WO2024016369A1 - 面向桥梁变形监测的gnss和加速度计实时融合算法 - Google Patents

面向桥梁变形监测的gnss和加速度计实时融合算法 Download PDF

Info

Publication number
WO2024016369A1
WO2024016369A1 PCT/CN2022/107754 CN2022107754W WO2024016369A1 WO 2024016369 A1 WO2024016369 A1 WO 2024016369A1 CN 2022107754 W CN2022107754 W CN 2022107754W WO 2024016369 A1 WO2024016369 A1 WO 2024016369A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
data
displacement
gnss
accelerometer
Prior art date
Application number
PCT/CN2022/107754
Other languages
English (en)
French (fr)
Inventor
齐春雨
张云龙
陈旭升
石德斌
胡锦民
何义磊
谭兆
秦守鹏
薛骐
王长进
Original Assignee
中国铁路设计集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铁路设计集团有限公司 filed Critical 中国铁路设计集团有限公司
Publication of WO2024016369A1 publication Critical patent/WO2024016369A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the field of multi-source data fusion for deformation monitoring, and specifically relates to a real-time fusion algorithm of GNSS and accelerometer for bridge deformation monitoring.
  • Bridges are elastic systems. Under the influence of operating loads, wind and other environmental factors, their deformations mainly include high-frequency vibrations and low-frequency long-period displacements.
  • GNSS Global Navigation Satellite System
  • accelerometers are usually used to monitor structural health and deformation of bridges.
  • GNSS Global Navigation Satellite System
  • GNSS has the advantages of all-weather, strong real-time performance, high automation, and can directly obtain three-dimensional displacement information of deformed bodies. However, it is not sensitive to micro-deformation and high-frequency vibration information, and has a low sampling rate; accelerometers can identify it more accurately.
  • the high-frequency vibration information of the deformable body also has the advantages of high sampling rate, but it is not sensitive to the low-frequency slow deformation information, and its data processing method is often lagging and has poor real-time performance.
  • GNSS and accelerometer monitoring data are fused to obtain structural vibration information of the monitored object in a wider frequency range.
  • the original GNSS displacement information contains high-frequency measurement noise errors;
  • the original acceleration information obtained by the accelerometer contains two errors: zero-point drift of low-frequency components and random noise of high-frequency components, which will affect the dynamic displacement results obtained by subsequent integration.
  • the existing fusion methods mostly process the original monitoring data of GNSS and accelerometers with lag and are not real-time. They all have certain limitations and are difficult to meet the actual needs of engineering.
  • a real-time high-precision fusion algorithm of GNSS and accelerometer is urgently needed.
  • the present invention provides a GNSS accelerometer real-time fusion algorithm for bridge deformation monitoring.
  • This algorithm combines the advantages of GNSS and accelerometers to complement each other and utilizes GNSS monitoring data.
  • the calculated low-frequency information and the high-frequency information calculated from the accelerometer monitoring data are fused to obtain real-time and high-precision vibration displacement information of the bridge structure in a wider frequency range.
  • a real-time fusion algorithm of GNSS and accelerometer for bridge deformation monitoring which is characterized by including the following steps:
  • step S2 Use the robust adaptive Kalman filter to solve the original GNSS monitoring data in step S1 and obtain the low-frequency displacement and deformation data of the structure in real time;
  • step S3 Use recursive filtering to reconstruct the original monitoring data of the accelerometer in step S1, and obtain the high-frequency displacement and deformation data of the structure in real time;
  • step S2 specifically includes the following sub-steps:
  • L k is the observation vector at time t k ;
  • ⁇ k,k-1 is the state transition matrix from time t k-1 to time t k , I is the identity matrix, ⁇ t is the GNSS sampling interval;
  • a k is the design matrix at time t k ; W k and e k are regarded as independent white noise;
  • p i is the weight of the i-th vector, is the standardized residual, c 0 and c 1 are critical values, and the critical values can be set by empirical values or determined based on the confidence level of the standardized residual distribution;
  • the discriminant statistic of the model error c 0 and c 1 adopt the same critical values as in formula (5);
  • tr( ⁇ ) represents the trace of the matrix;
  • ⁇ k is the covariance matrix of the observation vector.
  • Step S3 specifically includes the following sub-steps:
  • k is the epoch time
  • n 1,2,...,L
  • L is the sliding step size
  • x k and f k respectively represent the input and output signals at time t k
  • q is the filter coefficient
  • the filter coefficient q is calculated back by the following formula:
  • H (f d ) is the transfer function, i is an imaginary number, f d is the minimum vibration frequency, and ⁇ t is the accelerometer sampling interval;
  • v k is the velocity data at time t k ;
  • a k is the available acceleration data at time t k ;
  • s k is the displacement data at time t k ;
  • v k is the available velocity data at time t k ;
  • step S4 the method for interpolating and merging the displacement and deformation monitoring data of two different frequencies is: linearly interpolating the low-frequency displacement and deformation data in step S2 according to the data collection frequency of the accelerometer, and then interpolating the interpolated The low-frequency displacement and deformation data are summed with the high-frequency displacement and deformation data solved in step S3 to obtain the real-time static and dynamic displacement information of the bridge.
  • the GNSS accelerometer real-time fusion algorithm for bridge deformation monitoring of the present invention is suitable for real-time high-precision structural health monitoring of bridges and other buildings.
  • This method first uses the robust adaptive Kalman filter to process the original GNSS monitoring data, and calculates the high-precision low-frequency displacement data of the bridge in real time. It uses high-pass recursive filtering to process the original monitoring signal of the accelerometer, and reconstructs the high-precision bridge in real time. High-frequency displacement data; and then the monitoring displacement data of two different frequencies processed by the two filtering methods are interpolated and fused to achieve the purpose of obtaining real-time and high-precision health deformation information of the bridge structure.
  • the present invention has the following beneficial effects:
  • This invention integrates GNSS and accelerometer monitoring data and uses the complementary advantages of the two sensors to identify static and dynamic displacement information in bridge monitoring data, so that bridges and other buildings can be obtained in real time within a wider frequency range. More comprehensive, more reliable and more accurate deformation information of objects;
  • the present invention uses monitoring displacement and velocity information as state parameters to establish a robust adaptive Kalman filter model, which solves the impact of various gross errors in GNSS observation data on monitoring results; the present invention uses recursive filtering to reconstruct dynamic displacement methods , , solves the problem of divergence of displacement results caused by zero point drift during real-time integration of acceleration.
  • the robust adaptive Kalman filtering algorithm and the recursive filtering algorithm used in the present invention have fast calculation speed, do not need to store a large amount of old data, and are easy to implement through computer programming. They can achieve real-time and rapid acquisition of structural health monitoring of bridges and other buildings. .
  • Figure 1 is a flow chart of the GNSS accelerometer real-time fusion algorithm for bridge deformation monitoring of the present invention
  • Figure 2 shows the original monitoring data of a bridge deflection obtained by GNSS in the embodiment of the present invention
  • Figure 3 is the original monitoring data of the deflection of a bridge obtained by the accelerometer in the embodiment of the present invention.
  • Figure 4 shows the displacement data after fusion of GNSS accelerometers in the embodiment of the present invention.
  • a real-time fusion algorithm of GNSS accelerometers for bridge deformation monitoring includes the following steps:
  • p i is the weight of the i-th vector, is the standardized residual
  • c 0 and c 1 are critical values, which can be set by empirical values or determined based on the confidence level of the standardized residual distribution
  • the discriminant statistic of the model error c 0 and c 1 adopt the same critical values as in formula (5);
  • tr( ⁇ ) represents the trace of the matrix;
  • ⁇ k is the covariance matrix of the observation vector.
  • k is the epoch time
  • n 1,2,...,L
  • L is the sliding step size
  • x k and f k respectively represent the input and output signals at time t k
  • q is the filter coefficient
  • the filter coefficient q is calculated back by the following formula:
  • H (f d ) is the transfer function, i is an imaginary number, f d is the minimum vibration frequency, and ⁇ t is the accelerometer sampling interval;
  • v k is the velocity data at time t k ;
  • a k is the available acceleration data at time t k ;
  • s k is the displacement data at time t k ;
  • v k is the available velocity data at time t k ;
  • S4 Interpolate and fuse the displacement and deformation monitoring data of two different frequencies in S2 and S3 to obtain real-time high-precision displacement and deformation information of the structure. Specifically: linearly interpolate the low-frequency displacement and deformation data in step S2 according to the data collection frequency of the accelerometer, and then sum the interpolated low-frequency displacement and deformation data with the high-frequency displacement and deformation data solved in step S3, Used to obtain real-time static and dynamic displacement information of the bridge.
  • the displacement data after GNSS accelerometer fusion is shown in Figure 4.
  • the high-frequency measurement noise in the original GNSS monitoring data is successfully removed, and only the low-frequency displacement and deformation data is retained.
  • the monitoring data is used to obtain high-frequency displacement and deformation data.
  • the displacement data of two different frequencies contain the static and dynamic displacement information of the bridge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Operations Research (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种面向桥梁变形监测的GNSS和加速度计实时融合算法,包括:获取一组GNSS和加速度计的原始桥梁结构健康变形监测数据;采用抗差自适应卡尔曼滤波对所述GNSS变形监测数据进行解算,实时求取结构体的低频位移变形数据;采用递归滤波对获取的加速度计原始监测数据重构,实时求取结构体的高频位移变形数据;将两种不同频率位移变形监测数据做内插融合,获取结构体的实时高精度位移变形信息。该算法将GNSS和加速度计对桥梁结构健康的变形监测数据进行集成融合处理,将这两种传感器优势进行互补,实现了在更宽频率范围内实时获取桥梁的高精度静态和动态位移变形信息,有效提高了桥梁结构健康变形监测精度和可靠性。

Description

面向桥梁变形监测的GNSS和加速度计实时融合算法 技术领域
本发明涉及变形监测多源数据融合领域,具体涉及一种面向桥梁变形监测的GNSS和加速度计实时融合算法。
背景技术
桥梁属于弹性系统,在运营载荷、风力等环境因素的影响下,其变形量主要包含高频率振动以及低频率长周期位移。通常采用GNSS(全球导航卫星系统)和加速度计对桥梁进行结构健康变形监测。GNSS具有全天候、实时性强、自动化高,同时可直接获取变形体的三维位移信息等优点,但其对微变形及高频振动信息不敏感,并且采样率较低;加速度计能较为准确地识别变形体的高频振动信息,同时具备高采样率等优点,但其对低频的缓慢变形信息不敏感,并且其数据处理方法往往是滞后的、实时性较差。
为综合发挥两种传感器的优势,将GNSS和加速度计监测数据进行融合处理,用以在更宽频率范围内获取被监测对象的结构振动信息。但是,GNSS原始位移信息中包含高频测量噪声误差;加速度计获取的原始加速度信息中包含有低频成分的零点漂移和高频成分的随机噪声两项误差,会影响后续积分得到的动态位移量结果。此外,在GNSS和加速度计数据融合分析时,现有融合方法针对GNSS及加速度计的原始监测数据多为滞后处理、不具备实时性,均具有一定的局限性,难以满足工程实际的需要。为解决上述问题,提高桥梁结构健康变形监测的采样率、精度和可靠性,亟需一种GNSS和加速度计实时高精度融合算法。
发明内容
为了克服现有传感器监测数据融合方法的不足,本发明提供一种面向桥梁变形监测的GNSS加速度计实时融合算法,该算法结合GNSS和加速度计这两种传感器的优势进行互补,将利用GNSS监测数据解算的低频信息和加速度计监测数据解算的高频信息融合处理,从而在更宽频率范围内实时、高精度地获得桥梁结构振动位移信息。
为了实现上述发明目的,本发明采用以下技术方案:
一种面向桥梁变形监测的GNSS和加速度计实时融合算法,其特征在于,包括以下步骤:
S1、获取由GNSS和加速度计分别得到的一组原始桥梁结构健康变形监测数据;
S2、采用抗差自适应卡尔曼滤波对步骤S1中的GNSS原始监测数据进行解算,实时求取结构体的低频位移变形数据;
S3、采用递归滤波对步骤S1中的加速度计原始监测数据进行重构,实时求取结构体的高频位移变形数据;
S4、将步骤S2和S3中两种不同频率的位移变形监测数据进行内插融合,得到结构体的实时高精度位移变形信息。
其中,步骤S2具体包括以下分步骤:
S2.1,选取一定时间长度的GNSS基线样本数据,利用抗差最小二乘估计解算出t k-1时刻的状态向量
Figure PCTCN2022107754-appb-000001
和状态协方差阵
Figure PCTCN2022107754-appb-000002
作为抗差自适应卡尔曼滤波的初始参数;
S2.2,建立抗差自适应卡尔曼滤波的状态方程和观测方程,有:
X k=Φ k,k-1X k-1+W k    (1)
L k=A kX k+e k    (2)
式中,X k、X k-1分别为t k和t k-1时刻的状态向量,
Figure PCTCN2022107754-appb-000003
Z k=(x k,y k,z k) T,上面加点表示速率;L k为t k时刻的观测向量;Φ k,k-1为t k-1时刻至t k时刻的状态转移矩阵,
Figure PCTCN2022107754-appb-000004
I为单位矩阵,Δt为GNSS采样间隔;A k为t k时刻的设计矩阵;W k与e k视为相互独立的白噪声;
S2.3,计算t k时刻的预测状态向量
Figure PCTCN2022107754-appb-000005
和预测状态协方差阵
Figure PCTCN2022107754-appb-000006
有:
Figure PCTCN2022107754-appb-000007
Figure PCTCN2022107754-appb-000008
式中,
Figure PCTCN2022107754-appb-000009
为预测状态向量权矩阵的逆矩阵,
Figure PCTCN2022107754-appb-000010
为W k的协方差阵。
S2.4,由观测方程的单独抗差确定等价权矩阵
Figure PCTCN2022107754-appb-000011
抗差等价权矩阵函数采用IGGⅢ方案,有:
Figure PCTCN2022107754-appb-000012
式中,p i为第i个向量的权,
Figure PCTCN2022107754-appb-000013
为标准化残差,c 0和c 1为临界值,临界值可以由经验值设定或者根据标准化残差分布的置信水平确定;
则t k时刻的状态参数抗差解由下式计算:
Figure PCTCN2022107754-appb-000014
S2.5,求解自适应因子α k,由下式计算:
Figure PCTCN2022107754-appb-000015
式中,模型误差的判别统计量
Figure PCTCN2022107754-appb-000016
c 0和c 1采用与公式(5)中相同的临界值;tr(·)表示矩阵的迹;
S2.6,求解t k时刻的增益矩阵
Figure PCTCN2022107754-appb-000017
有:
Figure PCTCN2022107754-appb-000018
式中,
Figure PCTCN2022107754-appb-000019
为状态预测向量的协方差矩阵。
S2.7,求解t k时刻的状态估值和状态新的协方差矩阵,有:
Figure PCTCN2022107754-appb-000020
Figure PCTCN2022107754-appb-000021
式中,Σ k为观测向量的协方差矩阵。
S2.8,将
Figure PCTCN2022107754-appb-000022
Figure PCTCN2022107754-appb-000023
代入t k+1历元,重复执行步骤S2.2至步骤S2.7,逐历元解算GNSS位移数据。
步骤S3具体包括以下分步骤:
S3.1,初始化递归滤波和滑动均值滤波的滤波参数,包括滤波系数和滑动步长;初始化加速度、速度及位移初值;
S3.2,对t k时刻的加速度实时监测数据执行滑动均值滤波和高通递归滤波,得到可用加速度数据,有:
Figure PCTCN2022107754-appb-000024
Figure PCTCN2022107754-appb-000025
式中,k为历元时刻,n=1,2,...,L,L为滑动步长;x k和f k分别表示t k时刻的输入和输出信号;q为滤波系数;
所述滤波系数q,由下式反算求取:
Figure PCTCN2022107754-appb-000026
式中,H(f d)为传递函数,i为虚数,f d为最小振动频率,Δt为加速度计采样间隔;
S3.3,对t k时刻的可用加速度数据执行一次积分和递归滤波,得到可用速度数据,有:
Figure PCTCN2022107754-appb-000027
式中,v k为t k时刻的速度数据;a k为t k时刻的可用加速度数据;
递归滤波同样采用公式(12)进行计算;
S3.4,对t k时刻的速度数据执行一次积分和递归滤波,得到可用位移数据,从而获得结构体的高频振动位移数据,有:
Figure PCTCN2022107754-appb-000028
式中,s k为t k时刻的位移数据;v k为t k时刻的可用速度数据;
递归滤波同样采用公式(12)进行计算;
S3.5,将获取的原始加速度计监测数据与对应的可用位移数据作为样本数据,结合频域积分重构位移方法,求解并更新最优滤波参数;
S3.6,重复执行步骤S3.2至步骤S3.5,逐历元解算加速度计位移数据。
步骤S4中,两种不同频率的位移变形监测数据进行内插融合的方法为:依据所 述加速度计的数据采集频率将步骤S2中低频位移变形数据进行线性内插处理,然后将内插后的低频位移变形数据与步骤S3解算的高频位移变形数据求和,用以获取桥梁的实时静态和动态位移信息。
本发明的面向桥梁变形监测的GNSS加速度计实时融合算法适用于对桥梁等建筑物进行实时高精度的结构健康监测。该方法首先采用抗差自适应卡尔曼滤波对GNSS原始监测数据进行处理,实时解算出桥梁的高精度低频位移数据,采用高通递归滤波对加速度计原始监测信号进行处理,实时重构桥梁的高精度高频位移数据;然后将两种滤波方法处理得到的两种不同频率的监测位移数据进行内插融合处理,用以实现实时高精度获取桥梁结构健康变形信息的目的。
与现有技术相比,本发明具有以下有益效果:
1、本发明将GNSS和加速度计监测数据进行集成融合处理,利用两种传感器的优势互补,识别桥梁监测数据中的静态和动态位移信息,从而可以在更宽的频率范围内实时获取桥梁等建筑物更全面、更可靠、更精确的变形信息;
2、本发明利用监测位移与速度信息作为状态参数建立抗差自适应卡尔曼滤波模型,解决了GNSS观测数据中各种粗差对监测结果的影响;;本发明利用递归滤波重构动态位移方法,,解决了加速度实时积分过程中零点漂移导致的位移结果发散的问题。
3、本发明采用的抗差自适应卡尔曼滤波算法和递归滤波算法的计算速度快、不需要存储大量旧数据、且易于计算机编程实现,可以实现对桥梁等建筑物结构健康监测的实时快速获取。
附图说明
图1为本发明的面向桥梁变形监测的GNSS加速度计实时融合算法的流程图;
图2为本发明的实施例中GNSS获取的某桥梁挠度原始监测数据;
图3为本发明的实施例中加速度计获取的某桥梁挠度原始监测数据;
图4为本发明的实施例中GNSS加速度计融合后的位移数据。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明。
实施例
如图1所示,一种面向桥梁变形监测的GNSS加速度计实时融合算法,包括以下步骤:
S1,如图2和图3所示,获取由GNSS和加速度计分别得到的一组某桥梁挠度原始监测数据(即原始桥梁结构健康变形监测数据),由图中数据可知,GNSS和加速度计获取的原始监测数据中均明显含有高频的测量噪声,若不对其进行处理,会影响到最终求解的桥梁位移监测数据的准确性,因此本发明对GNSS和加速度计数据进行实时融合计算;
S2,采用抗差自适应卡尔曼滤波对S1中的GNSS原始监测数据进行解算,实时求取结构体的低频位移变形数据;具体包括以下分步骤:
S2.1,选取一定时间长度的GNSS基线样本数据,利用抗差最小二乘估计解算出t k-1时刻的状态向量
Figure PCTCN2022107754-appb-000029
和状态协方差阵
Figure PCTCN2022107754-appb-000030
作为抗差自适应卡尔曼滤波的初始参数;
S2.2,建立抗差自适应卡尔曼滤波的状态方程和观测方程,有:
X k=Φ k,k-1X k-1+W k    (1)
L k=A kX k+e k   (2)
式中,X k、X k-1分别为t k和t k-1时刻的状态向量,
Figure PCTCN2022107754-appb-000031
Z k=(x k,y k,z k) T,表示k时刻的三方向状态参数向量,上面加点表示速率;L k为t k时刻的观测向量;Φ k,k-1为t k-1时刻至t k时刻的状态转移矩阵,
Figure PCTCN2022107754-appb-000032
I为单位矩阵,Δt为GNSS采样间隔;A k为t k时刻的设计矩阵;W k与e k视为相互独立的白噪声;
S2.3,计算t k时刻的预测状态向量
Figure PCTCN2022107754-appb-000033
和预测状态协方差阵
Figure PCTCN2022107754-appb-000034
有:
Figure PCTCN2022107754-appb-000035
Figure PCTCN2022107754-appb-000036
其中,式中,
Figure PCTCN2022107754-appb-000037
为预测状态向量权矩阵的逆矩阵,
Figure PCTCN2022107754-appb-000038
为W k的协方差阵。T表示矩阵转置;
Figure PCTCN2022107754-appb-000039
为Wk的状态协方差阵;
Figure PCTCN2022107754-appb-000040
表示矩阵求逆。
S2.4,由观测方程的单独抗差估计来确定等价权矩阵
Figure PCTCN2022107754-appb-000041
抗差等价权矩阵函数采 用IGGⅢ方案,有:
Figure PCTCN2022107754-appb-000042
式中,p i为第i个向量的权,
Figure PCTCN2022107754-appb-000043
为标准化残差;c 0和c 1为临界值,临界值可以由经验值设定或者根据标准化残差分布的置信水平确定;
则t k时刻的状态参数抗差解由下式计算:
Figure PCTCN2022107754-appb-000044
S2.5,求解自适应因子α k,由下式计算:
Figure PCTCN2022107754-appb-000045
式中,模型误差的判别统计量
Figure PCTCN2022107754-appb-000046
c 0和c 1采用与公式(5)中相同的临界值;tr(·)表示矩阵的迹;
S2.6,求解t k时刻的增益矩阵
Figure PCTCN2022107754-appb-000047
有:
Figure PCTCN2022107754-appb-000048
式中,
Figure PCTCN2022107754-appb-000049
为状态预测向量的协方差矩阵。
S2.7,求解t k时刻的状态估值和状态新的协方差矩阵,有:
Figure PCTCN2022107754-appb-000050
Figure PCTCN2022107754-appb-000051
式中,Σ k为观测向量的协方差矩阵。
S2.8,将
Figure PCTCN2022107754-appb-000052
Figure PCTCN2022107754-appb-000053
代入t k+1历元,重复执行步骤S2.2至步骤S2.7,逐历元解算GNSS位移数据。
S3,采用递归滤波对S1中的加速度计原始监测数据重构,实时求取结构体的高频位移变形数据;具体包括以下分步骤:
S3.1,初始化递归滤波和滑动均值滤波的滤波参数,包括滤波系数和滑动步长,初始化加速度、速度及位移初值;
S3.2,对t k时刻的加速度实时监测数据执行滑动均值滤波和高通递归滤波,得到可用加速度数据,有:
Figure PCTCN2022107754-appb-000054
Figure PCTCN2022107754-appb-000055
式中,k为历元时刻,n=1,2,...,L,L为滑动步长;x k和f k分别表示t k时刻的输入和输出信号;q为滤波系数;
所述滤波系数q,由下式反算求取:
Figure PCTCN2022107754-appb-000056
式中,H(f d)为传递函数,i为虚数,f d为最小振动频率,Δt为加速度计采样间隔;
S3.3,对t k时刻的可用加速度数据执行一次积分和递归滤波,得到可用速度数据,有:
Figure PCTCN2022107754-appb-000057
式中,v k为t k时刻的速度数据;a k为t k时刻的可用加速度数据;
递归滤波同样采用公式(12)进行计算;
S3.4,对t k时刻的速度数据执行一次积分和递归滤波,得到可用位移数据,从而获得结构体的高频振动位移数据,有:
Figure PCTCN2022107754-appb-000058
式中,s k为t k时刻的位移数据;v k为t k时刻的可用速度数据;
递归滤波同样采用公式(12)进行计算;
S3.5,将获取的原始加速度计监测数据与对应的可用位移数据作为样本数据,结合频域积分重构位移方法,求解并更新最优滤波参数;
S3.6,重复执行步骤S3.2至步骤S3.5,逐历元解算加速度计位移数据。
S4,将S2和S3中两种不同频率的位移变形监测数据进行内插融合,获取结构体的实时高精度位移变形信息。具体为:依据所述加速度计的数据采集频率将步骤S2中低频位移变形数据进行线性内插处理,然后将内插后的低频位移变形数据与步骤S3解算的高频位移变形数据求和,用以获取桥梁的实时静态和动态位移信息。GNSS加速度计融合后的位移数据如图4所示。
由图4可知,原始桥梁结构健康变形监测数据经本发明的实时融合算法处理后,GNSS原始监测数据中的高频测量噪声被成功剔除,仅保留了低频位移变形数据,同时利用加速度计的原始监测数据求取高频位移变形数据,两种不同频率的位移数据经过内插融合处理后,包含了桥梁的静态和动态位移信息。

Claims (4)

  1. 一种面向桥梁变形监测的GNSS和加速度计实时融合算法,其特征在于,包括以下步骤:
    S1、获取由GNSS和加速度计分别得到的一组原始桥梁结构健康变形监测数据;
    S2、采用抗差自适应卡尔曼滤波对步骤S1中的GNSS原始监测数据进行解算,实时求取结构体的低频位移变形数据;
    S3、采用递归滤波对步骤S1中的加速度计原始监测数据进行重构,实时求取结构体的高频位移变形数据;
    S4、将步骤S2和S3中两种不同频率的位移变形监测数据进行内插融合,得到结构体的实时高精度位移变形信息。
  2. 根据权利要求1所述的面向桥梁变形监测的GNSS和加速度计实时融合算法,其特征在于,步骤S2包括以下分步骤:
    S2.1,选取一定时间长度的GNSS基线样本数据,利用抗差最小二乘估计解算出t k-1时刻的状态向量
    Figure PCTCN2022107754-appb-100001
    和状态协方差阵
    Figure PCTCN2022107754-appb-100002
    作为抗差自适应卡尔曼滤波的初始参数;
    S2.2,建立抗差自适应卡尔曼滤波的状态方程和观测方程,有:
    X k=Φ k,k-1X k-1+W k    (1)
    L k=A kX k+e k    (2)
    式中,X k、X k-1分别为t k和t k-1时刻的状态向量,
    Figure PCTCN2022107754-appb-100003
    Z k=(x k,y k,z k) T,上面加点表示速率;L k为t k时刻的观测向量;Φ k,k-1为t k-1时刻至t k时刻的状态转移矩阵,
    Figure PCTCN2022107754-appb-100004
    I为单位矩阵,Δt为GNSS采样间隔;A k为t k时刻的设计矩阵;W k与e k视为相互独立的白噪声;
    S2.3,计算t k时刻的预测状态向量
    Figure PCTCN2022107754-appb-100005
    和预测状态协方差阵
    Figure PCTCN2022107754-appb-100006
    有:
    Figure PCTCN2022107754-appb-100007
    Figure PCTCN2022107754-appb-100008
    式中,
    Figure PCTCN2022107754-appb-100009
    为预测状态向量权矩阵的逆矩阵,
    Figure PCTCN2022107754-appb-100010
    为W k的协方差阵。
    S2.4,由观测方程的单独抗差确定等价权矩阵
    Figure PCTCN2022107754-appb-100011
    抗差等价权矩阵函数采用IGGⅢ方案,有:
    Figure PCTCN2022107754-appb-100012
    式中,p i为第i个向量的权,
    Figure PCTCN2022107754-appb-100013
    为标准化残差,c 0和c 1为临界值,临界值可以由经验值设定或者根据标准化残差分布的置信水平确定;
    则t k时刻的状态参数抗差解由下式计算:
    Figure PCTCN2022107754-appb-100014
    S2.5,求解自适应因子α k,由下式计算:
    Figure PCTCN2022107754-appb-100015
    式中,模型误差的判别统计量
    Figure PCTCN2022107754-appb-100016
    c 0和c 1采用与公式(5)中相同的临界值;tr(·)表示矩阵的迹;
    S2.6,求解t k时刻的增益矩阵
    Figure PCTCN2022107754-appb-100017
    有:
    Figure PCTCN2022107754-appb-100018
    式中,
    Figure PCTCN2022107754-appb-100019
    为状态预测向量的协方差矩阵。
    S2.7,求解t k时刻的状态估值和状态新的协方差矩阵,有:
    Figure PCTCN2022107754-appb-100020
    Figure PCTCN2022107754-appb-100021
    式中,Σ k为观测向量的协方差矩阵。
    S2.8,将
    Figure PCTCN2022107754-appb-100022
    Figure PCTCN2022107754-appb-100023
    代入t k+1历元,重复执行步骤S2.2至步骤S2.7,逐历元解算 GNSS位移数据。
  3. 根据权利要求1所述的面向桥梁变形监测的GNSS和加速度计实时融合算法,其特征在于,步骤S3包括以下分步骤:
    S3.1,初始化递归滤波和滑动均值滤波的滤波参数,包括滤波系数和滑动步长;初始化加速度、速度及位移初值;
    S3.2,对t k时刻的加速度实时监测数据执行滑动均值滤波和高通递归滤波,得到可用加速度数据,有:
    Figure PCTCN2022107754-appb-100024
    Figure PCTCN2022107754-appb-100025
    式中,k为历元时刻,n=1,2,...,L,L为滑动步长;x k和f k分别表示t k时刻的输入和输出信号;q为滤波系数;
    所述滤波系数q,由下式反算求取:
    Figure PCTCN2022107754-appb-100026
    式中,H(f d)为传递函数,i为虚数,f d为最小振动频率,Δt为加速度计采样间隔;
    S3.3,对t k时刻的可用加速度数据执行一次积分和递归滤波,得到可用速度数据,有:
    Figure PCTCN2022107754-appb-100027
    式中,v k为t k时刻的速度数据;a k为t k时刻的可用加速度数据;
    递归滤波同样采用公式(12)进行计算;
    S3.4,对t k时刻的速度数据执行一次积分和递归滤波,得到可用位移数据,从而获得结构体的高频振动位移数据,有:
    Figure PCTCN2022107754-appb-100028
    式中,s k为t k时刻的位移数据;v k为t k时刻的可用速度数据;
    递归滤波同样采用公式(12)进行计算;
    S3.5,将获取的原始加速度计监测数据与对应的可用位移数据作为样本数据,结 合频域积分重构位移方法,求解并更新最优滤波参数;
    S3.6,重复执行步骤S3.2至步骤S3.5,逐历元解算加速度计位移数据。
  4. 根据权利要求1所述的面向桥梁变形监测的GNSS和加速度计实时融合算法,其特征在于,步骤S4中两种不同频率的位移变形监测数据进行内插融合的方法为:依据所述加速度计的数据采集频率将步骤S2中低频位移变形数据进行线性内插处理,然后将内插后的低频位移变形数据与步骤S3解算的高频位移变形数据求和,用以获取桥梁的实时静态和动态位移信息。
PCT/CN2022/107754 2022-07-18 2022-07-26 面向桥梁变形监测的gnss和加速度计实时融合算法 WO2024016369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210838363.7A CN114912551B (zh) 2022-07-18 2022-07-18 面向桥梁变形监测的gnss和加速度计实时融合方法
CN202210838363.7 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016369A1 true WO2024016369A1 (zh) 2024-01-25

Family

ID=82771895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107754 WO2024016369A1 (zh) 2022-07-18 2022-07-26 面向桥梁变形监测的gnss和加速度计实时融合算法

Country Status (2)

Country Link
CN (1) CN114912551B (zh)
WO (1) WO2024016369A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117807536A (zh) * 2024-02-27 2024-04-02 中铁上海工程局集团第七工程有限公司 一种用于钢拱竖转施工过程中应力数据采集的优化方法
CN117951961A (zh) * 2024-03-11 2024-04-30 广西大学 一种斜拉桥结构温致挠度变形预测系统及预测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116481416B (zh) * 2023-06-21 2023-08-25 中交路桥科技有限公司 基于北斗导航的桥梁挠度监测方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111735380A (zh) * 2020-05-21 2020-10-02 中国矿业大学 加速度计辅助gnss实时提取高铁桥梁动态挠度的方法
US20210190499A1 (en) * 2019-12-23 2021-06-24 St Microelectronics S.R.L. Method for providing a navigation information, corresponding system and program product
WO2021237804A1 (zh) * 2020-05-29 2021-12-02 湖南联智科技股份有限公司 基于北斗高精度定位的基础设施结构变形监测方法
CN113820003A (zh) * 2021-09-15 2021-12-21 中国矿业大学 一种适用于桥梁振动监测的加速度实时重构动态位移方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885569A (zh) * 2017-02-24 2017-06-23 南京理工大学 一种强机动条件下的弹载深组合arckf滤波方法
CN107990821B (zh) * 2017-11-17 2019-12-17 深圳大学 一种桥梁形变监测方法、存储介质及桥梁形变监测接收机
CN108132013A (zh) * 2017-12-22 2018-06-08 交通运输部科学研究院 一种基于组合差分gnss的桥梁形变多频动态分析方法
CN108646277A (zh) * 2018-05-03 2018-10-12 山东省计算中心(国家超级计算济南中心) 基于抗差自适应与扩展卡尔曼滤波融合的北斗导航方法
CN109059751B (zh) * 2018-09-10 2020-08-07 中国科学院国家授时中心 一种形变数据监测方法及系统
CN110059361B (zh) * 2019-03-22 2021-01-15 中国科学院测量与地球物理研究所 一种基于抗差卡尔曼滤波算法的实时区域对流层建模方法
CN110874450B (zh) * 2019-11-20 2021-10-29 武汉理工大学 一种基于车载监测的铁路桥梁轨道不平顺计算方法
CN111623703A (zh) * 2020-07-28 2020-09-04 湖南联智科技股份有限公司 一种基于新型卡尔曼滤波的北斗变形监测实时处理方法
CN112269192B (zh) * 2020-10-22 2024-02-02 云南航天工程物探检测股份有限公司 一种快速自适应的动态北斗监测实时解算去噪方法
CN112461190B (zh) * 2020-11-13 2021-12-31 合肥工业大学 一种桥梁变形重构方法
CN114036605B (zh) * 2021-10-29 2023-12-29 河海大学 基于自适应控制的卡尔曼滤波钢桁架桥梁结构参数监测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210190499A1 (en) * 2019-12-23 2021-06-24 St Microelectronics S.R.L. Method for providing a navigation information, corresponding system and program product
CN111735380A (zh) * 2020-05-21 2020-10-02 中国矿业大学 加速度计辅助gnss实时提取高铁桥梁动态挠度的方法
WO2021237804A1 (zh) * 2020-05-29 2021-12-02 湖南联智科技股份有限公司 基于北斗高精度定位的基础设施结构变形监测方法
CN113820003A (zh) * 2021-09-15 2021-12-21 中国矿业大学 一种适用于桥梁振动监测的加速度实时重构动态位移方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XI-XIU WU, DAI WU-JIAO,LUO FEI-XUE: "Research on Adaptively Robust Kalman Filtering for Dynamic Deformation Monitoring Applications", JOURNAL OF DISASTER PREVENTION AND MITIGATION ENGINEERING, vol. 31, no. 1, 15 February 2011 (2011-02-15), pages 102 - 106, XP093130586 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117807536A (zh) * 2024-02-27 2024-04-02 中铁上海工程局集团第七工程有限公司 一种用于钢拱竖转施工过程中应力数据采集的优化方法
CN117807536B (zh) * 2024-02-27 2024-05-31 中铁上海工程局集团第七工程有限公司 一种用于钢拱竖转施工过程中应力数据采集的优化方法
CN117951961A (zh) * 2024-03-11 2024-04-30 广西大学 一种斜拉桥结构温致挠度变形预测系统及预测方法

Also Published As

Publication number Publication date
CN114912551A (zh) 2022-08-16
CN114912551B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024016369A1 (zh) 面向桥梁变形监测的gnss和加速度计实时融合算法
Dai et al. Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods
KR101914550B1 (ko) 레이더의 표적 위치 추적 방법
CN113820003B (zh) 一种适用于桥梁振动监测的加速度实时重构动态位移方法
CN111623703A (zh) 一种基于新型卡尔曼滤波的北斗变形监测实时处理方法
CN112269192B (zh) 一种快速自适应的动态北斗监测实时解算去噪方法
KR20110125803A (ko) 비행체 위치 추적 자료 융합 장치 및 이를 이용한 융합 방법
CN116500575B (zh) 一种基于变分贝叶斯理论的扩展目标跟踪方法和装置
CN109471192B (zh) 一种全自动重力测试仪高精度动态数据处理方法
CN110677140B (zh) 一种含未知输入和非高斯量测噪声的随机系统滤波器
CN110646822A (zh) 一种基于惯导辅助的整周模糊度Kalman滤波算法
CN110703205A (zh) 基于自适应无迹卡尔曼滤波的超短基线定位方法
CN112881743B (zh) 一种基于正则化算法的速度和加速度计算方法及测量装置
Yunus et al. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer
CN111679307B (zh) 一种卫星定位信号解算方法及装置
CN112632454A (zh) 一种基于自适应卡尔曼滤波算法的mems陀螺滤波方法
CN111504278A (zh) 基于自适应频域积分的海浪检测方法
CN116558406A (zh) 基于状态域的gnss-加速度计集成桥梁变形监测突变故障探测方法
CN102679984B (zh) 基于极小化矢量距离准则的有限模型滤波方法
Even-Tzur Variance factor estimation for two-step analysis of deformation networks
CN109115229B (zh) 利用低频测姿传感器对航天器高频姿态进行测量的方法
CN107664499B (zh) 一种船用捷联惯导系统的加速度计在线降噪方法
CN110906928A (zh) 基于地形梯度拟合的粒子滤波水下航迹跟踪方法
CN116481416B (zh) 基于北斗导航的桥梁挠度监测方法、电子设备及存储介质
CN112731370B (zh) 一种考虑输入噪声的高斯过程扩展目标跟踪方法