WO2024016675A1 - 风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质 - Google Patents

风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质 Download PDF

Info

Publication number
WO2024016675A1
WO2024016675A1 PCT/CN2023/079046 CN2023079046W WO2024016675A1 WO 2024016675 A1 WO2024016675 A1 WO 2024016675A1 CN 2023079046 W CN2023079046 W CN 2023079046W WO 2024016675 A1 WO2024016675 A1 WO 2024016675A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
wind turbine
flight parameters
flight
stage
Prior art date
Application number
PCT/CN2023/079046
Other languages
English (en)
French (fr)
Inventor
王恩民
任鑫
王剑钊
童彤
王�华
赵鹏程
杜静宇
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024016675A1 publication Critical patent/WO2024016675A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application belongs to the field of drone technology, and specifically relates to an adaptive adjustment method, device, equipment and storage medium for the flight parameters of a wind turbine inspection drone.
  • Wind power is a kind of clean energy. As new energy technologies such as wind power mature, corresponding power generation equipment is constantly being upgraded. A large number of wind turbine equipment are put into use around the world, which also requires the operation and maintenance of wind turbines and other related equipment. higher requirements. Due to regional factors, most wind farms are located in remote areas, and wind turbines are scattered. Traditional manual inspection and operation and maintenance of wind farms and wind turbines has problems such as poor safety, heavy workload, and low efficiency.
  • Drone inspections can achieve high-altitude inspections. Flying, long-distance, and fast operations greatly improve inspection efficiency.
  • drones The application of drones has brought great convenience to wind power inspections.
  • the drones will generate inspection routes in advance and fly according to the inspection routes to complete the inspection of wind turbines. Anomalies on the blades are identified.
  • drones often fly according to a preset flight speed, which means that from the beginning of the inspection to the end of the inspection, the flight speed of the drone is always fixed.
  • the control method of this kind of drone is not flexible enough, and it can only conduct inspections based on the preset flight speed. Considering the efficiency of inspections, staff often can only set the flight speed according to the lower limit that meets the standards, resulting in Drone inspection efficiency is low.
  • the purpose of this application is to provide an adaptive adjustment method, device, equipment and storage medium for the flight parameters of a wind turbine inspection drone, so as to solve the problem that the control method of the drone in the existing technology is not flexible enough and can only be based on preset settings. Inspections are carried out at a flying speed, and considering the efficiency of inspections, staff often can only set the flight speed to the lower limit that meets the standards, resulting in technical problems with low drone inspection efficiency.
  • Laws include:
  • the wind turbine inspection route stage in which the drone is currently located is determined based on the real-time position of the drone and the relative positional relationship between the drone and the wind turbine;
  • the drone is controlled to fly according to the corrected flight parameters during the current wind turbine inspection route stage.
  • the wind turbine inspection route stage includes one or more of: a take-off stage, a wind turbine measurement stage, an inspection stage, and a return stage.
  • the step of determining standard flight parameters according to the wind turbine inspection route stage where the drone is currently located specifically includes:
  • Standard flight parameters are determined based on the current stage of the wind turbine inspection route, the operating speed parameters of the wind turbine blades, the real-time power of the drone, and the meteorological information of the environment in which the drone is located.
  • the step of correcting the real-time flight parameters of the UAV based on the standard flight parameters includes:
  • the real-time flight parameters are adjusted to the standard flight parameters according to the preset speed change.
  • an adaptive adjustment device for wind turbine inspection drone flight parameters includes:
  • the first determination unit is used to determine the wind turbine inspection route stage that the drone is currently in based on the real-time position of the drone and the relative position relationship between the drone and the wind turbine during the flight of the drone;
  • the second determination unit is used to determine the standard flight parameters according to the wind turbine inspection route stage in which the drone is currently located;
  • a correction unit configured to correct the real-time flight parameters of the UAV based on the standard flight parameters to obtain final flight parameters used to control the flight of the UAV;
  • a control unit configured to control the UAV to fly according to the corrected flight path during the current wind turbine inspection route phase. line parameters for flight.
  • the route stage includes: one or more of a take-off stage, a wind turbine measurement stage, an inspection stage, and a return stage.
  • the second determination unit includes:
  • the first acquisition module is used to acquire the operating speed parameters of the wind turbine blades
  • the second acquisition module is used to obtain the real-time power of the drone
  • the third acquisition module is used to obtain meteorological information of the environment where the drone is located;
  • a determination module configured to determine standard flight parameters based on the current stage of the wind turbine inspection route, the operating speed parameters of the wind turbine blades, the real-time power of the drone, and the meteorological information of the environment in which the drone is located.
  • the correction unit includes:
  • An adjustment module is used to adjust the real-time flight parameters to the standard flight parameters according to the preset speed changes to obtain final flight parameters used to control the flight of the UAV.
  • an electronic device including a memory and a processor.
  • Computer instructions are stored on the memory. When executed by the processor, the computer instructions cause any of the above methods to be executed. .
  • a non-transitory computer-readable storage medium having a computer program stored thereon, the computer program causing any of the above methods to be performed when executed by a processor.
  • This application provides an adaptive adjustment method for the flight parameters of a wind turbine inspection drone by determining the drone according to the real-time position of the drone and the relative position relationship between the drone and the wind turbine during the flight of the drone.
  • the current wind turbine inspection route stage determine the standard flight parameters according to the wind turbine inspection route stage the drone is currently in; correct the real-time flight parameters of the drone based on the standard flight parameters; control the drone in the current location During the wind turbine inspection route phase, the aircraft will fly according to the corrected flight parameters.
  • the flight parameters can be corrected for the current wind turbine inspection route stage of the inspection drone to adapt to different route stages, which solves the problem that the control method of the drone in the existing technology is not flexible enough and can only fly according to the preset flight Inspections are carried out at a certain speed, and considering the efficiency of inspections, staff often can only set the flight speed to the lower limit that meets the standards, resulting in technical problems with low drone inspection efficiency.
  • Figure 1 is a flow chart of an adaptive adjustment method for the flight parameters of a wind turbine inspection drone according to the embodiment of the present application;
  • Figure 2 is a flow chart of an optional adaptive adjustment method for the flight parameters of a wind turbine inspection drone according to the embodiment of the present application;
  • Figure 3 is a schematic diagram of an adaptive adjustment device for flight parameters of a wind turbine inspection drone according to the embodiment of the present application
  • Figure 4 is a schematic diagram of an optional adaptive adjustment device for the flight parameters of a wind turbine inspection drone according to the embodiment of the present application.
  • Figure 5 is a structural block diagram of an electronic device of the present application.
  • Embodiment 1 of the present application provides a method for adaptive adjustment of flight parameters of a wind turbine inspection drone.
  • the method includes the following steps:
  • Step S1 During the flight of the drone, determine the wind turbine inspection route stage in which the drone is currently located based on the real-time position of the drone and the relative positional relationship between the drone and the wind turbine.
  • this step S1 the controller of the UAV or other hardware equipment with data processing functions can be used as the execution subject of this solution method.
  • this solution can first determine whether the UAV The real-time position of the aircraft and the relative positional relationship between the drone and the wind turbine. For example, the drone is in front of, behind the wind turbine hub or directly above the aircraft cabin. Then based on the real-time position of the drone and the drone The relative position relationship with the wind turbine is used to determine which route stage the drone is in during wind turbine inspection.
  • route stage of wind turbine inspection can include any stage of the entire process from drone take-off, inspection and return.
  • the route stage includes one or more: take-off stage, wind turbine measurement stage, inspection stage, and return stage.
  • This solution can identify which route stage the drone is in during the wind turbine inspection. , and then make dynamic and adaptive adjustments to the flight parameters of the UAV.
  • the drone during the take-off phase, the drone only needs to fly from the take-off position to the target position, and the flight speed can be 8m/s.
  • the wind turbine needs to Open the image acquisition module, and on the other hand, be close to the wind turbine to avoid accidents caused by sudden changes in the yaw angle of the wind turbine. Therefore, it is necessary to fly at a slow speed.
  • the flying speed can be 1m/s.
  • the drone flying speed can be 8m/s. s. In this way, the entire wind turbine inspection process by drone can be completed safely and quickly.
  • Step S2 Determine standard flight parameters according to the wind turbine inspection route stage where the drone is currently located.
  • the above-mentioned standard flight parameters can be standard flight speed, that is, each different wind turbine inspection route stage corresponds to a standard flight speed.
  • This solution can determine which wind turbine inspection route stage the drone is in and then match it to obtain the corresponding standard flight speed.
  • standard flight parameters can be standard flight speed, or other flight parameters such as flight attitude.
  • this step S2 determines the standard flight parameters based on the wind turbine inspection route stage where the UAV is currently located, specifically including the following steps:
  • Step S21 Obtain the operating speed parameters of the wind turbine blades.
  • Step S22 Obtain the real-time power of the drone.
  • Step S23 Obtain meteorological information of the environment where the drone is located.
  • Step S24 Determine standard flight parameters based on the current stage of the wind turbine inspection route, the operating speed parameters of the wind turbine blades, the real-time power of the drone, and the meteorological information of the environment in which the drone is located.
  • the operating speed parameters of the wind turbine blades, the real-time power of the drone, the meteorological information of the environment where the drone is located, and the current phase of the wind turbine inspection route can be combined.
  • the standard flight parameters are determined so that the corrected flight parameters of the UAV are more consistent with the scene in which the UAV is located.
  • the speed of the drone can be adjusted lower, or during the drone return phase, if this When the battery threshold of the drone is low, this solution will speed up the flight speed of the drone, or when the weather changes suddenly, such as heavy fog, in order to avoid safety accidents, this solution will reduce the flight speed of the drone.
  • Step S3 Modify the real-time flight parameters of the UAV based on the standard flight parameters to obtain final flight parameters used to control the flight of the UAV.
  • the real-time flight parameters of the UAV can be corrected according to the standard flight parameters according to a preset correction method.
  • step S3 corrects the real-time flight parameters of the UAV based on the standard flight parameters, including:
  • Step S31 Adjust the real-time flight parameters to the standard flight parameters according to the preset speed change.
  • the UAV after determining the standard flight parameters, the UAV is not directly controlled to fly according to the standard flight parameters, but the real-time flight parameters change slowly and regularly at a preset speed. Adjust to standard flight parameters.
  • This method can prevent the sudden increase or decrease in speed from causing a safety accident if the difference between the standard flight parameters and the real-time flight parameters is too large.
  • Step S4 Control the UAV to fly according to the corrected flight parameters during the current wind turbine inspection route phase. number of flights.
  • this solution determines the route stage of the drone based on the real-time position of the drone, and makes adaptive adjustments to the flight parameters of the drone based on the route phase of the drone. Adjustment: Since the UAV does not need to fly slowly in certain route stages, the flight speed can be increased in route stages that do not require slow flight, and the flight speed in route stages that require slow flight can be lowered. Therefore, this The solution solves the problem that the control method of the existing drones is not flexible enough and can only conduct inspections based on the preset flight speed. Considering the efficiency of inspections, staff often can only adjust the flight speed to meet the lower limit of the standard. Set up technical issues that lead to low drone inspection efficiency.
  • Embodiment 2 of the present application also provides an adaptive adjustment device for the flight parameters of a wind turbine inspection drone.
  • the device includes:
  • the first determination unit 30 is used to determine the wind turbine inspection route stage in which the drone is currently located during the flight of the drone based on the real-time position of the drone and the relative positional relationship between the drone and the wind turbine. .
  • the second determination unit 32 is used to determine standard flight parameters according to the wind turbine inspection route stage in which the drone is currently located.
  • the correction unit 34 is configured to correct the real-time flight parameters of the UAV based on the standard flight parameters to obtain final flight parameters used to control the flight of the UAV.
  • the control unit 36 is used to control the UAV to fly according to the corrected flight parameters during the current wind turbine inspection route stage.
  • this solution can first determine the real-time position of the drone and the relative position relationship between the drone and the wind turbine. For example, the drone is in The front or back of the wind turbine hub or directly above the aircraft cabin is then used to determine which route stage the drone is in for wind turbine inspection based on the real-time position of the drone and the relative positional relationship between the drone and the wind turbine.
  • the route stage of wind turbine inspection can include any stage of the entire process from drone take-off, inspection and return.
  • the above standard flight parameters can be standard flight speed, that is, each different wind turbine inspection route stage corresponds to a standard flight speed.
  • This solution can determine which wind turbine inspection route stage the drone is in and then match it to obtain the corresponding standard flight speed.
  • the standard flight parameters can be standard flight speed, or other flight parameters such as flight attitude.
  • the real-time flight parameters of the UAV can be corrected according to the standard flight parameters according to a preset correction method.
  • the route stage of the drone is determined based on the real-time position of the drone, and the flight parameters of the drone are adaptively adjusted according to the route phase of the drone.
  • the flight speed can be increased during route phases where slow flight is not required. In route phases where slow speed is required, the flight speed can be increased.
  • the flight speed can be adjusted lower, so this solution solves the problem that the control method of the existing drones is not flexible enough and can only perform inspections based on the preset flight speed. Considering the efficiency of inspections, staff often only The flight speed can be set according to the lower limit that meets the standards, resulting in technical problems with low drone inspection efficiency.
  • the route phase may include: a take-off phase, a wind turbine measurement phase, an inspection phase, and a return phase.
  • the second determining unit 32 may include the following:
  • the first acquisition module 320 is used to acquire the operating speed parameters of the wind turbine blades
  • the second acquisition module 322 is used to acquire the real-time power of the drone
  • the third acquisition module 324 is used to acquire meteorological information of the environment where the drone is located;
  • the determination module 326 is used to determine standard flight parameters based on the current stage of the wind turbine inspection route, the operating speed parameters of the wind turbine blades, the real-time power of the drone, and the meteorological information of the environment in which the drone is located.
  • the correction unit includes: an adjustment module, configured to adjust the real-time flight parameters to the standard flight parameters according to preset speed changes.
  • This application also provides an electronic device 100 for implementing the adaptive adjustment method for the flight parameters of a wind turbine inspection drone in the above embodiment;
  • the electronic device 100 includes a memory 101, at least one processor 102, and is stored in the memory 101 and can A computer program 103 running on at least one processor 102 and at least one communication bus 104.
  • the memory 101 can be used to store a computer program 103.
  • the processor 102 realizes the adaptation of the flight parameters of the wind turbine inspection drone in Embodiment 1 by running or executing the computer program stored in the memory 101 and calling the data stored in the memory 101. Steps for adjusting the method.
  • the memory 101 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store data based on Data created using the electronic device 100 (such as audio data), etc.
  • the memory 101 may include non-volatile memory, such as hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), At least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • At least one processor 102 can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the processor 102 may be a microprocessor or any conventional processor.
  • the processor 102 is the control center of the electronic device 100 and connects various parts of the entire electronic device 100 using various interfaces and lines.
  • the memory 101 in the electronic device 100 stores multiple instructions to implement an adaptive adjustment method for the flight parameters of a wind turbine inspection drone.
  • the processor 102 can execute multiple instructions to achieve:
  • the wind turbine inspection route stage in which the drone is currently located is determined based on the real-time position of the drone and the relative positional relationship between the drone and the wind turbine;
  • the drone is controlled to fly according to the corrected flight parameters during the current wind turbine inspection route stage.
  • the integrated modules/units of the electronic device 100 are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer program can be stored in a computer-readable storage medium, and the computer program can be used when being processed.
  • the processor executes, the steps of each of the above method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code can be in the form of source code, object code, executable file or some intermediate form, etc.
  • Computer-readable media can include: any entity or device that can carry computer program code, recording media, USB flash drives, mobile hard drives, magnetic disks, optical disks, computer memory and read-only memory (ROM, Read-Only Memory).
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce instructions that include instruction means Article of manufacture, the instruction device implements the function specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请提供了一种风机巡检无人机飞行参数的自适应调整方法、装置及设备,方法包括:在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段;根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数;基于所述标准飞行参数对所述无人机的实时飞行参数进行修正;控制所述无人机在所述当前所处的风机巡检航线阶段内按照修正后的飞行参数进行飞行。解决了现有技术中无人机的控制方式不够灵活,只能依据预先设定的飞行速度进行巡检,而考虑到巡检的效率,工作人员往往只能将飞行速度按照满足标准的下限进行设置,导致无人机巡检效率较低的技术问题。

Description

风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质
相关申请的交叉引用
本申请基于申请号为202210843042.6、申请日为2022年7月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于无人机技术领域,具体涉及一种风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质。
背景技术
风电是一种清洁能源,随着风电等新能源技术成熟,相应的发电设备也在不断升级,世界范围内大量的风电机组设备被投入使用,由此也对风电机组等相关设备的运行维护提出了更高的要求。由于地区因素,大部分的风电场地处偏远地区,并且风机排布分散,传统的由人工对风电场、风电机组进行巡检运维,存在安全性差、工作量大、效率低等问题。
随着无人机技术的发展,无人机技术已经应用到了许多的领域,目前已经有相关记载,利用无人机对风电机组进行巡检,替代人工作业,无人机巡检能够实现高空飞行、远距离、快速作业,大大提高了巡检效率。
无人机的应用给风电巡检带来了很大的便利,在风机巡检的技术方案中,无人机会预先生成巡检航线,按照巡检航线进行飞行,从而完成对风机进行巡检,识别出叶片上的异常。
需要说明的是,在现有技术中,无人机往往会依据预先设定的飞行速度进行飞行,也就是说从巡检开始到巡检结束,无人机的飞行速度始终是固定不变的。但是此种无人机的控制方式不够灵活,只能依据预先设定的飞行速度进行巡检,而考虑到巡检的效率,工作人员往往只能将飞行速度按照满足标准的下限进行设置,导致无人机巡检效率较低。
发明内容
本申请的目的在于提供一种风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质,以解决现有技术中无人机的控制方式不够灵活,只能依据预先设定的飞行速度进行巡检,而考虑到巡检的效率,工作人员往往只能将飞行速度按照满足标准的下限进行设置,导致无人机巡检效率较低的技术问题。
为实现上述目的,本申请采用如下技术方案:
根据本申请的第一方面,提供了一种风机巡检无人机飞行参数的自适应调整方法,该方 法包括:
在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段;
根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数;
基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,得到用于控制无人机飞行的最终飞行参数;
控制所述无人机在所述当前所处的风机巡检航线阶段内按照修正后的飞行参数进行飞行。
作为本申请可选的一种方案,所述在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段的步骤中,所述风机巡检航线阶段包括:起飞阶段、风机测量阶段、巡检阶段以及返航阶段中的一个或多个。
作为本申请可选的一种方案,所述根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数的步骤,具体包括:
获取风机叶片的运行速度参数;
获取无人机的实时电量;
获取无人机所处环境的气象信息;
根据所述当前所处的风机巡检航线阶段、风机叶片的运行速度参数、无人机的实时电量以及所述无人机所处环境的气象信息确定标准飞行参数。
作为本申请可选的一种方案,所述基于所述标准飞行参数对所述无人机的实时飞行参数进行修正的步骤,包括:
按照预设速度变化将所述实时飞行参数调整成所述标准飞行参数。
根据本申请的第二方面,提供了一种风机巡检无人机飞行参数的自适应调整装置,所述装置包括:
第一确定单元,用于在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段;
第二确定单元,用于根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数;
修正单元,用于基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,得到用于控制无人机飞行的最终飞行参数;
控制单元,用于控制所述无人机在所述当前所处的风机巡检航线阶段内按照修正后的飞 行参数进行飞行。
作为本申请可选的一种方案,所述航线阶段包括:起飞阶段、风机测量阶段、巡检阶段、以及返航阶段中的一个或多个。
作为本申请可选的一种方案,第二确定单元,包括:
第一获取模块,用于获取风机叶片的运行速度参数;
第二获取模块,用于获取无人机的实时电量;
第三获取模块,用于获取无人机所处环境的气象信息;
确定模块,用于根据所述当前所处的风机巡检航线阶段、风机叶片的运行速度参数、无人机的实时电量以及所述无人机所处环境的气象信息确定标准飞行参数。
作为本申请可选的一种方案,修正单元,包括:
调整模块,用于按照预设速度变化将所述实时飞行参数调整成所述标准飞行参数,得到用于控制无人机飞行的最终飞行参数。
根据本申请的第三方面,提供了一种电子设备,包括存储器和处理器,所述存储器上存储有计算机指令,所述计算机指令在由所述处理器执行时导致上述任一项方法被执行。
根据本申请的第四方面,提供了一种非暂时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序在由处理器执行时导致上述任一项方法被执行。
与现有技术相比较,本申请的有益效果如下:
本申请提供的风机巡检无人机飞行参数的自适应调整方法,通过在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定无人机当前所处的风机巡检航线阶段;根据无人机当前所处的风机巡检航线阶段确定标准飞行参数;基于标准飞行参数对无人机的实时飞行参数进行修正;控制无人机在当前所处的风机巡检航线阶段内按照修正后的飞行参数进行飞行。能够针对巡检无人机当前的风机巡检航线阶段对飞行参数进行修正,以适应不同的航线阶段,解决了现有技术中无人机的控制方式不够灵活,只能依据预先设定的飞行速度进行巡检,而考虑到巡检的效率,工作人员往往只能将飞行速度按照满足标准的下限进行设置,导致无人机巡检效率较低的技术问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例风机巡检无人机飞行参数的自适应调整方法的流程图;
图2为本申请实施例可选的风机巡检无人机飞行参数的自适应调整方法的流程图;
图3为本申请实施例风机巡检无人机飞行参数的自适应调整装置的示意图;
图4为本申请实施例可选的风机巡检无人机飞行参数的自适应调整装置的示意图。
图5为本申请一种电子设备的结构框图。
具体实施方式
下面将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本申请提供进一步的详细说明。除非另有指明,本申请所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本申请所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本申请的示例性实施方式。
实施例1
如图1所示,本申请实施例1提供了一种风机巡检无人机飞行参数的自适应调整方法,该方法包括如下步骤:
步骤S1、在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段。
本步骤S1中,可以由无人机的控制器或者其它带有数据处理功能的硬件设备作为本方案方法的执行主体,在无人机执行风机巡检的全过程,本方案可以先确定无人机的实时位置,以及无人机与风机之间的相对位置关系,比如无人机处于风机轮毂的正面、背面或者是飞机机舱的正上方,然后在基于无人机的实时位置以及无人机与风机之间的相对位置关系来确定无人机正在处于风机巡检的那个航线阶段。
这里需要说明的是,风机巡检的航线阶段可以包括从无人机起飞、巡检以及返航的全过程的任意阶段。
作为上述步骤的一种具体示例,航线阶段包括一个或者多个:起飞阶段、风机测量阶段、巡检阶段、以及返航阶段,本方案可以在识别到无人机处于风机巡检的哪个航线阶段后,然后对无人机的飞行参数做动态的、自适应的调整。在更为具体的示例中,在起飞阶段,此时无人机只需要从起飞位置飞至目标位置,飞行速度可以为8m/s,在风机测量阶段以及巡检阶段,此时风机一方面需要打开图像采集模块,另一方面距离风机距离较近避免风机偏航角发生突变造成事故,因此需要慢速飞行,飞行速度可以为1m/s,在返航阶段,无人机飞行速度可以为8m/s。通过此种方式可以使得无人机在整个风机巡检过程安全、快速的完成。
步骤S2、根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数。
本步骤S2中,上述标准飞行参数可以为标准飞行速度,即每个不同的风机巡检航线阶段对应有一个标准飞行速度,本方案可以确定无人机处于哪个风机巡检航线阶段然后匹配得到对应的标准飞行速度。
这里需要说明的是,标准飞行参数可以为标准飞行速度,也可以为其他飞行参数比如飞行姿态等。
如图2所示,本步骤S2根据无人机当前所处的风机巡检航线阶段确定标准飞行参数,具体包括如下步骤:
步骤S21,获取风机叶片的运行速度参数。
步骤S22,获取无人机的实时电量。
步骤S23,获取无人机所处环境的气象信息。
步骤S24,根据所述当前所处的风机巡检航线阶段、风机叶片的运行速度参数、无人机的实时电量以及所述无人机所处环境的气象信息确定标准飞行参数。
作为上述步骤的一种具体示例,在本方案中,可以综合风机叶片的运行速度参数、无人机的实时电量、无人机所处环境的气象信息以及当前所处的风机巡检航线阶段来确定出标准飞行参数,以使得修正之后的无人机的飞行参数更加符合无人机所处的场景。在更为具体的示例中,如果此时风机叶片运行速度较快,在巡检阶段,为保障无人机安全,无人机的速度可以调低一些,或者在无人机返航阶段,如果此时无人机的电量阈值较低,本方案则加快无人机的飞行速度,或者在天气突变,比如出现大雾天气,为避免安全事故,本方案会降低无人机的飞行速度。
步骤S3、基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,得到用于控制无人机飞行的最终飞行参数。
作为示例性的解释,在得到标准飞行速度之后,可以按照预设的修正方式,根据标准飞行参数对所述无人机的实时飞行参数进行修正。
可选的,步骤S3基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,包括:
步骤S31,按照预设速度变化将所述实时飞行参数调整成所述标准飞行参数。
作为上述步骤的一种具体示例,在本方案中,在确定标准飞行参数之后,并不直接控制无人机按照标准飞行参数飞行,而是按照预设速度变化缓慢的、规律的将实时飞行参数调整为标准飞行参数。通过此种方式可以防止的标准飞行参数与实时飞行参数差别过大的情况下,速度的骤升或者骤降容易引发安全事故。
步骤S4、控制所述无人机在所述当前所处的风机巡检航线阶段内按照修正后的飞行参 数进行飞行。
这里需要说明的是,本方案通过上述步骤,根据无人机的实时位置确定无人机所处的航线阶段,并且根据无人机所处的航线阶段对无人机的飞行参数做自适应的调整,由于无人机在某些航线阶段并不需要慢速飞行,在不需要慢速飞行的航线阶段的飞行速度可以调高,需要慢速飞行的航线阶段的飞行速度可以调低,因此本方案解决了现有技术的无人机的控制方式不够灵活,只能依据预先设定的飞行速度进行巡检,而考虑到巡检的效率,工作人员往往只能将飞行速度按照满足标准的下限进行设置,导致无人机巡检效率较低的技术问题。
实施例2
如图3所示,本申请实施例2还提供了一种风机巡检无人机飞行参数的自适应调整装置,该装置包括:
第一确定单元30,用于在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段。
第二确定单元32,用于根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数。
修正单元34,用于基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,得到用于控制无人机飞行的最终飞行参数。
控制单元36,用于控制所述无人机在所述当前所处的风机巡检航线阶段内按照修正后的飞行参数进行飞行。
应用于本申请的实施例,在无人机执行风机巡检的全过程,本方案可以先确定无人机的实时位置,以及无人机与风机之间的相对位置关系,比如无人机处于风机轮毂的正面、背面或者是飞机机舱的正上方,然后在基于无人机的实时位置以及无人机与风机之间的相对位置关系来确定无人机正在处于风机巡检的那个航线阶段。这里需要说明的是,风机巡检的航线阶段可以包括从无人机起飞、巡检以及返航的全过程的任意阶段。上述标准飞行参数可以为标准飞行速度,即每个不同的风机巡检航线阶段对应有一个标准飞行速度,本方案可以确定无人机处于哪个风机巡检航线阶段然后匹配得到对应的标准飞行速度。这里需要说明的是,标准飞行参数可以为标准飞行速度,也可以为其他飞行参数比如飞行姿态等。在得到标准飞行速度之后,可以按照预设的修正方式,根据标准飞行参数对所述无人机的实时飞行参数进行修正。
通过上述多个单元,根据无人机的实时位置确定无人机所处的航线阶段,并且根据无人机所处的航线阶段对无人机的飞行参数做自适应的调整,由于无人机在某些航线阶段并不需要慢速飞行,在不需要慢速飞行的航线阶段的飞行速度可以调高,需要慢速飞行的航线阶段 的飞行速度可以调低,因此本方案解决了现有技术的无人机的控制方式不够灵活,只能依据预先设定的飞行速度进行巡检,而考虑到巡检的效率,工作人员往往只能将飞行速度按照满足标准的下限进行设置,导致无人机巡检效率较低的技术问题。
可选的,所述航线阶段可以包括:起飞阶段、风机测量阶段、巡检阶段、以及返航阶段。
如图4所示,第二确定单元32可以包括如下:
第一获取模块320,用于获取风机叶片的运行速度参数;
第二获取模块322,用于获取无人机的实时电量;
第三获取模块324,用于获取无人机所处环境的气象信息;
确定模块326,用于根据所述当前所处的风机巡检航线阶段、风机叶片的运行速度参数、无人机的实时电量以及所述无人机所处环境的气象信息确定标准飞行参数。
可选的,修正单元,包括:调整模块,用于按照预设速度变化将所述实时飞行参数调整成所述标准飞行参数。
实施例3
本申请还提供一种用于实现上述实施例风机巡检无人机飞行参数的自适应调整方法的电子设备100;电子设备100包括存储器101、至少一个处理器102、存储在存储器101中并可在至少一个处理器102上运行的计算机程序103及至少一条通讯总线104。存储器101可用于存储计算机程序103,处理器102通过运行或执行存储在存储器101内的计算机程序,以及调用存储在存储器101内的数据,实现实施例1风机巡检无人机飞行参数的自适应调整方法的步骤。存储器101可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备100的使用所创建的数据(比如音频数据)等。此外,存储器101可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
至少一个处理器102可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器102可以是微处理器或者该处理器102也可以是任何常规的处理器等,处理器102是电子设备100的控制中心,利用各种接口和线路连接整个电子设备100的各个部分。
电子设备100中的存储器101存储多个指令以实现一种风机巡检无人机飞行参数的自适应调整方法,处理器102可执行多个指令从而实现:
在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段;
根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数;
基于所述标准飞行参数对所述无人机的实时飞行参数进行修正;
控制所述无人机在所述当前所处的风机巡检航线阶段内按照修正后的飞行参数进行飞行。
实施例4
电子设备100集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器及只读存储器(ROM,Read-Only Memory)。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的 制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本申请的技术方案而非对其限制,尽管参照上述实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者等同替换,而未脱离本申请精神和范围的任何修改或者等同替换,其均应涵盖在本申请的权利要求保护范围之内。

Claims (10)

  1. 一种风机巡检无人机飞行参数的自适应调整方法,其特征在于,包括如下步骤:
    在无人机的飞行过程中,根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段;
    根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数;
    基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,得到用于控制无人机飞行的最终飞行参数。
  2. 根据权利要求1所述的风机巡检无人机飞行参数的自适应调整方法,其特征在于,所述在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段的步骤中,所述风机巡检航线阶段包括:起飞阶段、风机测量阶段、巡检阶段以及返航阶段中的一个或多个。
  3. 根据权利要求1所述的风机巡检无人机飞行参数的自适应调整方法,其特征在于,所述根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数的步骤,具体包括:
    获取风机叶片的运行速度参数;
    获取无人机的实时电量;
    获取无人机所处环境的气象信息;
    根据所述当前所处的风机巡检航线阶段、风机叶片的运行速度参数、无人机的实时电量以及所述无人机所处环境的气象信息确定标准飞行参数。
  4. 根据权利要求1所述的风机巡检无人机飞行参数的自适应调整方法,其特征在于,所述基于所述标准飞行参数对所述无人机的实时飞行参数进行修正的步骤,包括:
    按照预设速度变化将所述实时飞行参数调整成所述标准飞行参数。
  5. 一种风机巡检无人机飞行参数的自适应调整装置,其特征在于,包括:
    第一确定单元,用于在无人机的飞行过程中根据无人机的实时位置以及无人机与风机之间的相对位置关系确定所述无人机当前所处的风机巡检航线阶段;
    第二确定单元,用于根据所述无人机当前所处的风机巡检航线阶段确定标准飞行参数;
    修正单元,用于基于所述标准飞行参数对所述无人机的实时飞行参数进行修正,得到用于控制无人机飞行的最终飞行参数。
  6. 根据权利要求5所述的风机巡检无人机飞行参数的自适应调整装置,其特征在于,所述航线阶段包括:起飞阶段、风机测量阶段、巡检阶段、以及返航阶段中的一个或多个。
  7. 根据权利要求5所述的风机巡检无人机飞行参数的自适应调整装置,其特征在于,所述第二确定单元,包括:
    第一获取模块,用于获取风机叶片的运行速度参数;
    第二获取模块,用于获取无人机的实时电量;
    第三获取模块,用于获取无人机所处环境的气象信息;
    确定模块,用于根据所述当前所处的风机巡检航线阶段、风机叶片的运行速度参数、无人机的实时电量以及所述无人机所处环境的气象信息确定标准飞行参数,得到用于控制无人机飞行的最终飞行参数。
  8. 根据权利要求5所述的风机巡检无人机飞行参数的自适应调整装置,其特征在于,所述修正单元,包括:
    调整模块,用于按照预设速度变化将所述实时飞行参数调整成所述标准飞行参数。
  9. 一种电子设备,其特征在于,包括处理器和存储器,所述处理器用于执行存储器中存储的计算机程序以实现如权利要求1至4中任意一项所述的风机巡检无人机飞行参数的自适应调整方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有至少一个指令,所述至少一个指令被处理器执行时实现如权利要求1至4中任意一项所述的风机巡检无人机飞行参数的自适应调整方法。
PCT/CN2023/079046 2022-07-18 2023-03-01 风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质 WO2024016675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210843042.6 2022-07-18
CN202210843042.6A CN114967726A (zh) 2022-07-18 2022-07-18 风机巡检无人机飞行参数的自适应调整方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2024016675A1 true WO2024016675A1 (zh) 2024-01-25

Family

ID=82969701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079046 WO2024016675A1 (zh) 2022-07-18 2023-03-01 风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质

Country Status (2)

Country Link
CN (1) CN114967726A (zh)
WO (1) WO2024016675A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967726A (zh) * 2022-07-18 2022-08-30 中国华能集团清洁能源技术研究院有限公司 风机巡检无人机飞行参数的自适应调整方法、装置及设备
CN117151311B (zh) * 2023-10-31 2024-02-02 天津云圣智能科技有限责任公司 测绘参数的优化处理方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620278A (zh) * 2009-07-02 2010-01-06 浙江省电力公司 直升机电力巡检机载系统控制采集图像的方法
CN110400492A (zh) * 2018-04-25 2019-11-01 空中客车运营简化股份公司 辅助飞行器驾驶以遵守所需要的到达时间的方法和装置
CN111344651A (zh) * 2019-01-30 2020-06-26 深圳市大疆创新科技有限公司 无人机的控制方法和无人机
CN112925335A (zh) * 2019-12-06 2021-06-08 顺丰科技有限公司 无人机通讯方法、装置、计算机可读存储介质和设备
CN112947511A (zh) * 2021-01-25 2021-06-11 北京京能能源技术研究有限责任公司 一种无人机巡检风机叶片的方法
CN113485453A (zh) * 2021-08-20 2021-10-08 中国华能集团清洁能源技术研究院有限公司 一种海上无人机巡检飞行路径生成方法、装置及无人机
CN114967726A (zh) * 2022-07-18 2022-08-30 中国华能集团清洁能源技术研究院有限公司 风机巡检无人机飞行参数的自适应调整方法、装置及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620278A (zh) * 2009-07-02 2010-01-06 浙江省电力公司 直升机电力巡检机载系统控制采集图像的方法
CN110400492A (zh) * 2018-04-25 2019-11-01 空中客车运营简化股份公司 辅助飞行器驾驶以遵守所需要的到达时间的方法和装置
CN111344651A (zh) * 2019-01-30 2020-06-26 深圳市大疆创新科技有限公司 无人机的控制方法和无人机
CN112925335A (zh) * 2019-12-06 2021-06-08 顺丰科技有限公司 无人机通讯方法、装置、计算机可读存储介质和设备
CN112947511A (zh) * 2021-01-25 2021-06-11 北京京能能源技术研究有限责任公司 一种无人机巡检风机叶片的方法
CN113485453A (zh) * 2021-08-20 2021-10-08 中国华能集团清洁能源技术研究院有限公司 一种海上无人机巡检飞行路径生成方法、装置及无人机
CN114967726A (zh) * 2022-07-18 2022-08-30 中国华能集团清洁能源技术研究院有限公司 风机巡检无人机飞行参数的自适应调整方法、装置及设备

Also Published As

Publication number Publication date
CN114967726A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2024016675A1 (zh) 风机巡检无人机飞行参数的自适应调整方法、装置及设备和存储介质
WO2020125636A1 (zh) 一种自动返航方法、装置和无人机
US10551853B2 (en) Aerial vehicle control method and aerial vehicle
WO2020211812A1 (zh) 一种飞行器降落方法及装置
CN102566580A (zh) 一种无人直升机飞行航迹规划方法
CN110727288A (zh) 一种基于点云的电力巡检精准三维航线规划方法
CN107992069B (zh) 一种无人机路径跟踪控制的制导律设计方法
CN111539345B (zh) 用于确定变道动作的方法、装置、设备及可读存储介质
RU2011119087A (ru) Способ и система контроля автоматической посадки/взлета беспилотного летательного аппарата на круглую посадочную сетку платформы, в частности морской платформы
US9355566B2 (en) Systems and methods for controlling aircraft arrivals at a waypoint
WO2019100326A1 (zh) 任务执行方法、装置、可移动物体及计算机可读存储介质
CN112947511A (zh) 一种无人机巡检风机叶片的方法
US20120221180A1 (en) Unmanned aerial vehicle and control method thereof
WO2021142594A1 (zh) 参数更新方法、设备、系统及计算机可读存储介质
CN107305395A (zh) 无人机航拍方法及系统
CN109034639A (zh) 一种调度控制方法
US20210188426A1 (en) Multi-rotor aerial vehicle and control method thereof
WO2020237531A1 (zh) 无人机返航方法、设备、无人机和存储介质
CN105700554A (zh) 一种固定翼无人机降落方法及系统
CN105759837A (zh) 一种输电线路多旋翼飞艇巡检系统
CN112758315B (zh) 一种螺旋桨桨叶角度调节方法和装置
WO2021035644A1 (zh) 飞行控制方法、遥控器、无人飞行器、系统及存储介质
CN115932453A (zh) 一种智能网联汽车整车在环测试系统及方法
WO2022138391A1 (ja) 飛行体、通信管理システム、制御システム、及び制御方法
CN113504794B (zh) 一种无人机集群重构方法、系统和电子设备