WO2022061491A1 - 飞行航线生成方法、装置、无人机系统及存储介质 - Google Patents

飞行航线生成方法、装置、无人机系统及存储介质 Download PDF

Info

Publication number
WO2022061491A1
WO2022061491A1 PCT/CN2020/116715 CN2020116715W WO2022061491A1 WO 2022061491 A1 WO2022061491 A1 WO 2022061491A1 CN 2020116715 W CN2020116715 W CN 2020116715W WO 2022061491 A1 WO2022061491 A1 WO 2022061491A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling point
flight
route
abnormal
adjustment
Prior art date
Application number
PCT/CN2020/116715
Other languages
English (en)
French (fr)
Inventor
黄振昊
王凯
何纲
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080033191.5A priority Critical patent/CN113939786A/zh
Priority to PCT/CN2020/116715 priority patent/WO2022061491A1/zh
Publication of WO2022061491A1 publication Critical patent/WO2022061491A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to a method, device, unmanned aerial vehicle system and storage medium for generating a flight route.
  • Unmanned Aerial Vehicle is an unmanned aircraft operated by radio remote control equipment and self-contained program control device, which can also be operated fully or intermittently autonomously by the on-board computer.
  • the take-off stage When the drone is operating, the take-off stage usually rises vertically from the starting point to the same level as the target location, and then flies horizontally to the target location.
  • the related technology In order to save power, the related technology usually adopts the scheme of inclined flight, that is, the inclined flight from the starting point to the target point.
  • the present application provides a method, device, UAV system and storage medium for generating a flight route, which can improve the safety of UAV flight.
  • an embodiment of the present application provides a method for generating a flight route, the method comprising:
  • the abnormal flight segment including the abnormal sampling point in the initial route is adjusted to obtain an adjusted flight segment, and the The adjustment flight segment does not contain abnormal sampling points;
  • the actual height is the height of the target object at the location of the sampling point;
  • a first flight route is generated according to the normal flight segment in the initial flight route where the flight segment adjustment has not been performed, and the adjusted flight segment.
  • an embodiment of the present application provides a flight route generation device, the flight route generation device includes a memory and a processor, wherein the memory is used to store a computer program; the processor is used to call the computer
  • the program does the following:
  • the abnormal flight segment including the abnormal sampling point in the initial route is adjusted to obtain an adjusted flight segment, and the adjusted flight segment does not contain abnormal sampling points;
  • the actual altitude is the The height of the target object at the location of the sampling point; the first flight route is generated according to the normal segment in the initial route where no segment adjustment has been performed, and the adjusted segment.
  • an embodiment of the present application provides a control terminal, the control terminal is connected to an unmanned aerial vehicle and used to control the unmanned aerial vehicle, and the control terminal includes a memory and a processor, wherein the memory is used to store a computer A program; the processor is used to call the computer program to perform the following operations:
  • the abnormal flight segment including the abnormal sampling point in the initial route is adjusted to obtain an adjusted flight segment, and the adjusted flight segment does not contain abnormal sampling points;
  • the actual altitude is the The height of the target object at the location of the sampling point; the first flight route is generated according to the normal segment in the initial route where no segment adjustment has been performed, and the adjusted segment.
  • an embodiment of the present application provides an unmanned aerial vehicle, including a fuselage, a power device, and a control device, wherein the control device and the power device are respectively disposed on the fuselage of the unmanned aerial vehicle, and the control device used to control the power device to drive the drone to move, wherein the control device includes a memory and a processor, wherein the memory is used to store a computer program; the processor is used to call the computer program Do the following:
  • the abnormal flight segment including the abnormal sampling point in the initial route is adjusted to obtain an adjusted flight segment, and the adjusted flight segment does not contain abnormal sampling points;
  • the actual altitude is the The height of the target object at the location of the sampling point; the first flight route is generated according to the normal segment in the initial route where no segment adjustment has been performed, and the adjusted segment.
  • an embodiment of the present application provides an unmanned aerial vehicle system, including a control terminal and an unmanned aerial vehicle, and the unmanned aerial vehicle system further includes a control device disposed on the control terminal body or the unmanned aerial vehicle body , the control device includes a memory and a processor, wherein the memory is used to store a computer program; the processor is used to call the computer program to perform the following operations:
  • the abnormal flight segment including the abnormal sampling point in the initial route is adjusted to obtain an adjusted flight segment, and the adjusted flight segment does not contain abnormal sampling points;
  • the actual altitude is the The height of the target object at the location of the sampling point; the first flight route is generated according to the normal segment in the initial route where no segment adjustment has been performed, and the adjusted segment.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium includes instructions, when the instructions are executed on a computer, the computer causes the computer to execute the above method for generating a flight path.
  • the method, device, UAV system, and storage medium for generating a flight route include: determining an initial route; determining a plurality of sampling points from the initial route; determining a first preset of each sampling point on the initial route Set the altitude; when there are abnormal sampling points whose first preset altitude is lower than the actual altitude among the multiple sampling points, adjust the abnormal flight segment including the abnormal sampling point in the initial route to obtain the adjusted flight segment, and the adjusted flight segment does not contain Abnormal sampling point; the actual height is the height of the target object at the location of the sampling point; the first flight route is generated according to the normal flight segment that has not been adjusted for the flight segment in the initial route, and the adjusted flight segment.
  • the UAV when the UAV performs a flight mission, after the initial route is determined, it is first determined whether there is an abnormal sampling point based on the first preset altitude and the actual altitude corresponding to each sampling point on the initial route, and the abnormal sampling point corresponds to The first preset height is lower than the actual height of the target object where it is located, that is, the target object will hinder the normal flight of the UAV. Therefore, when there are abnormal sampling points, by adjusting the flight segment, the obtained adjustment The flight segment does not contain abnormal sampling points, and the flight route obtained based on the adjustment of the flight segment does not include abnormal sampling points. Therefore, the drone will not collide when flying according to the flight route, thereby improving the flight of the drone. security.
  • FIG. 1 is a schematic diagram of the flight logic during flight operations in the related art
  • FIG. 2 is a schematic diagram of a method for generating a flight route provided by some embodiments of the present application
  • FIG. 3 is a schematic diagram of determining an initial route in some embodiments of the present application.
  • FIG. 4 is a schematic diagram of determining a first preset height of each sampling point by a control terminal in some embodiments of the present application
  • FIG. 5 is a schematic diagram of a control terminal building a relationship function in some embodiments of the present application.
  • FIG. 6 is a schematic diagram of a control terminal performing flight segment adjustment in some embodiments of the present application.
  • FIG. 7 is an example diagram of a control terminal performing flight segment adjustment in some embodiments of the present application.
  • FIG. 8 is a schematic diagram of a control terminal performing flight segment adjustment in some embodiments of the present application.
  • FIG. 9 is an example diagram of flight segment adjustment performed by a control terminal in some embodiments of the present application.
  • FIG. 10 is an example diagram of a control terminal performing flight segment adjustment in some embodiments of the present application.
  • FIG. 11 is a schematic diagram of a control terminal performing flight segment adjustment in some embodiments of the present application.
  • FIG. 12 is an example diagram of a control terminal performing flight segment adjustment in some embodiments of the present application.
  • FIG. 13 is an example diagram of generating a first flight route by a control terminal in some embodiments of the present application.
  • FIG. 14 is an example diagram of generating a first flight route by a control terminal in some embodiments of the present application.
  • 15 is a schematic diagram of a control terminal performing route adjustment in some embodiments of the present application.
  • 16 is a schematic top view of a second flight route in some embodiments of the present application.
  • 17 is a schematic diagram of an apparatus for generating a flight route provided by some embodiments of the present application.
  • FIG. 18 is a schematic diagram of an unmanned aerial vehicle system in some embodiments of the present application.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • Figure 1 is a schematic diagram of the flight logic during flight operations in the related art (the XY plane in the figure is a horizontal plane).
  • the take-off stage usually starts from the starting point (that is, the plane in Figure 1).
  • Point A also known as Home Point
  • Point B which has the same horizontal height as the target point, and then flies horizontally from Point B to Point C, the target point (point C can be the first waypoint for subsequent flight operations).
  • the distance the drone needs to fly is D_AB+D_BC.
  • the drone needs to fly horizontally from point C to point B, and then vertically land from point B to point A.
  • the related art proposes another flight logic using inclined flight, that is, the inclined flight from point A to point C, or the inclined flight from point C to point A.
  • the distance the drone needs to fly is D_AC. Since D_AC ⁇ D_AB+D_BC, the flight distance and flight time can be reduced, and the power consumption of the drone can be reduced.
  • the obstacle when there is an obstacle on the oblique flight path from the starting point to the target point, such as when there are objects such as tall buildings on the projection of the line AC on the ground, the obstacle will affect the normal flight of the UAV (such as avoiding Obstacles need to decelerate, or manual obstacle avoidance flight is required), or even collisions may occur, thereby reducing the safety of UAV flying.
  • the flight route generation method, device, UAV system and storage medium provided by the embodiments of the present application can improve the safety of UAV flight.
  • the method for generating a flight route includes: determining an initial route; determining a plurality of sampling points from the initial route; determining a first preset altitude of each sampling point on the initial route; When there are abnormal sampling points in the altitude, adjust the abnormal flight segments containing abnormal sampling points in the initial route to obtain the adjusted flight segments, and the adjusted flight segments do not contain abnormal sampling points; the actual altitude is the height of the target object where the sampling points are located; The normal flight segment without segment adjustment in the initial route, and the adjusted segment, generate the first flight route.
  • the UAV when the UAV is on a flight mission, after determining the initial route, it is first determined whether there is an abnormal sampling point based on the first preset altitude and the actual altitude corresponding to each sampling point on the initial route, and the first A preset height is lower than the actual height of the target object at its location, that is, the target object will hinder the normal flight of the UAV. Therefore, when there are abnormal sampling points, by adjusting the flight segment, the adjusted flight segment obtained Abnormal sampling points are not included, and the flight route obtained by adjusting the flight segment does not include abnormal sampling points. Therefore, the drone will not crash when flying according to the flight route, thereby improving the safety of drone flight. sex.
  • the method for generating the flight route in the embodiment of the present application may be implemented by a control terminal used to control the UAV, and the control terminal can generate the flight route of the UAV through the method for generating the flight route in the embodiment of the present application, and control the flight route.
  • the drone flies according to the flight route.
  • the processing steps of the flight route generation method in the embodiment of the present application may also be implemented by a control device inside the drone.
  • a method of generating a flight path is provided.
  • the present application mainly takes the application of the flight route generation method to a control terminal as an example to explain the processing flow of the method.
  • FIG. 2 is a schematic diagram of a method for generating a flight route provided by some embodiments of the present application. As shown in FIG. 2 , the method includes:
  • the initial route is the route planned by the control terminal according to the flight task.
  • the flight task can be a take-off task, that is, flying from the Home point to the first waypoint; the flight task can also be a landing task, that is, flying from the last waypoint to Home. point.
  • control terminal may perform sampling processing on the initial route at a fixed sampling interval or a non-fixed sampling interval to obtain multiple sampling points.
  • the non-fixed sampling interval means that the sampling interval is a value that varies randomly, that is, the distance between every two adjacent sampling points is different.
  • the non-fixed sampling interval is 3m and 4m and so on.
  • the control terminal may obtain the first sampling point at the starting point on the initial flight route, then obtain the second sampling point at an interval of 3m, obtain the third sampling point at an interval of 4m, and so on. That is, the interval between the first sampling point and the second sampling point is 3m, and the interval between the second sampling point and the third sampling point is 4m.
  • the fixed sampling interval means that the sampling interval is a fixed value, so that the distance between every two adjacent sampling points is the same (ie, the horizontal distance).
  • the fixed sampling interval is 2m
  • the control terminal obtains a sampling point from the initial route every 2m at a horizontal distance, so that the horizontal distance between every two adjacent sampling points is 2m.
  • the control terminal After determining a plurality of sampling points, the control terminal determines the first preset height of each sampling point on the initial route, and the first preset height is the highest height at which the target object existing at the location of the sampling point does not affect the flight of the UAV,
  • the target object may specifically be an obstacle such as a tree or a building.
  • the actual height is the height of the target object at the location of the sampling point.
  • the control terminal can obtain the actual height of the target object at the location of each sampling point, and after determining the first preset height of each sampling point, compare the first preset height corresponding to each sampling point with the actual height.
  • the target object at the location of the abnormal sampling point has an "intersection point" with the current initial route, that is, the position of the abnormal sampling point is located at an "intersection point”.
  • the target object will affect the normal flight of the UAV. Therefore, when there are abnormal sampling points, the abnormal flight segments containing abnormal sampling points are adjusted to obtain the adjusted flight segments that do not contain abnormal sampling points, so as to adjust the corresponding position of the flight segment. The target object will not affect the normal flight of the drone.
  • the control terminal When abnormal sampling points are included in the initial route, the control terminal obtains the adjusted segment without abnormal sampling points through segment adjustment, and then combines the normal segments in the initial route with no segment adjustment to generate the first flight route.
  • the normal flight segment adjusted by the segment does not contain abnormal sampling points. Therefore, the generated first flight route does not contain abnormal sampling points. Therefore, when the UAV flies according to the first flight route, it will not be affected by obstacles. Ensure the safety of drone flight.
  • the initial route can be directly used as the flight route.
  • An embodiment of the present application provides a method for generating a flight route.
  • an unmanned aerial vehicle performs a flight mission
  • determining an initial route includes:
  • FIG. 3 is a schematic diagram of determining an initial route in some embodiments of the application.
  • the flight task is taken as an example to explain, and the UAV needs to fly from the starting waypoint M to the ending waypoint N. Therefore, the control terminal can determine the arc L1 formed by points M and N as the initial route.
  • the take-off mission according to the arc-shaped route can shorten the flight distance and flight time.
  • the control terminal may determine the line segment L2 formed by the M point and the N point as the initial route, and according to the principle of the shortest line segment between the two points, determine the line segment L2 as the initial route, The flight distance and flight time can be minimized.
  • the starting waypoint of the drone is point N
  • the ending waypoint is point M
  • the flight route is from point N to point M
  • the initial route can be point N and point M.
  • the control terminal determines the line segment or arc formed by the starting waypoint and the ending waypoint as the initial route, thereby shortening the flight distance and flight time.
  • determining the first preset altitude of each sampling point on the initial route includes: S310 , based on the first altitude of the starting waypoint and the second altitude of the ending waypoint in the initial route, determining the altitude of each sampling point.
  • the first preset height is a preset height.
  • the initial route can be understood as the route the drone is expected to fly. If there are no abnormal sampling points on the initial route, the flight can be performed directly according to the initial route. task; if there are abnormal sampling points on the initial route, it is necessary to adjust the segment of the initial route first.
  • the control terminal determines whether there are abnormal sampling points on the initial route, it first needs to determine the first preset altitude of each sampling point based on the altitudes of the starting waypoint and the ending waypoint. The first preset altitude is that the sampling point is on the initial route. height on the track.
  • the initial route is the arc L1 formed by point M and point N
  • the sampling point X1 on the initial route L1 The height is h1; if the initial route is a line segment L2 formed by points M and N, the height of the sampling point X2 on the initial route L2 is h2.
  • the control terminal determines the first preset altitude of each sampling point based on the first altitude of the starting waypoint and the second altitude of the ending waypoint in the initial route, which can be used to determine Whether there are abnormal sampling points on the initial route, and then determine whether it is necessary to adjust the flight segment to ensure the safety and rationality of the UAV flight route.
  • generating the first flight route according to the normal flight segment without flight segment adjustment in the initial flight route and the adjusted flight segment includes: splicing the normal flight segment and the adjusted flight segment to obtain the first flight route.
  • the normal flight segment without flight segment adjustment in the initial route is the flight segment that does not contain abnormal sampling points.
  • the adjusted flight segment is the flight segment after adjusting the abnormal flight segment including the abnormal sampling point.
  • the adjusted flight segment does not include the abnormal sampling point.
  • no obstacle will occur. collision situation.
  • the control terminal obtains the first flight route by splicing the normal flight segment and the adjusted flight segment, so that the drone will not collide with obstacles when flying on the first flight route. so as to ensure the safety of the drone when flying.
  • the process of determining the first preset height of each sampling point by the control terminal is explained.
  • FIG. 4 is a schematic diagram of the control terminal determining the first preset altitude of each sampling point in some embodiments of the present application. As shown in FIG. 4 , the control terminal is based on the first altitude of the starting waypoint and the first altitude of the ending waypoint in the initial route. The second height determines the first preset height of each sampling point, including the following steps:
  • the first position and the second position are the actual geographic locations of the starting waypoint and the ending waypoint, respectively, and the first altitude and the second altitude are the actual horizontal heights of the starting waypoint and the ending waypoint, respectively.
  • the control terminal may construct a relationship function representing the correlation between the position and the altitude based on the first position and the first altitude of the starting waypoint, and the second position and the second altitude of the ending waypoint.
  • FIG. 5 is a schematic diagram of a control terminal building a relationship function in some embodiments of the present application.
  • the initial route is a line segment L2 composed of points M and N as an example for explanation.
  • the relationship function representing the correlation between the position and the height can be represented by the function of the line segment, for example, it can be a linear function or the like. Since the positions and heights of points M and N are known, the linear function can be solved to obtain a relationship function representing the correlation between the position and the height.
  • the first preset height corresponding to each sampling point can be obtained by solving the relationship function.
  • the control terminal may compare the first preset height of each sampling point with the corresponding actual height, so as to determine whether the sampling point is an abnormal sampling point.
  • the control terminal determines that the first preset height corresponding to Pi is hi according to the relational function. Since Hi ⁇ hi, that is, the first preset height of Pi is high Therefore, Pi does not belong to the abnormal sampling point.
  • the actual height corresponding to Pj is Hj
  • the control terminal determines that the first preset height corresponding to Pj is hj according to the relationship function. Since Hj>hj, that is, the first preset height of Pj lower than the actual height, therefore, Pj belongs to the abnormal sampling point.
  • the drone flies according to the initial route L2
  • the target object at the location of the sampling point Pj will affect the flight of the drone, so it is necessary to adjust the flight segment.
  • control terminal first constructs a relationship function representing the correlation between the position and the height; then obtains the first preset height of each sampling point according to the relationship function, and through this process, the first preset height that does not affect the flight of the UAV can be accurately determined
  • a specific value of the preset height can be used to determine whether there are abnormal sampling points on the initial route, and then determine whether it is necessary to adjust the flight segment to ensure the safety and rationality of the UAV flight route.
  • FIG. 6 is a schematic diagram of adjusting the flight segment by the control terminal in some embodiments of the present application. As shown in FIG. 6 , when the number of abnormal sampling points is one, the abnormal flight segment including the abnormal sampling point in the initial route is adjusted to obtain Adjust the flight segment, including:
  • the control terminal adjusts the flight segment by adjusting the flight height of the drone at the location of the abnormal sampling point, and obtains the adjusted sampling point. It can be understood that the projection of the adjustment sampling point and the corresponding abnormal sampling point on the ground is the same position, but the flying height of the UAV when adjusting the sampling point is the sum of the actual height of the abnormal sampling point and the preset safety distance, so as to avoid the occurrence of The situation where the drone collides with the target object at the abnormal sampling point.
  • the preset safety distance may be set by the user, that is, the preset safety distance is a fixed value.
  • the preset safety distance may also be set according to the terrain fluctuation of the flight area. For example, if the terrain fluctuation changes are relatively large, the preset height is set to a larger value; if the terrain fluctuation changes are relatively small, the preset height is set to a smaller value.
  • FIG. 7 is an example diagram of flight segment adjustment performed by the control terminal in some embodiments of the present application.
  • the initial route is a line segment L2 composed of points M and N, and the sampling points determined by the control terminal include P1 to P10.
  • the abscissa in the figure represents the position of the sampling point, the ordinate represents the height of the sampling point, and the line segment of the vertical and abscissa at the corresponding position of each sampling point represents the actual height of the sampling point.
  • the control terminal After the flight segment adjustment is performed, the control terminal generates the first flight route according to the normal flight segment that has not been adjusted for the flight segment in the initial route and the adjusted flight segment.
  • the normal flight segment is the line segment formed by point M and P2
  • the generated flight trajectory of the first flight route L2' is specifically: point M ⁇ P2 ⁇ P3' ⁇ point N.
  • the height of each sampling point on the first flight route L2' is higher than the corresponding actual height. Therefore, the drone will not collide, thereby ensuring the safety of the drone.
  • FIG. 8 is a schematic diagram of the control terminal performing flight segment adjustment in some embodiments of the present application. As shown in FIG. 8 , when the number of abnormal sampling points is multiple, the abnormal flight segments including abnormal sampling points in the initial route are adjusted, Get adjusted flight segments, including:
  • the control terminal can adjust the flight segments in sequence by adjusting segment by segment. Specifically, the segment adjustment is firstly performed based on the first abnormal sampling point. If there are no other abnormal sampling points after adjustment , confirm that the adjustment is completed; if there are other abnormal sampling points after adjustment, continue to adjust the flight segment based on other abnormal sampling points until there are no abnormal sampling points.
  • FIG. 9 is an example diagram of flight segment adjustment performed by the control terminal in some embodiments of the present application.
  • the abnormal sampling points in the diagram include P3, P5 and P6, and the first abnormal sampling point is P3. Therefore, first The flight segment is adjusted based on P3, and the first adjustment sampling point P3' is obtained.
  • the first adjusted flight segment is a line segment formed by P2 and P3' and a line segment formed by P3' and point N.
  • the control terminal determines the second preset altitudes of other abnormal sampling points based on the first adjusted flight segment, ie, determines the second preset altitudes of P5 and P6. Since the second preset altitudes of P5 and P6 both exceed their respective corresponding actual altitudes, the control terminal can confirm that the adjustment is completed, thereby determining that the first adjusted flight segment is the final adjusted flight segment.
  • the control terminal After the flight segment adjustment is performed, the control terminal generates the first flight route according to the normal flight segment that has not been adjusted for the flight segment in the initial route and the adjusted flight segment.
  • the normal flight segment is the line segment formed by point M and P2
  • the generated flight trajectory of the first flight route L2' is specifically: point M ⁇ P2 ⁇ P3' ⁇ point N.
  • the height of each sampling point on the first flight route L2' is higher than the corresponding actual height. Therefore, the drone will not collide, thereby ensuring the safety of the drone.
  • Fig. 10 is an example diagram of flight segment adjustment performed by the control terminal in some embodiments of the application.
  • the abnormal sampling points in the figure include P3, P5 and P6, and the first abnormal sampling point is P3. Therefore, first The flight segment is adjusted based on P3, and the first adjustment sampling point P3' is obtained.
  • the first adjusted flight segment is a line segment formed by P2 and P3' and a line segment formed by P3' and point N.
  • the control terminal determines the second preset altitudes of other abnormal sampling points based on the first adjusted flight segment, ie, determines the second preset altitudes of P5 and P6. Since the second preset altitude of P6 is still lower than its corresponding actual altitude, the control terminal determines that P6 is still an abnormal sampling point, and therefore, the flight segment adjustment is continued based on P6.
  • control terminal determines the second adjustment sampling point P6' based on the actual altitude of P6 and the preset safety distance, and adjusts the flight segment based on P6', and obtains the second adjusted flight segment as the line segment formed by P5 and P6' and P6' Line segment with N points.
  • the control terminal After the second flight segment adjustment, the control terminal confirms that there are no other abnormal sampling points, so it confirms that the adjustment is completed, and determines that the next flight segment adjustment (ie the second flight segment adjustment) is not performed in the first adjusted flight segment.
  • the segment and the second adjusted segment are the final adjusted segment.
  • the control terminal After two flight segment adjustments are performed, the control terminal generates the first flight route according to the normal flight segment that has not been adjusted for the flight segment in the initial route and the final adjusted flight segment.
  • the normal flight segment is the line segment formed by point M and P2
  • the generated flight trajectory of the first flight route L2' is specifically: point M ⁇ P2 ⁇ P3' ⁇ P5 ⁇ P6' ⁇ N point.
  • the height of each sampling point on the first flight route L2' is higher than the corresponding actual height, so the drone will not collide, thereby ensuring the safety of the drone.
  • the flight strategy of the UAV is as close as possible to the initial route under the premise of ensuring a safe distance, so as to ensure The UAV has the shortest flight path.
  • FIG. 11 is a schematic diagram of the control terminal performing flight segment adjustment in some embodiments of the application. As shown in FIG. 11 , when the number of abnormal sampling points is multiple, the abnormal flight segments including abnormal sampling points in the initial route are adjusted, Get adjusted flight segments, including:
  • S436 Determine the line segment formed by the previous sampling point of the first abnormal sampling point and the first adjustment sampling point, and the line segment formed by the first adjustment sampling point and the termination waypoint as the adjustment flight segment.
  • this embodiment proposes another flight segment adjustment strategy.
  • the highest actual altitude is determined according to the actual altitudes of all abnormal sampling points, and then when the flight segment adjustment is performed for the first time, the flight segment adjustment is performed based on the highest actual altitude.
  • FIG. 12 is an example diagram of a control terminal performing flight segment adjustment in some embodiments of the application.
  • abnormal sampling points in the diagram include P2, P3, P5, P6 and P8, and the first abnormal sampling point is P2 , the highest actual height of all abnormal sampling points is the actual height of P8. Therefore, based on the actual height of P8 and the preset safety distance, the first adjustment sampling point P2' is obtained.
  • the adjustment segment is composed of P1 and P2'. The line segment and the line segment formed by P2' and N points.
  • the flight segment adjustment strategy provided in this embodiment can reduce the number of flight segment adjustments, improve the flight segment adjustment efficiency, and further improve the flight route generation efficiency.
  • generating the first flight route according to the normal flight segment that has not been adjusted for the flight segment in the initial flight route and the adjusted flight segment includes: when the adjusted flight segment includes an adjustment sampling point, comparing the starting waypoint with the adjusted flight segment.
  • the line segment formed by the adjustment sampling point, and the line segment formed by the adjustment sampling point and the termination waypoint are spliced to obtain the first flight route.
  • FIG. 13 is an example diagram of generating a first flight route by the control terminal in some embodiments of the application. As shown in FIG. 13 , when the adjustment flight segment includes an adjustment sampling point P3 ′, the flight trajectory of the UAV determined by the control terminal is: : M point ⁇ P2 ⁇ P3' ⁇ N point.
  • this embodiment proposes a route optimization strategy , and adjust point M ⁇ P2 ⁇ P3' to point M ⁇ P3', that is, the drone flies directly from point M to P3', which can further shorten the flight distance of the drone.
  • generating the first flight route according to the normal flight segment without the segment adjustment in the initial flight route and the adjusted flight segment includes: when the adjusted flight segment includes a plurality of adjustment sampling points, performing an adjustment on the starting waypoint. It is spliced with the line segment formed by the first adjustment sampling point, the line segment formed by the previous adjustment sampling point and the latter adjustment sampling point among the multiple adjustment sampling points, and the line segment formed by the last adjustment sampling point and the termination waypoint, to obtain the first A flight route.
  • FIG. 14 is an example diagram of generating the first flight route by the control terminal in some embodiments of the application. As shown in FIG. 14 , when the adjustment flight segment includes two adjustment sampling points P3' and P6', the UAV determined by the control terminal The flight path is: M point ⁇ P2 ⁇ P3' ⁇ P5 ⁇ P6' ⁇ N point.
  • the sum of the two sides of the triangle is greater than the third side, it can be determined that the sum of the distance from point M to P2 and the distance from P2 to P3' is greater than the distance from point M to P3', the distance from point P3' to P5 and the distance from point P5 to P6 The sum of the distances of ' is greater than the distance from P3' to P6'.
  • this embodiment proposes a route optimization strategy, which adjusts point M ⁇ P2 ⁇ P3' to point M ⁇ P3', and adjusts P3' ⁇ P5 ⁇ P6 'Adjusted to P3' ⁇ P6', that is, the drone flies directly from point M to P3', and then directly from P3' to P6', which can further shorten the flight distance of the drone.
  • the flight route generation method further includes:
  • S610 Determine a new supplementary sampling point according to the abnormal sampling point, and the new supplementary sampling point and other sampling points on the initial flight route that do not belong to the abnormal sampling point constitute a second flight route; wherein, the supplementary route formed by the supplementary sampling point is partially centered on the abnormal sampling The start and end points of the supplementary route are on the initial route, and the start and end points of the supplementary route are not abnormal sampling points;
  • the flight segment adjustment strategy adopted by the control terminal is to adjust the flight height to "climb" the target object at the location of the abnormal sampling point.
  • the UAV will It may be necessary to fly to a higher altitude to "climb" the target object.
  • this embodiment proposes another route adjustment strategy, specifically, by circumventing the abnormal sampling point, that is, flying around the target object to avoid the target object.
  • FIG. 15 is a schematic diagram of the control terminal performing route adjustment in some embodiments of the application. As shown in FIG. 15 , there is a tall building between point M and point N. At this time, the drone first needs to start from point M Fly to point Q0, and then fly from point Q0 to point N, however, when the building is higher, the distance of this flight trajectory is longer.
  • the control terminal first determines a new supplementary sampling point according to the abnormal sampling point, and the new supplementary sampling point and other sampling points on the initial route that do not belong to the abnormal sampling point constitute the second flight route.
  • the supplementary sampling points can be on the line segment Q1Q2, line segment Q2Q3 and line segment Q3Q4 surrounding the abnormal sampling point in the figure, and the direct distance between the supplementary sampling point and the target object is greater than or equal to the preset safety distance.
  • the second flight route is point M ⁇ Q1 ⁇ Q2 ⁇ Q3 ⁇ Q4 ⁇ N point, and a schematic top view of the second flight route is shown in FIG. 16 .
  • the control terminal may compare the route length of the second flight route with the route length of the first flight route to determine the flight route with the shortest flight distance. If the route length of the second flight route is less than the route length of the first flight route, the second flight route is determined as the final flight route; otherwise, the first flight route is determined as the final flight route.
  • This embodiment provides another route adjustment strategy.
  • the second flight route can be determined based on the route adjustment strategy by orbiting the abnormal sampling point, that is, flying around the target object to avoid the target object.
  • the route length of the second flight route can be compared with the route length of the first flight route to determine the flight route with the shortest flight distance, thereby ensuring the shortest flight route of the UAV and improving the performance of the UAV. of endurance.
  • the actual height is determined by any one of a digital elevation model DEM, a digital ground model DTM, a digital line map DLG, a digital grid map DRG, a digital orthophoto map DOM, a digital ground model DSM, or a point cloud map one or more of them are obtained.
  • the Digital Elevation Model realizes the digital simulation of the ground terrain (that is, the digital expression of the terrain surface morphology) through limited terrain elevation data. It uses a set of ordered numerical arrays to represent the ground elevation. A solid ground model.
  • Digital Terrain Model is a database that represents the spatial distribution of ground features. Generally, a series of ground point coordinates (x, y, z) and surface attributes (target categories, features, etc.) are used to form a data array to form a data array. This constitutes a digital ground model.
  • Digital Line Graphic is a vector dataset of existing topographic map elements, which saves the spatial relationship and related attribute information between elements, and comprehensively describes surface targets.
  • Digital Raster Graphic is a raster data that is consistent with the topographic map in terms of content, geometric accuracy and color after scanning, geometric correction and color correction based on existing topographic maps such as paper and film. set.
  • Digital orthophoto map (Digital Orthophoto Map, DOM) is a digital orthophoto set generated by digital differential correction and mosaicking of aerial (or aerospace) photos, and cropping according to a certain frame range. It is an image with both map geometric accuracy and imagery characteristics.
  • DSM Digital Surface Model
  • control terminal may obtain the actual height of each sampling point through one or more of the above various maps or models, which is not limited herein.
  • an apparatus for generating a flight path is provided.
  • FIG. 17 is a schematic diagram of an apparatus for generating a flight route provided by some embodiments of the present application.
  • the apparatus includes: a memory 10 and a processor 20, wherein the memory is used to store a computer program; the processor is used to call the computer
  • the program performs the following operations: determine the initial route; determine multiple sampling points from the initial route; determine the first preset altitude of each sampling point on the initial route; when there is a first preset altitude lower than the actual altitude among the multiple sampling points
  • the sampling point is abnormal, adjust the abnormal flight segment that contains the abnormal sampling point in the initial route to get the adjusted flight segment, and the adjusted flight segment does not contain the abnormal sampling point; the actual altitude is the height of the target object where the sampling point is located; according to the initial route
  • the normal flight segment that has not been adjusted in the flight segment, and the adjusted flight segment generate the first flight route.
  • Each module in the above-mentioned flight route generating apparatus may be implemented in whole or in part by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the present application provides a device for generating a flight route.
  • an unmanned aerial vehicle performs a flight mission, after determining an initial route, it first determines whether there are abnormal sampling points based on the first preset altitude and the actual altitude corresponding to each sampling point on the initial route.
  • the first preset height corresponding to the abnormal sampling point is lower than the actual height of the target object at its location, that is, the target object will hinder the normal flight of the UAV. Therefore, when there are abnormal sampling points, by adjusting the flight segment, The obtained adjusted flight segment does not contain abnormal sampling points, and the flight route obtained based on the adjusted flight segment does not include abnormal sampling points, so that the drone will not collide when flying according to the flight route, thereby improving the Safety of drone flight.
  • the processor is further configured to: acquire the starting waypoint and the ending waypoint of the flight mission; and determine the line segment or arc formed by the starting waypoint and the ending waypoint as the initial route.
  • the processor is further configured to: determine the first preset altitude of each sampling point based on the first altitude of the starting waypoint and the second altitude of the ending waypoint in the initial route.
  • the processor is further configured to: based on the first position and the first altitude of the starting waypoint, and the second position and the second altitude of the ending waypoint, construct a relationship function representing the correlation between the position and the altitude ; According to the relation function and the position of each sampling point, the first preset height of each sampling point is obtained.
  • the processor is further configured to: adjust the height of the abnormal sampling point based on the actual height of the abnormal sampling point and the preset safety distance to obtain the adjusted sampling point;
  • the line segment consisting of the previous sampling point of the abnormal sampling point and the adjustment sampling point, and the line segment consisting of the adjustment sampling point and the termination waypoint are determined as the adjustment segment.
  • the processor is further configured to: adjust the height of the first abnormal sampling point based on the actual height of the first abnormal sampling point and the preset safety distance to obtain the first adjusted sampling point, where the first abnormal sampling point is The abnormal sampling point closest to the starting waypoint; determine the line segment formed by the previous sampling point of the first abnormal sampling point and the first adjustment sampling point, and the line segment formed by the first adjustment sampling point and the ending waypoint as the first adjustment navigation point. based on the first adjustment flight segment, determine the second preset altitude of other abnormal sampling points except the first abnormal sampling point; the second preset altitude of each other abnormal sampling point exceeds the actual altitude corresponding to other abnormal sampling points , determine the first adjustment segment as the final adjustment segment.
  • the processor is further configured to: when there is a second abnormal sampling point whose second preset height is lower than the actual height, based on the actual height of the second abnormal sampling point and the preset safety distance Adjust the height of the sampling point to obtain the second adjustment sampling point; determine the line segment formed by the previous sampling point of the second abnormal sampling point and the second adjustment sampling point, and the line segment formed by the second adjustment sampling point and the termination waypoint as the second Adjust the flight segment; based on the second adjustment flight segment, determine the third preset altitude of other abnormal sampling points except the first abnormal sampling point and the second abnormal sampling point; when the third preset altitude of each other abnormal sampling point exceeds In the case of the actual altitudes corresponding to other abnormal sampling points, it is determined that in the first adjustment segment, the segment for which the next segment adjustment has not been performed, and the second adjustment segment is the final adjustment segment.
  • the processor is further configured to: determine the highest actual height according to the actual heights of all abnormal sampling points; and based on the highest actual height and the preset safety distance, adjust the height of the first abnormal sampling point to obtain the first adjustment Sampling point, the first abnormal sampling point is the abnormal sampling point closest to the starting waypoint; determine the line segment formed by the previous sampling point of the first abnormal sampling point and the first adjustment sampling point, as well as the first adjustment sampling point and the end navigation point. The line segment formed by the points is the adjustment segment.
  • the processor is further configured to: splicing the normal flight segment and the adjusted flight segment to obtain the first flight route.
  • the processor is further configured to: when the adjustment flight segment includes an adjustment sampling point, splicing the line segment formed by the starting waypoint and the adjustment sampling point, and the line segment formed by the adjustment sampling point and the ending waypoint, Get the first flight route.
  • the processor is further configured to: when the adjustment flight segment includes multiple adjustment sampling points, adjust the sampling point of the line segment formed by the starting waypoint and the first adjustment sampling point, and the previous adjustment sampling point among the multiple adjustment sampling points The line segment formed by the point and the next adjustment sampling point, and the line segment formed by the last adjustment sampling point and the termination waypoint are spliced to obtain the first flight route.
  • the processor is further configured to: determine a new supplementary sampling point according to the abnormal sampling point, and the new supplementary sampling point and other sampling points on the initial route that do not belong to the abnormal sampling point constitute a second flight route;
  • the supplementary route formed by the supplementary sampling points surrounds the abnormal sampling points, the start and end points of the supplementary route are on the initial route, and the start and end points of the supplementary route do not belong to the abnormal sampling points;
  • the second flight route is determined as the final flight route.
  • the actual height is determined by any one of a digital elevation model DEM, a digital ground model DTM, a digital line map DLG, a digital grid map DRG, a digital orthophoto map DOM, a digital ground model DSM, or a point cloud map one or more of them are obtained.
  • a control terminal is provided.
  • the control terminal is connected to an unmanned aerial vehicle and used to control the unmanned aerial vehicle.
  • the control terminal includes a memory and a processor, wherein the memory is used for storing computer programs; the processor is used for calling
  • the computer program performs the following operations: determining an initial route; determining a plurality of sampling points from the initial route; determining a first preset altitude of each sampling point on the initial route; when there is a first preset altitude lower than the actual altitude among the multiple sampling points
  • the abnormal sampling point is found, adjust the abnormal flight segment containing abnormal sampling point in the initial route to obtain the adjusted flight segment, and the adjusted flight segment does not contain abnormal sampling point; the actual height is the height of the target object at the location of the sampling point; according to the initial The normal flight segment without segment adjustment in the route, and the adjusted segment, generate the first flight route.
  • control terminal For the specific limitation of the control terminal, reference may be made to the limitation on the flight route generating apparatus above, which will not be repeated here.
  • an unmanned aerial vehicle including a fuselage, a power device and a control device, the control device and the power device are respectively arranged on the fuselage of the unmanned aerial vehicle, and the control device is used to control the power device to drive the unmanned aerial vehicle to move
  • the control device includes a memory and a processor, wherein the memory is used to store a computer program; the processor is used to invoke the computer program to perform the following operations: determine an initial route; determine a plurality of sampling points from the initial route; determine the initial route The first preset altitude of each sampling point; when there is an abnormal sampling point with the first preset altitude lower than the actual altitude among the multiple sampling points, adjust the abnormal flight segment including the abnormal sampling point in the initial route to obtain the adjusted flight path.
  • the adjusted segment does not contain abnormal sampling points; the actual height is the height of the target object at the location of the sampling point; the first flight route is generated according to the normal segment in the initial route without segment adjustment and the adjusted segment.
  • control device For the specific limitation of the control device, reference may be made to the limitation on the flight route generation device above, which will not be repeated here.
  • an unmanned aerial vehicle system is provided.
  • FIG. 18 is a schematic diagram of an unmanned aerial vehicle system in some embodiments of the present application.
  • the unmanned aerial vehicle system includes a control terminal 40 and an unmanned aerial vehicle 30, wherein the control terminal 40 may be a remote controller, a smart phone, a desktop One or more of computers, laptops, wearables (watches, wristbands).
  • the UAV system also includes a control device arranged on the control terminal body or the UAV body, and the control device includes a memory and a processor, wherein the memory is used to store a computer program; the processor is used to invoke the computer program to perform the following operations: Determine the initial route; determine multiple sampling points from the initial route; determine the first preset altitude of each sampling point on the initial route; when there are abnormal sampling points whose first preset altitude is lower than the actual altitude in the multiple sampling points, Adjust the abnormal flight segment containing abnormal sampling points in the initial route to obtain the adjusted flight segment.
  • the adjusted flight segment does not contain abnormal sampling points; the actual altitude is the height of the target object at the location of the sampling point;
  • the adjusted normal flight segment and the adjusted flight segment generate the first flight route.
  • the memory and the processor are electrically connected directly or indirectly to realize data transmission or interaction.
  • these elements can be electrically connected to each other through one or more communication buses or signal lines, such as can be connected through a bus.
  • the memory stores computer-executed instructions for implementing the data access control method, including at least one software function module that can be stored in the memory in the form of software or firmware, and the processor executes various software programs and modules by running the software programs and modules stored in the memory. Functional application and data processing.
  • the memory can be, but is not limited to, random access memory (Random Access Memory, referred to as: RAM), read-only memory (Read Only Memory, referred to as: ROM), programmable read-only memory (Programmable Read-Only Memory, referred to as: PROM) ), Erasable Programmable Read-Only Memory (EPROM, referred to as: EPROM), Electrically Erasable Read-Only Memory (Electric Erasable Programmable Read-Only Memory, referred to as: EEPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM programmable read-only memory
  • EPROM Erasable Programmable Read-Only Memory
  • EPROM Electrically Erasable Read-Only Memory
  • EEPROM Electrically Erasable Read-Only Memory
  • the software programs and modules in the above-mentioned memory may also include an operating system, which may include various software components and/or drivers for managing system tasks (such as memory management, storage device control, power management, etc.), and may Intercommunicate with various hardware or software components to provide the operating environment for other software components.
  • an operating system which may include various software components and/or drivers for managing system tasks (such as memory management, storage device control, power management, etc.), and may Intercommunicate with various hardware or software components to provide the operating environment for other software components.
  • the processor may be an integrated circuit chip with signal processing capability.
  • the above-mentioned processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as: CPU), a network processor (Network Processor, referred to as: NP), and the like.
  • CPU Central Processing Unit
  • NP Network Processor
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • a computer-readable storage medium stores a computer program.
  • the processor When the computer program is executed by a processor, the processor enables the processor to implement the steps of the flight route generation method in the method embodiment of the present application.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种飞行航线生成方法、装置、无人机系统及存储介质,该飞行航线生成方法包括:确定初始航线(S100);从初始航线上确定多个采样点(S200);确定初始航线上各采样点的第一预设高度(S300);当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段(S400),调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线(S500)。上述方法可以提高无人机飞行的安全性。

Description

飞行航线生成方法、装置、无人机系统及存储介质 技术领域
本申请涉及无人机技术领域,尤其涉及一种飞行航线生成方法、装置、无人机系统及存储介质。
背景技术
无人机(Unmanned Aerial Vehicle,UAV)是一种利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,其也可以由机载计算机完全地或间歇地自主地操作。
无人机在进行作业时,起飞阶段通常是由起始点垂直上升至与目标地点相同的水平高度,然后再平飞至目标地点。为节省电量,相关技术通常采用倾斜飞行的方案,即从起始点斜飞至目标地点。
然而,当起始点至目标地点的斜飞路径上存在障碍物(例如建筑物)时,容易出现撞机的情况,降低无人机飞行的安全性。
发明内容
本申请提供一种飞行航线生成方法、装置、无人机系统及存储介质,可以提高无人机飞行的安全性。
第一方面,本申请实施例提供一种飞行航线生成方法,所述方法包括:
确定初始航线;
从所述初始航线上确定多个采样点;
确定所述初始航线上各所述采样点的第一预设高度;
当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;
根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
第二方面,本申请实施例提供一种飞行航线生成装置,所述飞行航线生成装置包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
第三方面,本申请实施例提供一种控制终端,所述控制终端与无人机连接,用于控制无人机,所述控制终端包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
第四方面,本申请实施例提供一种无人机,包括机身、动力装置和控制装置,所述控制装置和所述动力装置分别设置于所述无人机的机身,所述控制装置用于控制所述动力装置带动所述无人机移动,其中,所述控制装置包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点; 所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
第五方面,本申请实施例提供一种无人机系统,包括控制终端以及无人机,所述无人机系统还包括设置于所述控制终端本体或所述无人机机身的控制装置,所述控制装置包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质包括指令,当所述指令在计算机上运行时,使得所述计算机执行上述飞行航线生成方法。
本申请实施例提供的飞行航线生成方法、装置、无人机系统及存储介质,该方法包括:确定初始航线;从初始航线上确定多个采样点;确定初始航线上各采样点的第一预设高度;当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。本申请实施例中,在无人机进行飞行任务时,在确定初始航线后,首先基于初始航线上各采样点对应的第一预设高度以及实际高度确定是否存在异常采样点,异常采样点对应的第一预设高度低于其所在位置的目标对象的实际高度,即该目标对象会阻碍无人机的正常飞行,因此,在存在异常采样点时,通过进行航段调整,使得得到的调整航段不包含异常采样点,基于调整航段得到的飞行航线也不包含异常采样点,从而,无人机在按照该飞行航线进行飞行时不会出现撞机的 情况,进而提高无人机飞行的安全性。
附图说明
图1为相关技术中进行飞行作业时的飞行逻辑示意图;
图2为本申请一些实施例提供的飞行航线生成方法的示意图;
图3为本申请一些实施例中确定初始航线的示意图;
图4为本申请一些实施例中控制终端确定各采样点的第一预设高度的示意图;
图5为本申请一些实施例中控制终端构建关系函数的示意图;
图6为本申请一些实施例中控制终端进行航段调整的示意图;
图7为本申请一些实施例中控制终端进行航段调整的示例图;
图8为本申请一些实施例中控制终端进行航段调整的示意图;
图9为本申请一些实施例中控制终端进行航段调整的示例图;
图10为本申请一些实施例中控制终端进行航段调整的示例图;
图11为本申请一些实施例中控制终端进行航段调整的示意图;
图12为本申请一些实施例中控制终端进行航段调整的示例图;
图13为本申请一些实施例中控制终端生成第一飞行航线的示例图;
图14为本申请一些实施例中控制终端生成第一飞行航线的示例图;
图15为本申请一些实施例中控制终端进行航线调整的示意图;
图16为本申请一些实施例中第二飞行航线的俯视示意图;
图17为本申请一些实施例提供的飞行航线生成装置的示意图;
图18为本申请一些实施例中无人机系统的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联 关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
图1为相关技术中进行飞行作业时的飞行逻辑示意图(图中X-Y平面为水平面),如图1所示,无人机在进行作业时,起飞阶段通常是由起始点(即图1中的A点,又称Home点)垂直上升至水平高度与目标地点相同的B点,然后再由B点平飞至目标地点C点(C点可以是后续飞行作业的第一个航点)。在这种飞行逻辑下,无人机需要飞行的距离为D_AB+D_BC。同理,在降落阶段,假定C点为最后一个航点位置,无人机需要由C点水平飞至B点,然后再由B点垂直降落至A点。
为了节省电量,相关技术提出另外一种采用倾斜飞行的飞行逻辑,即从A点斜飞至C点,或从C点斜飞至A点。在这种飞行逻辑下,以起飞阶段为例,无人机需要飞行的距离为D_AC,由于D_AC<D_AB+D_BC,因此可以减少飞行距离和飞行时间,降低无人机的电量消耗。
然而,当起始点至目标地点的斜飞路径上存在障碍物时,例如线路AC在地面的投影上存在较高的建筑物等对象时,该障碍物会影响无人机的正常飞行(例如避障需要减速,或者需要人工避障飞行),甚至可能出现撞机的情况,从而降低无人机飞行的安全性。
本申请实施例提供的飞行航线生成方法、装置、无人机系统及存储介质,可以提高无人机飞行的安全性。该飞行航线生成方法包括:确定初始航线;从初始航线上确定多个采样点;确定初始航线上各采样点的第一预设高度;当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。本申请中,在无人机进行飞行任务时,在确定初始航线后,首先基于初始航线上各采样点对应的第一预设高度以及实际高度确定是否存在异常采样点,异常采样点对应的第一预设高度低于其所在位置的目标对象的实际高度,即该目标对象会阻碍无人机的正常飞行,因此,在存在异常采样点时,通过进行航段调整,使得得到的调整航段不包含异常采样点,基于调整航段得到的飞行航线也不包含异常采样点,从而,无人机在按照该飞行航线进行飞行时不会出现撞机的情况,进而提高无人机飞行的安全性。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
可以理解,本申请实施例中飞行航线生成方法可以由用于控制无人机的控制终端实现,该控制终端可以通过本申请实施例中的飞行航线生成方法生成无人机的飞行航线,并控制无人机按照该飞行航线进行飞行。另外,本申请实施例中飞行航线生成方法的处理步骤也可以由无人机内部的控制装置实现。
在一些实施例中,提供一种飞行航线生成方法。为了便于理解,本申请主要以该飞行航线生成方法应用于控制终端为例,对该方法的处理流程进行解释说明。
图2为本申请一些实施例提供的飞行航线生成方法的示意图,如图2所示,该方法包括:
S100、确定初始航线。
其中,初始航线为控制终端根据飞行任务规划的航线,飞行任务可以是起飞任务,即从Home点飞行至第一个航点;飞行任务也可以是降落任务,即从最后一个航点飞行至Home点。
S200、从初始航线上确定多个采样点。
在确定初始航线后,控制终端可以以固定采样间隔或非固定采样间隔对该初始航线进行采样处理,得到多个采样点。
其中,非固定采样间隔是指采样间隔为随机变化的值,即每两个相邻的采样点的距离存在不相同的情况。例如,非固定采样间隔为3m和4m等等。控制终端可以在该初始航线上的起点处获取第一个采样点,然后,间隔3m获取第二个采样点,间隔4m获取第三个采样点等等。即第一个采样点与第二个采样点间隔3m,第二个采样点与第三个采样点间隔4m。
另外,固定采样间隔是指采样间隔为一个固定的值,这样使每两个相邻采样点的距离相同(即水平距离)。例如,固定采样间隔为2m,控制终端以水平距离每隔2m从初始航线上获取一个采样点,这样每两个相邻采样点的水平距离均为2m。
S300、确定初始航线上各采样点的第一预设高度。
在确定多个采样点后,控制终端确定初始航线上各采样点的第一预设高度,该第一预设高度为采样点所在位置存在的目标对象不影响无人机飞行时的最高高度,其中,目标对象具体可以是树木或者建筑物等障碍物。
S400、当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点。
其中,实际高度为采样点所在位置的目标对象的高度。控制终端可以获取各采样点所在位置的目标对象的实际高度,在确定各采样点的第一预设高度后,将各采样点对应的第一预设高度以及实际高度进行比对。
当多个采样点中存在第一预设高度低于实际高度的异常采样点时,说明该异常采样点所在位置的目标对象与当前的初始航线存在“交点”,即该异常采样点所在位置的目标对象会影响无人机的正常飞行,因此,在存在异常采样点时,对包含异常采样点的异常航段进行调整,得到不包含异 常采样点的调整航段,从而调整航段对应位置的目标对象不会影响无人机的正常飞行。
S500、根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。
在初始航线中包含异常采样点时,控制终端通过航段调整得到不包含异常采样点的调整航段,然后结合初始航线中未进行航段调整的正常航段生成第一飞行航线,未进行航段调整的正常航段不包含异常采样点,因此,生成的第一飞行航线不包含异常采样点,从而,无人机在按照第一飞行航线进行飞行时,不会被障碍物影响,从而可以保证无人机飞行的安全性。
在一些实施例中,若多个采样点中不存在异常采样点,即所有采样点的第一预设高度都高于实际高度,说明所有采样点对应位置的目标对象都不会影响无人机的正常飞行,此时,无需进行航段调整,可以直接将初始航线作为飞行航线。
本申请实施例提供一种飞行航线生成方法,在无人机进行飞行任务时,在确定初始航线后,首先基于初始航线上各采样点对应的第一预设高度以及实际高度确定是否存在异常采样点,异常采样点对应的第一预设高度低于其所在位置的目标对象的实际高度,即该目标对象会阻碍无人机的正常飞行,因此,在存在异常采样点时,通过进行航段调整,使得得到的调整航段不包含异常采样点,基于调整航段得到的飞行航线也不包含异常采样点,从而,无人机在按照该飞行航线进行飞行时不会出现撞机的情况,进而提高无人机飞行的安全性。
在一些实施例中,确定初始航线,包括:
S110、获取飞行任务的起始航点以及终止航点;
S130、确定起始航点与终止航点构成的线段或弧线为初始航线。
图3为本申请一些实施例中确定初始航线的示意图,如图3所示,以飞行任务为起飞任务为例进行解释说明,无人机需要从起始航点M点飞行至终止航点N点,因此,控制终端可以确定M点和N点构成的弧线L1为初始航线,相比于垂直上升结合水平飞行的飞行逻辑,按照弧线形状的航线进行起飞任务,可以缩短飞行距离和飞行时间。
在一些实施例中,参考图3,为了保证飞行距离最短,控制终端可以确定M点和N点构成的线段L2为初始航线,根据两点之间线段最短的原则,确定线段L2为初始航线,可以最大程度缩短飞行距离和飞行时间。
可以理解,当飞行任务为降落任务时,无人机的起始航点为N点,终止航点为M点,即飞行路线为由N点飞行至M点,初始航线可以是N点和M点构成的线段或者弧线。
本实施例中,控制终端在获取飞行任务的起始航点以及终止航点之后,确定起始航点与终止航点构成的线段或弧线为初始航线,从而可以缩短飞行距离和飞行时间。
在一些实施例中,确定初始航线上各采样点的第一预设高度,包括:S310、基于初始航线中起始航点的第一高度以及终止航点的第二高度,确定各采样点的第一预设高度。
控制终端基于起始航点以及终止航点确定初始航线后,该初始航线可以理解为无人机预计飞行的航线,若该初始航线上不存在异常采样点,则可以直接按照该初始航线执行飞行任务;若该初始航线上存在异常采样点,则需要先对该初始航线进行航段调整。控制终端在确定初始航线上是否存在异常采样点时,首先需要基于起始航点和终止航点的高度确定各采样点的第一预设高度,该第一预设高度即采样点在初始航线轨迹上的高度。
例如,参考图3,以M点所在的水平面为地面为例(即M点的高度为0),若初始航线为M点与N点构成的弧线L1,则初始航线L1上采样点X1的高度为h1;若初始航线为M点与N点构成的线段L2,则初始航线L2上采样点X2的高度为h2。
本实施例中,控制终端在确定初始航线后,基于初始航线中起始航点的第一高度以及终止航点的第二高度,确定各采样点的第一预设高度,从而可以用于确定初始航线上是否存在异常采样点,进而确定是否需要进行航段调整,保证无人机飞行航线的安全性和合理性。
在一些实施例中,根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线,包括:对正常航段以及调整航段进行拼接, 得到第一飞行航线。
具体的,初始航线中未进行航段调整的正常航段为不包含异常采样点的航段,无人机按照正常航段飞行时,不会发生与障碍物碰撞的情况。调整航段为通过对包含异常采样点的异常航段进行航段调整后的航段,调整航段也不包含异常采样点,无人机按照调整航段飞行时,也不会发生与障碍物碰撞的情况。
因此,控制终端在得到调整航段后,通过将正常航段以及调整航段进行拼接,得到第一飞行航线,从而,无人机在第一飞行航线飞行时,不会发生与障碍物碰撞的情况,从而保证无人机飞行时的安全性。
在一些实施例中,对控制终端确定各采样点的第一预设高度的过程进行解释说明。
图4为本申请一些实施例中控制终端确定各采样点的第一预设高度的示意图,如图4所示,控制终端基于初始航线中起始航点的第一高度以及终止航点的第二高度确定各采样点的第一预设高度,包括以下步骤:
S312、基于起始航点的第一位置及第一高度,以及终止航点的第二位置以及第二高度,构建表征位置与高度的相关关系的关系函数;
S314、根据关系函数,以及各采样点的位置,得到各采样点的第一预设高度。
其中,第一位置和第二位置分别为起始航点和终止航点的实际地理位置,第一高度和第二高度分别为起始航点和终止航点的实际水平高度。控制终端可以基于起始航点的第一位置及第一高度,以及终止航点的第二位置以及第二高度,构建表征位置与高度的相关关系的关系函数。
图5为本申请一些实施例中控制终端构建关系函数的示意图,如图5所示,以初始航线为M点与N点构成的线段L2为例进行解释说明,首先以M点为原点建立坐标系,则表征位置与高度的相关关系的关系函数可以通过线段的函数表示,例如可以是一次函数等。由于M点和N点的位置以及高度均已知,可以对一次函数进行求解,从而得到表征位置与高度的相关关系的关系函数。
在得到表征位置与高度的相关关系的关系函数后,由于各采样点的位 置已知,因此,可以通过该关系函数求解得到各采样点对应的第一预设高度。控制终端在得到各采样点的第一预设高度后,可以将各采样点的第一预设高度与对应的实际高度进行对比,从而确定采样点是否为异常采样点。
例如,参考图5,对于采样点Pi,Pi对应的实际高度为Hi,控制终端根据关系函数确定Pi对应的第一预设高度为hi,由于Hi<hi,即Pi的第一预设高度高于实际高度,因此,Pi不属于异常采样点。
又例如,参考图5,对于采样点Pj,Pj对应的实际高度为Hj,控制终端根据关系函数确定Pj对应的第一预设高度为hj,由于Hj>hj,即Pj的第一预设高度低于实际高度,因此,Pj属于异常采样点。此时,若无人机按照初始航线L2飞行,则采样点Pj所在位置的目标对象会对无人机的飞行产生影响,因此需要进行航段调整。
可以理解,初始航线为弧线的情况,与上述原理类似,在此不再赘述。当初始航线的形状不同时,对应的关系函数的类型也不同。
本实施例中,控制终端首先构建表征位置与高度的相关关系的关系函数;然后根据关系函数得到各采样点的第一预设高度,通过该处理过程可以准确确定不影响无人机飞行的第一预设高度的具体数值,从而可以用于确定初始航线上是否存在异常采样点,进而确定是否需要进行航段调整,保证无人机飞行航线的安全性和合理性。
在一些实施例中,对控制终端进行航段调整的过程进行解释说明。
图6为本申请一些实施例中控制终端进行航段调整的示意图,如图6所示,当异常采样点的数量为一个时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,包括:
S412、基于异常采样点的实际高度以及预设安全距离,对异常采样点进行高度调整,得到调整采样点;
S414、确定异常采样点的前一采样点与调整采样点构成的线段,以及调整采样点与终止航点构成的线段为调整航段。
由于异常采样点的实际高度高于第一预设高度,因此,控制终端通过调整无人机在异常采样点所在位置的飞行高度来进行航段调整,得到调整采样点。可以理解,调整采样点与相应的异常采样点在地面的投影为同一 位置,但是无人机在调整采样点的飞行高度为异常采样点的实际高度与预设安全距离的和,从而可以避免出现无人机与异常采样点的目标对象发生碰撞的情况。
其中,预设安全距离可以是用户设置的,即预设安全距离为固定值。该预设安全距离也可以是根据飞行区域的地形起伏变化设置的。例如,若地形起伏变化比较大,则将预设高度设置为一个较大值;若地形起伏变化比较小,则将预设高度设置为一个较小值。
图7为本申请一些实施例中控制终端进行航段调整的示例图,如图7所示,初始航线为M点和N点构成的线段L2,控制终端确定的采样点包括P1~P10,共10个采样点,图中横坐标表示采样点的位置,纵坐标表示采样点的高度,各采样点对应位置上垂直与横坐标的线段表示采样点的实际高度。
参考图7,根据图中初始航线L2与各采样点的实际高度的关系,可以确定图中P3为异常采样点,若无人机按照初始航线L2飞行,则会与P3所在位置的目标对象发生碰撞。因此,控制终端基于P3的实际高度以及预设安全距离进行高度调整,得到调整采样点P3’,从而,P2与P3’构成的线段以及P3’与N点构成的线段为调整航段。
在进行航段调整后,控制终端根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。其中,正常航段为M点和P2构成的线段,生成的第一飞行航线L2’的飞行轨迹具体为:M点→P2→P3’→N点。第一飞行航线L2’上各采样点的高度均高于对应的实际高度,因此,无人机不会发生碰撞的情况,从而保证无人机的安全。
图8为本申请一些实施例中控制终端进行航段调整的示意图,如图8所示,当异常采样点的数量为多个时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,包括:
S422、基于第一异常采样点的实际高度以及预设安全距离,对第一异常采样点进行高度调整,得到第一调整采样点,第一异常采样点为距离起始航点最近的异常采样点;
S424、确定第一异常采样点的前一采样点与第一调整采样点构成的线 段,以及第一调整采样点与终止航点构成的线段为第一调整航段;
S426、基于第一调整航段,确定除第一异常采样点以外的其他异常采样点的第二预设高度;
S428、在各其他异常采样点的第二预设高度超过其他异常采样点对应的实际高度时,确定第一调整航段为最终的调整航段。
当异常采样点的数量为多个时,控制终端可以采用逐段调整的方式依次进行航段调整,具体为,首先基于第一异常采样点进行航段调整,若调整后不存在其他异常采样点,则确认调整完成;若调整后还存在其他异常采样点,则基于其他异常采样点继续进行航段调整,直至不存在异常采样点。
图9为本申请一些实施例中控制终端进行航段调整的示例图,如图9所示,图中的异常采样点包括P3、P5和P6,其中第一异常采样点为P3,因此,首先基于P3进行航段调整,得到第一调整采样点P3’,相应的,第一调整航段为P2与P3’构成的线段以及P3’与N点构成的线段。
参考图9,在得到第一调整航段后,控制终端基于第一调整航段确定其他异常采样点的第二预设高度,即确定P5和P6的第二预设高度。由于P5和P6的第二预设高度都超过其各自对应的实际高度,因此,控制终端可以确认调整完成,从而确定第一调整航段为最终的调整航段。
在进行航段调整后,控制终端根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。其中,正常航段为M点和P2构成的线段,生成的第一飞行航线L2’的飞行轨迹具体为:M点→P2→P3’→N点。第一飞行航线L2’上各采样点的高度均高于对应的实际高度,因此,无人机不会发生碰撞的情况,从而保证无人机的安全。
在一些实施例中,S426之后,还包括:
S429a、当存在第二预设高度低于实际高度的第二异常采集点时,基于第二异常采样点的实际高度以及预设安全距离,对第二异常采样点进行高度调整,得到第二调整采样点;
S429b、确定第二异常采样点的前一采样点与第二调整采样点构成的线段,以及第二调整采样点与终止航点构成的线段为第二调整航段;
S429c、基于第二调整航段,确定除第一异常采样点以及第二异常采样点以外的其他异常采样点的第三预设高度;
S429d、在各其他异常采样点的第三预设高度超过其他异常采样点对应的实际高度时,确定第一调整航段中未进行下一次航段调整的航段、以及第二调整航段为最终的调整航段。
图10为本申请一些实施例中控制终端进行航段调整的示例图,如图10所示,图中的异常采样点包括P3、P5和P6,其中第一异常采样点为P3,因此,首先基于P3进行航段调整,得到第一调整采样点P3’,相应的,第一调整航段为P2与P3’构成的线段以及P3’与N点构成的线段。
参考图10,在得到第一调整航段后,控制终端基于第一调整航段确定其他异常采样点的第二预设高度,即确定P5和P6的第二预设高度。由于P6的第二预设高度仍低于其对应的实际高度,因此,控制终端确定P6仍为异常采样点,因此,基于P6继续进行航段调整。
具体的,控制终端基于P6的实际高度和预设安全距离,确定第二调整采样点P6’,基于P6’进行航段调整,得到第二调整航段为P5与P6’构成的线段以及P6’与N点构成的线段。
在进行第二次航段调整后,控制终端确认不存在其他异常采样点,因此确认调整完成,并确定第一调整航段中未进行下一次航段调整(即第二次航段调整)的航段、以及第二调整航段为最终的调整航段。
可以理解,在进行第二次航段调整后,若还存在其他异常采样点,航段调整与上述处理过程类似,在此不再赘述。
在进行两次航段调整后,控制终端根据初始航线中未进行航段调整的正常航段,以及最终的调整航段,生成第一飞行航线。其中,正常航段为M点和P2构成的线段,生成的第一飞行航线L2’的飞行轨迹具体为:M点→P2→P3’→P5→P6’→N点。第一飞行航线L2’上各采样点的高度均高于对应的实际高度,因此,无人机不会发生碰撞的情况,从而保证无人机的安全。
另外,本实施例对于异常采样点的数量为多个的情况,通过采用逐段调整的方式,可以保证无人机的飞行策略为在保证安全距离的前提下,尽量贴合初始航线,从而保证无人机飞行路径最短。
图11为本申请一些实施例中控制终端进行航段调整的示意图,如图11所示,当异常采样点的数量为多个时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,包括:
S432、根据所有异常采样点的实际高度,确定最高实际高度;
S434、基于最高实际高度以及预设安全距离,对第一异常采样点进行高度调整,得到第一调整采样点,第一异常采样点为距离起始航点最近的异常采样点;
S436、确定第一异常采样点的前一采样点与第一调整采样点构成的线段,以及第一调整采样点与终止航点构成的线段为调整航段。
在M点与N点的距离较远,导致异常采样点的数量较多时,若采用逐段调整的方式依次进行航段调整,可能会存在调整次数较多的情况,使得航段调整过程较为复杂。
基于此,本实施例提出另一种航段调整策略,首先根据所有异常采样点的实际高度确定最高实际高度,然后在第一次进行航段调整时,基于该最高实际高度进行航段调整。
图12为本申请一些实施例中控制终端进行航段调整的示例图,如图12所示,图中的异常采样点包括P2、P3、P5、P6和P8,其中第一异常采样点为P2,所有异常采样点的最高实际高度为P8的实际高度,因此,基于P8的实际高度以及预设安全距离,得到第一调整采样点P2’,相应的,调整航段为P1与P2’构成的线段以及P2’与N点构成的线段。
参考图12,对于异常采样点的数量较多的情况,若仍采用逐段调整的方式进行航段调整,则可能需要对P2、P3等多处位置进行航段调整,从而导致调整过程较为复杂,因此,本实施例提供的航段调整策略,可以减少航段调整次数,提高航段调整效率,进而提高飞行航线生成效率。
在一些实施例中,根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线,包括:在调整航段包含一个调整采样点时,对起始航点与调整采样点构成的线段,以及调整采样点与终止航点构成的线段进行拼接,得到第一飞行航线。
图13为本申请一些实施例中控制终端生成第一飞行航线的示例图,如图13所示,在调整航段包含一个调整采样点P3’时,控制终端确定的无人机的飞行轨迹为:M点→P2→P3’→N点。
根据三角形两边之和大于第三边的原理,可以确定M点到P2的距离与P2到P3’的距离的和大于M点到P3’的距离,基于此,本实施例提出一种航线优化策略,将M点→P2→P3’调整为M点→P3’,即无人机直接从M点飞行至P3’,从而可以进一步缩短无人机的飞行距离。
在一些实施例中,根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线,包括:在调整航段包含多个调整采样点时,对起始航点与第一个调整采样点构成的线段、多个调整采样点中前一个调整采样点与后一个调整采样点构成的线段,以及最后一个调整采样点与终止航点构成的线段进行拼接,得到第一飞行航线。
图14为本申请一些实施例中控制终端生成第一飞行航线的示例图,如图14所示,在调整航段包含两个调整采样点P3’和P6’时,控制终端确定的无人机的飞行轨迹为:M点→P2→P3’→P5→P6’→N点。
同样根据三角形两边之和大于第三边的原理,可以确定M点到P2的距离与P2到P3’的距离的和大于M点到P3’的距离,P3’点到P5的距离与P5到P6’的距离的和大于P3’到P6’的距离,基于此,本实施例提出一种航线优化策略,将M点→P2→P3’调整为M点→P3’,将P3’→P5→P6’调整为P3’→P6’,即无人机直接从M点飞行至P3’,再直接从P3’飞行至P6’,从而可以进一步缩短无人机的飞行距离。
在一些实施例中,飞行航线生成方法还包括:
S610、根据异常采样点确定新的补充采样点,新的补充采样点与初始航线上不属于异常采样点的其他采样点构成第二飞行航线;其中,补充采样点构成的补充航线部分围绕异常采样点,补充航线的起点和终点在初始航线上,补充航线的起点和终点不属于异常采样点;
S620、在第二飞行航线的航线长度小于第一飞行航线的航线长度时,确定第二飞行航线为最终的飞行航线。
在初始航线包含异常采样点时,控制终端采用的航段调整策略为进行飞行高度的调整以“翻越”异常采样点所在位置的目标对象,然而,当目标对象的高度较高时,无人机可能需要飞行至一个较高的高度才能“翻越”该目标对象。基于此,本实施例提出另外一种航线调整策略,具体为通过环绕异常采样点,即围绕目标对象飞行以避开该目标对象。
图15为本申请一些实施例中控制终端进行航线调整的示意图,如图15所示,M点和N点之间存在一栋较高的建筑物,此时,无人机首先需要从M点飞行至Q0点,再从Q0点飞行至N点,然而,在建筑物较高时,该飞行轨迹的距离较长。
参考图15,本实施例中,控制终端首先根据异常采样点确定新的补充采样点,新的补充采样点与初始航线上不属于异常采样点的其他采样点构成第二飞行航线,其中,新的补充采样点可以是在图中围绕异常采样点的线段Q1Q2、线段Q2Q3以及线段Q3Q4上,补充采样点与目标对象直接的距离大于或者等于预设安全距离。相应的,第二飞行航线即为M点→Q1→Q2→Q3→Q4→N点,第二飞行航线的俯视示意图如图16所示。
控制终端在确定第二飞行航线后,可以将第二飞行航线的航线长度与第一飞行航线的航线长度进行比较,以确定飞行距离最短的飞行航线。若第二飞行航线的航线长度小于第一飞行航线的航线长度,则确定第二飞行航线为最终的飞行航线,反之,则确定第一飞行航线为最终的飞行航线。
本实施例提供另外一种航线调整策略,具体为通过环绕异常采样点,即围绕目标对象飞行以避开该目标对象,基于该航线调整策略可以确定第二飞行航线。在得到第二飞行航线后,可以将第二飞行航线的航线长度与第一飞行航线的航线长度进行比较,以确定飞行距离最短的飞行航线,从而保证无人机飞行航线最短,提高无人机的续航能力。
在一些实施例中,实际高度通过数字高程模型DEM、数字地面模型DTM、数字线划地图DLG、数字栅格地图DRG、数字正射影像图DOM、数字地表模型DSM或者点云地图中的任意一种或多种得到。
其中,数字高程模型(Digital Elevation Model,DEM)是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化 表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
数字地面模型(Digital Terrain Model,DTM)是一个表示地面特征空间分布的数据库,一般用一系列地面点坐标(x,y,z)及地表属性(目标类别、特征等)绗成数据阵列,以此组成数字地面模型。
数字线划地图(Digital Line Graphic,DLG)是现有地形图要素的矢量数据集,保存各要素间的空间关系和相关的属性信息,全面地描述地表目标。
数字栅格地图(Digital Raster Graphic,DRG)是根据现有纸质、胶片等地形图经扫描和几何纠正及色彩校正后,形成在内容、几何精度和色彩上与地形图保持一致的栅格数据集。
数字正射影像图(Digital Orthophoto Map,DOM)是对航空(或航天)相片进行数字微分纠正和镶嵌,按一定图幅范围裁剪生成的数字正射影像集。它是同时具有地图几何精度和影像特征的图像。
数字地表模型(Digital Surface Model,DSM)是指包含了地表建筑物、桥梁和树木等高度的地面高程模型。和DSM相比,DEM只包含了地形的高程信息,并未包含其它地表信息,DSM是在DEM的基础上,进一步涵盖了除地面以外的其它地表信息的高程。
可以理解,控制终端可以是通过以上多种地图或者模型中的一种或者多种得到各采样点的实际高度,在此不做限定。
应该理解的是,虽然上述实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一些实施例中,提供一种飞行航线生成装置。
图17为本申请一些实施例提供的飞行航线生成装置的示意图,如图17所示,该装置包括:存储器10和处理器20,其中,存储器用于存储计算 机程序;处理器,用于调用计算机程序执行如下操作:确定初始航线;从初始航线上确定多个采样点;确定初始航线上各采样点的第一预设高度;当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。
关于飞行航线生成装置的具体限定可以参见上文中对于飞行航线生成方法的限定,在此不再赘述。上述飞行航线生成装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请提供一种飞行航线生成装置,在无人机进行飞行任务时,在确定初始航线后,首先基于初始航线上各采样点对应的第一预设高度以及实际高度确定是否存在异常采样点,异常采样点对应的第一预设高度低于其所在位置的目标对象的实际高度,即该目标对象会阻碍无人机的正常飞行,因此,在存在异常采样点时,通过进行航段调整,使得得到的调整航段不包含异常采样点,基于调整航段得到的飞行航线也不包含异常采样点,从而,无人机在按照该飞行航线进行飞行时不会出现撞机的情况,进而提高无人机飞行的安全性。
在一些实施例中,处理器还用于:获取飞行任务的起始航点以及终止航点;确定起始航点与终止航点构成的线段或弧线为初始航线。
在一些实施例中,处理器还用于:基于初始航线中起始航点的第一高度以及终止航点的第二高度,确定各采样点的第一预设高度。
在一些实施例中,处理器还用于:基于起始航点的第一位置及第一高度,以及终止航点的第二位置以及第二高度,构建表征位置与高度的相关关系的关系函数;根据关系函数,以及各采样点的位置,得到各采样点的第一预设高度。
在一些实施例中,处理器还用于:基于异常采样点的实际高度以及预设安全距离,对异常采样点进行高度调整,得到调整采样点;
确定异常采样点的前一采样点与调整采样点构成的线段,以及调整采 样点与终止航点构成的线段为调整航段。
在一些实施例中,处理器还用于:基于第一异常采样点的实际高度以及预设安全距离,对第一异常采样点进行高度调整,得到第一调整采样点,第一异常采样点为距离起始航点最近的异常采样点;确定第一异常采样点的前一采样点与第一调整采样点构成的线段,以及第一调整采样点与终止航点构成的线段为第一调整航段;基于第一调整航段,确定除第一异常采样点以外的其他异常采样点的第二预设高度;在各其他异常采样点的第二预设高度超过其他异常采样点对应的实际高度时,确定第一调整航段为最终的调整航段。
在一些实施例中,处理器还用于:当存在第二预设高度低于实际高度的第二异常采集点时,基于第二异常采样点的实际高度以及预设安全距离,对第二异常采样点进行高度调整,得到第二调整采样点;确定第二异常采样点的前一采样点与第二调整采样点构成的线段,以及第二调整采样点与终止航点构成的线段为第二调整航段;基于第二调整航段,确定除第一异常采样点以及第二异常采样点以外的其他异常采样点的第三预设高度;在各其他异常采样点的第三预设高度超过其他异常采样点对应的实际高度时,确定第一调整航段中未进行下一次航段调整的航段、以及第二调整航段为最终的调整航段。
在一些实施例中,处理器还用于:根据所有异常采样点的实际高度,确定最高实际高度;基于最高实际高度以及预设安全距离,对第一异常采样点进行高度调整,得到第一调整采样点,第一异常采样点为距离起始航点最近的异常采样点;确定第一异常采样点的前一采样点与第一调整采样点构成的线段,以及第一调整采样点与终止航点构成的线段为调整航段。
在一些实施例中,处理器还用于:对正常航段以及调整航段进行拼接,得到第一飞行航线。
在一些实施例中,处理器还用于:在调整航段包含一个调整采样点时,对起始航点与调整采样点构成的线段,以及调整采样点与终止航点构成的线段进行拼接,得到第一飞行航线。
在一些实施例中,处理器还用于:在调整航段包含多个调整采样点时,对起始航点与第一个调整采样点构成的线段、多个调整采样点中前一个调 整采样点与后一个调整采样点构成的线段,以及最后一个调整采样点与终止航点构成的线段进行拼接,得到第一飞行航线。
在一些实施例中,处理器还用于:根据异常采样点确定新的补充采样点,新的补充采样点与初始航线上不属于异常采样点的其他采样点构成第二飞行航线;
其中,补充采样点构成的补充航线部分围绕异常采样点,补充航线的起点和终点在初始航线上,补充航线的起点和终点不属于异常采样点;
在第二飞行航线的航线长度小于第一飞行航线的航线长度时,确定第二飞行航线为最终的飞行航线。
在一些实施例中,实际高度通过数字高程模型DEM、数字地面模型DTM、数字线划地图DLG、数字栅格地图DRG、数字正射影像图DOM、数字地表模型DSM或者点云地图中的任意一种或多种得到。
在一些实施例中,提供一种控制终端,控制终端与无人机连接,用于控制无人机,控制终端包括存储器和处理器,其中,存储器用于存储计算机程序;处理器,用于调用计算机程序执行如下操作:确定初始航线;从初始航线上确定多个采样点;确定初始航线上各采样点的第一预设高度;当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。
关于控制终端的具体限定,可以参见上文中对于飞行航线生成装置的限定,在此不再赘述。
在一些实施例中,提供一种无人机,包括机身、动力装置和控制装置,控制装置和动力装置分别设置于无人机的机身,控制装置用于控制动力装置带动无人机移动,其中,控制装置包括存储器和处理器,其中,存储器用于存储计算机程序;处理器,用于调用计算机程序执行如下操作:确定初始航线;从初始航线上确定多个采样点;确定初始航线上各采样点的第一预设高度;当多个采样点中存在第一预设高度低于实际高度的异常采样 点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。
关于控制装置的具体限定,可以参见上文中对于飞行航线生成装置的限定,在此不再赘述。
在一些实施例中,提供一种无人机系统。
图18为本申请一些实施例中无人机系统的示意图,如图18所示,无人机系统包括控制终端40以及无人机30,其中,控制终端40可以是遥控器、智能手机、台式电脑、膝上型电脑、穿戴式设备(手表、手环)中的一种或多种。
无人机系统还包括设置于控制终端本体或无人机机身的控制装置,控制装置包括存储器和处理器,其中,存储器用于存储计算机程序;处理器,用于调用计算机程序执行如下操作:确定初始航线;从初始航线上确定多个采样点;确定初始航线上各采样点的第一预设高度;当多个采样点中存在第一预设高度低于实际高度的异常采样点时,对初始航线中包含异常采样点的异常航段进行调整,得到调整航段,调整航段不包含异常采样点;实际高度为采样点所在位置的目标对象的高度;根据初始航线中未进行航段调整的正常航段,以及调整航段,生成第一飞行航线。
在本申请各实施例中,存储器和处理器之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可以通过一条或者多条通信总线或信号线实现电性连接,如可以通过总线连接。存储器中存储有实现数据访问控制方法的计算机执行指令,包括至少一个可以软件或固件的形式存储于存储器中的软件功能模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理。
存储器可以是,但不限于,随机存取存储器(Random Access Memory,简称:RAM),只读存储器(Read Only Memory,简称:ROM),可编程只读存储器(Programmable Read-Only Memory,简称:PROM),可擦除只读存 储器(Erasable Programmable Read-Only Memory,简称:EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,简称:EEPROM)等。其中,存储器用于存储程序,处理器在接收到执行指令后,执行程序。进一步地,上述存储器内的软件程序以及模块还可包括操作系统,其可包括各种用于管理系统任务(例如内存管理、存储设备控制、电源管理等)的软件组件和/或驱动,并可与各种硬件或软件组件相互通信,从而提供其他软件组件的运行环境。
处理器可以是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称:CPU)、网络处理器(Network Processor,简称:NP)等。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一些实施例中,提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时使处理器实现本申请方法实施例中的飞行航线生成方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (30)

  1. 一种飞行航线生成方法,其特征在于,所述方法包括:
    确定初始航线;
    从所述初始航线上确定多个采样点;
    确定所述初始航线上各所述采样点的第一预设高度;
    当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;
    根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
  2. 根据权利要求1所述的方法,其特征在于,所述确定初始航线,包括:
    获取飞行任务的起始航点以及终止航点;
    确定所述起始航点与所述终止航点构成的线段或弧线为所述初始航线。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定所述初始航线上各所述采样点的第一预设高度,包括:
    基于所述初始航线中起始航点的第一高度以及终止航点的第二高度,确定各所述采样点的第一预设高度。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述初始航线中起始航点的第一高度以及终止航点的第二高度,确定各所述采样点的第一预设高度,包括:
    基于所述起始航点的第一位置及第一高度,以及所述终止航点的第二位置以及第二高度,构建表征位置与高度的相关关系的关系函数;
    根据所述关系函数,以及各所述采样点的位置,得到各所述采样点的第一预设高度。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,当所述异常采样点的数量为一个时,所述对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,包括:
    基于所述异常采样点的实际高度以及预设安全距离,对所述异常采样点进行高度调整,得到调整采样点;
    确定所述异常采样点的前一采样点与所述调整采样点构成的线段,以及所述调整采样点与所述终止航点构成的线段为所述调整航段。
  6. 根据权利要求1~4任一项所述的方法,其特征在于,当所述异常采样点的数量为多个时,所述对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,包括:
    基于第一异常采样点的实际高度以及预设安全距离,对所述第一异常采样点进行高度调整,得到第一调整采样点,所述第一异常采样点为距离所述起始航点最近的异常采样点;
    确定所述第一异常采样点的前一采样点与所述第一调整采样点构成的线段,以及所述第一调整采样点与所述终止航点构成的线段为第一调整航段;
    基于所述第一调整航段,确定除所述第一异常采样点以外的其他异常采样点的第二预设高度;
    在各所述其他异常采样点的第二预设高度超过所述其他异常采样点对应的实际高度时,确定所述第一调整航段为最终的调整航段。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    当存在第二预设高度低于实际高度的第二异常采集点时,基于所述第二异常采样点的实际高度以及预设安全距离,对所述第二异常采样点进行高度调整,得到第二调整采样点;
    确定所述第二异常采样点的前一采样点与所述第二调整采样点构成的线段,以及所述第二调整采样点与所述终止航点构成的线段为第二调整航段;
    基于所述第二调整航段,确定除所述第一异常采样点以及所述第二异常采样点以外的其他异常采样点的第三预设高度;
    在各所述其他异常采样点的第三预设高度超过所述其他异常采样点对应的实际高度时,确定所述第一调整航段中未进行下一次航段调整的航段、以及所述第二调整航段为最终的调整航段。
  8. 根据权利要求1~4任一项所述的方法,其特征在于,当所述异常采样点的数量为多个时,所述对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,包括:
    根据所有异常采样点的实际高度,确定最高实际高度;
    基于所述最高实际高度以及预设安全距离,对第一异常采样点进行高度调整,得到第一调整采样点,所述第一异常采样点为距离所述起始航点最近的异常采样点;
    确定所述第一异常采样点的前一采样点与所述第一调整采样点构成的线段,以及所述第一调整采样点与所述终止航点构成的线段为所述调整航段。
  9. 根据权利要求5~8任一项所述的方法,其特征在于,所述根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线,包括:
    对所述正常航段以及所述调整航段进行拼接,得到所述第一飞行航线。
  10. 根据权利要求5~8任一项所述的方法,其特征在于,所述根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线,包括:
    在调整航段包含一个调整采样点时,对起始航点与所述调整采样点构成的线段,以及所述调整采样点与所述终止航点构成的线段进行拼接,得到所述第一飞行航线。
  11. 根据权利要求5~8任一项所述的方法,其特征在于,所述根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线,包括:
    在调整航段包含多个调整采样点时,对起始航点与第一个调整采样点构成的线段、多个调整采样点中前一个调整采样点与后一个调整采样点构成的线段,以及最后一个调整采样点与所述终止航点构成的线段进行拼接,得到所述第一飞行航线。
  12. 根据权利要求9~11任一项所述的方法,其特征在于,还包括:
    根据所述异常采样点确定新的补充采样点,所述新的补充采样点与所述初始航线上不属于异常采样点的其他采样点构成第二飞行航线;
    其中,所述补充采样点构成的补充航线部分围绕所述异常采样点,所述补充航线的起点和终点在所述初始航线上,所述补充航线的起点和终点不属于异常采样点;
    在所述第二飞行航线的航线长度小于所述第一飞行航线的航线长度时,确定所述第二飞行航线为最终的飞行航线。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,所述实际高度通过数字高程模型DEM、数字地面模型DTM、数字线划地图DLG、数字栅格地图DRG、数字正射影像图DOM、数字地表模型DSM或者点云地图中的任意一种或多种得到。
  14. 一种飞行航线生成装置,其特征在于,所述飞行航线生成装置包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
    确定初始航线;
    从所述初始航线上确定多个采样点;
    确定所述初始航线上各所述采样点的第一预设高度;
    当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;
    根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器具体用于:获取飞行任务的起始航点以及终止航点;确定所述起始航点与所述终止航点构成的线段或弧线为所述初始航线。
  16. 根据权利要求14或15所述的装置,其特征在于,所述处理器具体用于:基于所述初始航线中起始航点的第一高度以及终止航点的第二高度,确定各所述采样点的第一预设高度。
  17. 根据权利要求16所述的装置,其特征在于,所述处理器具体用于:基于所述起始航点的第一位置及第一高度,以及所述终止航点的第二位置以及第二高度,构建表征位置与高度的相关关系的关系函数;根据所述关系函数,以及各所述采样点的位置,得到各所述采样点的第一预设高度。
  18. 根据权利要求14~17任一项所述的装置,其特征在于,所述处理器具体用于:基于所述异常采样点的实际高度以及预设安全距离,对所述异常采样点进行高度调整,得到调整采样点;
    确定所述异常采样点的前一采样点与所述调整采样点构成的线段,以及所述调整采样点与所述终止航点构成的线段为所述调整航段。
  19. 根据权利要求14~17任一项所述的装置,其特征在于,所述处理器具体用于:基于第一异常采样点的实际高度以及预设安全距离,对所述第一异常采样点进行高度调整,得到第一调整采样点,所述第一异常采样点为距离所述起始航点最近的异常采样点;确定所述第一异常采样点的前一采样点与所述第一调整采样点构成的线段,以及所述第一调整采样点与所述终止航点构成的线段为第一调整航段;基于所述第一调整航段,确定除所述第一异常采样点以外的其他异常采样点的第二预设高度;在各所述其他异常采样点的第二预设高度超过所述其他异常采样点对应的实际高度时,确定所述第一调整航段为最终的调整航段。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器还用于:当存在第二预设高度低于实际高度的第二异常采集点时,基于所述第二异常采样点的实际高度以及预设安全距离,对所述第二异常采样点进行高度 调整,得到第二调整采样点;确定所述第二异常采样点的前一采样点与所述第二调整采样点构成的线段,以及所述第二调整采样点与所述终止航点构成的线段为第二调整航段;基于所述第二调整航段,确定除所述第一异常采样点以及所述第二异常采样点以外的其他异常采样点的第三预设高度;在各所述其他异常采样点的第三预设高度超过所述其他异常采样点对应的实际高度时,确定所述第一调整航段中未进行下一次航段调整的航段、以及所述第二调整航段为最终的调整航段。
  21. 根据权利要求14~17任一项所述的装置,其特征在于,所述处理器具体用于:根据所有异常采样点的实际高度,确定最高实际高度;基于所述最高实际高度以及预设安全距离,对第一异常采样点进行高度调整,得到第一调整采样点,所述第一异常采样点为距离所述起始航点最近的异常采样点;确定所述第一异常采样点的前一采样点与所述第一调整采样点构成的线段,以及所述第一调整采样点与所述终止航点构成的线段为所述调整航段。
  22. 根据权利要求18~21任一项所述的装置,其特征在于,所述处理器具体用于:对所述正常航段以及所述调整航段进行拼接,得到所述第一飞行航线。
  23. 根据权利要求18~21任一项所述的装置,其特征在于,所述处理器具体用于:在调整航段包含一个调整采样点时,对起始航点与所述调整采样点构成的线段,以及所述调整采样点与所述终止航点构成的线段进行拼接,得到所述第一飞行航线。
  24. 根据权利要求18~21任一项所述的装置,其特征在于,所述处理器具体用于:在调整航段包含多个调整采样点时,对起始航点与第一个调整采样点构成的线段、多个调整采样点中前一个调整采样点与后一个调整采样点构成的线段,以及最后一个调整采样点与所述终止航点构成的线段进行拼接,得到所述第一飞行航线。
  25. 根据权利要求22~24任一项所述的装置,其特征在于,所述处理器还用于:根据所述异常采样点确定新的补充采样点,所述新的补充采样点与所述初始航线上不属于异常采样点的其他采样点构成第二飞行航线;
    其中,所述补充采样点构成的补充航线部分围绕所述异常采样点,所述补充航线的起点和终点在所述初始航线上,所述补充航线的起点和终点不属于异常采样点;
    在所述第二飞行航线的航线长度小于所述第一飞行航线的航线长度时,确定所述第二飞行航线为最终的飞行航线。
  26. 根据权利要求14~25任一项所述的装置,其特征在于,所述实际高度通过数字高程模型DEM、数字地面模型DTM、数字线划地图DLG、数字栅格地图DRG、数字正射影像图DOM、数字地表模型DSM或者点云地图中的任意一种或多种得到。
  27. 一种控制终端,其特征在于,所述控制终端与无人机连接,用于控制无人机,所述控制终端包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
    确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
  28. 一种无人机,包括机身、动力装置和控制装置,其特征在于,所述控制装置和所述动力装置分别设置于所述无人机的机身,所述控制装置用于控制所述动力装置带动所述无人机移动,其中,所述控制装置包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
    确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航 线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
  29. 一种无人机系统,包括控制终端以及无人机,其特征在于,所述无人机系统还包括设置于所述控制终端本体或所述无人机机身的控制装置,所述控制装置包括存储器和处理器,其中,所述存储器用于存储计算机程序;所述处理器,用于调用所述计算机程序执行如下操作:
    确定初始航线;从所述初始航线上确定多个采样点;确定所述初始航线上各所述采样点的第一预设高度;当所述多个采样点中存在第一预设高度低于实际高度的异常采样点时,对所述初始航线中包含所述异常采样点的异常航段进行调整,得到调整航段,所述调整航段不包含异常采样点;所述实际高度为所述采样点所在位置的目标对象的高度;根据所述初始航线中未进行航段调整的正常航段,以及所述调整航段,生成第一飞行航线。
  30. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1~13任一项所述的飞行航线生成方法。
PCT/CN2020/116715 2020-09-22 2020-09-22 飞行航线生成方法、装置、无人机系统及存储介质 WO2022061491A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080033191.5A CN113939786A (zh) 2020-09-22 2020-09-22 飞行航线生成方法、装置、无人机系统及存储介质
PCT/CN2020/116715 WO2022061491A1 (zh) 2020-09-22 2020-09-22 飞行航线生成方法、装置、无人机系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116715 WO2022061491A1 (zh) 2020-09-22 2020-09-22 飞行航线生成方法、装置、无人机系统及存储介质

Publications (1)

Publication Number Publication Date
WO2022061491A1 true WO2022061491A1 (zh) 2022-03-31

Family

ID=79274138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116715 WO2022061491A1 (zh) 2020-09-22 2020-09-22 飞行航线生成方法、装置、无人机系统及存储介质

Country Status (2)

Country Link
CN (1) CN113939786A (zh)
WO (1) WO2022061491A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116433853A (zh) * 2023-06-15 2023-07-14 深圳大学 一种基于实景模型的航测航点生成方法及装置
CN116453378A (zh) * 2023-06-16 2023-07-18 陕西德鑫智能科技有限公司 无人机航段交接切换方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818697A (zh) * 2017-10-30 2018-03-20 中国科学院遥感与数字地球研究所 基于地形高程的非水平航线设计方法、终端及存储介质
CN109375636A (zh) * 2018-12-13 2019-02-22 广州极飞科技有限公司 无人机航线的生成方法、装置、无人机和存储介质
US20190378420A1 (en) * 2018-06-08 2019-12-12 Honeywell International Inc. Automatic from-waypoint updating system and method
CN110750106A (zh) * 2019-10-16 2020-02-04 深圳市道通智能航空技术有限公司 无人机的安全航线生成方法、装置、控制终端和无人机
CN111226185A (zh) * 2019-04-22 2020-06-02 深圳市大疆创新科技有限公司 飞行航线的生成方法、控制装置及无人机系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035869A (zh) * 2017-07-26 2018-12-18 广州极飞科技有限公司 无人机航线的生成方法和装置
CN110118557A (zh) * 2019-04-24 2019-08-13 深圳市道通智能航空技术有限公司 一种航线拼接方法、系统及用户终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818697A (zh) * 2017-10-30 2018-03-20 中国科学院遥感与数字地球研究所 基于地形高程的非水平航线设计方法、终端及存储介质
US20190378420A1 (en) * 2018-06-08 2019-12-12 Honeywell International Inc. Automatic from-waypoint updating system and method
CN109375636A (zh) * 2018-12-13 2019-02-22 广州极飞科技有限公司 无人机航线的生成方法、装置、无人机和存储介质
CN111226185A (zh) * 2019-04-22 2020-06-02 深圳市大疆创新科技有限公司 飞行航线的生成方法、控制装置及无人机系统
CN110750106A (zh) * 2019-10-16 2020-02-04 深圳市道通智能航空技术有限公司 无人机的安全航线生成方法、装置、控制终端和无人机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116433853A (zh) * 2023-06-15 2023-07-14 深圳大学 一种基于实景模型的航测航点生成方法及装置
CN116433853B (zh) * 2023-06-15 2023-11-17 深圳大学 一种基于实景模型的航测航点生成方法及装置
CN116453378A (zh) * 2023-06-16 2023-07-18 陕西德鑫智能科技有限公司 无人机航段交接切换方法及装置
CN116453378B (zh) * 2023-06-16 2023-09-08 陕西德鑫智能科技有限公司 无人机航段交接切换方法及装置

Also Published As

Publication number Publication date
CN113939786A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
EP3955158A1 (en) Object detection method and apparatus, electronic device, and storage medium
US10347139B2 (en) Autonomous nap-of-the-earth (ANOE) flight path planning for manned and unmanned rotorcraft
US6748325B1 (en) Navigation system
US11598876B2 (en) Segmenting ground points from non-ground points to assist with localization of autonomous vehicles
US11892845B2 (en) System and method for mission planning and flight automation for unmanned aircraft
WO2022061491A1 (zh) 飞行航线生成方法、装置、无人机系统及存储介质
US20230215024A1 (en) Position estimation method and apparatus for tracking target, and unmanned aerial vehicle
JP7351079B2 (ja) 制御装置、制御方法及びプログラム
US20190147749A1 (en) System and Method for Mission Planning, Flight Automation, and Capturing of High-Resolution Images by Unmanned Aircraft
CN116295457B (zh) 一种基于二维语义地图的车辆视觉定位方法及系统
EP4194807A1 (en) High-precision map construction method and apparatus, electronic device, and storage medium
US20230206500A1 (en) Method and apparatus for calibrating extrinsic parameter of a camera
KR102012361B1 (ko) 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치
US11514393B1 (en) Aerial item delivery availability
US11495030B1 (en) Systems and methods for creating an occupancy map based on an objective function
WO2021237535A1 (zh) 碰撞处理方法、设备及介质
CN117170402A (zh) 一种基于人工势场的无人机集群避撞方法及系统
WO2024000746A1 (zh) 一种获取电子围栏的方法、设备、介质及程序产品
CN112823353A (zh) 使用机器学习进行对象定位
CN115562335A (zh) 基于3d地图的无人驾驶航空器飞行控制方法、系统和介质
CN115061499A (zh) 无人机控制方法及无人机控制装置
KR102012362B1 (ko) 무인비행체의 안전 운항을 위한 디지털 무빙 맵 생성 방법 및 장치
US20230267717A1 (en) Method for searching a path by using a three-dimensional reconstructed map
WO2021232296A1 (zh) 一种无人机的控制方法、设备、无人机及存储介质
KR102329525B1 (ko) 드론 배달영역 관리 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954345

Country of ref document: EP

Kind code of ref document: A1