WO2021135822A1 - 机场限制方法及装置、无人机 - Google Patents

机场限制方法及装置、无人机 Download PDF

Info

Publication number
WO2021135822A1
WO2021135822A1 PCT/CN2020/133960 CN2020133960W WO2021135822A1 WO 2021135822 A1 WO2021135822 A1 WO 2021135822A1 CN 2020133960 W CN2020133960 W CN 2020133960W WO 2021135822 A1 WO2021135822 A1 WO 2021135822A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
zone
drone
speed
airport
Prior art date
Application number
PCT/CN2020/133960
Other languages
English (en)
French (fr)
Inventor
卢明华
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2021135822A1 publication Critical patent/WO2021135822A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to an airport restriction method and device, and an unmanned aerial vehicle.
  • Unmanned aerial vehicles With the continuous development of unmanned aerial vehicle aerial photography technology, more and more consumer-grade unmanned aerial vehicles are also being produced and developed. Unmanned aerial vehicles are gradually becoming more and more popular. There are many ways to control unmanned aerial vehicles, such as remote control, mobile phone, computer and other mobile terminals.
  • embodiments of the present invention provide an airport restriction method and device, and drones that prevent drones from entering the no-fly zone and improve flight safety.
  • an airport restriction method applied to unmanned aerial vehicles characterized in that it includes: the area surrounding the airport is divided into multiple different flight areas, and multiple The flight zone includes a high-speed warning zone, a mode switching zone, a low-speed restricted flight zone, and a no-fly zone;
  • the adjusting the flight status of the drone according to the flight area includes:
  • the flying height of the drone is controlled to be lower than the preset restricted height range; and/or, the control command to fly in the direction close to the airport is shielded.
  • the adjusting the flight status of the drone according to the flight area includes:
  • the current fixed-wing mode of the drone is converted to the rotor mode, and the corresponding rotor flight speed in the rotor mode is lower than that in the fixed-wing mode Fixed-wing flight speed.
  • the adjusting the flight status of the drone according to the flight area includes:
  • the far away prompt information is sent to the ground station of the UAV, so that the ground station controls the UAV to stay away from the airport according to the far away prompt information.
  • the adjusting the flight status of the drone according to the flight area includes:
  • the drone When the drone is located in the no-fly zone, the drone is controlled to land.
  • the high-speed warning zone, the mode conversion zone, the low-speed restricted flight zone, and the no-fly zone are concentric circles centered on the airport, and the high-speed warning zone and the mode conversion zone , The radius of the low-speed restricted flight zone and the no-fly zone decreases sequentially.
  • an airport restriction device includes: the area around the airport is divided into a plurality of different flight areas, and the plurality of the flight areas include a high-speed warning area, a mode switching area, a low-speed restricted flight area, and a no-fly area;
  • a flight area acquisition module which is used to acquire the flight area where the drone is currently located
  • the flight state adjustment module is used to adjust the flight state of the UAV according to the flight area.
  • the flight state adjustment module includes a low-speed restricted flight zone adjustment unit, a mode conversion zone adjustment unit, a high-speed warning zone adjustment unit, and a no-fly zone adjustment unit;
  • the low-speed restricted flight zone adjustment unit is used to control the flying height of the drone to be lower than a preset restricted height range when the drone is located in the low-speed restricted flight zone; and/or, the shielding direction is close to the airport Directional flight control instructions;
  • the mode conversion zone adjustment unit is used to switch the current fixed-wing mode of the drone to the rotor mode when the drone is in the mode conversion zone, and the corresponding rotor flight speed in the rotor mode Less than the corresponding fixed-wing flight speed in the fixed-wing mode;
  • the high-speed warning zone adjustment unit is configured to generate far away prompt information when the drone is located in the high-speed warning zone;
  • the no-fly zone adjustment unit is used to control the drone to land when the drone is located in the no-fly zone.
  • the high-speed warning zone, the mode conversion zone, the low-speed restricted flight zone, and the no-fly zone are concentric circles centered on the airport, and the high-speed warning zone and the mode conversion zone , The radius of the low-speed restricted flight zone and the no-fly zone decreases sequentially.
  • an unmanned aerial vehicle includes: a fuselage;
  • An arm connected to the fuselage
  • a power device which is provided on the arm and is used to provide power for the drone to fly;
  • the flight controller is located on the fuselage
  • the flight controller includes:
  • At least one processor At least one processor
  • the device can be used to perform the airport restriction method described above.
  • the airport restriction method provided by the embodiment of the present invention includes that the area around the airport is divided into multiple different flight areas, and the multiple flight areas include a high-speed warning area, a mode conversion area, Low-speed restricted flight zone and no-fly zone; firstly, obtain the current flight area where the UAV is located, and then adjust the flight status of the UAV according to the flight area.
  • the above method can prevent the drone from entering the no-fly zone, reduce the occurrence of accidents, and improve the safety of flight.
  • FIG. 1 is a schematic diagram of an application environment of an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an airport restriction method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the division of the flight area around the airport according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the flow of S20 in Figure 2;
  • FIG. 5 is a structural block diagram of an airport restriction device provided by an embodiment of the present invention.
  • Fig. 6 is a structural block diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application environment of an airport restriction system provided by an embodiment of the present invention; as shown in FIG. 1, the application scenario includes a drone 10, a wireless network 20, a smart terminal 30 and a user 40.
  • the user 40 can operate the smart terminal 30 to control the drone 10 through the wireless network 20.
  • the UAV 10 is a hybrid-wing UAV, and currently the UAVs on the market mainly include multi-rotor UAVs, fixed-wing UAVs, unmanned helicopters, and hybrid-wing UAVs.
  • the rest can be both hovering in the air and flying in routes.
  • the multi-rotor UAV is the slowest and the shortest. Because its multi-rotor propellers are arranged horizontally and rotate horizontally relative to the frame, it is almost impossible to increase its speed to a higher level. To increase its voyage, it will inevitably lead to an increase in energy consumption, and the gains outweigh the losses. It is under this situation that hybrid-wing drones were produced.
  • the so-called hybrid-wing UAV is to combine the multi-rotor UAV with the fixed-wing UAV, that is, add the fixed-wing tail thrust mechanism to the frame of the multi-rotor UAV to make it have a larger horizontal thrust. , So as to obtain a higher speed and a longer range.
  • the unmanned aerial vehicle 10 may have a corresponding volume or power according to actual needs, so as to provide load capacity, flight speed, and flight range that can meet the needs of use.
  • One or more sensors may be added to the drone 10 to enable the drone 10 to collect corresponding data.
  • the drone 10 is provided with at least one sensor of an accelerometer, a gyroscope, a magnetometer, a GPS navigator, and a vision sensor.
  • the UAV 10 also includes a flight controller, which serves as a control core for UAV flight and data transmission, and integrates one or more modules to execute corresponding logic control programs.
  • the flight controller may be used to execute the above-mentioned airport restriction method.
  • the smart terminal 30 may be any type of smart device used to establish a communication connection with the drone 10, such as a mobile phone, a tablet computer, or a smart remote control.
  • the smart terminal 30 may be equipped with one or more different user 40 interaction devices to collect instructions from the user 40 or display and feedback information to the user 40.
  • buttons, display screens, touch screens, speakers, and remote control joysticks include but are not limited to: buttons, display screens, touch screens, speakers, and remote control joysticks.
  • the smart terminal 30 may be equipped with a touch screen, through which the user 40 receives the remote control instruction of the drone 10 and displays the image information obtained by aerial photography to the user 40 through the touch screen. The user 40 can also Switch the image information currently displayed on the display screen through the remote control touch screen.
  • the UAV 10 and the smart terminal 30 can also integrate existing image visual processing technologies to further provide more intelligent services.
  • the UAV 10 may collect images through a dual-lens camera, and the smart terminal 30 may analyze the images, so as to realize the gesture control of the UAV 10 by the user 40.
  • the wireless network 20 may be a wireless communication network based on any type of data transmission principle for establishing a data transmission channel between two nodes, such as a Bluetooth network, a WiFi network, a wireless cellular network located in different signal frequency bands, or a combination thereof.
  • Fig. 2 is an embodiment of an airport restriction method provided by an embodiment of the present invention. As shown in Figure 2, the airport restriction method can be executed by the flight controller of the drone and includes the following steps:
  • the area around the airport is divided into a plurality of different flight areas, and the plurality of the flight areas include a high-speed warning area 101, a mode switching area 102, a low-speed restricted flight area 103, and a no-fly area 104.
  • the above-mentioned multiple different flight areas can ensure that the UAV can safely and steadily stop outside the no-fly zone regardless of whether it is in a high-speed state or a low-speed state.
  • the high-speed warning zone, the mode conversion zone, the low-speed restricted flight zone, and the no-fly zone are concentric areas centered on the airport, and the high-speed warning zone, the mode conversion zone, and the low-speed The radius of the restricted flight zone and the no-fly zone decreases in turn.
  • no-fly zone 104 a circular area with the airport as the center and d1 as the radius, and this area is the no-fly zone.
  • drones will be prohibited from taking off. The drone floats into the no-fly zone in attitude mode, and after acquiring GPS, it immediately landed.
  • this area is a low-speed restricted flight zone.
  • the UAV wing rotor mode is allowed to fly.
  • UAVs are not allowed to approach the airport, and are only allowed to move away from the airport. In this area, the height will be restricted.
  • the preset limit height range When the drone is higher than the preset limit height range, the drone will automatically land below the preset limit height range.
  • Mode conversion area 102 d2 ⁇ d ⁇ d2+ ⁇ d2, this area is a mode conversion area.
  • the program will automatically switch the drone to rotor mode.
  • ⁇ d2 is confirmed according to the deceleration distance of the drone, and different hybrid-wing drones have different deceleration distances.
  • the flight control system will issue a reminder to the ground station of the drone, prompting to keep the drone away from the airport.
  • the UAV can obtain the current flight area where the UAV is currently located through the UAV's positioning sensors including GPS, binocular vision and other devices.
  • the flying height of the drone is controlled to be lower than the preset restricted height range; and/or the control instruction to fly toward the airport is shielded; when the drone is in the mode conversion zone, the current fixed-wing mode of the drone is converted to the rotor mode, and the corresponding rotor flight speed in the rotor mode is lower than the corresponding fixed-wing mode in the fixed-wing mode.
  • the multi-rotor drone has a detachable tail thruster structure.
  • the detachable tail thrust structure includes a female connecting seat and a sub-connecting seat, and the female connecting seat and the sub-connecting seat are plugged in electrical connection.
  • the female connector is used to connect with the multi-rotor UAV frame.
  • a tail thrust mechanism is provided on the sub-connecting seat.
  • the lower surface of the rear end of the female connecting seat is provided with an inverted ridge-shaped chute, and the inner end of the chute is provided with a conductive slot, and the conductive slot is used to connect with the power control system of the multi-rotor drone.
  • An inverted ridge-shaped sliding block is arranged on the upper part of the sub-connecting base, and the sliding block is matched with the sliding groove of the female connecting base.
  • One end of the sliding block is provided with a conductive tongue, and the conductive tongue is matched with the conductive slot in the sliding groove of the female connecting seat.
  • a mounting seat is connected to the lower part of the sub-connecting seat, a horizontal mounting hole is arranged on the mounting seat, and a tail push rod is fixed in the mounting hole. The end of the tail push rod that is away from the female connecting seat protrudes out, and the end is fixed with a brushless motor.
  • the output shaft of the brushless motor is arranged horizontally and a propeller is fixed at the outer end of the brushless motor, and the brushless motor is connected with the conductive plug on the sub-connecting base through a wire.
  • the position of the lower part of the mounting seat corresponding to the mounting hole is hoop-shaped, and the tail push rod is fixed in the mounting hole by bolts.
  • the tail thruster is usually made of carbon steel material, and the hoop structure is adopted to increase the fixing strength of the tail thruster while not easily causing damage to the tail thruster.
  • the upper surface of the mounting seat has a pin lug at the front and back
  • the lower surface of the sub-connecting seat has a longitudinal through groove
  • the two pin lugs on the mounting seat are located in the barrel groove of the sub-connecting seat
  • one pin of the mounting seat The ear is hinged to one end of the barrel groove of the sub-connecting seat through a pin.
  • There is an arc-shaped strip hole on the other pin lug of the mounting seat screw holes are provided on both sides of the groove wall at the other end of the barrel groove of the sub-connecting seat, and the pin lug on the mounting seat passes through the strip hole through a bolt It is fixed on the screw hole of the through groove of the sub-connection seat.
  • the mounting seat can adjust the relative position of the pin ear with a strip hole and the sub-connecting seat through the rotation of the pin ear corresponding to the hinge end, that is, the angle adjustment between the mounting seat and the sub-connecting seat, so as to achieve
  • the tail thrust direction is fine-tuned to ensure that the multi-rotor UAV obtains the best horizontal thrust.
  • the female connecting seat in the detachable tail thrust structure of the multi-rotor drone of the present invention is fixed on the bottom of the multi-rotor drone frame, and the conductive slot in the chute is connected with the drone's If the power control system is connected, you can choose whether to install a tail drive mechanism according to the needs of the use occasion.
  • the tail thrust mechanism consisting of the sub-connecting base, the mounting base, the tail push rod, the brushless motor and the propeller can be removed from the drone frame, which can be effective Reduce the UAV load and extend the empty time.
  • the multi-rotor UAV with the detachable tail thrust structure can be flexibly selected according to the needs of different occasions and has a wider range of applications.
  • the structure when the structure is disassembled, it will hardly increase the volume and weight of the multi-rotor drone, and it will be more convenient to carry and transport.
  • the UAV is switched to the attitude mode, and then the UAV is controlled to lower the UAV in the attitude mode.
  • the height of the drone and then when the acquired ground environment information meets the preset landing conditions, the drone is controlled to land safely.
  • the above method can enable the drone to land safely and steadily on the ground after the drone positioning sensor fails, reducing the probability of the drone bombing, and improving the flight safety of the drone.
  • S20 includes the following steps:
  • the preset limit height range is 20-25m
  • the flying height of the drone is 30m at this time, control the drone to descend until the flying height is lower than the preset limit height range 20-25m .
  • the control instruction is shielded or does not respond to the control instruction, In turn, the UAV cannot continue to fly toward the airport.
  • the remote control device can be any type of smart terminal, which is used to establish a communication connection with the drone, such as a mobile phone, a tablet computer, or a smart remote control.
  • the remote control device may be equipped with one or more different user interaction devices to collect user instructions or display and feedback information to the user.
  • 0 ⁇ 8m/s is the rotor mode
  • 8 ⁇ 18m/s is the conversion mode from the rotor to the fixed wing
  • more than 18m/s is the fixed wing mode
  • the normal working mode is the fixed wing mode.
  • Different types of UAVs have different flight speed ranges, so there is no limitation here.
  • the current fixed-wing mode of the UAV is converted to the rotor mode, and the corresponding flight speed (greater than 18m/s) corresponding to the fixed-wing mode is converted accordingly. It is the flight speed corresponding to the rotor mode (0 ⁇ 8m/s).
  • the corresponding flight speed during the conversion process from fixed wing mode to rotor mode is (8 ⁇ 18m/s).
  • the far away prompt information is pre-stored in a storage device.
  • the far away prompt information may be "The drone is approaching the airport area. , Please control the drone away from this area” and so on. And sending the far away prompt information to the ground station of the UAV, so that the ground station controls the UAV to stay away from the airport according to the far away prompt information.
  • the ground station may be a remote control device, or a cloud server, etc.
  • the unmanned aerial vehicle is further provided with the storage device, and the storage device stores the far away prompt information.
  • the storage device may be flash memory, hard disk memory, micro multimedia card memory, card memory (for example, SD or XD memory), random access memory (RAM), static random access memory (SRAM), Readable memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disks and optical disks.
  • flash memory for example, SD or XD memory
  • card memory for example, SD or XD memory
  • RAM random access memory
  • SRAM static random access memory
  • ROM Readable memory
  • EEPROM electrically erasable programmable read-only memory
  • PROM programmable read-only memory
  • magnetic memory magnetic disks and optical disks.
  • the embodiments of the present application provide an airport restriction device 50.
  • the airport restriction device 50 includes a flight area acquisition module 51 and a flight status adjustment module 52.
  • the flight area acquisition module 51 is used to acquire the flight area where the drone is currently located.
  • the flight status adjustment module 52 is used to adjust the flight status of the UAV according to the flight area.
  • the area around the airport is divided into a plurality of different flight areas, and the plurality of the flight areas include a high-speed warning zone, a mode switching zone, a low-speed restricted flight zone, and a no-fly zone;
  • the device first obtains the flight area where the UAV is currently located, and then adjusts the flight state of the UAV according to the flight area.
  • the above method can prevent the drone from entering the no-fly zone, reduce the occurrence of accidents, and improve the safety of flight.
  • the flight status adjustment module includes a low-speed restricted flight zone adjustment unit, a mode conversion zone adjustment unit, a high-speed warning zone adjustment unit, and a no-fly zone adjustment unit;
  • the low-speed restricted flight zone adjustment unit is used to control the flying height of the drone to be lower than a preset restricted height range when the drone is located in the low-speed restricted flight zone; and/or, the shielding direction is close to the airport Directional flight control instructions;
  • the mode conversion zone adjustment unit is used to switch the current fixed-wing mode of the drone to the rotor mode when the drone is in the mode conversion zone, and the corresponding rotor flight speed in the rotor mode Less than the corresponding fixed-wing flight speed in the fixed-wing mode;
  • the high-speed warning zone adjustment unit is configured to generate far away prompt information when the drone is located in the high-speed warning zone;
  • the no-fly zone adjustment unit is used to control the drone to land when the drone is located in the no-fly zone.
  • the above-mentioned airport restriction device can execute the airport restriction method provided by the embodiment of the present invention, and has corresponding functional modules and beneficial effects for the execution method.
  • the airport restriction method provided in the embodiment of the present invention.
  • FIG. 6 is a structural block diagram of the unmanned aerial vehicle 10 provided by an embodiment of the present invention.
  • the UAV 10 may include: a fuselage, an arm, a power unit, a magnetometer, various sensors, a flight controller ground detection sensor, and a communication module 130.
  • the flight controller includes a processor 110 and a memory 120.
  • the arm is connected to the fuselage; the power device is arranged on the arm and is used to provide power for the drone to fly.
  • the multiple types of sensors are used to collect corresponding flight data, and the multiple types of sensors may be accelerometers, gyroscopes, magnetometers, GPS navigators, and vision sensors. Among them, the ground detection sensor is used to obtain ground environment information.
  • the processor 110, the memory 120, and the communication module 130 establish a communication connection between any two through a bus.
  • the processor 110 may be of any type, and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 120 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the airport restriction method in the embodiment of the present invention (For example, the flight area acquisition module 51 and the flight status adjustment module 52 shown in FIG. 5).
  • the processor 110 executes various functional applications and data processing of the airport restriction device 50 by running non-transitory software programs, instructions, and modules stored in the memory 120, that is, implements the airport restriction method in any of the foregoing method embodiments.
  • the memory 120 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the airport restriction device 50 and the like.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 120 may optionally include memories remotely provided with respect to the processor 110, and these remote memories may be connected to the drone 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 120 stores instructions that can be executed by the at least one processor 110; the at least one processor 110 is used to execute the instructions to implement the airport restriction method in any of the foregoing method embodiments, for example, perform the above description Steps 10, 20, etc. of the method implement the functions of modules 51-52 in FIG. 5.
  • the communication module 130 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 130 may be any type of wireless or wired communication module 130, including but not limited to a WiFi module or a Bluetooth module.
  • an embodiment of the present invention also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors 110 execution, for example, executed by one of the processors 110 in FIG. 6, can make the above one or more processors 110 execute the airport restriction method in any of the above method embodiments, for example, execute the above described method steps 10, 20, etc. , To achieve the functions of modules 51-52 in Figure 5.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware by a computer program in a computer program product.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by a related device, the related device can execute the procedures of the embodiments of the foregoing methods.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the above-mentioned products can execute the airport restriction method provided by the embodiment of the present invention, and have the corresponding functional modules and beneficial effects for executing the airport restriction method.
  • the airport restriction method provided in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种机场限制方法及装置(20)、无人机(10)。方法包括:机场周围区域被划分为多个不同的飞行区域,多个飞行区域包括高速警告区、模式转换区、低速限制飞行区及禁飞区;首先获取当前无人机(10)所处的飞行区域(S10),然后根据飞行区域,调整无人机(10)的飞行状态(S20)。本方法可以避免无人机(10)进入禁飞区,减少事故的发生,提高飞行的安全性。

Description

机场限制方法及装置、无人机
本申请要求于2019年12月31日提交中国专利局、申请号为201911415915.8、申请名称为“机场限制方法及装置、无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人机技术领域,尤其涉及一种机场限制方法及装置、无人机。
【背景技术】
随着无人飞行器航拍技术的不断发展,越来越多的消费级无人飞行器也正在生产研制。无人飞行器也逐步日趋普及。操控无人飞行器的方式很较多,比如通过遥控器、手机、电脑等移动终端操控。
由于机场等禁飞区域的特殊性,无人机在这些区域附近飞行,会严重影响自身及机场飞机的安全,因此需要在机场附近对无人机飞行做一些限制。然而由于混合翼无人机会在高速下飞行,当接近禁飞区时会进行减速动作,在不同的环境状态下,减速的距离会变化很大,因此会造成无人机进入禁飞区,导致事故的发生。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种避免无人机进入禁飞区,提高飞行安全性的机场限制方法及装置、无人机。
为解决上述技术问题,本发明实施例提供以下技术方案:一种机场限制方法,应用于无人机,其特征在于,包括:所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区、模式转换区、低 速限制飞行区及禁飞区;
获取当前所述无人机所处的所述飞行区域;
根据所述飞行区域,调整所述无人机的飞行状态。
可选地,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令。
可选地,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度。
可选地,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
当所述无人机位于所述高速警告区时,生成远离提示信息;
将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场。
可选地,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
当所述无人机位于所述禁飞区时,控制所述无人机降落。
可选地,所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区为以机场为圆心的同心圆区域,且所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区的半径依次减小。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种机场限制装置。所述机场限制装置机包括:所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区、模式转换区、低速限制飞行区及禁飞区;
飞行区域获取模块,用于获取当前所述无人机所处的所述飞行区域;
飞行状态调整模块,用于根据所述飞行区域,调整所述无人机的飞行状态。
可选地,所述飞行状态调整模块包括低速限制飞行区调整单元、模式转换区调整单元、高速警告区调整单元及禁飞区调整单元;
所述低速限制飞行区调整单元用于当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令;
所述模式转换区调整单元用于当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度;
所述高速警告区调整单元用于当所述无人机位于所述高速警告区时,生成远离提示信息;
将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场;
所述禁飞区调整单元用于当所述无人机位于所述禁飞区时,控制所述无人机降落。
可选地,所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区为以机场为圆心的同心圆区域,且所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区的半径依次减小。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人机。所述无人机包括:机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于给所述无人机提供飞行的动力;以及
飞行控制器,设于所述机身;
其中,所述飞行控制器包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行, 以使所述至少一个处理器能够用于执行如上所述的机场限制方法。
与现有技术相比较,本发明实施例的提供的机场限制方法包括所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区、模式转换区、低速限制飞行区及禁飞区;首先获取当前所述无人机所处的所述飞行区域,然后根据所述飞行区域,调整所述无人机的飞行状态。上述方法可以避免无人机进入禁飞区,减少事故的发生,提高飞行的安全性。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明实施例提供的机场限制方法的流程示意图;
图3为本发明实施例提供的机场周围区域的飞行区域划分示意图;
图4是图2中S20的流程示意图;
图5为本发明实施例提供的机场限制装置的结构框图;
图6为本发明实施例提供的无人机的结构框图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须 具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
以下举例说明所述机场限制方法和装置的应用环境。
图1是本发明实施例提供的机场限制系统的应用环境的示意图;如图1所示,所述应用场景包括无人机10、无线网络20、智能终端30以及用户40。用户40可操作智能终端30通过无线网络20操控所述无人机10。
所述无人机10为混合翼无人机,目前市面上的无人机主要有多旋翼无人机、固定翼无人机、无人直升机以及混合翼无人机等。在这些无人机的种类中,除了固定翼无人机外,其余都可以做到既能空中悬停又能航线飞行。而在同等的能耗下,多旋翼无人机是航速最慢航程最短的。由于其多旋翼的螺旋桨相对于机架均为横向布置、水平转动,因此想要将其航速提升到较高的水准几乎是不可能的。而要增加其航程,就必然会导致能耗的提高,得不偿失。正是在这种情况下,才产生了混合翼无人机。所谓混合翼无人机,就是将多旋翼无人机与固定翼无人机相结合,即在多旋翼无人机的机架上增加固定翼的尾推机构,使其具有较大的水平推力,从而获得较高的航速和较远的航程。
进一步地,该无人机10可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人机10上还可以添加有一种或者多种传感器,令无人机10能够采集相应的数据。
例如,在本实施例中,该无人机10设置有加速度计、陀螺仪、磁力计、GPS导航仪和视觉传感器中的至少一种传感器。
无人机10还包括飞行控制器,作为无人机飞行和数据传输等的控制核心,整合一个或者多个模块,以执行相应的逻辑控制程序。例如,所述飞行控制器可以用于执行上述机场限制方法。
智能终端30可以是任何类型,用以与无人机10建立通信连接的智能装置,例如手机、平板电脑或者智能遥控器等。该智能终端30可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,智能终端30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人机10的遥控指令并通过触控显示屏向用户40展示航拍获得的图像信息,用户40还可以通过遥控触摸屏切换显示屏当前显示的图像信息。
在一些实施例中,无人机10与智能终端30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人机10可以通过双光相机采集图像的方式,由智能终端30对图像进行解析,从而实现用户40对于无人机10的手势控制。
无线网络20可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络,例如位于不同信号频段的蓝牙网络、WiFi 网络、无线蜂窝网络或者其结合。
图2为本发明实施例提供的机场限制方法的实施例。如图2所示,该机场限制方法可以由无人机的飞行控制器执行,包括如下步骤:
S10、获取当前所述无人机所处的所述飞行区域。
其中,所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区101、模式转换区102、低速限制飞行区103及禁飞区104。上述多个不同的飞行区域可保证无人机无论是在高速状态还是低速状态下,能够安全平稳的停在禁飞区外侧。所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区为以机场为圆心的同心圆区域,且所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区的半径依次减小。
举例说明,如图3所示,禁飞区104:以机场为圆心,d1为半径的圆形区域,此区域为禁飞区。在禁飞区中,无人机会被禁止起飞。无人机以姿态模式飘进禁飞区中,获取到GPS后,则立刻降落。
低速限制飞行区103:d1<d<d2=d1+Δd1,此区域为低速限制飞行区。在低速限制飞行区中,只允许无人机翼旋翼模式飞行。不允许无人机向机场靠近,只允许无人机向远离机场方向移动。在此区域中高度会受到限制,预设限制高度范围,当无人机高于预设限制高度范围时,无人机会自动降落到预设限制高度范围以下。
模式转化区102:d2<d<d2+Δd2,此区域为模式转化区。当无人机以高速模式进入模式转化区中,程序会自动将无人机转换到旋翼模式。其中,Δd2根据无人机的减速距离确认,不同的混合翼无人机减速距离不同。
高速警告区101:d3=d2+Δd2<d<d3+Δd3,此区域为高速警告区。当无人机进入到此区域中,飞行控制系统会向无人机的地面站发出提示,提示将无人机远离机场范围。
具体地,所述无人机可通过无人机的定位传感器包括GPS、双目视觉等 装置获取当前所述无人机所处的所述飞行区域。
S20、根据所述飞行区域,调整所述无人机的飞行状态。
具体地,当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令;当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度;当所述无人机位于所述高速警告区时,生成远离提示信息,并将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场;当所述无人机位于所述禁飞区时,控制所述无人机降落。
其中,在本实施例中,多旋翼无人机具有可拆卸式尾推结构,所述可拆卸式尾推结构包括母连接座和子连接座,母连接座与子连接座呈插接式电连接,且母连接座用于与多旋翼无人机机架相连。所述子连接座上设置有尾推动力机构。其中,所述母连接座后端的下表面有倒山脊形的滑槽,滑槽的里端有导电插槽,该导电插槽用于与多旋翼无人机的电源控制系统相连。所述子连接座的上部有倒山脊形的滑块,该滑块与所述母连接座的滑槽相适配。所述滑块的一端有导电插舌,该导电插舌与所述母连接座滑槽内的导电插槽相适配。所述子连接座下部连接有安装座,安装座上有水平的安装孔,安装孔内固定有尾推支杆。所述尾推支杆远离母连接座的一端伸出在外,且该端固定有无刷电机。所述无刷电机的输出轴呈水平布置且其外端固定有螺旋桨,无刷电机通过导线与所述子连接座上的导电插舌相连接。本实施例中,所述安装座的下部对应安装孔的位置呈抱箍状,并通过螺栓将所述尾推支杆固定在安装孔内。为了减轻机身重量,尾推支杆通常采用碳素钢材料制成,采用抱箍结构在增加尾推支杆固定强度的同时,不易对尾推支杆造成损伤。所述 安装座的上表面前后各有一个销耳,子连接座的下表面有纵向的通槽,安装座上的两个销耳均位于子连接座的桶槽内,且安装座的一个销耳通过销子铰接在子连接座的桶槽一端。所述安装座的另一个销耳上有弧形的条孔,子连接座的桶槽另一端的两侧槽壁上均有螺孔,安装座上的该销耳通过螺栓穿过其条孔固定在子连接座通槽的螺孔上。该结构中,安装座可通过铰接端对应的销耳的转动,来调节其上带有条孔的销耳与子连接座的相对位置,即安装座与子连接座间的角度调整,从而实现了尾推动力方向的微调,保证多旋翼无人机获得最佳的水平推力。使用时,将本发明的多旋翼无人机可拆卸式尾推结构中的母连接座固定在多旋翼无人机机架的底部,并使其滑槽内的导电插槽与无人机的电源控制系统相连,便可根据使用场合的需要,自行选择是否加装尾推动力机构。当只需使用传统模式进行小范围的低速飞行时,可将由子连接座、安装座、尾推支杆、无刷电机和螺旋桨组成的尾推动力机构从无人机机架上拆除,可以有效减轻无人机负载,延长留空时间。当需要以较高的飞行速度进行更大航程范围的飞行时,可以将尾推动力机构中子连接座上部倒山脊行的滑块插入母连接座上倒山脊形的滑槽内,子连接座的导电插舌同时插入母连接座上的导电插槽内,使得尾推动力机构中的无刷电机与无人机的电源控制系统呈电连接,便可在多旋翼无人机飞行时,通过无刷电机输出轴上的螺旋桨为无人机提供水平推力,增加其航速,扩大航程。与背景技术的混合翼无人机或传统的多旋翼无人机相比,带有该可拆卸式尾推结构的多旋翼无人机可根据不同场合的需要灵活选择,使用范围更加广泛。同时,该结构在拆卸状态时,几乎不会增加多旋翼无人机的体积和重量,携带和运输也更加方便。
因此,在本实施例中,通过首先当所述无人机的定位系统失效后,将所 述无人机切换到姿态模式,然后控制所述无人机在所述姿态模式下,降低所述无人机的高度,进而当获取到的地面环境信息满足预设降落条件,控制所述无人机安全着陆。上述方法可以在无人机定位传感器失效后,使无人机能够安全平稳的降落到地面上,降低了无人机炸机的概率,提高了无人机的飞行安全性。
为了更好的根据所述飞行区域,调整所述无人机的飞行状态,在一些实施例中,请参阅图4,S20包括如下步骤:
S21、当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令。
具体地,举例说明,若预设限制高度范围为20-25m,若此时无人机的飞行高度为30m,则控制所述无人机下降直至飞行高度低于预设限制高度范围20-25m。
具体地,当所述无人机在低速限制飞行区,且无人机接收到遥控装置发送的向靠近机场方向飞行的控制指令,则将所述控制指令进行屏蔽或者不响应所述控制指令,进而可使所述无人机无法向机场方向继续飞行。
其中,所述遥控装置可为任何类型的智能终端,用以与无人机建立通信连接,例如手机、平板电脑或者智能遥控器等。该遥控装置可以装配有一种或者多种不同的用户交互装置,用以采集用户指令或者向用户展示和反馈信息。
S22、当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度。
具体地,举例说明,按照飞行速度划分,0~8m/s为旋翼模式,8~18m/s为旋翼到固定翼的转换模式,大于18m/s为固定翼模式,正常的工作模式为固定翼模式。不同类型的无人机,飞行速度范围会有所区别,在此不进行限 定。
同时,当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,相对应的将固定翼模式对应的飞行速度(大于18m/s)转换为旋翼模式对应的飞行速度(0~8m/s)。固定翼模式到旋翼模式的转换过程中对应的飞行速度为(8~18m/s)。
S23、当所述无人机位于所述高速警告区时,生成远离提示信息;将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场。
具体地,当所述无人机位于所述高速警告区时,生成远离提示信息,所述远离提示信息预存在存储装置中,例如,所述远离提示信息可为“无人机正在靠近机场区域,请控制无人机远离此区域”等等。并将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场。所述地面站可为遥控装置,也可为云端服务器等等。
进一步地,所述无人飞行器还设置有所述存储装置,所述存储装置存储有所述远离提示信息。
其中,所述所述存储装置可为闪存型存储器、硬盘型存储器、微型多媒体卡型存储器、卡式存储器(例如,SD或XD存储器)、随机存储器(RAM)、静态随机存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁存储器、磁盘和光盘。
S24、当所述无人机位于所述禁飞区时,控制所述无人机降落。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行,亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种机场限制装置50。请参阅图5,该机场限制装置50包括:飞行区域获取模块51及飞行状态调整 模块52。
所述飞行区域获取模块51用于获取当前所述无人机所处的所述飞行区域。
所述飞行状态调整模块52用于根据所述飞行区域,调整所述无人机的飞行状态度。
因此,在本实施例中,所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区、模式转换区、低速限制飞行区及禁飞区;上述装置首先获取当前所述无人机所处的所述飞行区域,然后根据所述飞行区域,调整所述无人机的飞行状态。上述方法可以避免无人机进入禁飞区,减少事故的发生,提高飞行的安全性。
其中,在一些实施例中,所述所述飞行状态调整模块包括低速限制飞行区调整单元、模式转换区调整单元、高速警告区调整单元及禁飞区调整单元;
所述低速限制飞行区调整单元用于当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令;
所述模式转换区调整单元用于当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度;
所述高速警告区调整单元用于当所述无人机位于所述高速警告区时,生成远离提示信息;
将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场;
所述禁飞区调整单元用于当所述无人机位于所述禁飞区时,控制所述无人机降落。
需要说明的是,上述机场限制装置可执行本发明实施例所提供的机场限制方法,具备执行方法相应的功能模块和有益效果。未在机场限制装置实施例中详尽描述的技术细节,可参见本发明实施例所提供的机场限制方法。
图6为本发明实施例提供的无人机10的结构框图。如图6所示,该无人机10可以包括:机身、机臂、动力装置、磁力计、多种传感器、飞行控制器地面检测传感器以及通信模块130。其中,飞行控制器包括处理器110和存储器120。
所述机臂与所述机身相连;所述动力装置设于所述机臂,用于给所述无人机提供飞行的动力。
多种所述传感器用于分别采集相应的飞行数据,多种所述传感器可为加速度计、陀螺仪、磁力计、GPS导航仪和视觉传感器中的多种。其中,地面检测传感器用于获取地面环境信息。
所述处理器110、存储器120以及通信模块130之间通过总线的方式,建立任意两者之间的通信连接。
处理器110可以为任何类型,具备一个或者多个处理核心的处理器110。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的机场限制方法对应的程序指令/模块(例如,附图5所示的飞行区域获取模块51、飞行状态调整模块52)。处理器110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,从而执行机场限制装置50的各种功能应用以及数据处理,即实现上述任一方法实施例中机场限制方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据机场限制装置50的使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器120可选包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至无 人机10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器120存储有可被所述至少一个处理器110执行的指令;所述至少一个处理器110用于执行所述指令,以实现上述任意方法实施例中机场限制方法,例如,执行以上描述的方法步骤10、20等等,实现图5中的模块51-52的功能。
通信模块130是用于建立通信连接,提供物理信道的功能模块。通信模块130以是任何类型的无线或者有线通信模块130,包括但不限于WiFi模块或者蓝牙模块等。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器110执行,例如,被图6中的一个处理器110执行,可使得上述一个或多个处理器110执行上述任意方法实施例中机场限制方法,例如,执行以上描述的方法步骤10、20等等,实现图5中的模块51-52的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法 的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的机场限制方法,具备执行机场限制方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的机场限制方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种机场限制方法,应用于无人机,其特征在于,包括:所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区、模式转换区、低速限制飞行区及禁飞区;
    获取当前所述无人机所处的所述飞行区域;
    根据所述飞行区域,调整所述无人机的飞行状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
    当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
    当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
    当所述无人机位于所述高速警告区时,生成远离提示信息;
    将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述飞行区域,调整所述无人机的飞行状态,包括:
    当所述无人机位于所述禁飞区时,控制所述无人机降落。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区为以机场为圆心的同心 圆区域,且所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区的半径依次减小。
  7. 一种机场限制装置,应用于无人机,其特征在于,包括:所述机场周围区域被划分为多个不同的飞行区域,多个所述所述飞行区域包括高速警告区、模式转换区、低速限制飞行区及禁飞区;
    飞行区域获取模块,用于获取当前所述无人机所处的所述飞行区域;
    飞行状态调整模块,用于根据所述飞行区域,调整所述无人机的飞行状态。
  8. 根据权利要求7所述的装置,其特征在于,所述飞行状态调整模块包括低速限制飞行区调整单元、模式转换区调整单元、高速警告区调整单元及禁飞区调整单元;
    所述低速限制飞行区调整单元用于当所述无人机位于所述低速限制飞行区时,控制所述无人机的飞行高度低于预设限制高度范围;且/或,屏蔽向靠近机场方向飞行的控制指令;
    所述模式转换区调整单元用于当所述无人机位于所述模式转换区时,将当前所述无人机的固定翼模式转换至旋翼模式,且所述旋翼模式下对应的旋翼飞行速度小于所述固定翼模式下对应的固定翼飞行速度;
    所述高速警告区调整单元用于当所述无人机位于所述高速警告区时,生成远离提示信息;
    将所述远离提示信息发送至所述无人机的地面站,以使所述地面站根据所述远离提示信息控制所述无人机远离机场;
    所述禁飞区调整单元用于当所述无人机位于所述禁飞区时,控制所述无人机降落。
  9. 根据权利要求8所述的装置,其特征在于,所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区为以机场为圆心的同心圆区域,且所述高速警告区、所述模式转换区、所述低速限制飞行区及所述禁飞区的 半径依次减小。
  10. 一种无人机,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于给所述无人机提供飞行的动力;以及
    飞行控制器,设于所述机身;
    其中,所述飞行控制器包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1-6中任一项所述的机场限制方法。
PCT/CN2020/133960 2019-12-31 2020-12-04 机场限制方法及装置、无人机 WO2021135822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911415915.8 2019-12-31
CN201911415915.8A CN110908391A (zh) 2019-12-31 2019-12-31 机场限制方法及装置、无人机

Publications (1)

Publication Number Publication Date
WO2021135822A1 true WO2021135822A1 (zh) 2021-07-08

Family

ID=69813977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133960 WO2021135822A1 (zh) 2019-12-31 2020-12-04 机场限制方法及装置、无人机

Country Status (2)

Country Link
CN (1) CN110908391A (zh)
WO (1) WO2021135822A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908391A (zh) * 2019-12-31 2020-03-24 深圳市道通智能航空技术有限公司 机场限制方法及装置、无人机
CN116820139B (zh) * 2023-08-29 2023-12-12 陕西德鑫智能科技有限公司 基于电子围栏的导航控制方法、装置、无人机及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932525A (zh) * 2015-05-28 2015-09-23 深圳一电科技有限公司 无人机的控制方法、装置、地面控制系统及无人机
CN106656307A (zh) * 2016-12-09 2017-05-10 清华大学 基于调频数据广播的无人机飞行限制管理方法、无人机和管理中心
CN107256031A (zh) * 2017-07-06 2017-10-17 杨顺伟 一种无人机的飞行限制方法及装置
US20180190130A1 (en) * 2015-02-12 2018-07-05 Botlink, Llc System and method of preventing and remedying restricted area intrusions by unmanned aerial vehicles
CN108496213A (zh) * 2017-04-09 2018-09-04 深圳市大疆创新科技有限公司 一种飞行处理方法及控制设备
CN110908391A (zh) * 2019-12-31 2020-03-24 深圳市道通智能航空技术有限公司 机场限制方法及装置、无人机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834307A (zh) * 2015-04-23 2015-08-12 杨珊珊 无人飞行器的控制方法及控制装置
CN105235892B (zh) * 2015-10-21 2017-11-24 北京航空航天大学 一种混合布局旋翼无人机多模态飞行转换控制方法
CN107757914A (zh) * 2016-08-15 2018-03-06 南京福尔摩斯智能科技有限公司 双动力垂直起降固定翼无人机
US10573188B2 (en) * 2016-10-23 2020-02-25 Gopro, Inc. Virtual wall mapping for aerial vehicle navigation
WO2018161338A1 (en) * 2017-03-10 2018-09-13 SZ DJI Technology Co., Ltd. Methods and systems for supporting flight restriction of unmanned aerial vehicles
CN107168377A (zh) * 2017-07-19 2017-09-15 过成康 一种具有禁飞区域警示作用的无人机
CN209852575U (zh) * 2019-01-30 2019-12-27 中科院成都信息技术股份有限公司 一种复合翼无人机
CN109814455A (zh) * 2019-01-31 2019-05-28 拓攻(南京)机器人有限公司 一种无人机的禁飞控制方法、装置、设备以及存储介质
CN110444049A (zh) * 2019-07-05 2019-11-12 视联动力信息技术股份有限公司 一种基于视联网的无人机限飞方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180190130A1 (en) * 2015-02-12 2018-07-05 Botlink, Llc System and method of preventing and remedying restricted area intrusions by unmanned aerial vehicles
CN104932525A (zh) * 2015-05-28 2015-09-23 深圳一电科技有限公司 无人机的控制方法、装置、地面控制系统及无人机
CN106656307A (zh) * 2016-12-09 2017-05-10 清华大学 基于调频数据广播的无人机飞行限制管理方法、无人机和管理中心
CN108496213A (zh) * 2017-04-09 2018-09-04 深圳市大疆创新科技有限公司 一种飞行处理方法及控制设备
CN107256031A (zh) * 2017-07-06 2017-10-17 杨顺伟 一种无人机的飞行限制方法及装置
CN110908391A (zh) * 2019-12-31 2020-03-24 深圳市道通智能航空技术有限公司 机场限制方法及装置、无人机

Also Published As

Publication number Publication date
CN110908391A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US10938471B2 (en) Method, apparatus and system of providing communication coverage to an unmanned aerial vehicle
WO2020125636A1 (zh) 一种自动返航方法、装置和无人机
WO2022037376A1 (zh) 一种无人机保护方法及无人机
WO2021238742A1 (zh) 一种返航方法、控制器、无人机及存储介质
WO2021139461A1 (zh) 无人机严重低电保护方法及无人机
WO2021135822A1 (zh) 机场限制方法及装置、无人机
CN107450573B (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
CN105974929A (zh) 一种基于智能装置操控的无人机控制方法
US20170315547A1 (en) Gesture-based unmanned aerial vehicle (uav) control
WO2021088684A1 (zh) 全向避障方法及无人飞行器
US20220317708A1 (en) Unmanned aerial vehicle protection method and apparatus and unmanned aerial vehicle
US20230368680A1 (en) Generating dynamic checklists for aircraft operations
CN112148031A (zh) 一种支持无人机飞行的智能管理控制平台系统
WO2022047709A1 (zh) 更新限制区域数据的方法、装置、可移动平台和计算机存储介质
US11914362B2 (en) Navigation system with camera assist
WO2020237531A1 (zh) 无人机返航方法、设备、无人机和存储介质
US20200066168A1 (en) Movable object application framework
WO2023025202A1 (zh) 云台方向的控制方法、装置及终端
US11820488B2 (en) Image capturing method
WO2023178487A1 (zh) 飞行器及其功耗的控制方法、控制装置和计算机存储介质
CN205499347U (zh) 一种拍照稳定的多旋翼无人机
CN117742353A (zh) 无人机在进近阶段的控制方法、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908664

Country of ref document: EP

Kind code of ref document: A1