WO2020125636A1 - 一种自动返航方法、装置和无人机 - Google Patents

一种自动返航方法、装置和无人机 Download PDF

Info

Publication number
WO2020125636A1
WO2020125636A1 PCT/CN2019/126037 CN2019126037W WO2020125636A1 WO 2020125636 A1 WO2020125636 A1 WO 2020125636A1 CN 2019126037 W CN2019126037 W CN 2019126037W WO 2020125636 A1 WO2020125636 A1 WO 2020125636A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
power consumption
home
drone
current position
Prior art date
Application number
PCT/CN2019/126037
Other languages
English (en)
French (fr)
Inventor
雷小刚
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020125636A1 publication Critical patent/WO2020125636A1/zh
Priority to US17/350,693 priority Critical patent/US11919637B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0091Surveillance aids for monitoring atmospheric conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to the technical field of unmanned aerial vehicles, and in particular, to an automatic return method, device, and unmanned aerial vehicle.
  • a drone is an unmanned aircraft that controls the flight attitude through radio remote control equipment and built-in programs. With the development of social technology, drones are playing a variety of important roles in our lives. Whether it is military use at the national level or entertainment use at the personal level, there are drones.
  • the minimum power is usually determined according to the return distance of the drone, the current flight speed, and the current power consumption speed.
  • the inventor found that in some cases, the minimum power determined based only on the return distance, the current flight speed, and the current power consumption speed is not sufficient to support the safe return of the drone, which is easy As a result, the drone was forced to land halfway due to severe low power.
  • the embodiments of the present invention provide an automatic return-to-home method, device, and drone, which can solve the problem that the current minimum electric power that triggers the automatic return of the drone is not accurate enough, which is likely to cause the drone to land for a long time due to severe low power. The problem.
  • the embodiments of the present invention provide the following technical solutions:
  • an embodiment of the present invention provides an automatic return-to-home method, which is applied to a drone and includes:
  • the home return information includes the home return route, home return distance, home return throttle amount, and home return of the UAV back to the home point from the current position
  • the power consumption speed corresponding to the throttle amount, and the environmental information includes: vertical airflow information on the return route;
  • the drone When the difference between the remaining power and the total power consumption is less than or equal to the power threshold, the drone is controlled to return home automatically.
  • the combination of the home return information and the environment information to determine the total power consumption of the drone returning to the home point from the current position includes:
  • the total power consumption of the drone returning to the home point from the current position is determined.
  • the determining the additional power consumption of the drone returning to the home point from the current position according to the vertical airflow information on the home path includes:
  • the additional power consumption of returning the drone from the current position to the home point is determined according to the range of the vertical airflow area and the airflow intensity.
  • the return information further includes: return angle
  • the environmental information further includes: wind speed and direction of the environment where the drone is located; then,
  • the determining the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow according to the home return information includes:
  • the basic power consumption of the drone returning from the current position to the return location without the influence of vertical airflow is determined.
  • the combination of the wind speed, the wind direction, and the home return information to determine the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow includes:
  • the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow is determined.
  • the home return information further includes a maximum home return speed. Then, the wind speed, the wind direction, and the home return information are combined to determine that the drone returns to the home position from the current position without the influence of vertical airflow.
  • the basic power consumption includes:
  • the return throttle of the drone is re-determined based on the maximum return speed, the return angle, the wind speed and the wind direction, combined with the maximum return speed, the return distance and the re-determined
  • the power consumption speed corresponding to the return throttle of the UAV determines the basic power consumption of the UAV returning from the current position to the home point without the influence of vertical airflow.
  • the power threshold is greater than or equal to the minimum power required by the drone when it lands.
  • an embodiment of the present invention provides an automatic homing device, which is applied to a drone, and includes:
  • the information obtaining unit is used to obtain the current home return information, environment information and remaining power of the drone in real time, wherein the home return information includes the home return route, home return distance and home return of the drone from the current position to the home point
  • the throttle amount and the power consumption speed corresponding to the return throttle amount, and the environmental information includes: vertical airflow information on the return route;
  • a return home power consumption evaluation unit used to combine the return home information and the environmental information to determine the total power consumption of the drone returning from the current location to the return home point;
  • An auto-return unit is used to control the automatic return of the drone when the difference between the remaining power and the total power consumption is less than or equal to the power threshold.
  • the return-to-going power consumption evaluation unit includes:
  • a basic power consumption evaluation module which is used to determine the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow according to the return information
  • An additional power consumption evaluation module which is used to determine the additional power consumption of the drone returning to the home point from the current position according to the vertical airflow information on the return route;
  • the total power consumption evaluation module is used to determine the total power consumption of the drone returning to the home point from the current position based on the basic power consumption and the additional power consumption.
  • the additional power consumption assessment module is specifically used to:
  • the additional power consumption of returning the drone from the current position to the home point is determined according to the range of the vertical airflow area and the airflow intensity.
  • the return information further includes: return angle
  • the environmental information further includes: wind speed and direction of the environment where the drone is located; then, the basic power consumption assessment module is specifically used to:
  • the basic power consumption of the drone returning from the current position to the return location without the influence of vertical airflow is determined.
  • the basic power consumption evaluation module is specifically used for:
  • the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow is determined.
  • the home return information further includes a maximum home return speed.
  • the basic power consumption evaluation module is specifically used to:
  • the return throttle of the drone is re-determined according to the maximum return speed, the return angle, the wind speed and the wind direction, combined with the maximum return speed, the return distance and the re-determined
  • the power consumption speed corresponding to the return throttle of the UAV determines the basic power consumption of the UAV returning from the current position to the home point without the influence of vertical airflow.
  • the power threshold is greater than or equal to the minimum power required by the drone when it lands.
  • an embodiment of the present invention provides a drone, including:
  • the machine arm is connected to the fuselage
  • the power device is provided on the arm and used to provide lift or power for the drone flight;
  • At least one processor provided on the body; and,
  • the device can execute the automatic return method as described above.
  • an embodiment of the present invention further provides a non-transitory computer-readable storage medium.
  • the non-transitory computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to make unmanned The aircraft performs the automatic return method as described above.
  • an embodiment of the present invention also provides a computer program product.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions. When the program When the instruction is executed by the unmanned aerial vehicle, the unmanned aerial vehicle is allowed to execute the automatic return-to-home method as described above.
  • the automatic return method, device and drone provided by the embodiments of the present invention combine the return information and environmental information of the drone (especially in the drone (Vertical airflow information on the return route) Estimate the total power consumption of the drone returning from the current position to the return point, which can more intelligently and accurately determine the minimum power consumption of the drone returning from the current position to the return point;
  • the drone can be controlled to return home automatically, which can prevent the drone from being forced to land due to severely low power during the flight or return flight.
  • the purpose of safe return is possible to be controlled to return home automatically.
  • FIG. 1 is a schematic diagram of one application environment of the automatic return method provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the internal structure of the drone shown in Figure 1;
  • FIG. 3 is a schematic flowchart of an automatic return-to-home method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for determining the total power consumption of a drone returning to a home point from a current position by combining home return information and environmental information according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an automatic returning device provided by an embodiment of the present invention.
  • the minimum amount of electricity that triggers the automatic return of the drone is mainly determined according to the return distance of the drone, the current flight speed, and the current power consumption speed.
  • the minimum amount of electricity is sometimes insufficient to support the safe return of the drone, which may lead to no The man-machine was forced to land halfway because of severe low power.
  • the vertical airflow will cause the UAV to bump, which is easy to cause flight difficulties, and the impact on the power consumption of the UAV when returning to the home is particularly obvious.
  • the embodiments of the present invention provide an automatic returning method, device and drone.
  • the automatic return method is a real-time detection of the minimum power consumption of the drone returning from the current position to the home point, and the difference between the remaining power of the drone and the minimum power consumption is less than or equal to a certain amount of power At the threshold, the method of controlling the automatic return of the drone.
  • the minimum power consumption is determined according to the return information of the drone at the current position and the environmental information (especially vertical airflow information) on the return route, which can comprehensively consider environmental factors for unmanned The impact of the return flight of the aircraft will more accurately estimate the minimum power consumption required by the drone to return to the return point from the current position, so as to prevent the drone from landing due to severe low power during the flight or return flight.
  • the automatic return-to-home device may be a virtual device composed of a software program capable of implementing the automatic return-to-home method provided by the embodiment of the present invention, which is based on the same inventive concept and has the same technical features as the automatic return-to-home method provided by the embodiment of the invention Beneficial effect.
  • the UAV may be any type of unmanned aerial vehicle, such as: fixed-wing UAV, tilt-rotor UAV, rotor UAV, umbrella-wing UAV, flapping-wing UAV, and so on.
  • the UAV may be provided with any type of processor, capable of executing the automatic returning method provided by the embodiment of the present invention or running the automatic returning device provided by the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of one application environment of an automatic return method provided by an embodiment of the present invention.
  • the application environment includes: the drone 10 and the remote control terminal 20, and the wireless communication connection between the drone 10 and the remote control terminal 20 can be performed in any way, for example, wireless fidelity technology (Wireless Fidelity, Wi-Fi), Bluetooth (Bluetooth) technology or mobile communication technologies such as 3rd Generation (3rd Generation, 3G), 4th Generation (4th Generation, 4G), or 5th Generation (5th Generation, 5G) to achieve wireless Connection is not limited here.
  • wireless fidelity technology Wireless Fidelity, Wi-Fi
  • Bluetooth Bluetooth
  • mobile communication technologies such as 3rd Generation (3rd Generation, 3G), 4th Generation (4th Generation, 4G), or 5th Generation (5th Generation, 5G) to achieve wireless Connection is not limited here.
  • the drone 10 may specifically be a four-rotor drone, which may include a fuselage 11, an arm 12 connected to the fuselage 11, and a power device 13 mounted on the arm 12, so The power device 13 is used to provide lift or power for the drone 10 to fly.
  • the fuselage 11 of the drone 10 may be provided with: at least one processor 101 (a processor is taken as an example in FIG. 2) and a communication connection through a system bus or other means, and Memory 102.
  • the processor 101 is used to provide calculation and control capabilities to control the flying of the drone 10 and perform related tasks, for example, to control the drone 10 to perform any automatic return home provided by the embodiment of the present invention method.
  • the memory 102 serves as a non-transitory computer-readable storage medium, and can be used to store non-transitory software programs, non-transitory computer executable programs, and modules, such as program instructions corresponding to the automatic return method in the embodiment of the present invention. /Module.
  • the processor 101 can implement the automatic return method in any of the following method embodiments.
  • the memory 102 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 102 may further include memories remotely provided with respect to the processor 101, and these remote memories may be connected to the processor 101 through a network.
  • Examples of the aforementioned network include, but are not limited to, the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • the remote control terminal 20 may be any terminal capable of controlling the drone 10, such as a remote controller, a mobile terminal (for example, a smart phone, a tablet computer, a laptop computer, etc.), a wearable device, or other devices.
  • the remote control terminal 20 may control the drone 10 to adjust the flight attitude or perform corresponding tasks by sending control instructions to the drone 10, and may also receive signals or image data from the drone 10.
  • the remote control terminal 20 may also be configured with a display screen for displaying images according to image data.
  • the drone 10 can acquire the current home return information, environmental information, and remaining power of the drone 10 in real time during flight, wherein the home return information includes the The return route, return distance, return throttle, and power consumption speed corresponding to the return throttle of the position return to the home point, the environment information includes vertical airflow information on the return route; combine the return information and the environment Information to determine the total power consumption of the UAV 10 returning to the home point from the current position; when the difference between the remaining power and the total power consumption is less than or equal to the power threshold, control the UAV 10 to automatically Go home.
  • the drone 10 may send a return message and/or return home screen to the remote control terminal 20 to inform the user that the drone 10 will automatically return home due to a power warning.
  • the drone 10 may also be other types of unmanned aerial vehicles, such as single-rotor drones, six-rotor drones, tilt-rotor drones, and umbrella wings. Man-machine, flapping wing drone, etc.
  • the number of the UAV 10 and the remote control terminal 20 may be more than one.
  • FIG. 3 is a schematic flowchart of an automatic returning method provided by an embodiment of the present invention. This method can be performed by any type of drone, for example, by the drone 10 shown in FIG. 1.
  • the method may include but not limited to the following steps:
  • Step 110 Obtain the current return information, environmental information, and remaining power of the drone in real time.
  • the "home return information” refers to the flight information related to the return of the drone from the current position to the home point, which may include the home return route, the home return distance, the home return throttle amount, and the consumption corresponding to the home return throttle amount. Information such as electrical speed.
  • the "home point” refers to the position where the drone is going to return when the power is alarmed, which may be the initial home point of the drone, for example, the take-off point of the drone or other designated locations; It may also be a home point updated based on other conditions during the flight of the drone, for example, a home point updated according to the location of the remote control terminal; this embodiment of the present invention is not limited thereto.
  • the height of the home point is not specifically limited, for example, the home point may be on the same horizontal plane as the current position of the drone, or may be on a different horizontal plane On board, the drone returns to the home point to perform the landing task.
  • the "return route” refers to the route of the drone flying back from the current position to the return route, which can be calculated in real time based on the current location of the drone and the return route.
  • the embodiment of the present invention does not specify the way of determining the return route limited.
  • the “return distance” refers to the distance that the drone returns to the return point from the current position according to the determined return route. For example, assuming that the home route determined by the drone first rises to a preset altitude and then returns straight to the home point, then the current home distance of the drone is the distance that the drone rises plus the current position relative to the home point Horizontal distance.
  • the “return throttle amount” refers to the throttle amount that drives the drone to fly when the drone returns, which may be a preset throttle amount, for example, the maximum throttle amount for return flight; or the current throttle of the drone The amount is not limited by the embodiment of the present invention. Different return throttles correspond to different power consumption speeds. The greater the return throttle, the faster the corresponding power consumption speed.
  • the “environmental information” refers to the environmental information on the route of the drone returning to the home point from the current position, which may specifically include: vertical airflow information on the home route.
  • the "vertical airflow information” may include information such as whether there is a vertical airflow area, a range of the vertical airflow area, and airflow intensity.
  • the "vertical airflow” refers to an airflow formed by vertical movement of air, which may include an upward airflow (formed by the upward movement of air) and a downward airflow (formed by the downward movement of air). If the drone encounters vertical airflow during the flight, it will usually produce bumps and cannot stabilize the flight. In severe cases, it may even cause a runaway bomber. Therefore, when the drone passes through the vertical airflow area, it generally needs to consume more power.
  • the home return information, environmental information, and remaining power of the drone returning to the home point from the current position are acquired in real time to monitor whether the drone has reached the low power warning state.
  • both the return information and the remaining power can be obtained by processing data fed back by various hardware of the drone (for example, various sensors, batteries, etc.) or related preset data; vertical in the environmental information
  • Airflow information can be determined by acquiring weather data fed back by external equipment (such as a weather database or a remote control terminal).
  • the return angle of the man-machine is also obtained in real time the wind speed and direction of the environment where the drone is located.
  • the return angle can be determined based on the return route, and the wind speed and direction can be detected in real time by sensors mounted on the drone.
  • Step 120 Combine the return information and the environmental information to determine the total power consumption of the drone returning to the return location from the current position.
  • the home return information and the environment information are comprehensively considered to estimate the total power consumption (or the minimum power consumption) required for the drone to return to the home point from the current position.
  • this step 120 may include, but is not limited to the following steps:
  • Step 121 Determine the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow according to the home return information.
  • the "basic power consumption” refers to the minimum power required for the drone to fly back from the current position to the home point without any vertical airflow.
  • the flight speed of the drone during the return flight can be determined first by the return throttle value; then the return flight distance and the flight speed are combined to determine the time required for the return flight; and finally, according to the time required for the return flight and the return flight
  • the power consumption speed corresponding to the throttle amount determines the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow.
  • the obtained return information further includes: return angle
  • the obtained environmental information further includes: the environment in which the drone is located Wind speed and direction. Therefore, in this embodiment, it is also possible to determine the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow in combination with the wind speed, wind direction and home information.
  • the actual return speed of the drone returning from the current position to the return point in the windy environment may be determined according to the return throttle, the return angle, the wind speed, and the wind direction;
  • the actual return speed, the return distance and the power consumption speed corresponding to the return throttle amount are used to determine the basic power consumption of the drone returning from the current position to the return point without the influence of vertical airflow.
  • the specific implementation method for determining the actual return speed of the drone from the current position to the return point in a windy environment based on the return throttle, the return angle, the wind speed and the wind direction may be For: First, according to the return throttle, determine the ideal return speed of the drone from the current position to the return point in a windless environment (that is, in the absence of wind, drive the drone with the return throttle Obtained flight speed); then, combined with the pre-fitted calculation formula, based on the ideal return speed, the return angle, the wind speed, and the wind direction, determine the current position of the drone in a windy environment The actual return speed of the return to the home point (that is, under the influence of the wind, the drone is driven by the return throttle to the actual flying speed that can be achieved).
  • the drone in order to ensure the flight safety of the drone, the drone is set with a maximum return speed. Assuming that the return throttle of the drone can achieve the maximum return speed of the drone without the influence of the wind, and that the drone is downwind when returning, then if you continue to drive the drone with the originally determined return throttle, it will inevitably The actual return speed of the drone exceeds the maximum return speed.
  • the drone in order to meet the flight safety requirements of the drone, after determining the actual return speed of the drone to return to the home point from the current position in a windy environment, first determine whether the actual return speed Less than or equal to the maximum return speed; if it is, then combine the actual return speed, return distance and power consumption speed corresponding to the return throttle to determine that the drone returns to the return position from the current position without the influence of vertical airflow
  • the basic power consumption of the point if not, the return throttle of the drone is re-determined according to the maximum return speed, the return angle, the wind speed and the wind direction, and then combined with the maximum return speed,
  • the return distance and the re-determined power consumption speed corresponding to the return throttle of the drone determine the basic power consumption of the drone returning to the return point from the current position without the influence of vertical airflow.
  • the factors such as return angle, wind speed, wind direction, and maximum return speed are fully considered to affect the basic power consumption of the drone returning from the current position to the return point without the influence of vertical airflow, which can more accurately Estimate the minimum power required for the UAV to return from its current position.
  • Step 122 According to the vertical airflow information on the return route, determine the additional power consumption of the drone returning to the return point from the current position.
  • the vertical airflow information on the return route is determined to determine the additional power consumption of the drone returning to the return point from the current position.
  • the "additional power consumption” may specifically be the minimum power required by the drone to pass through the vertical airflow area on the return route.
  • the additional power consumption of the drone returning from the current position to the homepoint can be determined according to the range of the vertical airflow area and the airflow intensity.
  • the specific implementation method for determining the additional power consumption of the drone returning to the home point from the current position according to the range of the vertical airflow area and the airflow intensity may be: first, according to the range and the vertical airflow area The airflow intensity determines the manner in which the drone passes through the vertical airflow area, and then determines the additional power consumption of the drone returning to the home point from the current position based on the manner in which the drone passes through the vertical airflow area.
  • the vertical airflow area should be passed through in a detour way, then At this time, the additional power consumption of the UAV returning from the current position to the home point is the power required for the UAV to detour.
  • the drone can directly pass through the vertical airflow area. At this time, the drone returns to the home from the current position
  • the additional power consumption of the point is the power required by the drone to directly pass through the vertical airflow area.
  • the value of the electric quantity can be determined by referring to the experimental data table established in advance.
  • Step 123 Based on the basic power consumption and the additional power consumption, determine the total power consumption of the drone returning to the home point from the current position.
  • the sum of the basic power consumption and the additional power consumption may be directly used as the total power consumption of the drone returning to the home point from the current position.
  • the impact of environmental factors such as vertical airflow, wind speed, and wind direction on the return of the drone is mainly considered because these environmental factors have a greater impact on the power consumption of the return of the drone.
  • the total power consumption of the drone returning to the home point from the current position may also be determined by comprehensively considering the impact of climate, temperature, altitude and other environmental factors on the power consumption of the drone returning to the home . Therefore, in this embodiment, the total power consumption of the drone returning to the home point from the current position may also be greater than the sum of the basic power consumption and the additional power consumption.
  • Step 130 When the difference between the remaining power and the total power consumption is less than or equal to the power threshold, control the UAV to automatically return home.
  • the "power threshold" may be a fixed power value preset by a programmer or a user; or it may be a variable that is updated in real time according to actual flight conditions.
  • the power threshold in order to ensure that the drone can land safely, the power threshold may be greater than or equal to the minimum power required for the drone to land.
  • the remaining power of the drone is much greater than the total power consumption of the drone returning from the current position to the home point, it means that the drone has enough power to perform the flight mission and return home. You can continue to perform flight missions; and when the difference between the remaining power and the total power consumption is less than or equal to the power, it means that the remaining power of the drone is close to the critical value of the low power warning. In order to return home safely, this time The UAV needs to be controlled to return home automatically.
  • the beneficial effect of the embodiment of the present invention is that the automatic return method provided by the embodiment of the present invention combines the return information and environmental information of the drone (especially the vertical airflow information on the return route of the drone) Estimate the total power consumption of the UAV returning from the current position to the home point, which can more intelligently and accurately determine the minimum power of the UAV returning from the current position to the home point; When the difference of the total power consumption is less than or equal to the power threshold, controlling the drone to automatically return to the home can prevent the drone from being forced to land due to severely low power during the flight or return to the home, thereby achieving the purpose of safe return.
  • FIG. 5 is a schematic structural diagram of an automatic return-to-home device provided by an embodiment of the present invention.
  • the automatic return-to-home device 50 can operate on any type of drone (for example, the drone 10 shown in FIG. 1 ).
  • the device 50 includes: an information acquisition unit 51, a return home power consumption evaluation unit 52 and an automatic return home unit 53.
  • the information obtaining unit 51 is used to obtain the current home return information, environment information and remaining power of the drone in real time, wherein the home return information includes the home return route of the drone returning to the home point from the current position, The return distance, the return throttle value, and the power consumption speed corresponding to the return throttle value, and the environmental information includes: vertical airflow information on the return route;
  • the return home power consumption evaluation unit 52 is used to determine the total power consumption of the drone returning to the home point from the current position by combining the return home information and the environment information;
  • the automatic return unit 53 is used to control the automatic return of the drone when the difference between the remaining power and the total power consumption is less than or equal to the power threshold.
  • the UAV obtains the current home return information, environmental information, and remaining power of the UAV in real time through the information acquisition unit 51 during flight, wherein the home return information includes the UAV from The return route, return distance, return throttle, and power consumption speed corresponding to the return throttle at the current position, the environmental information includes: vertical airflow information on the return route; and use the return power consumption
  • the quantity evaluation unit 52 determines the total power consumption of the drone returning to the home point from the current position by combining the return information and the environment information; when the difference between the remaining power and the total power consumption is less than or equal to When the power threshold is reached, the automatic returning unit 53 is used to control the automatic returning of the drone.
  • the return power consumption evaluation unit 52 includes: a basic power consumption evaluation module 521, an additional power consumption evaluation module 522, and a total power consumption evaluation module 523.
  • the basic power consumption evaluation module 521 is used to determine the basic power consumption of the drone returning from the current position to the home point without the influence of vertical airflow according to the home return information; the additional power consumption evaluation module 522 is used To determine the additional power consumption of the drone returning to the home point from the current position according to the vertical airflow information on the return route; the total power consumption evaluation module 523 is used to determine the power consumption based on the basic power consumption and The additional power consumption determines the total power consumption of the drone returning to the home point from the current position.
  • the return information further includes: return angle
  • the environmental information further includes: wind speed and direction of the environment where the drone is located
  • the basic power consumption evaluation module 521 Specifically, it is used to determine the basic power consumption of the drone to return to the home point from the current position without the influence of vertical airflow in combination with the wind speed, the wind direction and the home return information.
  • the basic power consumption evaluation module 521 is specifically used to:
  • the return throttle determines the actual return speed of the drone from the current position to the return point in a windy environment;
  • the return distance and the power consumption speed corresponding to the return throttle value determine the basic power consumption of the drone returning from the current position to the return point without the influence of vertical airflow.
  • the home return information further includes the maximum home return speed.
  • the basic power consumption evaluation module 521 is specifically configured to:
  • the return throttle determines the actual return speed of the drone from the current position to the return point in a windy environment; determine whether the actual return speed is less than Or equal to the maximum return speed; if it is, combine the actual return speed, return distance and power consumption speed corresponding to the return throttle to determine that the drone returns to the return point from the current position without the influence of vertical airflow Basic power consumption; if not, re-determine the return throttle of the drone based on the maximum return speed, the return angle, the wind speed and the wind direction, combined with the maximum return speed, the The return distance and the re-determined power consumption speed corresponding to the return throttle of the drone determine the basic power consumption of the drone returning from the current position to the return point without the influence of vertical airflow.
  • the additional power consumption assessment module 522 is specifically configured to: determine whether there is a vertical airflow area on the return route according to the vertical airflow information; if not, determine the drone The additional power consumption of returning to the home point from the current position is 0; if it exists, the additional power consumption of returning the drone from the current position to the home point is determined according to the range and intensity of the vertical airflow area.
  • the power threshold is greater than or equal to the minimum power required when the drone is landing.
  • the beneficial effect of the embodiment of the present invention is that the automatic return device provided by the embodiment of the present invention obtains the current return information of the drone in real time by the information acquiring unit 51 during the flight of the drone , Environmental information and remaining power, and using the return power consumption assessment unit 52 combined with the return information and environmental information of the drone (especially the vertical airflow information on the return route of the drone) to estimate the return of the drone from the current position
  • the total power consumption of the home point can more intelligently and accurately determine the minimum power of the drone returning from the current position to the home point; and, through the automatic home unit 53 between the remaining power of the drone and the total power consumption
  • controlling the drone to automatically return to the home can prevent the drone from being forced to land due to severely low power during the flight or return, thereby achieving the purpose of safe return.
  • the device embodiments described above are only schematic, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units/modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • Embodiments of the present invention also provide a non-transitory computer-readable storage medium.
  • the non-transitory computer-readable storage medium stores computer-executable instructions, which are executed by one or more processors, for example , Being executed by a processor 101 in FIG. 2, may cause the one or more processors to execute the automatic return-to-home method in any of the above method embodiments, for example, performing the method steps 110 to 130 in FIG. 3 described above. Method steps 121 to 123 in 4.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art may understand that all or part of the processes in the method of the above embodiments may be completed by a computer program in a computer program product instructing relevant hardware.
  • the computer program may be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by the drone, the drone may be allowed to execute the processes of the embodiments of the above methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random storage memory (Random Access Memory, RAM), etc.
  • the above product can execute the automatic return method provided by the embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the automatic return method.
  • the automatic return-to-home method provided in this embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Atmospheric Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种自动返航方法、装置(20)和无人机(10),方法包括:实时获取无人机(10)当前的返航信息、环境信息以及剩余电量(S110),其中,返航信息包括无人机(10)从当前位置返回返航点的返航路线、返航距离、返航油门量以及返航油门量对应的耗电速度,环境信息包括:返航路线上的垂直气流信息;结合返航信息和环境信息,确定无人机(10)从当前位置返回返航点的总耗电量(S120);当剩余电量与总耗电量之差小于或等于电量阈值时,控制无人机(10)自动返航(S130)。通过上述技术方案,能够更加准确地预估无人机(10)从当前位置返回返航点所需的最低耗电量,避免无人机(10)在飞行或者返航的过程中因严重低电量而迫降。

Description

一种自动返航方法、装置和无人机 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种自动返航方法、装置和无人机。
背景技术
无人机是一种通过无线电遥控设备和内置的程序来控制飞行姿态的不载人飞机。随着社会科技的发展,无人机正在我们生活中扮演着各种各样的重要角色,无论是国家层面的军事用途还是个人层面的娱乐用途都有无人机的身影。
当前,为了使无人机能够安全返回返航点,通常会在无人机的剩余电量小于或等于某一最低电量时触发无人机自动返航。其中,该最低电量通常根据无人机的返航距离、当前的飞行速度以及当前的耗电速度来确定。
然而,在实现本发明的过程中,发明人发现:在一些情况下,仅根据返航距离、当前的飞行速度以及当前的耗电速度所确定的最低电量并不足以支撑无人机安全返航,容易导致无人机在半路因严重低电量而迫降。
发明内容
有鉴于此,本发明实施例提供一种自动返航方法、装置和无人机,能够解决现有触发无人机自动返航的最低电量不够准确,容易导致无人机在半路因严重低电量而迫降的问题。
为解决上述技术问题,本发明实施例提供了如下技术方案:
第一方面,本发明实施例提供一种自动返航方法,应用于无人机,包括:
实时获取所述无人机当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括:所述返航路线上的垂直气流信息;
结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量;
当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,控制所述无人机自动返航。
可选地,所述结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量,包括:
根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量;
基于所述基本耗电量和所述附加耗电量,确定所述无人机从当前位置返回返航点的总耗电量。
可选地,所述根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量,包括:
根据所述垂直气流信息确定所述返航路线上是否存在垂直气流区域;
若不存在,则确定所述无人机从当前位置返回返航点的附加耗电量为0;
若存在,则根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量。
可选地,所述返航信息还包括:返航角度,所述环境信息还包括:所述无人机所处环境的风速和风向;则,
所述根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量,包括:
结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
可选地,所述结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量,包括:
根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
结合所述实际返航速度、所述返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
可选地,所述返航信息还包括最大返航速度,则,所述结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量,包括:
根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
判断所述实际返航速度是否小于或等于所述最大返航速度;
若是,则结合所述实际返航速度、返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
若否,则根据所述最大返航速度、所述返航角度、所述风速以及所述风向重新确定所述无人机的返航油门量,结合所述最大返航速度、所述返航距离以及重新确定后的所述无人机的返航油门量对应的耗电速度确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
可选地,所述电量阈值大于或等于所述无人机降落时所需的最低电量。
第二方面,本发明实施例提供一种自动返航装置,应用于无人机,包括:
信息获取单元,用于实时获取所述无人机当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括:所述返航路线上的垂直气流信息;
返航耗电量评估单元,用于结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量;
自动返航单元,用于当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,控制所述无人机自动返航。
可选地,所述返航耗电量评估单元,包括:
基本耗电量评估模块,用于根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
附加耗电量评估模块,用于根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量;
总耗电量评估模块,用于基于所述基本耗电量和所述附加耗电量,确定所述无人机从当前位置返回返航点的总耗电量。
可选地,所述附加耗电量评估模块具体用于:
根据所述垂直气流信息确定所述返航路线上是否存在垂直气流区域;
若不存在,则确定所述无人机从当前位置返回返航点的附加耗电量为0;
若存在,则根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量。
可选地,所述返航信息还包括:返航角度,所述环境信息还包括:所述无人机所处环境的风速和风向;则,所述基本耗电量评估模块具体用于:
结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
可选地,所述基本耗电量评估模块具体用于:
根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
结合所述实际返航速度、所述返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
可选地,所述返航信息还包括最大返航速度,则,所述基本耗电量评估模块具体用于:
根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
判断所述实际返航速度是否小于或等于所述最大返航速;
若是,则结合所述实际返航速度、返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
若否,则根据所述最大返航速度、所述返航角度、所述风速以及所述风向重新确定所述无人机的返航油门量,结合所述最大返航速度、所述返航距离以及重新确定后的所述无人机的返航油门量对应的耗电速度确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
可选地,所述电量阈值大于或等于所述无人机降落时所需的最低电量。
第三方面,本发明实施例提供一种无人机,包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于提供所述无人机飞行的升力或动力;
至少一个处理器,设于所述机身;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的自动返航方法。
第四方面,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令 用于使无人机执行如上所述的自动返航方法。
第五方面,本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被无人机执行时,使所述无人机执行如上所述的自动返航方法。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例提供的自动返航方法、装置和无人机通过结合无人机的返航信息以及环境信息(尤其是在无人机返航路线上的垂直气流信息)预估无人机从当前位置返回返航点的总耗电量,能够更加智能且准确地确定无人机从当前位置返回返航点的最低电量;并且,通过在无人机的剩余电量与所述总耗电量之差小于等于电量阈值时,控制所述无人机自动返航,能够避免无人机在飞行或者返航的过程中因严重低电量而迫降,从而达到安全返航的目的。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的自动返航方法的其中一种应用环境的示意图;
图2是如图1所示的无人机的内部结构示意图;
图3是本发明实施例提供的一种自动返航方法的流程示意图;
图4是本发明实施例提供的一种结合返航信息和环境信息,确定无人机从当前位置返回返航点的总耗电量的方法的流程示意图;
图5是本发明实施例提供的一种自动返航装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
当前,触发无人机自动返航的最低电量主要根据无人机的返航距离、当前的飞行速度以及当前的耗电速度来确定,该最低电量有时候不足以支撑无人机安全返航,容易导致无人机在半路因严重低电量而迫降。
究其原因,发明人发现,这主要是因为无人机在返航的过程中有可能会受到环境因素的影响,而为了克服环境因素的影响需要消耗额外的电量。其中,在众多环境因素中,垂直气流会引起无人机的颠簸,容易导致飞行困难,对无人机返航时的耗电量的影响尤为明显。
有鉴于此,本发明实施例提供了一种自动返航方法、装置和无人机。
其中,所述自动返航方法是一种实时检测无人机从当前位置返回返航点的最低耗电量,并在该无人机的剩余电量与该最低耗电量之差小于或等于某一电量阈值时,控制该无人机自动返航的方法。特别地,在本发明实施例中,该最低耗电量根据无人机在当前位置的返航信息以及返航路线上的环境信息(尤其是垂直气流信息)来确定,能够综合考虑环境因素对无人机返航的影响,更加准确地预估无人机从当前位置返回返航点所需的最低耗电量,避免无人机在飞行或者返航的过程中因严重低电量而迫降。
所述自动返航装置可以是由软件程序构成的能够实现本发明实施例提供的自动返航方法的虚拟装置,其与本发明实施例提供的自动返航方法基于相同的发明构思,具有相同的技术特征以及有益效果。
所述无人机可以是任意类型的无人飞行器,比如:固定翼无人机、倾转旋翼无人机、旋翼无人机、伞翼无人机、扑翼无人机等等。该无人机内可以设置有任意类型的处理器,能够执行本发明实施例提供的自动返航方法或者运行本发明实施例提供的自动返航装置。
下面结合附图,对本发明实施例作进一步阐述。
图1是本发明实施例提供的自动返航方法的其中一种应用环境的示意图。请参阅图1,该应用环境包括:无人机10以及遥控终端20,无人机10与遥控终端20之间可以通过任意方式进行无线通信连接,比如:可以利用无线保真技术(Wireless Fidelity,Wi-Fi)、蓝牙(Bluetooth)技术或者诸如第3代(3rd Generation, 3G)、第四代(4th Generation,4G)、或第五代(5th Generation,5G)等移动通信技术,来实现无线连接,在此不予限定。
其中,所述无人机10具体可以为四旋翼无人机,其可以包括机身11、与所述机身11相连的机臂12以及安装在所述机臂12上的动力装置13,所述动力装置13用于提供所述无人机10飞行的升力或动力。具体地,如图2所示,所述无人机10的机身11内可以设置有:通过系统总线或者其他方式通信连接的至少一个处理器101(图2中以一个处理器为例)和存储器102。
其中,所述处理器101用于提供计算和控制能力,以控制所述无人机10飞行以及执行相关任务,例如,控制所述无人机10执行本发明实施例提供的任意一种自动返航方法。
所述存储器102作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的自动返航方法对应的程序指令/模块。所述处理器101通过运行存储在存储器102中的非暂态软件程序、指令以及模块,可以实现下述任一方法实施例中的自动返航方法。具体地,所述存储器102可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器102还可以包括相对于处理器101远程设置的存储器,这些远程存储器可以通过网络连接至处理器101。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
此外,所述遥控终端20可以是任意能够操控所述无人机10的终端,比如,遥控器、移动终端(例如,智能手机、平板电脑、笔记本电脑等)、可穿戴设备或者其他设备。所述遥控终端20可以通过向所述无人机10发送控制指令来控制所述无人机10调整飞行姿态或者执行相应的任务,也可以接收来自所述无人机10的信号或图像数据。所述遥控终端20还可以配置有显示屏,用于根据图像数据来显示图像。
在实际应用中,所述无人机10可以在飞行的过程中实时获取所述无人机10当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括所述返航路线上的垂直气流信息;结合所述返航信息和所述环境信息,确定所述无人机10从当前位置返回返航点的总耗电量;当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,控制所述无人机10自动返航。当所述无人机10自动返航时,可以向所述遥控终端 20发送返航消息和/或返航画面,以知会用户所述无人机10因电量告警而自动返航。
其中,需要说明的是,上述应用环境仅是为了进行示例性说明,在实际应用中,本发明实施例提供的自动返航方法和相关装置还可以进一步的拓展到其他合适的应用环境中,而不限于图1中所示的应用环境。比如,在其他的一些实施例中,所述无人机10也可以是其他类型的无人飞行器,比如,单旋翼无人机、六旋翼无人机、倾转旋翼无人机、伞翼无人机、扑翼无人机等等。所述无人机10和所述遥控终端20的数量也可以不止一个。
图3是本发明实施例提供的一种自动返航方法的流程示意图。该方法可以由任意类型的无人机执行,比如,由如图1所示的无人机10执行。
具体地,请参阅图3,该方法可以包括但不限于如下步骤:
步骤110:实时获取无人机当前的返航信息、环境信息以及剩余电量。
在本实施例中,所述“返航信息”是指无人机从当前位置返回返航点的相关飞行信息,其具体可以包括返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度等信息。
其中,所述“返航点”是指所述无人机在电量告警时要返回的位置,其可以是所述无人机的初始返航点,比如,无人机的起飞点或者其他指定地点;也可以是所述无人机在飞行的过程中基于其他条件进行更新的返航点,比如,根据所述遥控终端所在位置更新的返航点;本发明实施例对此不予限定。此外,还需说明的是,在本实施例中,对所述返航点的高度也不作具体限定,比如,该返航点可以与无人机的当前位置处于同一水平面上,也可以在不同的水平面上,无人机返回返航点后执行降落的任务。
所述“返航路线”即所述无人机从当前位置飞回返航点的路线,其可以基于无人机当前所在位置以及返航点实时计算得到,本发明实施例对返航路线的确定方式不作具体限定。
所述“返航距离”即无人机根据所确定的返航路线,从当前位置回到返航点所经过的路程。比如,假设无人机所确定的返航路线为首先上升到预设高度,再直线返回返航点,则,该无人机当前的返航距离即无人机上升的距离加上当前位置相对返航点的水平距离。
所述“返航油门量”即无人机返航时驱动无人机飞行的油门量,其可以是预先设定的油门量,比如,以最大油门量进行返航;也可以是无人机当前的油 门量,本发明实施例对此同样不予限定。不同的返航油门量对应不同的耗电速度,返航油门量越大,其对应的耗电速度越快。
此外,所述“环境信息”是指所述无人机从当前位置返回返航点的路线上的环境信息,其具体可以包括:所述返航路线上的垂直气流信息。其中,所述“垂直气流信息”可以包括:是否存在垂直气流区域、垂直气流区域的范围和气流强度等信息。所述“垂直气流”是指由于空气的垂直运动而形成的气流,其可以包括上升气流(由于空气向上运动而形成)和下降气流(由于空气向下运动而形成)。若无人机在飞行的过程中遇到垂直气流,通常会产生颠簸,无法稳定飞行,严重时甚至可能会导致失控炸机。因此,当无人机通过垂直气流区域时,一般都需要消耗较多的电量。
在本实施例中,无人机在飞行的过程中,实时获取无人机从当前位置返回返航点的返航信息、环境信息以及剩余电量,用以监控无人机是否达到低电量告警状态。其中,所述返航信息和所述剩余电量均可以通过处理无人机的各种硬件(比如,各种传感器、电池等)反馈的数据或者相关预设数据来获得;所述环境信息中的垂直气流信息则可以通过获取由外部设备(比如,气象数据库或者遥控终端)反馈的气象数据来确定。
此外,在一些实施例中,考虑到风(即,由空气在水平方向上运动而形成的气流)对无人机的实际飞行速度的影响,在确定无人机的返航信息时,还获取无人机的返航角度,同时,还实时获取所述无人机所处环境的风速和风向。其中,所述返航角度可基于返航路线确定,所述风速和风向可以通过无人机上搭载的传感器实时检测得到。
步骤120:结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量。
在本实施例中,综合考虑返航信息和环境信息,来预估所述无人机从当前位置返回返航点所需的总耗电量(或者说,最低耗电量)。
具体地,如图4所示,本步骤120的具体实现方式可以包括但不限于如下步骤:
步骤121:根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
在本实施例中,所述“基本耗电量”即:无人机在没有任何垂直气流影响下从当前位置飞回返航点所需的最低电量。
具体实施时,在一些实施例中,可以首先通过返航油门量确定无人机返航 时的飞行速度;进而结合返航距离和该飞行速度,确定返航所需时间;最后,根据返航所需时间和返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
在另一些实施例中,为了更加准确地预估无人机的实际返航速度,获取到的返航信息还包括:返航角度,以及,获取到的环境信息还包括:所述无人机所处环境的风速和风向。从而,在该实施例中,还可以结合风速、风向以及返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
具体地,可以首先根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;然后结合所述实际返航速度、所述返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
其中,所述根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度的具体实施方式可以为:首先根据所述返航油门量,确定所述无人机在无风环境下从当前位置返回返航点的理想返航速度(亦即,在没有风情况下,以该返航油门量驱动无人机获得的飞行速度);然后,结合预先拟合的计算公式,根据所述理想返航速度、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度(亦即,在风的影响下,以该返航油门量驱动无人机飞行,实际能够达到的飞行速度)。或者,也可以预先采集在相同风向但不同的风速下,以预定返航油门量驱动无人机沿各个方向飞行的实际飞行速度,建立返航油门量、返航角度、风速、风向以及实际飞行速度(即,实际返航速度)之间的对应关系并将该对应关系预先存储在无人机中。从而,在实际飞行时,无人机可以直接基于获取到的返航油门量、返航角度、风速和风向确定无人机的实际飞行速度(即,实际返航速度)。
此外,在又一些实施例中,为了保证无人机的飞行安全,无人机设置有最大返航速度。假设无人机的返航油门量在无风影响下可以使无人机达到最大返航速度,并且,无人机返航时顺风,那么,若继续以原来确定的返航油门量驱动无人机,必然会使得无人机的实际返航速度超过所限定的最大返航速度。
因此,在该实施例中,为了满足无人机飞行安全的要求,在确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度之后,先判断所述实际返航速度是否小于或等于所述最大返航速度;若是,才结合所述实际返航速度、 返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;若否,则根据所述最大返航速度、所述返航角度、所述风速以及所述风向重新确定所述无人机的返航油门量,进而结合所述最大返航速度、所述返航距离以及重新确定后的所述无人机的返航油门量对应的耗电速度确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
在该实施例中,充分考虑返航角度、风速、风向以及最大返航速度等方面的因素对无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量的影响,能够更加准确地预估所述无人机从当前位置返航所需的最低电量。
步骤122:根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量。
由于垂直气流对无人机飞行的影响较大,若在无人机的返航路线上存在垂直气流区域,必然会增加无人机返航的耗电量,因此,在本实施例中,还根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量。其中,所述“附加耗电量”具体可以为无人机穿过返航路线上的垂直气流区域所需的最低电量。
具体地,可以首先根据获取到的垂直气流信息确定所述返航路线上是否存在垂直气流区域;若不存在,则可以直接确定所述无人机从当前位置返回返航点的附加耗电量为0;若存在,则可以根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量。
其中,所述根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量的具体实施方式可以为:首先根据所述垂直气流区域的范围和气流强度确定所述无人机穿过所述垂直气流区域的方式,进而基于无人机穿过所述垂直气流区域的方式确定所述无人机从当前位置返回返航点的附加耗电量。
比如,如果所述垂直气流区域的范围比较大且气流强度比较强,为了避免该垂直气流对造成无人机损伤(比如,炸机),应当采用绕行的方式穿过该垂直气流区域,那么此时,无人机从当前位置返回返航点的附加耗电量即无人机绕行所需的电量。
又如,如果所述垂直气流区域的范围较小,气流强度也比较弱,那么为了尽快返回返航点,无人机可以直接穿过该垂直气流区域,此时,无人机从当前位置返回返航点的附加耗电量即无人机直接穿过该垂直气流区域所需的电量。 而该电量的值可以参考预先建立的实验数据表确定。
步骤123:基于所述基本耗电量和所述附加耗电量,确定所述无人机从当前位置返回返航点的总耗电量。
在本实施例中,可以直接以所述基本耗电量和所述附加耗电量之和作为所述无人机从当前位置返回返航点的总耗电量。
但应当理解的是,在本实施例中,主要考虑垂直气流、风速、风向等环境因素对无人机返航的影响,是因为这些环境因素对无人机返航的耗电量的影响比较大且普遍存在。在其他的一些实施例中,还可以综合考虑气候、温度、海拔等其他环境因素对无人机返航的耗电量的影响来确定所述无人机从当前位置返回返航点的总耗电量。从而,在该实施例中,所述无人机从当前位置返回返航点的总耗电量也可以大于所述基本耗电量和所述附加耗电量之和。
步骤130:当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,控制所述无人机自动返航。
在本实施例中,所述“电量阈值”可以是一个由程序人员或者用户预先设置好的固定电量值;也可以是一个根据实际飞行情况实时更新的变量。比如,在一些实施例中,为了保证无人机能够安全降落,所述电量阈值可以大于或等于所述无人机降落时所需的最低电量。
在本实施例中,如果无人机的剩余电量远远大于无人机从当前位置返回返航点的总耗电量,说明无人机还有足够的电量执行飞行任务以及返航,从而,此时可以继续执行飞行任务;而当所述剩余电量与所述总耗电量之差小于或等于电量时,说明无人机的剩余电量已接近低电量告警的临界值,为了能够安全返航,此时需控制所述无人机自动返航。
通过上述技术方案可知,本发明实施例的有益效果在于:本发明实施例提供的自动返航方法通过结合无人机的返航信息以及环境信息(尤其是在无人机返航路线上的垂直气流信息)预估无人机从当前位置返回返航点的总耗电量,能够更加智能且准确地确定无人机从当前位置返回返航点的最低电量;并且,通过在无人机的剩余电量与所述总耗电量之差小于等于电量阈值时,控制所述无人机自动返航,能够避免无人机在飞行或者返航的过程中因严重低电量而迫降,从而达到安全返航的目的。
图5是本发明实施例提供的一种自动返航装置的结构示意图,该自动返航装置50可以运行于任意类型的无人机(比如,如图1中所示的无人机10)。
具体地,请参阅图5,该装置50包括:信息获取单元51、返航耗电量评估单元52以及自动返航单元53。
其中,所述信息获取单元51用于实时获取所述无人机当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括:所述返航路线上的垂直气流信息;
所述返航耗电量评估单元52用于结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量;
所述自动返航单元53用于当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,控制所述无人机自动返航。
在本实施例中,无人机在飞行的过程中通过信息获取单元51实时获取所述无人机当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括:所述返航路线上的垂直气流信息;并利用所述返航耗电量评估单元52结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量;当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,通过所述自动返航单元53控制所述无人机自动返航。
其中,在一些实施例中,所述返航耗电量评估单元52,包括:基本耗电量评估模块521、附加耗电量评估模块522以及总耗电量评估模块523。
所述基本耗电量评估模块521用于根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;所述附加耗电量评估模块522用于根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量;所述总耗电量评估模块523用于基于所述基本耗电量和所述附加耗电量,确定所述无人机从当前位置返回返航点的总耗电量。
具体地,在一些实施例中,所述返航信息还包括:返航角度,所述环境信息还包括:所述无人机所处环境的风速和风向;则,所述基本耗电量评估模块521具体用于:结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
进一步地,在一些实施例中,所述基本耗电量评估模块521具体用于:
根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;结合所述实际返 航速度、所述返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
或者,在另一些实施例中,所述返航信息还包括最大返航速度,则,所述基本耗电量评估模块521具体用于:
根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;判断所述实际返航速度是否小于或等于所述最大返航速度;若是,则结合所述实际返航速度、返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;若否,则根据所述最大返航速度、所述返航角度、所述风速以及所述风向重新确定所述无人机的返航油门量,结合所述最大返航速度、所述返航距离以及重新确定后的所述无人机的返航油门量对应的耗电速度确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
此外,在一些实施例中,所述附加耗电量评估模块522具体用于:根据所述垂直气流信息确定所述返航路线上是否存在垂直气流区域;若不存在,则确定所述无人机从当前位置返回返航点的附加耗电量为0;若存在,则根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量。
再者,在又一些实施例中,所述电量阈值大于或等于所述无人机降落时所需的最低电量。
需要说明的是,由于所述自动返航装置与上述实施例中的自动返航方法基于相同的发明构思,因此,上述方法实施例中的相应内容同样适用于装置实施例,此处不再详述。
通过上述技术方案可知,本发明实施例的有益效果在于:本发明实施例提供的自动返航装置通过在无人机飞行的过程中,由信息获取单元51实时获取所述无人机当前的返航信息、环境信息以及剩余电量,并利用返航耗电量评估单元52结合无人机的返航信息以及环境信息(尤其是在无人机返航路线上的垂直气流信息)预估无人机从当前位置返回返航点的总耗电量,能够更加智能且准确地确定无人机从当前位置返回返航点的最低电量;并且,通过自动返航单元53在无人机的剩余电量与所述总耗电量之差小于等于电量阈值时,控制所述无人机自动返航,能够避免无人机在飞行或者返航的过程中因严重低电量而迫降,从而达到安全返航的目的。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块来实现本实施例方案的目的。
本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,被图2中的一个处理器101执行,可使得上述一个或多个处理器执行上述任意方法实施例中的自动返航方法,例如,执行以上描述的图3中的方法步骤110至130,图4中的方法步骤121至123。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被无人机执行时,可使所述无人机执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的自动返航方法,具备执行自动返航方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的自动返航方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种自动返航方法,应用于无人机,其特征在于,包括:
    实时获取所述无人机当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括:所述返航路线上的垂直气流信息;
    结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量;
    当所述剩余电量与所述总耗电量之差小于或等于电量阈值时,控制所述无人机自动返航。
  2. 根据权利要求1所述的方法,其特征在于,所述结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量,包括:
    根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
    根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量;
    基于所述基本耗电量和所述附加耗电量,确定所述无人机从当前位置返回返航点的总耗电量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量,包括:
    根据所述垂直气流信息确定所述返航路线上是否存在垂直气流区域;
    若不存在,则确定所述无人机从当前位置返回返航点的附加耗电量为0;
    若存在,则根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量。
  4. 根据权利要求2或3所述的方法,其特征在于,所述返航信息还包括:返航角度,所述环境信息还包括:所述无人机所处环境的风速和风向;则,
    所述根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量,包括:
    结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气 流影响下从当前位置返回返航点的基本耗电量。
  5. 根据权利要求4所述的方法,其特征在于,所述结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量,包括:
    根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
    结合所述实际返航速度、所述返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
  6. 根据权利要求4所述的方法,其特征在于,所述返航信息还包括最大返航速度,则,所述结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量,包括:
    根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
    判断所述实际返航速度是否小于或等于所述最大返航速度;
    若是,则结合所述实际返航速度、返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
    若否,则根据所述最大返航速度、所述返航角度、所述风速以及所述风向重新确定所述无人机的返航油门量,结合所述最大返航速度、所述返航距离以及重新确定后的所述无人机的返航油门量对应的耗电速度确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述电量阈值大于或等于所述无人机降落时所需的最低电量。
  8. 一种自动返航装置,应用于无人机,其特征在于,包括:
    信息获取单元,用于实时获取所述无人机当前的返航信息、环境信息以及剩余电量,其中,所述返航信息包括所述无人机从当前位置返回返航点的返航路线、返航距离、返航油门量以及所述返航油门量对应的耗电速度,所述环境信息包括:所述返航路线上的垂直气流信息;
    返航耗电量评估单元,用于结合所述返航信息和所述环境信息,确定所述无人机从当前位置返回返航点的总耗电量;
    自动返航单元,用于当所述剩余电量与所述总耗电量之差小于或等于电量 阈值时,控制所述无人机自动返航。
  9. 根据权利要求8所述的装置,其特征在于,所述返航耗电量评估单元,包括:
    基本耗电量评估模块,用于根据所述返航信息确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
    附加耗电量评估模块,用于根据所述返航路线上的垂直气流信息,确定所述无人机从当前位置返回返航点的附加耗电量;
    总耗电量评估模块,用于基于所述基本耗电量和所述附加耗电量,确定所述无人机从当前位置返回返航点的总耗电量。
  10. 根据权利要求9所述的装置,其特征在于,所述附加耗电量评估模块具体用于:
    根据所述垂直气流信息确定所述返航路线上是否存在垂直气流区域;
    若不存在,则确定所述无人机从当前位置返回返航点的附加耗电量为0;
    若存在,则根据所述垂直气流区域的范围和气流强度,确定所述无人机从当前位置返回返航点的附加耗电量。
  11. 根据权利要求9或10所述的装置,其特征在于,所述返航信息还包括:返航角度,所述环境信息还包括:所述无人机所处环境的风速和风向;则,所述基本耗电量评估模块具体用于:
    结合所述风速、所述风向以及所述返航信息,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
  12. 根据权利要求11所述的装置,其特征在于,所述基本耗电量评估模块具体用于:
    根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
    结合所述实际返航速度、所述返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
  13. 根据权利要求11所述的装置,其特征在于,所述返航信息还包括最大返航速度,则,所述基本耗电量评估模块具体用于:
    根据所述返航油门量、所述返航角度、所述风速以及所述风向,确定所述无人机在有风环境下从当前位置返回返航点的实际返航速度;
    判断所述实际返航速度是否小于或等于所述最大返航速;
    若是,则结合所述实际返航速度、返航距离以及所述返航油门量对应的耗电速度,确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量;
    若否,则根据所述最大返航速度、所述返航角度、所述风速以及所述风向重新确定所述无人机的返航油门量,结合所述最大返航速度、所述返航距离以及重新确定后的所述无人机的返航油门量对应的耗电速度确定所述无人机在无垂直气流影响下从当前位置返回返航点的基本耗电量。
  14. 根据权利要求8-13任一项所述的装置,其特征在于,所述电量阈值大于或等于所述无人机降落时所需的最低电量。
  15. 一种无人机,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于提供所述无人机飞行的升力或动力;
    至少一个处理器,设于所述机身;以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-7任一项所述的方法。
  16. 一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机执行如权利要求1-7任一项所述的方法。
PCT/CN2019/126037 2018-12-17 2019-12-17 一种自动返航方法、装置和无人机 WO2020125636A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/350,693 US11919637B2 (en) 2018-12-17 2021-06-17 Automatic return method, apparatus and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811541989.1 2018-12-17
CN201811541989.1A CN109634295B (zh) 2018-12-17 2018-12-17 一种自动返航方法、装置和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/350,693 Continuation US11919637B2 (en) 2018-12-17 2021-06-17 Automatic return method, apparatus and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020125636A1 true WO2020125636A1 (zh) 2020-06-25

Family

ID=66074593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126037 WO2020125636A1 (zh) 2018-12-17 2019-12-17 一种自动返航方法、装置和无人机

Country Status (3)

Country Link
US (1) US11919637B2 (zh)
CN (1) CN109634295B (zh)
WO (1) WO2020125636A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779824A (zh) * 2022-06-20 2022-07-22 成都翼比特自动化设备有限公司 一种无人机智能返航的方法及系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634295B (zh) 2018-12-17 2020-12-18 深圳市道通智能航空技术有限公司 一种自动返航方法、装置和无人机
CN110244753B (zh) * 2019-06-24 2023-01-31 深圳市道通智能航空技术股份有限公司 风速测算方法及无人机
CN110262552B (zh) * 2019-06-26 2022-04-12 南京拓兴智控科技有限公司 无人机的飞行控制方法、装置、设备及存储介质
WO2021056144A1 (zh) * 2019-09-23 2021-04-01 深圳市大疆创新科技有限公司 可移动平台的返航控制方法、装置及可移动平台
CN112334781A (zh) * 2019-10-29 2021-02-05 深圳市大疆创新科技有限公司 返航方法、返航用电量确定方法及装置
CN111026155B (zh) * 2019-12-17 2022-09-09 广东中东测绘科技有限公司 一种航测方法、装置及电子设备
JP7413003B2 (ja) * 2019-12-20 2024-01-15 三菱重工業株式会社 誘導装置、飛行体、防空システム、および誘導プログラム
CN112297937B (zh) * 2020-11-17 2022-03-18 南京大学 一种多无人机及多充电基站充电调度调度方法和装置
CN112429156B (zh) * 2020-12-04 2022-04-29 天津小鲨鱼智能科技有限公司 一种低电量提示方法、装置、存储介质和电子设备
CN112230671B (zh) * 2020-12-13 2021-03-16 深圳联和智慧科技有限公司 一种基于智慧灯杆的无人机返航监控方法及控制中心
CN112666971B (zh) * 2020-12-15 2023-03-10 广州极飞科技股份有限公司 一种无人机返航方法、装置、无人机和存储介质
CN112505554B (zh) * 2021-02-03 2021-07-13 山东道永盛信息科技有限公司 一种基于智慧灯杆的无人机剩余电量实时状态信息监控方法
WO2022205166A1 (zh) * 2021-03-31 2022-10-06 深圳市大疆创新科技有限公司 无人机的控制方法、无人机及存储介质
CN113325873B (zh) * 2021-06-11 2023-06-27 湖北溢丰数字科技股份有限公司 一种无人机植保作业数据采集分析方法、系统及计算机存储介质
CN114265434B (zh) * 2021-12-29 2023-10-03 广州极飞科技股份有限公司 飞行控制方法、装置、电子设备及可读存储介质
CN115683213A (zh) * 2022-10-14 2023-02-03 扬州市职业大学(扬州开放大学) 一种基于物联网的无人机飞行降落定位评估系统
CN116777183B (zh) * 2023-08-17 2023-11-21 北京海舶无人船科技有限公司 无人船集群智能调度方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166355A (zh) * 2014-07-16 2014-11-26 深圳市大疆创新科技有限公司 电动无人机及其智能电量保护方法
CN104881041A (zh) * 2015-05-27 2015-09-02 深圳市高巨创新科技开发有限公司 一种无人飞行器的电量预警方法及装置
CN105334865A (zh) * 2015-11-24 2016-02-17 余江 基于电量监控的飞行控制方法及飞行控制装置
US20160247404A1 (en) * 2014-05-20 2016-08-25 Verizon Patent And Licensing Inc. Identifying unmanned aerial vehicles for mission performance
CN205608520U (zh) * 2016-04-27 2016-09-28 河北德普电器有限公司 一种机器人电量检测自动返航系统
CN107357304A (zh) * 2017-06-13 2017-11-17 深圳市易成自动驾驶技术有限公司 路径规划方法、无人机终端及计算机可读存储介质
CN109634295A (zh) * 2018-12-17 2019-04-16 深圳市道通智能航空技术有限公司 一种自动返航方法、装置和无人机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2891802B1 (fr) * 2005-10-11 2009-03-13 Airbus France Sas Procede et dispositif pour attenuer sur un aeronef les effets d'une turbulence verticale
CN107531322B (zh) * 2015-04-21 2021-02-05 高途乐公司 空中捕获平台
US9852642B2 (en) * 2016-03-08 2017-12-26 International Business Machines Corporation Drone air traffic control and flight plan management
US10068489B2 (en) * 2016-08-31 2018-09-04 Skycatch, Inc. Managing energy during flight of unmanned aerial vehicles for safe return to ground
CN106647779A (zh) * 2016-12-19 2017-05-10 北京小米移动软件有限公司 飞行设备降落方法及飞行设备
CN107202581A (zh) * 2017-07-06 2017-09-26 杨顺伟 无人机低电量返航方法及装置
CN107153424A (zh) * 2017-07-06 2017-09-12 上海复亚通信科技有限公司 一种能抗大风的全自动无人机巡飞系统
WO2019113727A1 (zh) * 2017-12-11 2019-06-20 深圳市道通智能航空技术有限公司 无人飞行器返航方法、装置、存储介质和无人飞行器
CN107943086A (zh) * 2017-12-21 2018-04-20 合肥灵猫传媒有限公司 一种无人机集群返航控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160247404A1 (en) * 2014-05-20 2016-08-25 Verizon Patent And Licensing Inc. Identifying unmanned aerial vehicles for mission performance
CN104166355A (zh) * 2014-07-16 2014-11-26 深圳市大疆创新科技有限公司 电动无人机及其智能电量保护方法
CN104881041A (zh) * 2015-05-27 2015-09-02 深圳市高巨创新科技开发有限公司 一种无人飞行器的电量预警方法及装置
CN105334865A (zh) * 2015-11-24 2016-02-17 余江 基于电量监控的飞行控制方法及飞行控制装置
CN205608520U (zh) * 2016-04-27 2016-09-28 河北德普电器有限公司 一种机器人电量检测自动返航系统
CN107357304A (zh) * 2017-06-13 2017-11-17 深圳市易成自动驾驶技术有限公司 路径规划方法、无人机终端及计算机可读存储介质
CN109634295A (zh) * 2018-12-17 2019-04-16 深圳市道通智能航空技术有限公司 一种自动返航方法、装置和无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779824A (zh) * 2022-06-20 2022-07-22 成都翼比特自动化设备有限公司 一种无人机智能返航的方法及系统
CN114779824B (zh) * 2022-06-20 2022-09-23 成都翼比特自动化设备有限公司 一种无人机智能返航的方法及系统

Also Published As

Publication number Publication date
CN109634295A (zh) 2019-04-16
US11919637B2 (en) 2024-03-05
US20210309364A1 (en) 2021-10-07
CN109634295B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2020125636A1 (zh) 一种自动返航方法、装置和无人机
WO2020143576A1 (zh) 调整机载雷达的主探测方向的方法、装置和无人机
WO2019113727A1 (zh) 无人飞行器返航方法、装置、存储介质和无人飞行器
US20220055748A1 (en) Obstacle avoidance method and apparatus for unmanned aerial vehicle landing, and unmanned aerial vehilce
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
CN111213106B (zh) 一种无人机的降落控制方法、飞行控制设备及无人机
WO2021238742A1 (zh) 一种返航方法、控制器、无人机及存储介质
US20230280763A1 (en) Method for protection unmanned aerial vehicle and unmanned aerial vehicle
WO2020037602A1 (zh) 一种无人机的返航控制方法、设备、及无人机
WO2019119201A1 (zh) 一种云台控制方法、无人机、云台及存储介质
WO2021139461A1 (zh) 无人机严重低电保护方法及无人机
CN105217054B (zh) 一种固定翼垂直起降无人机自动检测起降平台
US10705524B2 (en) Task execution method and device, moveable object and computer readable storage medium
WO2023025200A1 (zh) 一种无人机迫降控制方法及装置、遥控装置和存储介质
CN111699451A (zh) 垂直起降无人机的飞行控制方法、设备及垂直起降无人机
CN105005342B (zh) 控制飞行器自动起飞的方法
CN106647785B (zh) 无人机停机坪控制方法及装置
WO2020191666A1 (zh) 返航控制方法、飞行控制装置及无人机
US20220317708A1 (en) Unmanned aerial vehicle protection method and apparatus and unmanned aerial vehicle
WO2021195828A1 (zh) 无人机下降的控制方法和装置、无人机
US20220342419A1 (en) Method and apparatus for auxiliary focusing and unmanned aerial vehicle
WO2021134428A1 (zh) 无人机降落控制方法、装置、无人机基站及无人机系统
WO2021135822A1 (zh) 机场限制方法及装置、无人机
CN112099520B (zh) 一种无人机降落控制方法、装置、无人机和存储介质
US20240085929A1 (en) Method and device for controlling flight of uav, and uav

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899081

Country of ref document: EP

Kind code of ref document: A1