electrochromic layer 300 and the second conductive layer 400 by etching or laser engraving, and the electrochromic layer 300 is separated by the isolation areas to form multiple color-changing areas 10d. It can be understood that at this time, the sum of the thickness of the first conductive layer 200, the thickness of the electrochromic layer 300 and the thickness of the second conductive layer 400 is equal to the depth of the isolation region.
  • the partition area penetrates and partitions the first base layer 100 , the first conductive layer 200 , the electrochromic layer 300 and the second conductive layer 400 .
  • a partition area is formed on the first base layer 100, the first conductive layer 200, the electrochromic layer 300 and the second conductive layer 400 by etching or laser engraving, and the electrochromic layer 300 is separated by the partition area.
  • Multiple color changing areas 10d it can be understood that at this time, the sum of the thickness of the first base layer 100 , the thickness of the first conductive layer 200 , the thickness of the electrochromic layer 300 and the thickness of the second conductive layer 400 is equal to the depth of the isolation region.
  • the isolation area penetrates and isolates the first conductive layer 200 , the electrochromic layer 300 , the second conductive layer 400 and the second base layer 500 .
  • partition regions are formed on the first conductive layer 200, the electrochromic layer 300, the second conductive layer 400 and the second base layer 500 by etching or laser engraving, and the electrochromic layer 300 is separated by the partition regions. Multiple discoloration areas 10d. It can be understood that at this time, the thickness of the first conductive layer 200, the thickness of the electrochromic layer 300, the The sum of the thickness of the two conductive layers 400 and the thickness of the second base layer 500 is equal to the depth of the isolation region.
  • the partition area penetrates and partitions the first base layer 100 , the first conductive layer 200 , the electrochromic layer 300 , the second conductive layer 400 and the second base layer 500 .
  • a partition area is formed on the first base layer 100, the first conductive layer 200, the electrochromic layer 300, the second conductive layer 400 and the second base layer 500 by etching or laser engraving, and the electricity is connected through the isolation area.
  • the chromic layer 300 is divided to form a plurality of color-changing regions 10d. It can be understood that at this time, the sum of the thickness of the first base layer 100 , the thickness of the first conductive layer 200 , the thickness of the electrochromic layer 300 , the thickness of the second conductive layer 400 and the thickness of the second base layer 500 is equal to Partition zones are of equal depth.
  • the number of partition areas can be specifically set according to actual conditions.
  • the electrochromic layer 300 includes an electrochromic material layer 310 , an electrolyte layer 320 and an ion storage layer 330 that are stacked in sequence.
  • the first conductive layer 200 and the electrochromic material layer 310 are provided with isolation areas 10c. It should be noted that the first conductive layer 200 and the electrochromic layer 300 are etched or laser engraved at the same time.
  • the isolation area 10c is formed by etching, that is, the sum of the thickness of the first conductive layer 200 and the thickness of the electrochromic material layer 310 is equal to the depth of the isolation area 10c.
  • a partition region 10c is provided in the second conductive layer 400 and the ion storage layer 330. It should be noted that the second conductive layer 400 and the ion storage layer 330 are formed by etching or laser engraving at the same time.
  • the isolation area 10c that is, the sum of the thickness of the second conductive layer 400 and the thickness of the ion storage layer 330 is equal to the depth of the isolation area 10c.
  • the first conductive layer 200 and the electrochromic material layer 310 are provided with isolation areas 10c, while the second conductive layer 400 and the ion storage layer 330 are provided with isolation areas 10c, and the first conductive layer 200 and the ion storage layer 330 are provided with isolation areas 10c.
  • the etched or laser-engraved isolation area 10c on the electrochromic material layer 310 is in the orthographic projection of the plane where the electrochromic layer 300 is located, and the etched or laser-engraved isolation area 10c on the second conductive layer 400 and the ion storage layer 330 is in the electrochromic direction.
  • the orthographic projections of the plane where the color-changing layer 300 is located coincide with each other.
  • the electrochromic layer 300 is separated by the partition regions 10c formed during the etching or laser engraving process to form a plurality of color-changing regions 10d. By adjusting the shape of the partition regions 10c, the electrochromic layer 300 is formed into multiple color-changing regions. The layer 300 separates and forms discoloration areas 10d of different shapes to form a patterned electrochromic device. The shape of the pattern can be specifically set according to the actual situation, thereby achieving patterned color change of the electrochromic device.
  • the isolation region 10 c is formed on the first conductive layer 200 by etching or laser engraving, or at the same time by etching on the first conductive layer 200 and the electrochromic material layer 310 Or forming the partition area 10c by laser engraving, and dividing the electrochromic layer 300 to form multiple color-changing areas 10d, by adding a supplementary bus bar on the edge of the first base layer 100 on the side where the first bus bar 600 is not provided. , and electrically connect the supplementary bus bar to the second conductive layer 400 to increase the discoloration speed of the electrochromic layer 300 and provide a richer discoloration effect.
  • the isolation area 10c is formed on the second conductive layer 400 by etching or laser engraving, or the isolation area 10c is formed on the second conductive layer 400 and the ion storage layer 330 by etching or laser engraving at the same time, and
  • a supplementary bus bar is added to the edge of the second base layer 500 on the side where the second bus bar 700 is not provided, and the supplementary bus bar is connected to the first conductive layer. 200 electrical connections to increase the color-changing speed of the electrochromic layer 300 and provide a richer color-changing effect.
  • a plurality of first bus bars 600 are arranged at intervals on the edge of the first base layer 100
  • a plurality of second bus bars 700 are arranged at intervals. at the edge of the second base layer 500 .
  • At least one first bus bar 600 is provided on any side of the edge of the first base layer 100
  • at least one second bus bar 700 is provided on any side of the edge of the second base layer 500.
  • an insulating layer is also provided in the partition area, and the partition area is filled with the insulation layer to avoid contact between the conductive layers on both sides of the partition area, so as to improve the zoned discoloration effect of the electrochromic device.
  • the insulation layer in the partition area by filling the insulation layer in the partition area, external water and oxygen are prevented from entering the electrochromic device through the partition area, so as to improve the stability of the electrochromic device during the discoloration process.
  • the optical properties of at least one of the first base layer 100, the first conductive layer 200, the electrochromic layer 300, the second conductive layer 400 or the second base layer 500 match the optical properties of the insulating layer, Prevent the insulating layer from affecting the appearance of the electrochromic device, so as to improve the aesthetics of the electrochromic device during the partitioned discoloration process.
  • the insulating layer may be an electrolyte layer. Therefore, the electrical isolation effect of the partition area can be improved through the arrangement of the insulating layer, ensuring the discoloration independence between each color-changing area, and matching the optical properties of the insulating layer with the optical properties of other layers of the device, which can reduce the insulation The optical difference between the insulation layer and other layers, or there is no optical difference between the insulation layer and other layers, thus ensuring that the partition area does not affect the user's visual experience and improving the user's comfort.
  • the electrochromic device may further include high-temperature glue, such as the first high-temperature glue 1000 and the second high-temperature glue 1100 .
  • the first high-temperature glue 1000 can be disposed on the first base layer 100 and located on a side of the first base layer 100 away from the electrochromic layer 300
  • the second high-temperature glue 1100 can be disposed on the first base layer 100 . on the second base layer 500 and located on the side of the second base layer 500 away from the electrochromic layer 300 .
  • the high-temperature glue can be stably bonded to the base layer.
  • the first high-temperature glue 1000 may at least partially cover the first groove 10a
  • the second high-temperature glue 1100 may at least partially cover the second groove 10b.
  • part of the high-temperature glue is bonded to the base layer, and part is bonded to the exposed conductive layer at the groove, which can reinforce the edge of the groove and prevent interlayer detachment at the edge of the groove.
  • the first high-temperature glue 1000 at least partially covers the first bus bar 600 and at least partially covers the first groove 10a
  • the second high-temperature glue 1100 at least partially covers the second bus bar 700 and at least partially covers the second groove. Slot 10b. Therefore, by covering the bus bar with high-temperature glue, the preparation process can be simplified, without disturbing the electrical connection between the bus bar and the conductive layer, while improving the interlayer bonding force of the device and avoiding demolding and other situations.
  • the first high-temperature glue 1000 can completely cover the first bus bar 600 and the first groove 10a.
  • the second high-temperature glue 1100 can also completely cover the second bus bar 700 and the second groove 10b.
  • the width of the first high-temperature glue 1000 may be greater than the width of the first groove 10a, and the width of the second high-temperature glue 1100 may be greater than the width of the second groove 10b, so that the high-temperature glue can cover the groove area.
  • the width here refers to the length in the direction extending from the edge of the electrochromic device to the central region.
  • the width of the high-temperature glue larger than the width of the groove, a part of the high-temperature glue can be extended inward (visible area) and attached to the base layer, and the other part can be attached to the conductive layer through the groove or form a third layer.
  • the bonding of the first high-temperature glue and the second high-temperature glue further ensures that multiple edges of the groove are attached with high-temperature glue to more comprehensively and effectively ensure that the edges of the groove will not be demolded, thereby improving electrochromic devices. stability and reliability of use.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本申请提供一种电致变色器件,属于电致变色领域。电致变色器件包括依次层叠的第一基底层、第一导电层、电致变色层、第二导电层和第二基底层;电致变色器件的边缘设有多个交错设置的第一凹槽和第二凹槽,第一基底层远离电致变色层的一侧设有至少一个第一汇流条,每一个第一汇流条通过至少一个第一凹槽与第二导电层电连接;第二基底层远离电致变色层的一侧设有至少一个第二汇流条,每一个第二汇流条通过至少一个第二凹槽与第一导电层电连接。通过设置多个汇流条,以提升第一导电层和第二导电层上的电传导速率,从而提高电致变色器件的变色速率。

Description

一种电致变色器件
相关申请的交叉引用
本申请要求于2022年07月20日提交中国国家知识产权局的申请号为202210863777.5、名称为“一种电致变色器件”的中国专利申请的优先权及于2022年07月20日提交中国国家知识产权局的申请号为202221910877.0、名称为“一种电致变色器件”的中国专利申请的优先权,上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电致变色领域,尤其涉及一种电致变色器件。
背景技术
电致变色是指材料在外加电压的作用下,带电离子与材料发生掺杂和去掺杂,导致材料发生氧化还原反应,进而材料的光学性能在可见光红外吸收区域内发生可逆变化的现象。
现有的技术中通常采用氧化铟锡(ITO)为导电层,设置在电致变色材料的上下两表面,以在其两表面形成电势差(电场),驱动其氧化还原的过程;但ITO的面阻较大,电传导需要的时间较长,尤其对一些面积较大的电致变色器件而言,实现其全部变色所需的时间较长,变色速率较慢。
发明内容
有鉴于此,本申请的目的是为了克服现有技术中的不足,提供一种能够提升变色速率的电致变色器件。
本申请提供如下技术方案:一种电致变色器件,包括依次层叠的第一基底层、第一导电层、电致变色层、第二导电层和第二基底层;所述电致变色器件的边缘设有多个交错设置的第一凹槽和第二凹槽,所述第一凹槽位于所述第二导电层远离所述第二基底层的一侧,所述第二凹槽位于所述第一导电层远离所述第一基底层的一侧;所述第一基底层远离所述电致变色层的一侧设有至少一个第一汇流条,每一个所述第一汇流条通过至少一个所述第一凹槽与所述第二导电层电连接;所述第二基底层远离所述电致变色层的一侧设有至少一个第二汇流条,每一个所述第二汇流条通过至少一个所述第二凹槽与所述第一导电层电连接。
在本申请中,在电致变色器件的边缘设置了多个相互交错的第一凹槽和第二凹槽,以通过凹槽裸露对侧的导电层,在电致变色器件两侧的边缘形成多电极结构,并且使第一汇流条通过第一凹槽与第二导电层形成电连接,第二汇流条通过第二凹槽与第一导电层形成电连接,通过汇流条可以引入外部电源的电压或电流,以传导至导电层,提升了第一导电层和第二导电层上的电传导速率,从而提高电致变色器件的变色速率;此外,第一汇流条设置在第一基底层远离电致变色层的一侧上,第二汇流条设置在第二基底层远离电致变色层的一侧上,由此,第一基底层和第二基底层可以分别对第一汇流条和第二汇流条形成良好的支撑作用,同时基底层还可以起到电隔绝的效果,以在没有凹槽的部位,可以通过基底层阻隔汇流条和导电层之间的电连接,例如第一基底层可以阻隔第一汇流条和第一导电层之间的电连接,第二基底层可以阻隔第二汇流条和第二导电层之间的电连接,从而防止第一导电层和第二导电层因电连接而短路的情况的发生,提升电致变色器件的使用稳定性和可靠性。
可选地,所述第一汇流条为两个,两个所述第一汇流条设置在所述第一基底层的两相对侧的边缘;所述第二汇流条为两个,两个所述第二汇流条设置在所述第二基底层的两相对侧的边缘;优选地,每一个所述第二汇流条和一个所述第一汇流条位于所述电致变色层的同一侧。由此,通过将汇流条设置在基底层的两相对侧的边缘区域,可以增加电致变色器件的边缘区域和中心区域的电压差或电流差,从而使得边缘区域变色 快而中间区域变色慢,起到渐变色效果;并且,还可对两相对侧的汇流条施加不同大小或不同时长的电压或电流,以进一步实现更丰富的变色效果,提升电致变色器件的实用性和美观度等。进一步地,使每一个第二汇流条和一个第一汇流条位于电致变色层的同一侧,即使得电致变色层的任意侧均同时存在第一汇流条和第二汇流条,由此,可以分别对第一汇流条和第二汇流条施加正负电压,使电流或电压可以从器件的同一侧向另一侧逐渐变化或从器件的四周边缘向中心区域逐渐变化,从而使得器件的变色区域更加协同一致,提升变色的协调性等。
进一步地,所述第一基底层远离所述电致变色层的一侧设有至少一个第一补充汇流条,且所述第一补充汇流条和所述第一汇流条分别设置在所述第一基底层的异侧;所述第二基底层远离所述电致变色层的一侧设有至少一个第二补充汇流条,且所述第二补充汇流条和所述第二汇流条分别设置在所述第二基底层的异侧。由此,补充汇流条的设置,可以进一步通过设置器件的电流或电压改变规律,丰富器件的变色效果,提升电致变色器件的实用性以满足不同的用户或场景需求等。
进一步地,还包括至少一个隔断区,所述隔断区贯通隔断所述第一导电层和所述第二导电层中的至少其一,以将所述电致变色层分隔形成多个变色区。由此,通过导电层的隔断形成多个变色区,其通过隔断导电层为多个区,减小各区导电层的面积,从而可以有利于实现器件的快速变色,并且,多个变色区可以根据不同的应用场景或用户需求,实现不同的变色效果,丰富器件的显色效果,进一步提升器件的实用性。
可选地,所述隔断区为多个,任意两个所述隔断区均不相交。进一步地,任意两个所述隔断区相互平行设置。由此,各个隔断区的存在,可以使电致变色器件形成相互独立的多个变色区,以更加有利于实现各个变色区的独立或协同变色效果。
可选地,所述第一汇流条为多个,多个所述第一汇流条相间隔设置,且每一个所述第一汇流条均设置在所述第一基底层的边缘;所述第二汇流条为多个,多个所述第二汇流条相间隔设置,且每一个所述第二汇流条均设置在所述第二基底层的边缘。可选地,多个所述第一汇流条和多个所述第二汇流条交错设置,形成第一汇流条和第二汇流条彼此相邻的结构。由此,通过多个汇流条的设置,可以进一步提升电致变色器件的变色速率,并且,将汇流条设置在基底层的边缘,可以扩大中间的变色区域的面积,以提升器件的实用面积,提升用户的使用体验等。
可选地,每一个所述第一汇流条和每一个所述第二汇流条均设置在所述电致变色层的同一侧。优选地,所述电致变色层的周侧均设置有所述第一汇流条和所述第二汇流条,所述电致变色层的每一侧均同时设置有所述第一汇流条和所述第二汇流条。由此,通过将第一汇流条和第二汇流条设置在电致变色层的同一侧,可以确保电流/电压传导的同步性,即同时在电致变色层的同一侧边形成电势差或电场,以使电致变色器件形成更加均匀的变色效果;进一步地,通过将电致变色层的周侧均设置汇流条,并且使第一汇流条和第二汇流条并存,可以进一步确保电致变色层周侧的变色同步性,提升电致变色器件整体变色的均匀性,并且,通过四周侧同时设置汇流条,还可以进一步提升器件的变色效率。
可选地,所述第一汇流条为多个,多个所述第一汇流条相间隔的设置在所述第一基底层的两相对侧;所述第二汇流条为多个,多个所述第二汇流条相间隔的设置在所述第二基底层的两相对侧。优选地,每一个所述第一汇流条和至少一个所述第二汇流条位于所述电致变色层的同一侧。进一步地,所述第一汇流条和所述第二汇流条相邻设置。由此,通过设置多个第一汇流条或多个第二汇流条,或者将第一汇流条和第二汇流条交错的设置在相邻位置,均可以增加汇流条布设的丰富性,以进一步提升器件变色的多样性。
进一步地,所述变色区为X个,X个所述变色区中的偶数变色区中的所述第一汇流条通过第一连接线电连接,且所述第二汇流条通过第二连接线连接;X个所述变色区中 的奇数变色区中的所述第一汇流条通过第三连接线电连接,所述第二汇流条通过第四连接线电连接;其中,X为不小于3的正整数。优选地,所述变色区包括多个相间隔设置的第一变色区,所述变色区还包括多个相间隔设置的第二变色区,所述第一变色区和所述第二变色区相邻设置,即第一变色区为奇数变色区,第二变色区为偶数变色区;并且,所述第二变色区内的所述第一汇流条通过第一连接线电连接,所述第二变色区内的所述第二汇流条通过第二连接线电连接。更优选地,所述第一变色区内的所述第一汇流条通过第三连接线电连接,所述第一变色区内的所述第二汇流条通过第四连接线电连接。由此,通过第一连接线和第二连接线使两个相间隔的变色区内的汇流条形成电连接,可以实现对两个相间隔的变色区的同时调控,从而实现两个相间隔的变色区同步变色;进一步地,通过第三连接线和第四连接线,可以使其余相间隔的变色区内的汇流条形成电连接,以更加便捷有效地实现各个间隔区域的变色调控,提升电致变色器件的变色调控精准化和多样化。
可选地,多个所述第一汇流条分别位于所述电致变色层的相对两侧,多个所述第二汇流条分别位于所述电致变色层的相对两侧。优选地,每一个所述第二汇流条至少和一个所述第一汇流条位于所述电致变色层的同一侧;进一步地,每一个所述第一汇流条设置于所述电致变色层的一侧,每一个所述第二汇流条设置于所述电致变色层的另一侧,其中,所述电致变色层的一侧与所述电致变色层的另一侧为彼此相对的两侧。由此,通过在电致变色层相对的两侧同时设置有第一汇流条,以及在其相对的两侧同时设置第二汇流条,当通过汇流条引入外部电源时,可以在电致变色层的相对两侧同时引入第一汇流条传导的电压或电流,也可以电致变色层的相对两侧同时引入第二汇流条传导的电压或电流,可以在电致变色层的相对两侧和中间形成电压梯度,从而实现渐变色效果;进一步地,还可以将第一汇流条和第二汇流条分别设置在电致变色层的相对侧,也能实现其他渐变色等效果,从而提高电致变色器件颜色变化的多样性。
进一步地,所述隔断区贯通隔断所述第一导电层、所述电致变色层和所述第二导电层;或所述隔断区贯通隔断所述第一基底层、所述第一导电层、所述电致变色层和所述第二导电层;或所述隔断区贯通隔断所述第一导电层、所述电致变色层、所述第二导电层和所述第二基底层;或所述隔断区贯通隔断所述第一基底层、所述第一导电层、所述电致变色层、所述第二导电层和所述第二基底层。由此,可以使隔断区同时隔断第一导电层和第二导电层,以更加有效地在电致变色器件内形成多个变色区,并且使得多个变色区的变色可以完全独立的控制,以提升器件的变色可靠性和稳定性等。
进一步地,所述电致变色层包括依次层叠的电致变色材料层、电解质层和离子存储层;所述第一导电层和所述电致变色材料层开设有所述隔断区,或所述第二导电层和所述离子存储层开设有所述隔断区;或所述第一导电层和所述电致变色材料层开设有所述隔断区,且所述第二导电层和所述离子存储层开设有所述隔断区,两条所述隔断区在所述电致变色层所在平面的正投影重合。由此,可以更加便捷地形成导电层的隔断,以及保留了电解质层不隔断,在器件制备过程中还可以使电解质填充于隔断区内,因电解质具有绝缘性能,因此,电解质不隔断甚至填充于隔断区内,都能够提升第一导电层和第二导电层之间的绝缘性能,防止二者发生电连接而短路的情况的发生,提升电致变色器件的使用稳定性和可靠性。
可选地,每一个所述第一凹槽在所述第一基底层所在平面的正投影位于所述第一基底层的边缘,且每一个所述第二凹槽在所述第二基底层所在平面的正投影位于所述第二基底层的边缘;或每一个所述第一凹槽在所述第一基底层所在平面的正投影位于所述第一基底层的内侧,且每一个所述第二凹槽在所述第二基底层所在平面的正投影位于所述第二基底层的内侧。由此,使凹槽位于基底层的边缘,可以最大限度保证中间的变色区域的面积,提升电致变色器件的变色有效面积;使凹槽位于基底层的内侧,例如可以通过开孔形成凹槽,以提升基底层对汇流条的支撑作用,提升电致变色器件的 使用稳定性和可靠性。
进一步地,每一个所述变色区中包括至少一个所述第一汇流条和至少一个所述第二汇流条。通过隔断区的设置,将电致变色层分隔形成多个变色区,其通过隔断导电层为多个区,减小了各个变色区的导电层的面积,从而可以有利于实现器件的快速变色;由此,通过使每个变色区内同时包括第一汇流条和第二汇流条,可以进一步提升器件的快速变色效果,也可以更加有效便捷地实现各个变色区的单独控制等,丰富器件的显色效果,提升电致变色器件的实用性。
进一步地,所述隔断区内还设置有绝缘层,所述第一基底层、所述第一导电层、所述电致变色层、所述第二导电层或所述第二基底层中至少其一的光学特性与所述绝缘层的光学特性相匹配。优选地,所述绝缘层与所述电解质层具有相同的材料组成。更优选地,所述绝缘层为电解质层。由此,通过绝缘层的设置可以提升隔断区的电阻隔效应,确保各个变色区之间的变色独立性,并且使绝缘层的光学特性和器件其他各层的光学特性相匹配,可以减小绝缘层和其他各层之间的光学差异,或使绝缘层和其他各层之间无光学差异,从而能够确保隔断区不影响用户的视觉体验效果,提升用户的使用舒适性。
可选地,所述电致变色器件还包括第一高温胶和第二高温胶,所述第一高温胶位于所述第一基底层的一侧并至少部分覆盖所述第一凹槽,所述第二高温胶位于所述第二基底层的一侧并至少部分覆盖所述第二凹槽。优选地,所述第一高温胶至少部分覆盖所述第一汇流条并至少部分覆盖所述第一凹槽,所述第二高温胶至少部分覆盖所述第二汇流条并至少部分覆盖所述第二凹槽。更优选地,所述第一高温胶完全覆盖所述第一汇流条和所述第一凹槽,所述第二高温胶完全覆盖所述第二汇流条和所述第二凹槽。进一步地,所述第一高温胶的宽度大于所述第一凹槽的宽度,所述第二高温胶的宽度大于所述第二凹槽的宽度。通常情况下,在凹槽的边沿区域容易发生层间脱落等情况,通过将高温胶设置在基底层上并至少部分覆盖凹槽,可以提升凹槽边沿区域的结合力,即提升电致变色器件各层之间的结合力;进一步地,通过使高温胶覆盖至汇流条上,可以简化制备工艺,不干扰汇流条和导电层之间的电连接的同时,提升器件的层间结合力,避免脱模等情况的发生;此外,通过使高温胶的宽度大于凹槽的宽度,可以使高温胶的一部分向内(可视区)延伸贴合在基底层上,另一部分通过凹槽贴合在导电层上,从而进一步确保凹槽的多个侧边均贴附有高温胶,以更加全面有效地确保凹槽边沿不会发生脱模等情况,提升电致变色器件的使用稳定性和可靠性。
本申请的实施例具有如下优点:通过在电致变色器件的边缘设置多个相互交错的第一凹槽和第二凹槽,以在电致变色器件的边缘形成多电极,同时将第一汇流条与第二导电层电连接,第二汇流条和第一导电层电连接,以形成多电极连接,以提升第一导电层和第二导电层上的电传导速率,从而提高电致变色器件的变色速率。
为使本申请的上述目的、特征和优点能更明显和易懂,下文特举较佳实施例,并配合所附附图,做详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请的一些实施例提供的一种电致变色器件的一视角的结构示意图;
图2示出了图1中A-A部的剖视图;
图3示出了图2中B部的放大图;
图4示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图一;
图5示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图二;
图6示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图三;
图7示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图四;
图8示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图五;
图9示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图六;
图10示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图七;
图11示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图八;
图12示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图九;
图13示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图十;
图14示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图十一;
图15示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图一;
图16示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图二;
图17示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图三;
图18示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图四;
图19示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图五;
图20示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图六;
图21示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图七;
图22示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图八;
图23示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图九;
图24示出了本申请的一些实施例提供的一种电致变色器件中隔断区的一视角的结构示意图十;
图25示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图十二;
图26示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图十三;
图27示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图十四;
图28示出了本申请的一些实施例提供的一种电致变色器件其他结构的一视角的结构示意图十五;
图29示出了本申请的一些实施例提供的含有高温胶的一种电致变色器件结构的俯视图;图30示出了本申请的一些实施例提供的含有高温胶的一种电致变色器件结构的截面视图。
主要元件符号说明:
10-电致变色器件;10a-第一凹槽;10b-第二凹槽;10c-隔断区;10d-变色区;100-第一
基底层;200-第一导电层;300-电致变色层;310-电致变色材料层;320-电解质层;330-离子存储层;400-第二导电层;500-第二基底层;600-第一汇流条;600a-第一补充汇流条;700-第二汇流条;700a-第二补充汇流条;800-第一连接线;900-第二连接线;1000-第一高温胶;1100-第二高温胶。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在模板的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1至图4所示,本申请的一些实施例提供一种电致变色器件10,应用于建筑玻璃、车窗玻璃的变色,实现电致变色器的图案化及颜色的渐变,提高电致变色器件10变色的多样性。电致变色器件10包括依次层叠的第一基底层100、第一导电层200、电致变色层300、第二导电层400和第二基底层500。
其中,在电致变色器件10的边缘设有多个交错设置的第一凹槽10a和第二凹槽10b。在本实施例中,电致变色器件10边缘的任意一侧开设有至少一个第一凹槽10a和至少一个第二凹槽10b。
需要说明的是,第一凹槽10a的数量和第二凹槽10b的数量分别为多个,可以是大于数值二的任意数值的个数,可根据实际情况具体设定,且第一凹槽10a的数量与第二凹槽10b的数量相等。
具体的,多个第一凹槽10a相间隔的分布在电致变色器件10的边缘,每一个第一凹槽10a位于第二导电层400远离第二基底层500的一侧。需要说明的是,同时在第一基底层100、第一导电层200和电致变色层300通过蚀刻或镭雕的方式形成第一凹槽10a。 同时,每一个第二凹槽10b位于第一导电层200远离第一基底层100的一侧,多个第二凹槽10b相间隔的分布在电致变色器件10的边缘。需要说明的是,同时在第二基底层500、第二导电层400和电致变色层300通过蚀刻或镭雕的方式形成第二凹槽10b。另外,每一个第一凹槽10a和每一个第二凹槽10b在电致变色层300所在平面的正投影之间具有间隙。
同时,在第一基底层100远离电致变色层300的一侧设有至少一个第一汇流条600。可以理解的是,第一汇流条600的数量可以是一个、两个或两个以上任意数值的个数,可根据实际情况具体设定。
每一个第一汇流条600通过至少一个第一凹槽10a与第二导电层400电连接。具体的,一个第一汇流条600通过一个导电铜箔与第二导电层400形成电连接,且该导电铜箔位于第一凹槽10a中。可选的,一个第一汇流条600通过多个导电铜箔与第二导电层400形成电连接,且每一个导电铜箔分别设置在一个第一凹槽10a中。
同时,在第二基底层500远离电致变色层300的一侧设有至少一个第二汇流条700。可以理解的是,第二汇流条700的数量可以是一个、两个或两个以上任意数值的个数,可根据实际情况具体设定。
每一个第二汇流条700通过至少一个第二凹槽10b与第一导电层200电连接。具体的,一个第二汇流条700通过一个导电铜箔与第一导电层200形成电连接,且导电铜箔位于第二凹槽10b中。可选的,一个第二汇流条700通过多个导电铜箔与第一导电层200形成电连接,且每一个第二凹槽10b中均设置有一个导电铜箔。
通过在电致变色器件的边缘设置多个交错的第一凹槽10a和第二凹槽10b,并将第一汇流条600通过第一凹槽10a与第二导电层400电连接,第二汇流条700通过第二凹槽10b与第一导电层200电连接,以避免第一汇流条600和第二汇流条700出现接触短路的现象,从而提高电致变色器件的稳定性。
如图4和图5所示,在本申请的一些实施例中,第一汇流条600可以为两个,两个第一汇流条600设置在第一基底层100的相对两侧的边缘。
同时,第二汇流条700为两个,两个第二汇流条700设置在第二基底层500的相对两侧的边缘,且每一个第二汇流条700和一个第一汇流条600位于电致变色层300的同一侧。可以理解的是,其中一个第一汇流条600和其中一个第二汇流条700位于电致变色层300的同一侧,另一个第一汇流条600和另一个第二汇流条700均位于电致变色层300的另一侧。
具体的,通过将两个第一汇流条600和两个第二汇流条700分别接入外部电源,并在位于电致变色层300一侧的第一导电层200和第二导电层400之间形成第一电场,同时在电致变色层300的另一侧的第一导电层200和第二导电层400之间形成第二电场,通过调节第一电场和第二电场之间的场强大小,以控制电致变色层300的两相对侧的颜色变化,从而在电致变色层300上形成渐变色,丰富了电致变色层300的变色效果。如图6至图9所示,在本申请的一些实施例中,第一基底层100远离电致变色层300的一侧设有至少一个第一补充汇流条600a,且第一补充汇流条600a和第一汇流条600分别设置在第一基底层100的异侧;
同时,在第二基底层500远离电致变色层300的一侧设有至少一个第二补充汇流条700a,且第二补充汇流条700a和第二汇流条700分别设置在第二基底层500的异侧。
需要说明的是,第一补充汇流条600a的数量和第二补充汇流条700a的数量相等。
具体的,当第一补充汇流条600a的数量和第二补充汇流条700a的数量均为一个时,此时,第一补充汇流条600a和第二补充汇流条700a均位于电致变色层300的同一侧,将第一补充汇流条600a和第二补充汇流条700a分别接入外部电源,通过调节接入第一补充汇流条600a和第二补充汇流条700a的电压,以控制第一导电层200和第二导电层400之间的电场大小,从而提高电致变色层300的变色效率,丰富电致变色层300的变 色效果。
另外,当第一补充汇流条600a的数量和第二补充汇流条700a的数量分别为两个时,两个第一补充汇流条600a相间隔设置,两个第二补充汇流条700a相间隔设置,且两个第一补充汇流条600a和两个第二补充汇流条700a分别位于电致变色层300的同一侧。其中一个第一补充汇流条600a与其中一个第一汇流条600电连接,另一个第一补充汇流条600a与另一个第一汇流条600电连接,其中一个第二补充汇流条700a与其中一个第二汇流条700电连接,另一个第二补充汇流条700a与另一个第二汇流条700电连接,通过增加汇流条的数量,以增加电致变色层300边缘的电场分布范围,从而提高电致变色层300的变色效率。
如图8和图9所示,两个第一补充汇流条600a分别设置在第一基底层100的两相对侧,两个第二补充汇流条700a分别设置在第二基底层500的两相对侧,且一个第一补充汇流条600a与一个第二补充汇流条700a位于电致变色层300的同一侧,另一个第一补充汇流条600a与另一个第二补充汇流条700a位于电致变色层300的另一侧,通过将电致变色层300边缘的第一汇流条600、第二汇流条700、第一补充汇流条600a和第二补充汇流条700a分别接入外部电源,以在电致变色层的边缘形成四组电场,不仅增加了电致变色层300边缘的电场分布范围,提高了电致变色层300的变色效率,而且更加丰富了电致变色层300变色的多样性。
如图10至图14所示,在本申请的一些实施例中,电致变色器件10还包括至少一个隔断区10c,其中,隔断区10c的数量可以是一个、两个或两个以上任意数值的条数,可根据实际情况具体设定。
其中,每一个隔断区10c均位于第一基底层100和第二基底层500之间,以通过隔断区10c将电致变色层300分隔形成多个变色区10d。
需要说明的是,每一个变色区10d中包括至少一个第一汇流条600和至少一个第二汇流条700。
另外,隔断区10c在电致变色层300所在平面的正投影的形状可以是直线、折线、弧线和曲线中的任意一种、任意两种或两种以上的组合,以通过隔断区10c将电致变色层300分隔形成各种各样的图案,从而形成图案化的电致变色器件10。
如图10和图11所示,隔断区10c为一个,一个隔断区10c将电致变色层300分隔形成两个变色区10d,两个变色区10d的面积和形状可根据实际情况具体设置。
在本申请中,通过在每一个变色区10d的两相对侧均设置有第一汇流条600和第二汇流条700,通过将每一个变色区10d两端的第一汇流条600和第二汇流条700分别与外部电源电连接,以在每一个变色区10d的两相对侧形成不同的电压,以控制该变色区的颜色变化,从而实现对电致变色层的分区变色的控制。
在本实施例中,隔断区10c为多个,任意两个隔断区10c均不相交。
其中,隔断区10c的数量为两个或两个以上任意数值的个数。
在本实施例中,隔断区10c在电致变色层300所在平面的正投影为直线型。
具体的,将隔断区10c标记为N条,通过N条隔断区10c将电致变色层300分隔形成(N+1)个变色区10d,从而形成(N+1)个变色区10d的分区变色,N为正整数。
其中,每一个变色区10d中至少电连接于一个第一汇流条600和一个第二汇流条700,从而通过控制接入第一汇流条600和第二汇流条700的电压,以调节每一个变色区10d的颜色变化。
如图12所示,在本申请的一些实施例中,第一汇流条600为多个,多个第一汇流条600相间隔设置,且每一个第一汇流条600均设置在第一基底层100的同一侧,第二汇流条700为多个,多个第二汇流条700相间隔设置,且每一个第二汇流条700均设置在第二基底层500的同一侧。
具体的,每一个第一汇流条600和每一个第二汇流条700分别设置在电致变色层300 的同一侧。
其中,第一汇流条600的数量和第二汇流条700的数量分别可以是两个或两个以上任意数值的个数,可根据实际情况具体设定。
如图12所示,在本实施例中,隔断区10c的数量为两条,以将电致变色层300分隔形成三个变色区10d。
需要说明的是,三个变色区10d的面积和形状可根据实际情况具体设置。
具体的,在上述三个变色区10d中,将三个变色区10d分别标记为A区、B区和C区,接入A区中的第一汇流条600和第二汇流条700分别与外部电源连接,以在A区的第一汇流条600和第二汇流条700之间形成电压差,并记录为U1。
同时将接入B区中的第一汇流条600和第二汇流条700分别与外部电源连接,以在B区的第一汇流条600和第二汇流条700之间形成电压差,并记录为U2。
同时将接入C区中的第一汇流条600和第二汇流条700分别与外部电源连接,以在C区的第一汇流条600和第二汇流条700之间形成电压差,并记录为U3。
其中,U1与U2不相等,且U2与U3不相等,且U1、U2和U3均大于0v,从而实现A区、B区和B区三个变色区10d的分区变色。
如图13所示,在本申请的一些实施例中,为了实现多个变色区10d的同步控制和变色,将两个相间隔的变色区10d中的两个第一汇流条600通过第一连接线800电连接,同时将两个第二汇流条700通过第二连接线900电连接,以将相间隔的变色区10d形成电连接,以实现两个相间隔的变色区10d的同时调控,从而实现两个相间隔的变色区10d同步变色。
需要说明的是,第一连接线800和第二连接线900的数量相等。
具体的,在本实施例中,将变色区10d设置为X个,第(X-Y)个变色区10d中的第一汇流条600和第(X-Y+Z)个变色区10d中的第一汇流条600通过第一连接线800电连接,同时将第(X-Y)个变色区10d中的第二汇流条700和第(X-Y+Z)个变色区10d中的第二汇流条700通过第二连接线900电连接。同时,将余下的变色区10d中的第一汇流条600通过第三连接线电连接,第二汇流条700通过第四连接线电连接。
其中,X-Y≥1且Y≥Z≥2,X、Y和Z均为不小于2的整数。
具体的,当X=3时,即变色区10d的数量为三个,此时,Y=2,Z=2,即三个变色区10d中,第一个变色区10d中的第一汇流条600和第三个变色区10d中的第一汇流条600通过第一连接线800电连接,同时将第一个变色区10d中的第二汇流条700和第三个变色区10d中的第二汇流条700通过第二连接线900电连接。
另外,当X=4时,即变色区10d的数量为四个,此时,Y=2或3,Z=2或3。
具体的,当Y=2时,Z的取值只能是2,即四个变色区10d中,第二个变色区10d中的第一汇流条600和第四个变色区10d中的第一汇流条600通过第一连接线800电连接,第二个变色区10d中的第二汇流条700和第四个变色区10d中的第二汇流条700通过第二连接线900电连接。
同时,将第一个变色区10d中的第一汇流条600和第三个变色区10d中的第一汇流条600通过第三连接线电连接,将第一个变色区10d中的第二汇流条700和第三个变色区10d中的第二汇流条700通过第四连接线电连接。
当Y=3时,Z的取值为3时,即四个变色区10d中,第一个变色区10d中的第一汇流条600和第四个变色区10d中的第一汇流条600通过第一连接线800电连接,同时将第一个变色区10d中的第二汇流条700和第四个变色区10d中的第二汇流条700通过第二连接线900电连接;同时,将第二个变色区10d中的第一汇流条600和第三个变色区10d中的第一汇流条600通过第三连接线电连接,同时将第一个变色区10d中的第二汇流条700和第三个变色区10d中的第二汇流条700通过第四连接线电连接。
当X=5时,即变色区10d的数量为五个,此时,Y=2、3或4,Z=2、3或4,依次 类推。
通过将两个相间隔的变色区10d电连接,以实现对两个相间隔的变色区的同时调控,从而实现两个相间隔的变色区同步变色。
如图14所示,在本实施例中,隔断区10c为两个,并将电致变色器件分隔形成三个变色区10d。
其中,多个第一汇流条600分别设置在电致变色层300的相对两侧,多个第二汇流条700分别设置在电致变色层300的相对两侧,每一个第二汇流条700至少和一个第一汇流条600位于电致变色层300的同一侧,且每一个第一汇流条600至少和一个第二汇流条700位于电致变色层300的同一侧。
通过将每一个变色区10d一侧的第一汇流条600和第二汇流条700分别接入外部电源,同时将每一个变色区10d另一侧的第一汇流条600和第二汇流条700分别接入外部电源,以在每一个变色区10d的两相对侧形成两个电场,通过调节两个电场的大小以实现对每一个变色区10d中电致变色层300的颜色变化的控制。
需要说明的是,每一个变色区10d两相对侧的电压大小可根据实际情况具体调节,在实现每一个变色区10d的分区变色的同时,通过将每一个变色区10d两侧的电压不同,实现每一个变色区10d的渐变色,从而实现每一个变色区10d的分区变色和渐变色。
在一些实施例中,隔断区贯通隔断第一导电层200和第二导电层400中的至少其一。
如图15所示,将隔断区只设置在第一导电层200上,并通过隔断区贯通隔断第一导电层200,以将电致变色层300分隔形成至少两个变色区10d,此时,隔断区的深度与第一导电层200的厚度相等。
如图16所示,还可以将隔断区只设置在第二导电层400上,并通过隔断区贯通隔断第二导电层400,以将电致变色层300分隔形成至少两个变色区10d,此时,隔断区的深度与第二导电层400的厚度相等。
如图17所示,还可以将隔断区分别设置在第一导电层200和第二导电层400上,并通过设置在第一导电层200上的隔断区贯通隔断第一导电层200,同时通过设置在第二导电层400上的隔断区贯通隔断第二导电层400,以将电致变色层分隔形成至少两个变色区10d。
在本申请的一些实施例中,通过蚀刻或镭雕的方式以形成隔断区10c。
如图21所示,在本申请的一些实施例中,隔断区贯通隔断第一导电层200、电致变色层300和第二导电层400。
具体的,同时在第一导电层200、电致变色层300和第二导电层400通过蚀刻或镭雕的方式形成隔断区,通过隔断区将电致变色层300分隔形成多个变色区10d。可以理解的是,此时,第一导电层200的厚度、电致变色层300的厚度和第二导电层400的厚度之和与隔断区的深度相等。
如图22所示,在本申请的一些实施例中,隔断区贯通隔断第一基底层100、第一导电层200、电致变色层300和第二导电层400。
具体的,同时在第一基底层100、第一导电层200、电致变色层300和第二导电层400通过蚀刻或镭雕的方式形成隔断区,通过隔断区将电致变色层300分隔形成多个变色区10d。可以理解的是,此时,第一基底层100的厚度、第一导电层200的厚度、电致变色层300的厚度和第二导电层400的厚度之和与隔断区的深度相等。
如图23所示,在本申请的一些实施例中,隔断区贯通隔断第一导电层200、电致变色层300、第二导电层400和第二基底层500。
具体的,同时在第一导电层200、电致变色层300、第二导电层400和第二基底层500通过蚀刻或镭雕的方式形成隔断区,通过隔断区将电致变色层300分隔形成多个变色区10d。可以理解的是,此时,第一导电层200的厚度、电致变色层300的厚度、第 二导电层400的厚度和第二基底层500的厚度之和与隔断区的深度相等。
如图24所示,在本申请的一些实施例中,隔断区贯通隔断第一基底层100、第一导电层200、电致变色层300、第二导电层400和第二基底层500。
具体的,同时在第一基底层100、第一导电层200、电致变色层300、第二导电层400和第二基底层500通过蚀刻或镭雕的方式形成隔断区,通过隔断区将电致变色层300分隔形成多个变色区10d。可以理解的是,此时,第一基底层100的厚度、第一导电层200的厚度、电致变色层300的厚度、第二导电层400的厚度和第二基底层500的厚度之和与隔断区的深度相等。
需要说明的是,在本实施例中,隔断区的数量可根据实际情况具体设定。
如图18至图20所示,在本申请的一些实施例中电致变色层300包括依次层叠的电致变色材料层310、电解质层320和离子存储层330。
如图18所示,第一导电层200和电致变色材料层310开设有隔断区10c,需要说明的是,在第一导电层200和电致变色层300上同时通过蚀刻或镭雕的方式蚀刻形成隔断区10c,即第一导电层200的厚度与电致变色材料层310的厚度之和与该隔断区10c的深度相等。
如图19所示,在第二导电层400和离子存储层330开设有隔断区10c,需要说明的是,在第二导电层400和离子存储层330上同时通过蚀刻或镭雕的方式蚀刻形成隔断区10c,即第二导电层400的厚度与离子存储层330的厚度之和与该隔断区10c的深度相等。
如图20所示,第一导电层200和电致变色材料层310开设有隔断区10c,同时在第二导电层400和离子存储层330开设有隔断区10c,且在第一导电层200和电致变色材料层310上蚀刻或镭雕的隔断区10c在电致变色层300所在平面的正投影和在第二导电层400和离子存储层330上蚀刻或镭雕的隔断区10c在电致变色层300所在平面的正投影重合。
需要说明的是,在蚀刻或镭雕的过程中形成的隔断区10c,通过隔断区10c将电致变色层300分隔形成多个变色区10d,通过调节隔断区10c的形状,以将电致变色层300分隔形成不同形状的变色区10d,以形成图案化的电致变色器件,该图案的形状可根据实际情况具体设定,从而实现电致变色器件的图案化变色。
具体的,如图25和图26所示,当在第一导电层200上通过蚀刻或镭雕的方式形成隔断区10c,或同时在第一导电层200和电致变色材料层310上通过蚀刻或镭雕的方式形成隔断区10c,并将电致变色层300分隔形成多个变色区10d时,通过在第一基底层100的边缘未设置有第一汇流条600的一侧增设补充汇流条,并将该补充汇流条与第二导电层400电连接,以提高电致变色层300的变色速度,同时提供更加丰富的变色效果。
另外,当在第二导电层400上通过蚀刻或镭雕的方式形成隔断区10c,或同时在第二导电层400和离子存储层330上通过蚀刻或镭雕的方式形成隔断区10c,并将电致变色层300分隔形成多个变色区10d时,通过在第二基底层500的边缘未设置有第二汇流条700的一侧增设补充汇流条,并将该补充汇流条与第一导电层200电连接,以提高电致变色层300的变色速度,同时提供更加丰富的变色效果。
如图27和图28所示,在本申请的一些实施例中,多个第一汇流条600相间隔的设置在第一基底层100的边缘,且多个第二汇流条700相间隔的设置在第二基底层500的边缘。
具体的,在第一基底层100边缘的任意一侧至少设有一个第一汇流条600,第二基底层500边缘的任意一侧至少设有一个第二汇流条700,通过将第一汇流条600和第二汇流条700分别与外部电源电连接,以使得在电致变色层300的边缘形成多个电场,并对电致变色层300上的每一个变色区10d进行变色控制,提升电致变色器件10变色 的多样性和变色效率。
在一些实施例中,隔断区内还设置有绝缘层,并通过绝缘层将隔断区填充,避免隔断区两侧的导电层接触,以提升电致变色器件的分区变色效果。同时通过在隔断区内填充绝缘层,避免外部的水氧通过隔断区进入到电致变色器件中,以提高电致变色器件在变色过程中的稳定性。
需要说明的是,第一基底层100、第一导电层200、电致变色层300、第二导电层400或第二基底层500中至少其一的光学特性与绝缘层的光学特性相匹配,避免绝缘层影响电致变色器件的外观,以提升电致变色器件在分区变色过程中的美观性。
在一些实施例中,绝缘层可以为电解质层。由此,通过绝缘层的设置可以提升隔断区的电阻隔效应,确保各个变色区之间的变色独立性,并且使绝缘层的光学特性和器件其他各层的光学特性相匹配,可以减小绝缘层和其他各层之间的光学差异,或使绝缘层和其他各层之间无光学差异,从而能够确保隔断区不影响用户的视觉体验效果,提升用户的使用舒适性。
在一些实施例中,电致变色器件还可以包括高温胶,例如第一高温胶1000和第二高温胶1100。其中,如图30所示,第一高温胶1000可以设置于第一基底层100上,并位于第一基底层100的远离电致变色层300的一侧,第二高温胶1100可以设置于第二基底层500上,并位于第二基底层500的远离电致变色层300的一侧。由此,高温胶可以稳定地粘接在基底层上。
在另一些实施例中,如图30所示,第一高温胶1000可以至少部分覆盖第一凹槽10a,第二高温胶1100可以至少部分覆盖第二凹槽10b。由此,高温胶一部分粘接于基底层上,一部分粘接于凹槽部位裸露的导电层上,可以形成对凹槽边沿的加固增强作用,防止凹槽边沿发生层间脱落等情况。
在另一些实施例中,第一高温胶1000至少部分覆盖第一汇流条600并至少部分覆盖第一凹槽10a,第二高温胶1100至少部分覆盖第二汇流条700并至少部分覆盖第二凹槽10b。由此,通过使高温胶覆盖至汇流条上,可以简化制备工艺,不干扰汇流条和导电层之间的电连接的同时,提升器件的层间结合力,避免脱模等情况的发生。
在一些实施例中,如图29所示,第一高温胶1000可以完全覆盖第一汇流条600和第一凹槽10a。同理地,第二高温胶1100也可以完全覆盖第二汇流条700和第二凹槽10b。在另一些实施例中,第一高温胶1000的宽度可以大于第一凹槽10a的宽度,第二高温胶1100的宽度可以大于第二凹槽10b的宽度,以使高温胶可以覆盖凹槽区域。此处所谓宽度,是指从电致变色器件的边缘向中心区域延伸的方向上的尺寸长度。由此,通过使高温胶的宽度大于凹槽的宽度,可以使高温胶的一部分向内(可视区)延伸贴合在基底层上,另一部分通过凹槽贴合在导电层上或者形成第一高温胶和第二高温胶的粘接,从而进一步确保凹槽的多个边沿均贴附有高温胶,以更加全面有效地确保凹槽边沿不会发生脱模等情况,提升电致变色器件的使用稳定性和可靠性。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (15)

  1. 一种电致变色器件,其特征在于,包括依次层叠的第一基底层、第一导电层、电致变色层、第二导电层和第二基底层;
    所述电致变色器件的边缘设有多个交错设置的第一凹槽和第二凹槽,所述第一凹槽位于所述第二导电层远离所述第二基底层的一侧,所述第二凹槽位于所述第一导电层远离所述第一基底层的一侧;
    所述第一基底层远离所述电致变色层的一侧设有至少一个第一汇流条,每一个所述第一汇流条通过至少一个所述第一凹槽与所述第二导电层电连接;
    所述第二基底层远离所述电致变色层的一侧设有至少一个第二汇流条,每一个所述第二汇流条通过至少一个所述第二凹槽与所述第一导电层电连接。
  2. 根据权利要求1所述的电致变色器件,其特征在于,所述第一汇流条为两个,两个所述第一汇流条设置在所述第一基底层的两相对侧的边缘;
    所述第二汇流条为两个,两个所述第二汇流条设置在所述第二基底层的两相对侧的边缘,且每一个所述第二汇流条和一个所述第一汇流条位于所述电致变色层的同一侧。
  3. 根据权利要求1所述的电致变色器件,其特征在于,所述第一基底层远离所述电致变色层的一侧设有至少一个第一补充汇流条,且所述第一补充汇流条和所述第一汇流条分别设置在所述第一基底层的异侧;
    所述第二基底层远离所述电致变色层的一侧设有至少一个第二补充汇流条,且所述第二补充汇流条和所述第二汇流条分别设置在所述第二基底层的异侧。
  4. 根据权利要求1所述的电致变色器件,其特征在于,还包括至少一个隔断区,所述隔断区贯通隔断所述第一导电层和所述第二导电层中的至少其一,以将所述电致变色层分隔形成多个变色区。
  5. 根据权利要求4所述的电致变色器件,其特征在于,所述隔断区为多个,任意两个所述隔断区均不相交。
  6. 根据权利要求4所述的电致变色器件,其特征在于,所述第一汇流条为多个,多个所述第一汇流条相间隔设置,且每一个所述第一汇流条均设置在所述第一基底层的边缘;
    所述第二汇流条为多个,多个所述第二汇流条相间隔设置,且每一个所述第二汇流条均设置在所述第二基底层的边缘。
  7. 根据权利要求6所述的电致变色器件,其特征在于,每一个所述第一汇流条和每一个所述第二汇流条均设置在所述电致变色层的同一侧。
  8. 根据权利要求4所述的电致变色器件,其特征在于,所述第一汇流条为多个,多个 所述第一汇流条相间隔的设置在所述第一基底层的两相对侧;
    所述第二汇流条为多个,多个所述第二汇流条相间隔的设置在所述第二基底层的两相对侧;
    且每一个所述第一汇流条和至少一个所述第二汇流条位于所述电致变色层的同一侧。
  9. 根据权利要求6所述的电致变色器件,其特征在于,所述变色区为X个,X个所述变色区中的偶数变色区中的所述第一汇流条通过第一连接线电连接,且所述第二汇流条通过第二连接线连接;
    X个所述变色区中的奇数变色区中的所述第一汇流条通过第三连接线电连接,所述第二汇流条通过第四连接线电连接;
    其中,X为不小于3的正整数。
  10. 根据权利要求4所述的电致变色器件,其特征在于,所述隔断区贯通隔断所述第一导电层、所述电致变色层和所述第二导电层;
    或所述隔断区贯通隔断所述第一基底层、所述第一导电层、所述电致变色层和所述第二导电层;
    或所述隔断区贯通隔断所述第一导电层、所述电致变色层、所述第二导电层和所述第二基底层;
    或所述隔断区贯通隔断所述第一基底层、所述第一导电层、所述电致变色层、所述第二导电层和所述第二基底层。
  11. 根据权利要求4所述的电致变色器件,其特征在于,所述电致变色层包括依次层叠的电致变色材料层、电解质层和离子存储层;
    所述第一导电层和所述电致变色材料层开设有所述隔断区,或所述第二导电层和所述离子存储层开设有所述隔断区;
    或所述第一导电层和所述电致变色材料层开设有所述隔断区,且所述第二导电层和所述离子存储层开设有所述隔断区,两条所述隔断区在所述电致变色层所在平面的正投影重合。
  12. 根据权利要求4所述的电致变色器件,其特征在于,每一个所述第一凹槽在所述第一基底层所在平面的正投影位于所述第一基底层的边缘,且每一个所述第二凹槽在所述第二基底层所在平面的正投影位于所述第二基底层的边缘;
    或每一个所述第一凹槽在所述第一基底层所在平面的正投影位于所述第一基底层的内侧,且每一个所述第二凹槽在所述第二基底层所在平面的正投影位于所述第二基底层的内侧。
  13. 根据权利要求4至12中任意一项所述的电致变色器件,其特征在于,每一个所述 变色区中包括至少一个所述第一汇流条和至少一个所述第二汇流条。
  14. 根据权利要求4所述的电致变色器件,其特征在于,所述隔断区内还设置有绝缘层,所述第一基底层、所述第一导电层、所述电致变色层、所述第二导电层或所述第二基底层中至少其一的光学特性与所述绝缘层的光学特性相匹配。
  15. 根据权利要求1所述的电致变色器件,其特征在于,还包括第一高温胶和第二高温胶,所述第一高温胶位于所述第一基底层的一侧并至少部分覆盖所述第一凹槽,所述第二高温胶位于所述第二基底层的一侧并至少部分覆盖所述第二凹槽。
PCT/CN2023/099093 2022-07-20 2023-06-08 一种电致变色器件 WO2024016881A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221910877.0U CN218446305U (zh) 2022-07-20 2022-07-20 一种电致变色器件
CN202221910877.0 2022-07-20
CN202210863777.5A CN116256920A (zh) 2022-07-20 2022-07-20 一种电致变色器件
CN202210863777.5 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024016881A1 true WO2024016881A1 (zh) 2024-01-25

Family

ID=89616934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099093 WO2024016881A1 (zh) 2022-07-20 2023-06-08 一种电致变色器件

Country Status (1)

Country Link
WO (1) WO2024016881A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402091A (zh) * 2010-09-17 2012-04-04 介面光电股份有限公司 电致变色单元及使用该单元的显示装置
US20130222878A1 (en) * 2012-02-28 2013-08-29 Sage Electrochromics, Inc. Multi-zone electrochromic devices
KR101480950B1 (ko) * 2013-12-26 2015-01-14 전자부품연구원 셀 구조 일렉트로크로믹 소자 및 이의 제조 방법
CN208459741U (zh) * 2018-07-17 2019-02-01 合肥威驰科技有限公司 采用激光刻槽电路布置的交通用电致变色玻璃及玻璃组件
CN216248708U (zh) * 2021-11-18 2022-04-08 光羿智能科技(苏州)有限公司 一种电致变色器件
CN216485894U (zh) * 2021-12-17 2022-05-10 光羿智能科技(苏州)有限公司 一种电致变色器件
CN218446305U (zh) * 2022-07-20 2023-02-03 光羿智能科技(苏州)有限公司 一种电致变色器件
CN219016754U (zh) * 2022-12-09 2023-05-12 光羿智能科技(苏州)有限公司 一种电致变色膜片、组件及变色装置
CN219016756U (zh) * 2022-12-29 2023-05-12 深圳市光羿科技有限公司 一种电致变色器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402091A (zh) * 2010-09-17 2012-04-04 介面光电股份有限公司 电致变色单元及使用该单元的显示装置
US20130222878A1 (en) * 2012-02-28 2013-08-29 Sage Electrochromics, Inc. Multi-zone electrochromic devices
KR101480950B1 (ko) * 2013-12-26 2015-01-14 전자부품연구원 셀 구조 일렉트로크로믹 소자 및 이의 제조 방법
CN208459741U (zh) * 2018-07-17 2019-02-01 合肥威驰科技有限公司 采用激光刻槽电路布置的交通用电致变色玻璃及玻璃组件
CN216248708U (zh) * 2021-11-18 2022-04-08 光羿智能科技(苏州)有限公司 一种电致变色器件
CN216485894U (zh) * 2021-12-17 2022-05-10 光羿智能科技(苏州)有限公司 一种电致变色器件
CN218446305U (zh) * 2022-07-20 2023-02-03 光羿智能科技(苏州)有限公司 一种电致变色器件
CN219016754U (zh) * 2022-12-09 2023-05-12 光羿智能科技(苏州)有限公司 一种电致变色膜片、组件及变色装置
CN219016756U (zh) * 2022-12-29 2023-05-12 深圳市光羿科技有限公司 一种电致变色器件

Similar Documents

Publication Publication Date Title
CN105572996B (zh) 一种双栅极阵列基板及显示装置
CN102830556B (zh) 一种触摸显示面板及显示装置
CN113759626B (zh) 电致变色膜、装置及其制作方法、电致变色玻璃和车辆
EP2775346B1 (en) Liquid crystal display panel in fringe field switching mode
JP5452433B2 (ja) 表示装置
CN104914630B (zh) 阵列基板、显示面板以及显示装置
CN218446305U (zh) 一种电致变色器件
WO2022166670A1 (zh) 电致变色器件及电子终端
JP2011129639A (ja) 抵抗変化型メモリセルアレイ
JP5894640B2 (ja) 画素構造
CN103984161B (zh) 阵列基板及其制造方法、液晶显示面板和液晶显示装置
WO2024016881A1 (zh) 一种电致变色器件
JP2006350278A (ja) 高透過率フリンジフィールドスイッチングモード液晶表示装置
TW201227130A (en) Parallax barrier device and fabricating method thereof
CN103558717A (zh) 一种阵列基板及其制作方法和显示装置
CN116256920A (zh) 一种电致变色器件
JP7389934B1 (ja) 裏面接触太陽電池セル、裏面接触太陽電池アセンブリ及び太陽光発電システム
JPH0127158B2 (zh)
CN211236528U (zh) 一种电致变色器件
CN111965905A (zh) 可调光面板、智能窗玻璃、制作方法及控制方法
CN217506332U (zh) 阵列基板、显示面板以及显示装置
CN207096589U (zh) 立体显示装置
CN203433245U (zh) 电子狭缝光栅、立体显示装置
CN217739687U (zh) 一种电致变色器件
CN108761952A (zh) 一种可分区显示图案的变色调光玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841948

Country of ref document: EP

Kind code of ref document: A1