WO2021035644A1 - 飞行控制方法、遥控器、无人飞行器、系统及存储介质 - Google Patents
飞行控制方法、遥控器、无人飞行器、系统及存储介质 Download PDFInfo
- Publication number
- WO2021035644A1 WO2021035644A1 PCT/CN2019/103436 CN2019103436W WO2021035644A1 WO 2021035644 A1 WO2021035644 A1 WO 2021035644A1 CN 2019103436 W CN2019103436 W CN 2019103436W WO 2021035644 A1 WO2021035644 A1 WO 2021035644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- route
- planned route
- point
- area
- take
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 238000004590 computer program Methods 0.000 claims description 72
- 238000005259 measurement Methods 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 9
- 235000021184 main course Nutrition 0.000 claims 5
- 239000002699 waste material Substances 0.000 abstract description 30
- 230000003116 impacting effect Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 17
- 230000009467 reduction Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 230000010006 flight Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Definitions
- This application relates to the field of unmanned aerial vehicle application technology, in particular to a flight control method, remote controller, unmanned aerial vehicle, flight control system and storage medium.
- the automatic route operation method is "take-off point ascends-fly to the preset starting point of the route-perform operations in the preset order of the route-fly to the preset end of the route to end the operation- Return home from the preset end point of the route to the take-off point. Even if the take-off point itself is within the survey area, you must first fly from the take-off point to the preset starting point of the route, and perform operations in the order preset by the route; fly to the preset route After the end, return to the take-off point for landing.
- the unmanned aerial vehicle flies from the take-off point to the preset starting point of the route and from the preset end point of the route back to the take-off point.
- This one-to-one voyage does not perform operations, which is an invalid flight, which is likely to cause a lot of waste of power and time, and serious Affect operational efficiency.
- this application provides a flight control method, remote controller, unmanned aerial vehicle, flight control system, and storage medium, aiming to solve the problem of invalid flight in the existing route operation mode of unmanned aerial vehicle, which is likely to cause a large amount of waste of electricity and time. , Provide technical support for technical issues that seriously affect operational efficiency.
- this application provides a flight control system, the system includes a memory and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and when the computer program is executed , To achieve the following steps:
- the access point for the unmanned aerial vehicle to enter the planned route is determined, and the planned route is a closed route meeting preset requirements.
- the entry point is the starting point for the unmanned aerial vehicle to enter the planned route;
- control the unmanned aerial vehicle to fly from the take-off point to the access point, enter the planned route, and fly back to the planned route after completing the flight according to the planned route.
- Access point and then fly back from the access point to the take-off point.
- this application provides a flight control method, including:
- the access point for the unmanned aerial vehicle to enter the planned route is determined, and the planned route is a closed route meeting preset requirements. Is the starting point for the unmanned aerial vehicle to enter the planned route;
- control the unmanned aerial vehicle to fly from the take-off point to the access point, enter the planned route, and fly back to the planned route after completing the flight according to the planned route.
- Access point and then fly back from the access point to the take-off point.
- the present application provides a remote controller, the remote controller includes a flight control system, the flight control system includes: a memory and a processor; the memory is used to store a computer program; the processor is used to execute all The computer program, and when the computer program is executed, the following steps are implemented:
- the access point for the unmanned aerial vehicle to enter the planned route is determined, and the planned route is a closed route meeting preset requirements.
- the entry point is the starting point for the unmanned aerial vehicle to enter the planned route;
- control the unmanned aerial vehicle to fly from the take-off point to the access point, enter the planned route, and fly back to the planned route after completing the flight according to the planned route.
- Access point and then fly back from the access point to the take-off point.
- the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle including a flight control system, the flight control system including: a memory and a processor; the memory is used for storing a computer program; the processor is used for When the computer program is executed, and when the computer program is executed, the following steps are implemented:
- the access point for the unmanned aerial vehicle to enter the planned route is determined, and the planned route is a closed route meeting preset requirements.
- the entry point is the starting point for the unmanned aerial vehicle to enter the planned route;
- control the unmanned aerial vehicle to fly from the take-off point to the access point, enter the planned route, and fly back to the planned route after completing the flight according to the planned route.
- Access point and then fly back from the access point to the take-off point.
- the present application provides a remote control, the remote control including: a memory, a processor, and a communication circuit;
- the communication circuit is used to communicate with an unmanned aerial vehicle, and is used to receive its own current take-off point sent by the unmanned aerial vehicle;
- the memory is used to store a computer program
- the processor is used to execute the computer program and when executing the computer program, implement the following steps:
- the access point for the unmanned aerial vehicle to enter the planned route is determined, and the planned route is a closed route meeting preset requirements.
- the entry point is the starting point for the unmanned aerial vehicle to enter the planned route;
- the communication circuit is also used to send the planned route and the access point to the unmanned aerial vehicle, so that the unmanned aerial vehicle flies from the take-off point to the access point and enters the plan For the route, fly back to the access point after completing the flight according to the planned route, and then fly back from the access point to the take-off point.
- this application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor implements the flight control method described above .
- the embodiments of the application provide a flight control method, remote control, unmanned aerial vehicle, flight control system, and storage medium.
- the planned route of the survey area and the current take-off point of the unmanned aerial vehicle it is determined that the unmanned aerial vehicle enters the plan.
- the planned route is a closed route that meets the preset requirements.
- the access point is the starting point for the unmanned aircraft to enter the planned route; the access point is determined according to the planned route and the current take-off point of the unmanned aircraft.
- the starting point for the aircraft to enter the planned route is not fixed, but can be changed; because the planned route is a closed route that meets the preset requirements, the access point can be any point in the planned route, and the planned route can be followed from the access point After the flight is completed, fly back to the access point, and then fly back directly from the access point to the take-off point.
- choosing an access point closer to the take-off point and reducing the invalid flight distance can reduce the ineffective flight, reduce the waste of power and time, and improve the operating efficiency; if you choose With the nearest access point, in a larger operation scenario, the reduction of waste of electricity and time due to the reduction of ineffective flights will be more obvious, and the improvement of operation efficiency will be more significant. Therefore, in this way, technical support can be provided for solving the technical problems that invalid flight in the existing unmanned aerial vehicle's route operation mode is likely to cause a large amount of waste of electricity and time, and seriously affect the operation efficiency.
- Fig. 1 is a schematic flow chart of an embodiment of the flight control method of the present application
- FIG. 2 is a schematic flowchart of another embodiment of the flight control method of the present application.
- FIG. 3 is a schematic flowchart of another embodiment of the flight control method of the present application.
- FIG. 4 is a schematic flowchart of another embodiment of the flight control method of the present application.
- FIG. 5 is a schematic diagram of the shape of the survey area in the practical application of the flight control method of the present application.
- Fig. 6 is a schematic diagram of route planning in practical application of the first flight control method of this application.
- FIG. 7 is a schematic flowchart of another embodiment of the flight control method of the present application.
- FIG. 8 is a schematic diagram of the initial first planned route in the route planning step of FIG. 6;
- FIG. 9 is a schematic diagram of a parameter relationship related to the sensor of the camera device in the practical application of the flight control method of the present application.
- FIG. 10 is a schematic diagram of another parameter relationship related to the sensor of the camera device in the practical application of the flight control method of the present application;
- FIG. 11 is a specific schematic diagram of the overlap of photos taken at the corner points of two adjacent routes in the route planning step of FIG. 6;
- Figure 12 is a schematic diagram of Figure 11 on the corresponding planned route
- FIG. 13 is a schematic flowchart of another embodiment of the flight control method of the present application.
- Fig. 14 is a schematic diagram of determining the nearest access point for the planned route of Fig. 6;
- FIG. 15 is a schematic flowchart of another implementation manner of the flight control method of the present application.
- FIG. 16 is a schematic structural diagram of an embodiment of the flight control system of the present application.
- the automatic route operation method is "take-off point ascends-fly to the preset starting point of the route-perform operations in the preset order of the route-fly to the preset end of the route to end the operation- Return home from the preset end point of the route to the take-off point. Even if the take-off point itself is within the survey area, you must first fly from the take-off point to the preset starting point of the route, and perform operations in the order preset by the route; fly to the preset route After the end, return to the take-off point for landing.
- the unmanned aerial vehicle flies from the take-off point to the preset starting point of the route and from the preset end point of the route back to the take-off point.
- This one-to-one voyage does not perform operations, which is an invalid flight, which is likely to cause a lot of waste of power and time, and serious Affect operational efficiency.
- the embodiment of this application determines the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is none.
- Fig. 1 is a schematic flowchart of an embodiment of the flight control method of the present application, which includes:
- Step S101 According to the planned route within the survey area and the current take-off point of the unmanned aerial vehicle, determine the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is the unmanned aerial vehicle's entry Plan the starting point of the route.
- Step S102 According to the planned route and access point, control the UAV to fly from the take-off point to the access point, enter the planned route, fly back to the access point according to the planned route, and then fly back from the access point to take-off point.
- the preset requirements refer to the preset requirements for the planned route, and the preset requirements can be changed according to specific applications that are not used, which enables the method of this embodiment to have a wide range of application scenarios. For example: requiring the shortest planned route, or requiring the planned route to be a route in the central area of the route redundant edge area, or requiring a route in a low-lying area with a route redundant to a high-lying area, or, the flight altitude requirement, the overlap rate requirement ,and many more.
- the planned route in this embodiment must also be a closed route.
- the closed route can make the starting point of entering the planned route unrestricted, that is, the access point is changeable, specifically, within the scope of the survey area.
- the planned route and the current take-off point of the UAV have been confirmed, determine the access point for the UAV to enter the planned route according to the planned route within the survey area and the current take-off point of the UAV.
- the access point can be as far as possible Stay closer to the takeoff point to reduce ineffective flights. If there is no pre-planned route within the survey area, you need to plan the route first.
- the first is that the unmanned aerial vehicle determines the planned route of the survey area by itself (if the planned route is unknown), determines the take-off point, and then determines the access point, and controls its own flight according to the planned route and access point.
- step S101 and step S102 is an unmanned aerial vehicle.
- the remote control determines the take-off point (for example, the take-off point of the unmanned aerial vehicle is known, or pre-appointed, etc.), the planned route of the survey area (if the planned route is unknown), and then determines the access point. And according to the planned route and access point, control the unmanned aerial vehicle to fly. That is, the execution subject of step S101 and step S102 is the remote controller.
- the third is that the remote control and the unmanned aerial vehicle cooperate with each other to complete the flight.
- the UAV sends its current take-off point to the remote controller.
- the remote controller determines the planned route within the survey area (if the planned route is unknown), then determines the access point, and returns the planned route within the access point and the survey area to the unmanned aerial vehicle.
- the unmanned aerial vehicle receives the planned route and access point, controls itself to fly from the take-off point to the access point, enters the planned route, and then flies back to the access point according to the planned route, and then flies back from the access point to the take-off point .
- step S101 is the remote controller
- step S102 is the unmanned aerial vehicle.
- the process of interaction between the remote controller and the UAV in this embodiment is as follows:
- Step S201 The unmanned aerial vehicle sends its current take-off point to the remote controller.
- Step S202 the remote controller receives its own current take-off point sent by the unmanned aerial vehicle.
- Step S203 The remote controller determines the access point for the unmanned aerial vehicle to enter the planned route according to the planned route within the survey area and the current take-off point of the unmanned aerial vehicle.
- the planned route is a closed route that meets the preset requirements, and the access point is unmanned.
- the aircraft enters the starting point of the planned route.
- Step S204 the remote controller sends the planned route and the access point to the unmanned aerial vehicle.
- Step S205 The unmanned aerial vehicle receives the planned route and the access point sent by the remote controller.
- Step S206 The unmanned aerial vehicle flies from the take-off point to the access point, enters the planned route, flies according to the planned route, and performs operations; when flying back to the access point after the flight is completed, it flies back from the access point to the take-off point.
- the embodiment of this application determines the access point for the unmanned aircraft to enter the planned route according to the planned route within the survey area and the current take-off point of the unmanned aerial vehicle.
- the planned route meets the preset requirements
- the access point is the starting point for the unmanned aircraft to enter the planned route; since the access point is determined according to the planned route and the current take-off point of the unmanned aircraft, the starting point for the unmanned aircraft to enter the planned route is not fixed, but It can be changed; because the planned route is a closed route that meets the preset requirements, the access point can be any point in the planned route, and it can fly back to the access point after the planned route is completed from the access point, and then connect directly from the access point.
- the planned route within the planned survey area range can basically be reused.
- the measurement area is new and not planned in advance, as shown in Figure 3, before step S101, it also includes:
- Step S103 Determine the range of the survey area.
- Step S104 Generate a planned route according to the scope of the survey area and preset requirements.
- the scope of the survey area can be determined by importing Keyhole Markup Language (KML) files, or by manual input by the user, and so on.
- KML Keyhole Markup Language
- KML was originally developed by Keyhole. It is a coding specification based on XML grammar and format for describing and saving geographic information (such as points, lines, images, polygons, models, etc.), which can be recognized and displayed by Google Earth and Google Maps . It is quicker and more convenient to determine the scope of the survey area in this way.
- route planning software can be used in this embodiment, and the preset requirements can be manually input into the route planning software, such as: flight altitude, flight speed, shooting overlap rate, number of photos taken, flight number Estimated time, etc.
- the preset requirements include that the unmanned aerial vehicle can complete operations after completing the flight according to the planned route without wasting the planned route. In this way, the unmanned aerial vehicle can be flown in accordance with the planned route, reducing the consumption of power and time to the greatest extent and improving the efficiency of operation to the greatest extent.
- step S103 may specifically include: determining the shape of the survey area;
- step S104 may specifically include: generating a planned route according to the shape, flight height, and overlap ratio of the survey area.
- the planned route includes the first part of the reciprocating type.
- the second part of the planned route includes the planned route that closes the planned route of the reciprocating flight.
- the planned route of reciprocating flight is a relatively common planned route.
- the planning method of the planned route is relatively simple and mature.
- the planning software of the planned route is widely used. In this way, the software threshold for the application of the application method can be lowered.
- the unmanned aerial vehicle has completed the flight according to the planned reciprocating flight route and can basically complete the operation.
- a measurement area with a fixed shape and a fixed size can plan a variety of different reciprocating flight planning routes.
- the shape of the measurement area includes but is not limited to: rectangle (as shown in FIG. 5, the rectangular measurement area 200), square, parallelogram, irregular shape, and so on. Rectangular survey area and square survey area are usually more common in practical applications, and the route planning method is also widely used, especially the rectangular survey area.
- the planned route of reciprocating flight can be planned. According to the shape of the survey area, the flight height and the overlap rate, the first part of the planned route of the reciprocating flight and the second part of the planned route that close the planned route of the reciprocating flight are generated.
- the planned route of the reciprocating flight includes a first main route, a first non-main route, and a second non-main route.
- the first main route intersects the first non-main route and/or the second non-main route vertically.
- the number of the first main route is an even number; the second part of the planned route includes a second main route that vertically connects the first and last main routes.
- the main route refers to a route whose length is greater than a preset length
- the non-main route refers to a route whose length is equal to or less than the preset length
- a planned route A for reciprocating flight and a second main route A4 (that is, the second part of the planned route) are planned.
- the planned route A of the reciprocating flight includes the first main route A1, the first non-main route A2, and the second non-main route A3.
- the first main route A1 is perpendicular to the first non-main route A2 and the second non-main route A3.
- Cross, the number of A1 on the first main route is 8.
- the second main route A4 is vertically connected to the first main route A1 at the beginning and end.
- the planned route A of the reciprocating flight and the second main route A4 together form a closed route.
- the UAV can fly from the take-off point to the position indicated by the dot, use the position indicated by the dot as the access point, and complete the flight in the direction indicated by the arrow , Fly to the access point indicated by the circle, and then fly back to the takeoff point indicated by the triangle.
- the access point to enter the planned route can be flexibly determined according to the planned route and the take-off point.
- a planned route is generated according to the shape, flight height, and overlap ratio of the survey area range, which may specifically include:
- Sub-step S1041 Obtain the flight height and the overlap rate, where the overlap rate includes the heading overlap rate and the side overlap rate.
- Sub-step S1042 Determine the initial first planned route according to the flight altitude and the overlap rate, and the bottom route point of the first main route of the initial first planned route and the second non-main route of the initial first planned route are on the same straight line.
- Sub-step S1043 Make the side overlap rate of the photos taken at the corner points of the second non-main route of the initial first planned route and the second non-main route of the reciprocating planned route at the corresponding corner point
- the heading overlap rate of the taken photos is equal, and then the planned route is generated.
- the second main route of the planned route is the position of the second non-main route of the initial first planned route, and the second non-main route of the planned route of reciprocating flight
- the position of is the position of the second non-main route of the initial first planned route after moving up in parallel by a distance S, and S is a positive number.
- Photo overlap refers to the overlap of the same image of adjacent photos
- the overlap rate refers to the degree of overlap of the same image of adjacent photos.
- the overlap of two adjacent photos on the same route is called heading overlap.
- Course overlap is also called “longitudinal overlap”.
- adjacent photos along the same route have the same ground image (in short, the same route, the overlap between photos and photos).
- the ratio of the width of the overlapping part of the course to the width of the photo is called the overlap ratio of the course, expressed as a percentage.
- the heading overlap rate is also different.
- the heading overlap rate is not less than 60% for aerial photography static traffic problems.
- the heading overlap rate should not be less than 70%. .
- Side-to-side overlap also known as "horizontal overlap" is the overlap of two adjacent photos between adjacent routes (in short, the overlap of photos between the route and the route).
- side-to-side overlap means that due to different routes, although the overlapping part is on the same ground, the images are not exactly the same.
- the ratio of the length of the side-to-side overlap to the length of the photo is called the side-to-side overlap rate, which is expressed as a percentage.
- the side-to-side overlap rate of photos between adjacent routes is 35-15%, and the minimum is not less than 13%.
- the photos taken at the corner points (ie turning points) of the second non-main route of the planned route of reciprocating flight are horizontal, and the photos taken at the corresponding corner points of the second main route of the planned route It is vertical.
- the photos taken at the corner points of the second non-main route of the initial first planned route that is, the second main route of the planned route is taken at the corresponding corner
- the side overlap rate of the photo is equal to the heading overlap rate of the photos taken at the corresponding corner points of the second non-main route of the planned route of the reciprocating flight. In this way, it is possible to save routes while ensuring the overlap rate.
- step S104 Taking the shape of the survey area including a rectangle, and the direction of the first main route being the width side direction of the rectangle as an example, the specific process of the above step S104 will be described.
- the user sets the flight altitude and overlap rate on the route planning software, and determines the number of the first main route to be an even number by fine-tuning the scope of the survey area, and plans the initial first planned route, as shown in Figure 8.
- the first planned route AA includes the first main route AA1, the first non-main route AA2, and the second non-main route AA3; the bottom route point g of the first main route AA1 of the initial first planned route AA and the initial first planned route AA
- the second non-main route AA3 is on the same straight line.
- the photos taken at the corner points of the second non-main route AA3 of the initial first planned route AA that is, the second main route A4 of the planned route is at the corresponding corner point
- the side overlap rate of the photos taken by the point is equal to the heading overlap rate of the photos taken at the corresponding corner points of the second non-main route A3 of the planned route of the reciprocating flight.
- the planned route can be obtained by combining Figure 6 and Figure 6 8.
- the position of the second main route A4 of the planned route is the position of the second non-main route AA3 of the initial first planned route AA, and the position of the second non-main route A3 of the planned route of reciprocating flight is the initial first planned route
- the position of AA's second non-main route AA3 is moved up parallel to the position after the distance S.
- the side overlap rate is Py.
- the second non-main route A3 of the planned route of reciprocating flight corresponds to the coverage area of four points qrts
- the straight line ef is the center line of the area composed of four points qrts.
- the coverage of the photo (vertical) taken at the corner point of the second non-main route AA3 of the initial first planned route AA corresponds to the four points kuwv
- the straight line cd is the center line of the area composed of four points kuwv. Wherein, the straight line cd is located on the same straight line as the bottom route point g of the first main route AA1 of the initial first planned route AA and the second non-main route AA3 of the initial first planned route AA.
- the distance between the straight line cd and the straight line vw is Ll/2; the distance between the straight line ef and the straight line vw is Ll-Px*Lw+Lw/2; the distance between the straight line ku and the straight line st is Px*Lw; the straight line ef The distance from the straight line cd is (Ll+Lw)/2-Px*Lw; the distance between the straight line st and the straight line vw is Ll-Px*Lw.
- the distance S that the second non-main route AA3 of the initial first planned route AA moves in parallel upward is the distance between the straight line ef and the straight line cd, that is, (Ll+Lw)/2-Px*Lw.
- the final planned planned route is shown in Figure 6 and Figure 12.
- the photo (horizontal) taken at the corner point of the second non-main route A3 of the planned route of reciprocating flight corresponds to the coverage area of four points qrts.
- the coverage area corresponding to the corresponding corner point of the second main route A4 of the planned route ie, the position of the second non-main route AA3 of the initial first planned route AA) at the route point (vertical) is composed of In the area composed of four points kuwv, the distance S between the second main route A4 of the planned route and the second non-main route A3 of the planned route of reciprocating flight is (Ll+Lw)/2-Px*Lw.
- step S101 may include: determining the closest access point for the unmanned aerial vehicle to enter the planned route according to the planned route within the survey area and the current take-off point of the unmanned aerial vehicle.
- the closest access point is the unmanned aerial vehicle entering the planned route from the take-off point The nearest starting point.
- step S101 according to the planned route of the survey area and the current take-off point of the unmanned aerial vehicle, determine the closest access point for the unmanned aerial vehicle to enter the planned route, which may specifically include:
- Sub-step S1011 Determine whether the take-off point is located in the first area according to the planned route and the current take-off point of the unmanned aerial vehicle.
- the first area includes the first sub-area and the second sub-area, and the first sub-area is located outside the second square area. Is opposite to the second square area.
- the second sub-area is located between the two corner points of two adjacent first non-main routes outside the second square area, and is connected to two adjacent first main routes.
- the area formed by the route is relatively, and the second square area is the square area formed by the planned route.
- Sub-step S1012 If the take-off point is located in the first area, it is determined that the nearest access point is the corner point closest to the take-off point among the corner points of the planned route.
- Sub-step S1013 If the take-off point is not located in the first area, it is determined that the nearest access point is the corresponding point on the segment route closest to the take-off point in the segment route of the planned route.
- the second square area formed by the planned route is composed of four corner points b1, b2, b3, and b4.
- the first area (7 shaded areas in the figure) Located outside the second square area b1b2b3b4, the first area includes a first sub-area (four shaded areas at four corner points) and a second sub-area (another three shaded areas).
- the first sub-region includes bb1, bb2, bb3, and bb4 regions, and the second sub-region includes bb11, bb22, and bb33.
- the take-off point (shown by the triangle in the figure) is not located in the first area, for example, it is located within the second square area b1b2b3b4, or outside the second square area b1b2b3b4, but is not in the first area, and is close to the planned route.
- Determine the route that is closest to the take-off point and then determine the point with the shortest distance from the take-off point to the shortest route. This point is the closest access point (shown by the dot in the figure).
- the nearest access point is the corner point (shown by the circle in the figure) that is closest to the take-off point among the corner points of the planned route.
- the second square area formed by the planned route and the outside of the second square area are partitioned, and the characteristics of each area are used to determine different nearest access points. In this way, the take-off point can be quickly located. In turn, the nearest access point can be quickly determined.
- sub-step S1011 judging whether the take-off point is located in the first area according to the planned route and the current take-off point of the unmanned aerial vehicle, which may specifically include:
- Sub-step S1011a use the lower left point of the second square area as the origin to establish a plane projection coordinate system.
- the lower left point of the second square area is b1.
- Sub-step S1011b Calculate the coordinate position of each corner point of the planned route in the plane projection coordinate system, calculate the expression of each segment of the route in the planned route in the plane projection coordinate system, and calculate the coordinates of the take-off point in the plane projection coordinate system position.
- Sub-step S1011c Determine whether the take-off point is located in the first area according to the coordinate position of each corner point, the expression of each segment of the route, and the coordinate position of the take-off point.
- FIG. 16 is a schematic structural diagram of an embodiment of the flight control system of the present application. It should be noted that the system of this embodiment can implement the steps in the foregoing method. For detailed descriptions of related content, please refer to the foregoing method section, which will not be repeated here.
- the system 100 includes a memory 1 and a processor 2, and the processor 2 and the memory 1 are connected by a bus 3.
- the memory 1 is used to store the computer program; the processor 2 is used to execute the computer program and when executing the computer program, the following steps are realized: according to the planned route of the survey area and the current take-off point of the unmanned aerial vehicle, determine that the unmanned aerial vehicle enters the planned route
- the planned route is a closed route that meets the preset requirements.
- the access point is the starting point for the unmanned aerial vehicle to enter the planned route; according to the planned route and access point, the unmanned aerial vehicle is controlled to fly from the take-off point to the access point. Enter the planned route and fly back to the access point after completing the flight according to the planned route, and then fly back from the access point to the take-off point.
- the embodiment of this application determines the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is none.
- the processor executes the computer program, the following steps are implemented: determining the scope of the survey area; generating a planned route according to the scope of the survey area and preset requirements.
- the preset requirements include that the unmanned aerial vehicle can complete operations after completing the flight according to the planned route without wasting the planned route.
- the processor executes the computer program, the following steps are implemented: determine the shape of the survey area; among them, according to the survey area and preset requirements, generate a planned route, including: according to the shape of the survey area, flight height and overlap rate , Generate a planned route.
- the planned route includes the first part of the planned route for reciprocating flight and the second part of the planned route.
- the second part of the planned route includes the planned route for closing the planned route of reciprocating flight.
- the planned routes for reciprocating flight include the first main route, the first non-main route, and the second non-main route.
- the first main route crosses the first non-main route and/or the second non-main route perpendicularly at the corner point.
- the number of the first main route is an even number; the second part of the planned route includes a second main route that vertically connects the first and last main routes.
- the processor implements the following steps when executing the computer program:
- the overlap rate includes the heading overlap rate and the side overlap rate
- the flight altitude and overlap rate determine the initial first planned route, and the bottom route point of the first main route of the initial first planned route is on the same straight line as the second non-main route of the initial first planned route;
- the heading overlap rate is equal, and then the planned route is generated.
- the position of the second main route of the planned route is the position of the second non-main route of the original first planned route, and the position of the second non-main route of the planned route of reciprocating flight is the initial.
- the position of the second non-main route of the first planned route is moved up in parallel by a distance S, and S is a positive number.
- the shape of the measurement area includes one or two of rectangles and squares.
- the shape of the survey area includes a rectangle, and the direction of the first main route is the width side direction of the rectangle.
- the processor implements the following steps when executing the computer program:
- the nearest access point is the closest starting point for the unmanned aerial vehicle to enter the planned route from the take-off point.
- the processor implements the following steps when executing the computer program:
- the first area includes the first sub-area and the second sub-area.
- the first sub-area is located at the four corners outside the second square area.
- Point, and opposite to the second square area the second sub-area is located outside the second square area between the two corner points of two adjacent first non-main routes, and the area formed by two adjacent first main routes In contrast, the second square area is the square area formed by the planned route;
- the take-off point is not located in the first area, it is determined that the nearest access point is the corresponding point on the segment route closest to the take-off point in the segment route of the planned route.
- the processor implements the following steps when executing the computer program:
- the expression of each segment of the route, and the coordinate position of the take-off point it is determined whether the take-off point is located in the first area.
- the present application also provides a remote controller, which includes the flight control system as described above.
- a remote controller which includes the flight control system as described above.
- the flight control system please refer to the above flight control system section, which will not be repeated here.
- the flight control system includes: a memory and a processor; the memory is used to store computer programs;
- the processor is used to execute the computer program and when executing the computer program, the following steps are implemented:
- the planned route is a closed route that meets the preset requirements, and the access point is for the unmanned aerial vehicle to enter the planned route. starting point;
- control the UAV to fly from the take-off point to the access point, enter the planned route, fly back to the access point according to the planned route, and then fly back from the access point to the take-off point.
- the embodiment of this application determines the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is none.
- This application also provides another remote controller. It should be noted that the remote controller can implement the relevant steps in the above flight control method. For detailed descriptions of the relevant content, please refer to the relevant part of the above flight control method, which will not be repeated here. Narrate.
- the remote control includes: a memory, a processor, and a communication circuit;
- the communication circuit is used to communicate with the unmanned aerial vehicle, and is used to receive its current take-off point sent by the unmanned aerial vehicle;
- the memory is used to store computer programs
- the processor is used to execute the computer program and when executing the computer program, the following steps are implemented:
- the planned route is a closed route that meets the preset requirements, and the access point is for the unmanned aerial vehicle to enter the planned route. starting point;
- the communication circuit is also used to send the planned route and access point to the unmanned aerial vehicle, so that the unmanned aerial vehicle can fly from the take-off point to the access point, enter the planned route, and fly back to the access point after completing the flight according to the planned route. Fly back from the access point to the take-off point.
- the embodiment of this application determines the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is none.
- This application also provides an unmanned aerial vehicle, which includes any of the above-mentioned flight control systems.
- flight control system please refer to the part of the above-mentioned flight control system, which will not be repeated here.
- the flight control system includes: a memory and a processor; the memory is used to store computer programs;
- the processor is used to execute the computer program and when executing the computer program, the following steps are implemented:
- the planned route is a closed route that meets the preset requirements, and the access point is for the unmanned aerial vehicle to enter the planned route. starting point;
- control the UAV to fly from the take-off point to the access point, enter the planned route, fly back to the access point according to the planned route, and then fly back from the access point to the take-off point.
- the embodiment of this application determines the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is none.
- This application also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, the processor realizes the flight control method as described above.
- a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, the processor realizes the flight control method as described above.
- the computer-readable storage medium may be any of the aforementioned remote controllers and/or internal storage units of the unmanned aerial vehicle, such as the remote controller and/or the hard disk or memory of the unmanned aerial vehicle.
- the computer-readable storage medium may also be a remote control and/or an external storage device of the unmanned aerial vehicle, such as a plug-in hard disk, a smart memory card, a secure digital card, and a flash memory card equipped on the remote control and/or the unmanned aerial vehicle, and many more.
- the embodiment of this application determines the access point for the unmanned aerial vehicle to enter the planned route.
- the planned route is a closed route that meets the preset requirements, and the access point is none.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种飞行控制方法、遥控器、无人飞行器、飞行控制系统(100)及存储介质。所述飞行控制方法包括:根据规划航线(A)和当前的起飞点,确定所述无人飞行器进入规划航线(A)的接入点,所述规划航线(A)是满足预设要求的闭合航线,所述接入点是进入规划航线(A)的起点(S101);根据所述规划航线(A)和接入点,控制所述无人飞行器从起飞点飞行至接入点,进入所述规划航线(A),按照所述规划航线(A)飞行完毕后飞回至接入点,再从所述接入点飞回至起飞点(S102)。所述飞行控制方法旨在为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
Description
本申请涉及无人飞行器应用技术领域,尤其涉及一种飞行控制方法、遥控器、无人飞行器、飞行控制系统及存储介质。
长期以来,无人飞行器在需要执行作业时,自动航线作业方式均为“起飞点上升-飞到航线预设的起点-按照航线预设的顺序执行作业-飞到航线预设的终点结束作业-从航线预设的终点返航到起飞点。即使起飞点本身在测区范围内,也要先从起飞点飞到航线预设的起点,按照航线预设的顺序执行作业;飞到航线预设的终点后,返航至起飞点,进行降落。
无人飞行器从起飞点飞到航线预设的起点以及从航线预设的终点返航到起飞点,这一去一回的航程没有执行作业,属于无效飞行,容易造成电量与时间的大量浪费,严重影响作业效率。
发明内容
基于此,本申请提供一种飞行控制方法、遥控器、无人飞行器、飞行控制系统及存储介质,旨在为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
第一方面,本申请提供了一种飞行控制系统,所述系统包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;
根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
第二方面,本申请提供了一种飞行控制方法,包括:
根据测区范围的规划航线和无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;
根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
第三方面,本申请提供了一种遥控器,所述遥控器包括飞行控制系统,所述飞行控制系统包括:存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;
根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
第四方面,本申请提供了一种无人飞行器,所述无人飞行器包括飞行控制系统,所述飞行控制系统包括:存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;
根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述 接入点,再从所述接入点飞回至所述起飞点。
第五方面,本申请提供了一种遥控器,所述遥控器包括:存储器、处理器以及通信电路;
所述通信电路用于与无人飞行器进行通信,用于接收所述无人飞行器发送的自身当前的起飞点;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;
所述通信电路还用于将所述规划航线和所述接入点发送至所述无人飞行器,以使所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
第六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上所述的飞行控制方法。
本申请实施例提供了一种飞行控制方法、遥控器、无人飞行器、飞行控制系统及存储介质,根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升 会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请飞行控制方法一实施方式的流程示意图;
图2是本申请飞行控制方法另一实施方式的流程示意图;
图3是本申请飞行控制方法又一实施方式的流程示意图;
图4是本申请飞行控制方法又一实施方式的流程示意图;
图5是本申请飞行控制方法一实际应用中测区范围的形状的示意图;
图6是本申请飞行控制方法一实际应用中规划航线的示意图;
图7是本申请飞行控制方法又一实施方式的流程示意图;
图8是图6的规划航线步骤中的初始第一规划航线的示意图;
图9是本申请飞行控制方法一实际应用中一与摄像装置传感器相关的参数关系的示意图;
图10是本申请飞行控制方法一实际应用中另一与摄像装置传感器相关的参数关系的示意图;
图11是图6的规划航线步骤中相邻两航线在角点处航线点拍摄的照片重叠情况的具体示意图;
图12是图11在对应规划航线上的示意图;
图13本申请飞行控制方法又一实施方式的流程示意图;
图14是图6的规划航线确定最近接入点的示意图;
图15本申请飞行控制方法又一实施方式的流程示意图;
图16是本申请飞行控制系统一实施方式的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
长期以来,无人飞行器在需要执行作业时,自动航线作业方式均为“起飞点上升-飞到航线预设的起点-按照航线预设的顺序执行作业-飞到航线预设的终点结束作业-从航线预设的终点返航到起飞点。即使起飞点本身在测区范围内,也要先从起飞点飞到航线预设的起点,按照航线预设的顺序执行作业;飞到航线预设的终点后,返航至起飞点,进行降落。
无人飞行器从起飞点飞到航线预设的起点以及从航线预设的终点返航到起飞点,这一去一回的航程没有执行作业,属于无效飞行,容易造成电量与时间的大量浪费,严重影响作业效率。
本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业 场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参见图1,图1是本申请飞行控制方法一实施方式的流程示意图,该包括:
步骤S101:根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点。
步骤S102:根据规划航线和接入点,控制无人飞行器从起飞点飞行至接入点,进入规划航线,按照规划航线飞行完毕后飞回至接入点,再从接入点飞回至起飞点。
预设要求是指预先设置的、对规划航线的要求,预设要求可以根据不用的具体应用进行改变,能够使本实施例的方法的应用场景广泛。例如:要求规划航线最短,或者,要求规划航线在中心区域的航线多余边缘区域的航线,或者,要求在地势低的区域的航线多余地势高的区域的航线,或者,飞行高度要求,重叠率要求,等等。
本实施例中的规划航线除了满足预设要求外,还必须是闭合航线,闭合航线能够使进入规划航线的起点不受限制,即接入点是可变化的,具体地,在测区范围的规划航线和无人飞行器当前的起飞点已确认的情况下,根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,接入点可以尽可能离起飞点近一点,减少无效飞行。如果测区范围没有预先规划航线,则需要先规划航线。
需要说明的是,在实际应用中,根据应用需求,该方法的执行主体可能有如下三种应用场景对应的情况。具体说明如下:
第一种、无人飞行器自己确定好测区范围的规划航线(如果规划航线未知),确定起飞点,进而确定接入点,并按照规划航线和接入点自己控制自己进行飞行。
即步骤S101和步骤S102的执行主体是无人飞行器。
在实际应用中,还可以在地面配置主要起显示画面功能的遥控器,可以接收无人飞行器发送的飞行信息,实时显示当前无人飞行器的飞行状态,以供地面实时观察无人飞行器的飞行状态。
第二种、遥控器确定起飞点(例如无人飞行器的起飞点是已知的,或者预先约定的,等等)、测区范围的规划航线(如果规划航线未知),进而确定接入点,并根据规划航线和接入点,控制无人飞行器进行飞行。即步骤S101和步骤S102的执行主体是遥控器。
第三种、遥控器与无人飞行器相互配合完成飞行。首先无人飞行器向遥控器发送自身当前的起飞点。遥控器确定测区范围的规划航线(如果规划航线未知),进而确定接入点,并将接入点、测区范围的规划航线返回给无人飞行器。无人飞行器接收到规划航线和接入点,自我控制从起飞点飞行至接入点,进入规划航线,按照规划航线飞行完毕后飞回至接入点,再从接入点飞回至起飞点。
即步骤S101的执行主体是遥控器,步骤S102的执行主体是无人飞行器。参见图2,该实施方式遥控器和无人飞行器交互的过程是:
步骤S201:无人飞行器向遥控器发送自身当前的起飞点。
步骤S202:遥控器接收无人飞行器发送的自身当前的起飞点。
步骤S203:遥控器根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点。
步骤S204:遥控器将规划航线和接入点发送至无人飞行器。
步骤S205:无人飞行器接收遥控器发送的规划航线和接入点。
步骤S206:无人飞行器从起飞点飞行至接入点,进入规划航线,按照规划航线飞行并执行作业;当飞行完毕后飞回至接入点时,再从接入点飞回至起飞点。
不管是上述哪种应用场景,本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规 划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
如果测区范围是固定不变的,已规划好的测区范围的规划航线基本可以重复利用。当然,如果测区范围是新的、没有预先规划的,如图3所示,在步骤S101之前,还包括:
步骤S103:确定测区范围。
步骤S104:根据测区范围和预设要求,生成规划航线。
在实际应用中,测区范围可以通过导入Keyhole标记语言(Keyhole Markup Language,KML)文件来确定,或者用户手动输入来确定,等等。
KML最初由Keyhole公司开发,是一种基于XML语法与格式、用于描述和保存地理信息(如点、线、图像、多边形和模型等)的编码规范,可以被Google Earth和Google Maps识别并显示。通过该方式确定测区范围,较为快捷方便。
现有的航线规划软件均可用于本实施例中,预设要求可以通过人工输入的方式输入航线规划软件中,例如:飞行高度、飞行速度、拍摄的重叠率、拍摄相片的张数、飞行的预计时间,等等。
在一实际应用中,预设要求包括无人飞行器按照规划航线飞行完毕时能够完成作业且不浪费规划航线。通过这种方式,能够使无人飞行器按照该规划航线飞行使,最大程度减少电量和时间的消耗,最大程度提高作业效率。
进一步,参见图4,步骤S103具体可以包括:确定测区范围的形状;步骤S104具体可以包括:根据测区范围的形状、飞行高度和重叠率,生成规划航线,规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线, 第二部分规划航线包括将往复式飞行的规划航线闭合起来的规划航线。
往复式飞行的规划航线是比较常见的规划航线,该规划航线的规划方法较为简单、成熟,该规划航线的规划软件应用较为广泛,通过这种方式,能够降低本申请方法应用的软件门槛。无人飞行器按照往复式飞行的规划航线飞行完毕,基本能够完成作业。
一个形状固定、大小固定的测区范围,可以规划出多种不同的往复式飞行的规划航线。测区范围的形状包括但不限于:长方形(如图5所示,长方形的测区范围200)、正方形、平行四边形、不规则形状,等等。长方形的测区范围和正方形的测区范围,在实际应用中通常较为多见,其航线规划方法的应用也较为广泛,特别是长方形的测区范围。不管是什么形状的测区范围,均可规划出往复式飞行的规划航线。根据测区范围的形状、飞行高度和重叠率,生成第一部分的往复式飞行的规划航线和将往复式飞行的规划航线闭合起来的第二部分规划航线。
在一实施例中,往复式飞行的规划航线包括第一主航线、第一非主航线以及第二非主航线,第一主航线与第一非主航线和/或第二非主航线垂直交叉形成往复式飞行的规划航线,第一主航线的条数是偶数;第二部分规划航线包括垂直连接首尾第一主航线的第二主航线。
在本实施例中,主航线是指长度大于预设长度的航线,非主航线是指长度等于或小于预设长度的航线。
例如,参见图6,在长方形的测区范围200内,规划出往复式飞行的规划航线A和第二主航线A4(即第二部分规划航线)。该往复式飞行的规划航线A包括第一主航线A1、第一非主航线A2以及第二非主航线A3,第一主航线A1与第一非主航线A2以及第二非主航线A3是垂直交叉,第一主航线A1的条数是8条。第二主航线A4垂直连接首尾第一主航线A1。往复式飞行的规划航线A和第二主航线A4共同形成闭合航线。假如起飞点的位置在图中三角形所示的位置,无人飞行器可以从起飞点飞至圆点所示的位置,将圆点所示的位置作为接入点,沿箭头所指示的方向飞行完毕,飞至圆点所示的接入点,再飞回三角形所示的起飞点。通过这种方式,能够根据规划航线和起飞点灵活确定进入规划航线的接入点。
参见图7,在一实际应用中,步骤S104中,根据测区范围的形状、飞行高度和重叠率,生成规划航线,具体可以包括:
子步骤S1041:获取飞行高度和重叠率,重叠率包括航向重叠率和旁向重叠率。
子步骤S1042:根据飞行高度和重叠率,确定初始第一规划航线,初始第一规划航线的第一主航线的底部航线点与初始第一规划航线的第二非主航线位于同一直线。
子步骤S1043:使初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和往复式飞行的规划航线的第二非主航线在对应角点处航线点拍摄的照片的航向重叠率相等,进而生成规划航线,规划航线的第二主航线的位置是初始第一规划航线的第二非主航线的位置,往复式飞行的规划航线的第二非主航线的位置是初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
照片重叠指相邻照片相同影像的重叠,重叠率指的是相邻照片相同影像的重叠程度。同一航线上两相邻照片的重叠称航向重叠。航向重叠又称“纵向重叠”,是航空摄影中,沿同一航线的相邻照片上有同一地面影像部分(简言之,就是同一条线路,照片与照片之间的重叠部分)。航向重叠部分的宽度与照片宽度之比,称为航向重叠率,以百分数表示。航摄内容的不同,航向重叠率也有所不同,如航摄静态交通问题,其航向重叠率一般不少于60%,如要航摄研究动态交通问题,其航向重叠率则不得低于70%。
旁向重叠又称“横向重叠”,相邻航线之间两相邻照片的重叠(简言之,就是线路与线路之间照片的重叠部分)。其中,旁向重叠是指由于航线不同,重叠部分虽是同一地面,但影像不完全相同。旁向重叠部分的长度与照片长度之比,称为旁向重叠率,以百分数表示。在面积航空摄影中,相邻航线间的照片,旁向重叠率为35~15%,最小不少于13%。
在本实施例中,往复式飞行的规划航线的第二非主航线的角点处(即拐点)航线点拍摄的照片是横向的,规划航线的第二主航线在对应角点处拍摄的照片是纵向的。为了保证重叠率且不额外增加多余的航线,使初始第一规划航线的第二非主航线的角点处航线点拍摄的照片(即,规划航线的第二主航线在对应 角点处拍摄的照片)的旁向重叠率和往复式飞行的规划航线的第二非主航线在对应角点处航线点拍摄的照片的航向重叠率相等。通过这种方式,能够在保证重叠率的情况下,节省航线。
以测区范围的形状包括长方形,第一主航线的方向是长方形的宽度边方向为例,说明上述步骤S104的具体过程。
(1)用户在航线规划软件上设定飞行高度与重叠率,并通过测区范围微调确定第一主航线的条数为偶数条,规划出初始第一规划航线,如图8所示,初始第一规划航线AA包括第一主航线AA1、第一非主航线AA2以及第二非主航线AA3;初始第一规划航线AA的第一主航线AA1的底部航线点g与初始第一规划航线AA的第二非主航线AA3位于同一直线。
(2)对于本实施例的规划航线,使初始第一规划航线AA的第二非主航线AA3的角点处航线点拍摄的照片(即规划航线的第二主航线A4在对应角点处航线点拍摄的照片)的旁向重叠率和往复式飞行的规划航线的第二非主航线A3在对应角点处航线点拍摄的照片的航向重叠率相等,可以得到规划航线,结合图6和图8,规划航线的第二主航线A4的位置是初始第一规划航线AA的第二非主航线AA3的位置,往复式飞行的规划航线的第二非主航线A3的位置是初始第一规划航线AA的第二非主航线AA3的位置向上平行移动距离S后的位置。具体说明如下:
首先,根据航高计算出每张照片在地面上覆盖范围。
如图9和图10所示:假设摄像装置传感器的有效宽为l,焦距为h,飞行离地高度为H,摄像装置传感器比例尺寸为a,则在地面上单张照片的覆盖范围为:
宽:Lw=l*H/h
长:Ll=a*l*H/h
若设定航向重叠率为Px,旁向重叠率为Py。
结合参见图6、图8、图11以及图12,往复式飞行的规划航线的第二非主航线A3在对应角点处航线点拍摄的照片(横向)对应的覆盖范围是由四个点qrts所组成的区域,直线ef是四个点qrts所组成的区域的中心线。初始第一规划航线AA的第二非主航线AA3(即,规划航线的第二主航线A4的位置) 的角点处航线点拍摄的照片(纵向)对应的覆盖范围是由四个点kuwv所组成的区域,直线cd是四个点kuwv所组成的区域的中心线。其中,直线cd与初始第一规划航线AA的第一主航线AA1的底部航线点g、初始第一规划航线AA的第二非主航线AA3位于同一直线。
使四个点kuwv所组成的区域的旁向重叠率等于四个点qrts所组成的区域的航向重叠率相等,可计算得到:
直线cd与直线vw之间的距离是Ll/2;直线ef与直线vw之间的距离是Ll-Px*Lw+Lw/2;直线ku与直线st之间的距离是Px*Lw;直线ef与直线cd之间的距离是(Ll+Lw)/2-Px*Lw;直线st与直线vw之间的距离是Ll-Px*Lw。
因此,初始第一规划航线AA的第二非主航线AA3向上平行移动的距离S是直线ef与直线cd之间的距离,即(Ll+Lw)/2-Px*Lw。
最后规划好的规划航线如图6和图12所示,往复式飞行的规划航线的第二非主航线A3的角点处航线点拍摄的照片(横向)对应的覆盖范围由四个点qrts所组成的区域,规划航线的第二主航线A4(即,初始第一规划航线AA的第二非主航线AA3的位置)的对应角点处航线点拍摄的照片(纵向)对应的覆盖范围是由四个点kuwv所组成的区域,规划航线的第二主航线A4与往复式飞行的规划航线的第二非主航线A3之间的距离S即为(Ll+Lw)/2-Px*Lw。
当测区范围不是很大,接入点只要离起飞点较近,均可以减少无效飞行,电量与时间的浪费可以接受。但是如果测区范围很大,接入点的远近所带来的无效飞行积累很大,电量与时间的浪费也很大,严重影响作业效率的时候,有必要考虑选择最近接入点进入规划航线。
即步骤S101,可以包括:根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的最近接入点,最近接入点是无人飞行器从起飞点进入规划航线最近的起点。
进一步,参见图13,步骤S101,根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的最近接入点,具体可以包括:
子步骤S1011:根据规划航线和无人飞行器当前的起飞点,判断起飞点是否位于第一区域,第一区域包括第一子区域和第二子区域,第一子区域位于第二方形区域之外的四个角点,且与第二方形区域相对,第二子区域位于第二方 形区域之外的两相邻第一非主航线的两个角点之间,且与两相邻第一主航线形成的区域相对,第二方形区域是规划航线所形成的方形区域。
子步骤S1012:若起飞点位于第一区域,则确定最近接入点是规划航线的角点中距离起飞点最近的角点。
子步骤S1013:若起飞点不位于第一区域,则确定最近接入点是规划航线的段航线中距离起飞点最近的段航线上对应的点。
以上述图6的规划航线为例来说明,参见图14,规划航线所形成的第二方形区域由四个角点b1、b2、b3、b4组成,第一区域(图中7个阴影区域)位于第二方形区域b1b2b3b4之外,第一区域包括第一子区域(四个角点的4个阴影区域)和第二子区域(另外3个阴影区域)。第一子区域包括bb1区域、bb2区域、bb3区域以及bb4区域,第二子区域包括bb11区域、bb22区域、bb33区域。
当起飞点(图中三角形所示)不位于第一区域,例如位于第二方形区域b1b2b3b4之内,或者位于第二方形区域b1b2b3b4之外,但不在第一区域,靠近规划航线的段航线,首先确定距离起飞点最近的段航线,然后确定起飞点到该最近段航线距离最短的点,该点即为最近接入点(图中圆点所示)。当起飞点位于第一区域时(例如位于bb22区域),最近接入点是规划航线的角点中距离起飞点最近的角点(图中圆点所示)。
将规划航线所形成的第二方形区域及第二方形区域之外进行分区,利用各个区域的特点,分别确定不同的最近接入点的方法,通过这种方式,能够快速对起飞点进行定位,进而能够快速确定最近接入点。
具体地,参见图15,子步骤S1011,根据规划航线和无人飞行器当前的起飞点,判断起飞点是否位于第一区域,具体可以包括:
子步骤S1011a:以第二方形区域的左下点为原点,建立平面投影坐标系。例如:以图14为例,第二方形区域的左下点为b1。
子步骤S1011b:计算规划航线的各个角点在平面投影坐标系中的坐标位置,计算规划航线中每个段航线在平面投影坐标系中的表达式,计算起飞点在平面投影坐标系中的坐标位置。
子步骤S1011c:根据各个角点的坐标位置、每个段航线的表达式以及起 飞点的坐标位置,判断起飞点是否位于第一区域。
通过这种方式,能够严格计算出起飞点所在区域,为准确确定最近接入点提供技术支持。
参见图16,图16是本申请飞行控制系统一实施方式的结构示意图。需要说明的是,本实施例的系统能够实现上述方法中的步骤,相关内容的详细说明请参见上述方法部分,在此不再赘叙。
该系统100包括存储器1、处理器2,处理器2和存储器1通过总线3连接。
存储器1用于存储计算机程序;处理器2用于执行计算机程序并在执行计算机程序时,实现如下步骤:根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;根据规划航线和接入点,控制无人飞行器从起飞点飞行至接入点,进入规划航线,按照规划航线飞行完毕后飞回至接入点,再从接入点飞回至起飞点。
本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
其中,处理器在执行计算机程序时,实现如下步骤:确定测区范围;根据测区范围和预设要求,生成规划航线。
其中,预设要求包括无人飞行器按照规划航线飞行完毕时能够完成作业且不浪费规划航线。
其中,处理器在执行计算机程序时,实现如下步骤:确定测区范围的形状;其中,根据测区范围和预设要求,生成规划航线,包括:根据测区范围的形状、飞行高度和重叠率,生成规划航线,规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线,第二部分规划航线包括将往复式飞行的规划航线闭合起来的规划航线。
其中,往复式飞行的规划航线包括第一主航线、第一非主航线以及第二非主航线,第一主航线在角点位置与第一非主航线和/或第二非主航线垂直交叉形成往复式飞行的规划航线,第一主航线的条数是偶数;第二部分规划航线包括垂直连接首尾第一主航线的第二主航线。
其中,处理器在执行计算机程序时,实现如下步骤:
获取飞行高度和重叠率,重叠率包括航向重叠率和旁向重叠率;
根据飞行高度和重叠率,确定初始第一规划航线,初始第一规划航线的第一主航线的底部航线点与初始第一规划航线的第二非主航线位于同一直线;
使初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和往复式飞行的规划航线的第二非主航线在对应角点处航线点拍摄的照片的航向重叠率相等,进而生成规划航线,规划航线的第二主航线的位置是初始第一规划航线的第二非主航线的位置,往复式飞行的规划航线的第二非主航线的位置是初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
其中,测区范围的形状包括长方形、正方形中的一种或两种。
其中,测区范围的形状包括长方形,第一主航线的方向是长方形的宽度边方向。
其中,处理器在执行计算机程序时,实现如下步骤:
根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的最近接入点,最近接入点是无人飞行器从起飞点进入规划航线最近的起点。
其中,处理器在执行计算机程序时,实现如下步骤:
根据规划航线和无人飞行器当前的起飞点,判断起飞点是否位于第一区域,第一区域包括第一子区域和第二子区域,第一子区域位于第二方形区域之外的四个角点,且与第二方形区域相对,第二子区域位于第二方形区域之外的两相邻第一非主航线的两个角点之间,且与两相邻第一主航线形成的区域相对,第二方形区域是规划航线所形成的方形区域;
若起飞点位于第一区域,则确定最近接入点是规划航线的角点中距离起飞点最近的角点;
若起飞点不位于第一区域,则确定最近接入点是规划航线的段航线中距离起飞点最近的段航线上对应的点。
其中,处理器在执行计算机程序时,实现如下步骤:
以第二方形区域的左下点为原点,建立平面投影坐标系;
计算规划航线的各个角点在平面投影坐标系中的坐标位置,计算规划航线中每个段航线在平面投影坐标系中的表达式,计算起飞点在平面投影坐标系中的坐标位置;
根据各个角点的坐标位置、每个段航线的表达式以及起飞点的坐标位置,判断起飞点是否位于第一区域。
本申请还提供一种遥控器,该遥控器包括如上任一所述的飞行控制系统。有关飞行控制系统的详细说明,请参见上述的飞行控制系统部分,在此不再赘叙。
该飞行控制系统包括:存储器和处理器;存储器用于存储计算机程序;
处理器用于执行计算机程序并在执行计算机程序时,实现如下步骤:
根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;
根据规划航线和接入点,控制无人飞行器从起飞点飞行至接入点,进入规划航线,按照规划航线飞行完毕后飞回至接入点,再从接入点飞回至起飞点。
本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无 人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
本申请还提供另一种遥控器,需要说明的是,该遥控器能够实现上述飞行控制方法中的相关步骤,相关内容的详细说明,请参见上述飞行控制方法的相关部分,在此不再赘叙。
该遥控器包括:存储器、处理器以及通信电路;
通信电路用于与无人飞行器进行通信,用于接收无人飞行器发送的自身当前的起飞点;
存储器用于存储计算机程序;
处理器用于执行计算机程序并在执行计算机程序时,实现如下步骤:
根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;
通信电路还用于将规划航线和接入点发送至无人飞行器,以使无人飞行器从起飞点飞行至接入点,进入规划航线,按照规划航线飞行完毕后飞回至接入点,再从接入点飞回至起飞点。
本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可 以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
本申请还提供一种无人飞行器,该无人飞行器包括上述任一飞行控制系统,有关飞行控制系统的详细说明,请参见上述飞行控制系统的部分,在此不再赘叙。
该飞行控制系统包括:存储器和处理器;存储器用于存储计算机程序;
处理器用于执行计算机程序并在执行计算机程序时,实现如下步骤:
根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;
根据规划航线和接入点,控制无人飞行器从起飞点飞行至接入点,进入规划航线,按照规划航线飞行完毕后飞回至接入点,再从接入点飞回至起飞点。
本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方 式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
本申请还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时使处理器实现如上任一项的飞行控制方法。相关内容的详细说明请参见上述飞行控制方法部分,在此不再赘叙。
其中,该计算机可读存储介质可以是上述任一遥控器和/或无人飞行器的内部存储单元,例如遥控器和/或无人飞行器的硬盘或内存。该计算机可读存储介质也可以是遥控器和/或无人飞行器的外部存储设备,例如遥控器和/或无人飞行器上配备的插接式硬盘、智能存储卡、安全数字卡、闪存卡,等等。
本申请实施例根据测区范围的规划航线和无人飞行器当前的起飞点,确定无人飞行器进入所述规划航线的接入点,规划航线是满足预设要求的闭合航线,接入点是无人飞行器进入规划航线的起点;由于接入点根据规划航线和无人飞行器当前的起飞点确定,因此无人飞行器进入规划航线的起点不是固定不变的,而是可以变化的;由于规划航线是满足预设要求的闭合航线,接入点可以为规划航线中的任何一点,可以从接入点按照规划航线飞行完毕后飞回至接入点,直接再从接入点飞回至起飞点。和现有非闭合的航线作业方式相比,选择离起飞点较近、无效飞行距离减少的接入点,均能够因减少无效飞行,而减少电量与时间的浪费,并提升作业效率;如果选择最近的接入点,在较大作业场景下,因减少无效飞行而减少电量与时间的浪费会更加明显,作业效率提升会更加显著。因此,通过这种方式,能够为解决现有无人飞行器的航线作业方式中无效飞行容易造成电量与时间的大量浪费、严重影响作业效率的技术问题提供技术支持。
应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种 等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (55)
- 一种飞行控制系统,其特征在于,所述系统包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
- 根据权利要求1所述的系统,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围;根据所述测区范围和所述预设要求,生成所述规划航线。
- 根据权利要求2所述的系统,其特征在于,所述预设要求包括所述无人飞行器按照所述规划航线飞行完毕时能够完成作业且不浪费规划航线。
- 根据权利要求3所述的系统,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围的形状;其中,所述根据所述测区范围和所述预设要求,生成所述规划航线,包括:根据所述测区范围的形状、飞行高度和重叠率,生成所述规划航线,所述规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线,所述第二部分规划航线包括将所述往复式飞行的规划航线闭合起来的规划航线。
- 根据权利要求4所述的系统,其特征在于,所述往复式飞行的规划航线包括第一主航线、第一非主航线以及第二非主航线,所述第一主航线在角点位置与所述第一非主航线和/或第二非主航线垂直交叉形成所述往复式飞行的规划航线,所述第一主航线的条数是偶数;所述第二部分规划航线包括垂直连 接首尾第一主航线的第二主航线。
- 根据权利要求5所述的系统,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:获取所述飞行高度和所述重叠率,所述重叠率包括航向重叠率和旁向重叠率;根据所述飞行高度和所述重叠率,确定初始第一规划航线,所述初始第一规划航线的第一主航线的底部航线点与所述初始第一规划航线的第二非主航线位于同一直线;使所述初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和所述往复式飞行的规划航线的第二非主航线在对应所述角点处航线点拍摄的照片的航向重叠率相等,进而生成所述规划航线,所述规划航线的第二主航线的位置是所述初始第一规划航线的第二非主航线的位置,所述往复式飞行的规划航线的第二非主航线的位置是所述初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
- 根据权利要求6所述的系统,其特征在于,所述测区范围的形状包括长方形、正方形中的一种或两种。
- 根据权利要求7所述的系统,其特征在于,所述测区范围的形状包括长方形,所述第一主航线的方向是所述长方形的宽度边方向。
- 根据权利要求5所述的系统,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的最近接入点,所述最近接入点是所述无人飞行器从所述起飞点进入所述规划航线最近的起点。
- 根据权利要求9所述的系统,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述规划航线和所述无人飞行器当前的起飞点,判断所述起飞点是否位于第一区域,所述第一区域包括第一子区域和第二子区域,所述第一子区域位于第二方形区域之外的四个角点,且与所述第二方形区域相对,所述第二子区域位于所述第二方形区域之外的两相邻所述第一非主航线的两个角点之间, 且与两相邻所述第一主航线形成的区域相对,所述第二方形区域是所述规划航线所形成的方形区域;若所述起飞点位于所述第一区域,则确定所述最近接入点是所述规划航线的角点中距离所述起飞点最近的角点;若所述起飞点不位于所述第一区域,则确定所述最近接入点是所述规划航线的段航线中距离所述起飞点最近的段航线上对应的点。
- 根据权利要求10所述的系统,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:以所述第二方形区域的左下点为原点,建立平面投影坐标系;计算所述规划航线的各个角点在所述平面投影坐标系中的坐标位置,计算所述规划航线中每个段航线在所述平面投影坐标系中的表达式,计算所述起飞点在所述平面投影坐标系中的坐标位置;根据各个角点的坐标位置、每个段航线的表达式以及起飞点的坐标位置,判断所述起飞点是否位于第一区域。
- 一种飞行控制方法,其特征在于,包括:根据测区范围的规划航线和无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
- 根据权利要求12所述的方法,其特征在于,所述根据测区范围的规划航线和无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点之前,包括:确定所述测区范围;根据所述测区范围和所述预设要求,生成所述规划航线。
- 根据权利要求13所述的方法,其特征在于,所述预设要求包括所述无人飞行器按照所述规划航线飞行完毕时能够完成作业且不浪费规划航线。
- 根据权利要求14所述的方法,其特征在于,所述确定所述测区范围, 包括:确定所述测区范围的形状;其中,所述根据所述测区范围和所述预设要求,生成所述规划航线,包括:根据所述测区范围的形状、飞行高度和重叠率,生成所述规划航线,所述规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线,所述第二部分规划航线包括将所述往复式飞行的规划航线闭合起来的规划航线。
- 根据权利要求15所述的方法,其特征在于,所述往复式飞行的规划航线包括第一主航线、第一非主航线以及第二非主航线,所述第一主航线与所述第一非主航线和/或第二非主航线垂直交叉形成所述往复式飞行的规划航线,所述第一主航线的条数是偶数;所述第二部分规划航线包括垂直连接首尾第一主航线的第二主航线。
- 根据权利要求16所述的方法,其特征在于,所述根据所述测区范围的形状、飞行高度和重叠率,生成所述规划航线,包括:获取所述飞行高度和所述重叠率,所述重叠率包括航向重叠率和旁向重叠率;根据所述飞行高度和所述重叠率,确定初始第一规划航线,所述初始第一规划航线的第一主航线的底部航线点与所述初始第一规划航线的的第二非主航线位于同一直线;使所述初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和所述往复式飞行的规划航线的第二非主航线在对应所述角点处航线点拍摄的照片的航向重叠率相等,进而生成所述规划航线,所述规划航线的第二主航线的位置是所述初始第一规划航线的第二非主航线的位置,所述往复式飞行的规划航线的第二非主航线的位置是所述初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
- 根据权利要求17所述的方法,其特征在于,所述测区范围的形状包括长方形、正方形中的一种或两种。
- 根据权利要求18所述的方法,其特征在于,所述测区范围的形状包括长方形,所述第一主航线的方向是所述长方形的宽度边方向。
- 根据权利要求16所述的方法,其特征在于,所述根据测区范围的规 划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,包括:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的最近接入点,所述最近接入点是所述无人飞行器从所述起飞点进入所述规划航线最近的起点。
- 根据权利要求20所述的方法,其特征在于,所述根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的最近接入点,包括:根据所述规划航线和所述无人飞行器当前的起飞点,判断所述起飞点是否位于第一区域,所述第一区域包括第一子区域和第二子区域,所述第一子区域位于第二方形区域之外的四个角点,且与所述第二方形区域相对,所述第二子区域位于所述第二方形区域之外的两相邻所述第一非主航线的两个角点之间,且与两相邻所述第一主航线形成的区域相对,所述第二方形区域是所述规划航线所形成的方形区域;若所述起飞点位于所述第一区域,则确定所述最近接入点是所述规划航线的角点中距离所述起飞点最近的角点;若所述起飞点不位于所述第一区域,则确定所述最近接入点是所述规划航线的段航线中距离所述起飞点最近的段航线上对应的点。
- 根据权利要求21所述的方法,其特征在于,所述根据所述规划航线和所述无人飞行器当前的起飞点,判断所述起飞点是否位于第一区域,包括:以所述第二方形区域的左下点为原点,建立平面投影坐标系;计算所述规划航线的各个角点在所述平面投影坐标系中的坐标位置,计算所述规划航线中每个段航线在所述平面投影坐标系中的表达式,计算所述起飞点在所述平面投影坐标系中的坐标位置;根据各个角点的坐标位置、每个段航线的表达式以及起飞点的坐标位置,判断所述起飞点是否位于第一区域。
- 一种遥控器,其特征在于,所述遥控器包括飞行控制系统,所述飞行控制系统包括:存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
- 根据权利要求23所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围;根据所述测区范围和所述预设要求,生成所述规划航线。
- 根据权利要求24所述的遥控器,其特征在于,所述预设要求包括所述无人飞行器按照所述规划航线飞行完毕时能够完成作业且不浪费规划航线。
- 根据权利要求25所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围的形状;其中,所述根据所述测区范围和所述预设要求,生成所述规划航线,包括:根据所述测区范围的形状、飞行高度和重叠率,生成所述规划航线,所述规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线,所述第二部分规划航线包括将所述往复式飞行的规划航线闭合起来的规划航线。
- 根据权利要求26所述的遥控器,其特征在于,所述往复式飞行的规划航线包括第一主航线、第一非主航线以及第二非主航线,所述第一主航线在角点位置与所述第一非主航线和/或第二非主航线垂直交叉形成所述往复式飞行的规划航线,所述第一主航线的条数是偶数;所述第二部分规划航线包括垂直连接首尾第一主航线的第二主航线。
- 根据权利要求27所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:获取所述飞行高度和所述重叠率,所述重叠率包括航向重叠率和旁向重叠 率;根据所述飞行高度和所述重叠率,确定初始第一规划航线,所述初始第一规划航线的第一主航线的底部航线点与所述初始第一规划航线的第二非主航线位于同一直线;使所述初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和所述往复式飞行的规划航线的第二非主航线在对应所述角点处航线点拍摄的照片的航向重叠率相等,进而生成所述规划航线,所述规划航线的第二主航线的位置是所述初始第一规划航线的第二非主航线的位置,所述往复式飞行的规划航线的第二非主航线的位置是所述初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
- 根据权利要求28所述的遥控器,其特征在于,所述测区范围的形状包括长方形、正方形中的一种或两种。
- 根据权利要求29所述的遥控器,其特征在于,所述测区范围的形状包括长方形,所述第一主航线的方向是所述长方形的宽度边方向。
- 根据权利要求27所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:所述根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的最近接入点,所述最近接入点是所述无人飞行器从所述起飞点进入所述规划航线最近的起点。
- 根据权利要求31所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述规划航线和所述无人飞行器当前的起飞点,判断所述起飞点是否位于第一区域,所述第一区域包括第一子区域和第二子区域,所述第一子区域位于第二方形区域之外的四个角点,且与所述第二方形区域相对,所述第二子区域位于所述第二方形区域之外的两相邻所述第一非主航线的两个角点之间,且与两相邻所述第一主航线形成的区域相对,所述第二方形区域是所述规划航线所形成的方形区域;若所述起飞点位于所述第一区域,则确定所述最近接入点是所述规划航线的角点中距离所述起飞点最近的角点;若所述起飞点不位于所述第一区域,则确定所述最近接入点是所述规划航线的段航线中距离所述起飞点最近的段航线上对应的点。
- 根据权利要求32所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:以所述第二方形区域的左下点为原点,建立平面投影坐标系;计算所述规划航线的各个角点在所述平面投影坐标系中的坐标位置,计算所述规划航线中每个段航线在所述平面投影坐标系中的表达式,计算所述起飞点在所述平面投影坐标系中的坐标位置;根据各个角点的坐标位置、每个段航线的表达式以及起飞点的坐标位置,判断所述起飞点是否位于第一区域。
- 一种无人飞行器,其特征在于,所述无人飞行器包括飞行控制系统,所述飞行控制系统包括:存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;根据所述规划航线和所述接入点,控制所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
- 根据权利要求34所述的无人飞行器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围;根据所述测区范围和所述预设要求,生成所述规划航线。
- 根据权利要求35所述的无人飞行器,其特征在于,所述预设要求包括所述无人飞行器按照所述规划航线飞行完毕时能够完成作业且不浪费规划航线。
- 根据权利要求36所述的无人飞行器,其特征在于,所述处理器在执 行所述计算机程序时,实现如下步骤:确定所述测区范围的形状;其中,所述根据所述测区范围和所述预设要求,生成所述规划航线,包括:根据所述测区范围的形状、飞行高度和重叠率,生成所述规划航线,所述规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线,所述第二部分规划航线包括将所述往复式飞行的规划航线闭合起来的规划航线。
- 根据权利要求37所述的无人飞行器,其特征在于,所述往复式飞行规划航线包括第一主航线、第一非主航线以及第二非主航线,所述第一主航线在角点位置与所述第一非主航线和/或第二非主航线垂直交叉形成所述往复式飞行的规划航线,所述第一主航线的条数是偶数;所述第二部分规划航线包括垂直连接首尾第一主航线的第二主航线。
- 根据权利要求38所述的无人飞行器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:获取所述飞行高度和所述重叠率,所述重叠率包括航向重叠率和旁向重叠率;根据所述飞行高度和所述重叠率,确定初始第一规划航线,所述初始第一规划航线的第一主航线的底部航线点与所述初始第一规划航线的第二非主航线位于同一直线;使所述初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和所述往复式飞行的规划航线的第二非主航线在对应所述角点处航线点拍摄的照片的航向重叠率相等,进而生成所述规划航线,所述规划航线的第二主航线的位置是所述初始第一规划航线的第二非主航线的位置,所述往复式飞行的规划航线的第二非主航线的位置是所述初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
- 根据权利要求39所述的无人飞行器,其特征在于,所述测区范围的形状包括长方形、正方形中的一种或两种。
- 根据权利要求40所述的无人飞行器,其特征在于,所述测区范围的形状包括长方形,所述第一主航线的方向是所述长方形的宽度边方向。
- 根据权利要求38所述的无人飞行器,其特征在于,所述处理器在执 行所述计算机程序时,实现如下步骤:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的最近接入点,所述最近接入点是所述无人飞行器从所述起飞点进入所述规划航线最近的起点。
- 根据权利要求42所述的无人飞行器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述规划航线和所述无人飞行器当前的起飞点,判断所述起飞点是否位于第一区域,所述第一区域包括第一子区域和第二子区域,所述第一子区域位于第二方形区域之外的四个角点,且与所述第二方形区域相对,所述第二子区域位于所述第二方形区域之外的两相邻所述第一非主航线的两个角点之间,且与两相邻所述第一主航线形成的区域相对,所述第二方形区域是所述规划航线所形成的方形区域;若所述起飞点位于所述第一区域,则确定所述最近接入点是所述规划航线的角点中距离所述起飞点最近的角点;若所述起飞点不位于所述第一区域,则确定所述最近接入点是所述规划航线的段航线中距离所述起飞点最近的段航线上对应的点。
- 根据权利要求43所述的无人飞行器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:以所述第二方形区域的左下点为原点,建立平面投影坐标系;计算所述规划航线的各个角点在所述平面投影坐标系中的坐标位置,计算所述规划航线中每个段航线在所述平面投影坐标系中的表达式,计算所述起飞点在所述平面投影坐标系中的坐标位置;根据各个角点的坐标位置、每个段航线的表达式以及起飞点的坐标位置,判断所述起飞点是否位于第一区域。
- 一种遥控器,其特征在于,所述遥控器包括:存储器、处理器以及通信电路;所述通信电路用于与无人飞行器进行通信,用于接收所述无人飞行器发送的自身当前的起飞点;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的接入点,所述规划航线是满足预设要求的闭合航线,所述接入点是所述无人飞行器进入所述规划航线的起点;所述通信电路还用于将所述规划航线和所述接入点发送至所述无人飞行器,以使所述无人飞行器从所述起飞点飞行至所述接入点,进入所述规划航线,按照所述规划航线飞行完毕后飞回至所述接入点,再从所述接入点飞回至所述起飞点。
- 根据权利要求45所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围;根据所述测区范围和所述预设要求,生成所述规划航线。
- 根据权利要求46所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:确定所述测区范围的形状;其中,所述根据所述测区范围和所述预设要求,生成所述规划航线,包括:根据所述测区范围的形状、飞行高度和重叠率,生成所述规划航线,所述规划航线包括第一部分的往复式飞行的规划航线和第二部分规划航线,所述第二部分规划航线包括将所述往复式飞行的规划航线闭合起来的规划航线。
- 根据权利要求47所述的遥控器,其特征在于,所述往复式飞行的规划航线包括第一主航线、第一非主航线以及第二非主航线,所述第一主航线在角点位置与所述第一非主航线和/或第二非主航线垂直交叉形成所述往复式飞行的规划航线,所述第一主航线的条数是偶数;所述第二部分规划航线包括垂直连接首尾第一主航线的第二主航线。
- 根据权利要求48所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:获取所述飞行高度和所述重叠率,所述重叠率包括航向重叠率和旁向重叠率;根据所述飞行高度和所述重叠率,确定初始第一规划航线,所述初始第一规划航线的第一主航线的底部航线点与所述初始第一规划航线的第二非主航线位于同一直线;使所述初始第一规划航线的第二非主航线的角点处航线点拍摄的照片的旁向重叠率和所述往复式飞行的规划航线的第二非主航线在对应所述角点处航线点拍摄的照片的航向重叠率相等,进而生成所述规划航线,所述规划航线的第二主航线的位置是所述初始第一规划航线的第二非主航线的位置,所述往复式飞行的规划航线的第二非主航线的位置是所述初始第一规划航线的第二非主航线的位置向上平行移动距离S后的位置,S是正数。
- 根据权利要求49所述的遥控器,其特征在于,所述测区范围的形状包括长方形、正方形中的一种或两种。
- 根据权利要求50所述的遥控器,其特征在于,所述测区范围的形状包括长方形,所述第一主航线的方向是所述长方形的宽度边方向。
- 根据权利要求48所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:所述根据测区范围的规划航线和所述无人飞行器当前的起飞点,确定所述无人飞行器进入所述规划航线的最近接入点,所述最近接入点是所述无人飞行器从所述起飞点进入所述规划航线最近的起点。
- 根据权利要求52所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:根据所述规划航线和所述无人飞行器当前的起飞点,判断所述起飞点是否位于第一区域,所述第一区域包括第一子区域和第二子区域,所述第一子区域位于第二方形区域之外的四个角点,且与所述第二方形区域相对,所述第二子区域位于所述第二方形区域之外的两相邻所述第一非主航线的两个角点之间,且与两相邻所述第一主航线形成的区域相对,所述第二方形区域是所述规划航线所形成的方形区域;若所述起飞点位于所述第一区域,则确定所述最近接入点是所述规划航线的角点中距离所述起飞点最近的角点;若所述起飞点不位于所述第一区域,则确定所述最近接入点是所述规划航 线的段航线中距离所述起飞点最近的段航线上对应的点。
- 根据权利要求53所述的遥控器,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:以所述第二方形区域的左下点为原点,建立平面投影坐标系;计算所述规划航线的各个角点在所述平面投影坐标系中的坐标位置,计算所述规划航线中每个段航线在所述平面投影坐标系中的表达式,计算所述起飞点在所述平面投影坐标系中的坐标位置;根据各个角点的坐标位置、每个段航线的表达式以及起飞点的坐标位置,判断所述起飞点是否位于第一区域。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求12-22任一项所述的飞行控制方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980033843.2A CN112154397B (zh) | 2019-08-29 | 2019-08-29 | 飞行控制方法、遥控器、无人飞行器、系统及存储介质 |
PCT/CN2019/103436 WO2021035644A1 (zh) | 2019-08-29 | 2019-08-29 | 飞行控制方法、遥控器、无人飞行器、系统及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/103436 WO2021035644A1 (zh) | 2019-08-29 | 2019-08-29 | 飞行控制方法、遥控器、无人飞行器、系统及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021035644A1 true WO2021035644A1 (zh) | 2021-03-04 |
Family
ID=73891559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/103436 WO2021035644A1 (zh) | 2019-08-29 | 2019-08-29 | 飞行控制方法、遥控器、无人飞行器、系统及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112154397B (zh) |
WO (1) | WO2021035644A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114428510A (zh) * | 2022-01-27 | 2022-05-03 | 成都睿铂科技有限责任公司 | 环绕航线修正方法及系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114694422B (zh) * | 2022-06-01 | 2022-09-06 | 浙江这里飞科技有限公司 | 一种飞行航线的冲突检测方法、装置及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105549619A (zh) * | 2016-02-03 | 2016-05-04 | 苏州大势智慧信息科技有限公司 | 一种用于无人机续航能力的多起降点航线规划方法 |
US20180158018A1 (en) * | 2016-12-05 | 2018-06-07 | United States Postal Service | Systems for autonomous item delivery |
CN108184794A (zh) * | 2017-12-29 | 2018-06-22 | 上海拓攻机器人有限公司 | 植保作业方法、终端、植保无人机及计算机可读存储介质 |
CN109253729A (zh) * | 2018-09-19 | 2019-01-22 | 沈阳无距科技有限公司 | 一种无人机航线规划方法、装置及电子设备 |
CN109871030A (zh) * | 2019-03-01 | 2019-06-11 | 上海戴世智能科技有限公司 | 一种无人机械的路径规划方法 |
CN110134147A (zh) * | 2019-06-20 | 2019-08-16 | 安阳全丰航空植保科技股份有限公司 | 一种植保无人机的自主路径规划方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106814732A (zh) * | 2015-11-27 | 2017-06-09 | 科沃斯机器人股份有限公司 | 自移动机器人及其行走模式转换方法和行走方法 |
CN106406342B (zh) * | 2016-09-14 | 2019-03-29 | 无锡微翼德米无人机系统科技有限公司 | 植保无人机阶段化飞行作业的打药方法 |
US20180181129A1 (en) * | 2016-12-27 | 2018-06-28 | Autel Robotics Co., Ltd. | Method and apparatus for controlling flight of unmanned aerial vehicle and unmanned aerial vehicle |
CN107544540B (zh) * | 2017-09-11 | 2023-03-17 | 土豆数据科技集团有限公司 | 一种应用于旋翼无人机的航线规划方法 |
-
2019
- 2019-08-29 CN CN201980033843.2A patent/CN112154397B/zh active Active
- 2019-08-29 WO PCT/CN2019/103436 patent/WO2021035644A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105549619A (zh) * | 2016-02-03 | 2016-05-04 | 苏州大势智慧信息科技有限公司 | 一种用于无人机续航能力的多起降点航线规划方法 |
US20180158018A1 (en) * | 2016-12-05 | 2018-06-07 | United States Postal Service | Systems for autonomous item delivery |
CN108184794A (zh) * | 2017-12-29 | 2018-06-22 | 上海拓攻机器人有限公司 | 植保作业方法、终端、植保无人机及计算机可读存储介质 |
CN109253729A (zh) * | 2018-09-19 | 2019-01-22 | 沈阳无距科技有限公司 | 一种无人机航线规划方法、装置及电子设备 |
CN109871030A (zh) * | 2019-03-01 | 2019-06-11 | 上海戴世智能科技有限公司 | 一种无人机械的路径规划方法 |
CN110134147A (zh) * | 2019-06-20 | 2019-08-16 | 安阳全丰航空植保科技股份有限公司 | 一种植保无人机的自主路径规划方法及装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114428510A (zh) * | 2022-01-27 | 2022-05-03 | 成都睿铂科技有限责任公司 | 环绕航线修正方法及系统 |
CN114428510B (zh) * | 2022-01-27 | 2024-04-19 | 成都睿铂科技有限责任公司 | 环绕航线修正方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112154397B (zh) | 2023-09-15 |
CN112154397A (zh) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108521788B (zh) | 生成模拟航线的方法、模拟飞行的方法、设备及存储介质 | |
WO2021035644A1 (zh) | 飞行控制方法、遥控器、无人飞行器、系统及存储介质 | |
WO2020164010A1 (zh) | 车道线检测方法、装置、系统与车辆、存储介质 | |
CN112097770B (zh) | 一种多无人机协同全覆盖的路径规划方法、装置、存储介质及终端 | |
EP3699046A1 (en) | Method and apparatus for processing driving reference line, and vehicle | |
CN102867073B (zh) | 一种基于性能导航的飞行程序设计系统及验证平台和验证方法 | |
CN202221566U (zh) | 一种基于性能导航的飞行程序设计系统及验证平台 | |
WO2019052501A1 (zh) | 信息传输方法、交通控制单元和车载单元 | |
CN109709976B (zh) | 一种可飞行区域确定方法、装置、无人机及存储介质 | |
CN113223113B (zh) | 车道线处理方法、装置、电子设备和云控平台 | |
JP2005504274A (ja) | 4次元ルートプランナ | |
CN103616032A (zh) | 导航地图显示比例尺与三维视角自动控制方法及装置 | |
WO2022061491A1 (zh) | 飞行航线生成方法、装置、无人机系统及存储介质 | |
JP6087185B2 (ja) | 3次元地図表示システム | |
WO2023151548A1 (zh) | 导航方法、装置、程序及计算机可读存储介质 | |
WO2020113394A1 (zh) | 飞行器的航线规划方法、控制台、飞行器系统及存储介质 | |
CN111035925B (zh) | 游戏中虚拟交通道路网模型的生成方法、装置及电子装置 | |
KR20210038448A (ko) | 전자지도 표시 방법, 장치, 기기 및 판독 가능 저장 매체 | |
CN109931933A (zh) | 基于gis平台的任务规划和导航绘制方法 | |
WO2021046810A1 (zh) | 一种三维点云的实时显示方法、设备、系统及存储介质 | |
CN112346480B (zh) | 一种室内无人机及其控制方法、计算机可读存储介质 | |
CN107678444A (zh) | 一种实现平行偏置飞行的方法 | |
CN111080518A (zh) | 点云图像的拼接方法、装置及存储介质 | |
CN114609646A (zh) | 激光建图方法、装置、介质及电子设备 | |
JP2013200174A (ja) | レーダ表示装置及びレーダ表示装置の飛行高度表示方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19942880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19942880 Country of ref document: EP Kind code of ref document: A1 |