WO2024016359A1 - 能力上报方法和装置 - Google Patents

能力上报方法和装置 Download PDF

Info

Publication number
WO2024016359A1
WO2024016359A1 PCT/CN2022/107530 CN2022107530W WO2024016359A1 WO 2024016359 A1 WO2024016359 A1 WO 2024016359A1 CN 2022107530 W CN2022107530 W CN 2022107530W WO 2024016359 A1 WO2024016359 A1 WO 2024016359A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
sdt
network side
connected state
candidate
Prior art date
Application number
PCT/CN2022/107530
Other languages
English (en)
French (fr)
Inventor
张娟
吴昱民
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/107530 priority Critical patent/WO2024016359A1/zh
Priority to CN202280002513.9A priority patent/CN115516909A/zh
Publication of WO2024016359A1 publication Critical patent/WO2024016359A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a capability reporting method and device.
  • the terminal device in the non-connected state does not support beam reciprocity, and does not support the terminal device to the network side device. Reporting the ability of terminal equipment to support beam reciprocity during CG-SDT is an issue that needs to be solved urgently.
  • Embodiments of the present disclosure provide a capability reporting method and device.
  • a terminal device sends capability indication information to a network side device in a connected state, where the capability indication information is used to instruct the terminal device to configure the authorized small data packet transmission CG-SDT process.
  • Supports beam reciprocity This allows the terminal device to report to the network side device the ability of the terminal device to support beam reciprocity during CG-SDT.
  • embodiments of the present disclosure provide a capability reporting method, which is executed by a terminal device.
  • the method includes: sending capability indication information to a network side device in a connected state, where the capability indication information is used to instruct the terminal.
  • the device supports beam reciprocity during configuration of authorized small packet transmission CG-SDT.
  • the terminal device sends capability indication information to the network side device in the connected state, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the process of configuring authorized small data packet transmission CG-SDT.
  • This allows the terminal device to report to the network side device the ability of the terminal device to support beam reciprocity during CG-SDT.
  • embodiments of the present disclosure provide another capability reporting method, which is executed by a network side device.
  • the method includes: receiving capability indication information sent by a terminal device in a connected state, where the capability indication information is used for Instructs end devices to support beam reciprocity during configured authorized small packet transmission CG-SDT.
  • embodiments of the present disclosure provide a communication device that has some or all of the functions of a terminal device for implementing the method described in the first aspect.
  • the functions of the communication device may include some or all of the implementations in the present disclosure.
  • the functions in the examples can also be used to independently implement the functions of any of the embodiments of the present disclosure.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a transceiver module configured to send capability indication information to the network side device in a connected state, where the capability indication information is used to instruct the terminal device to configure authorized small data packet transmission. Beam reciprocity is supported in the CG-SDT process.
  • embodiments of the present disclosure provide another communication device, which has some or all of the functions of the network side device in implementing the method described in the second aspect.
  • the functions of the communication device may have some or all of the functions of the present disclosure.
  • the functions in all the embodiments can also be used to implement any one of the embodiments of the present disclosure independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a transceiver module configured to receive capability indication information sent by a terminal device in a connected state, wherein the capability indication information is used to instruct the terminal device to configure authorized small data packet transmission. Beam reciprocity is supported in the CG-SDT process.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present disclosure provide a random access system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • the device and the communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network-side device. When the instructions are executed, the network-side device is caused to execute the above-mentioned second aspect. Methods.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting a terminal device to implement the functions involved in the first aspect, for example, determining or processing data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system.
  • the chip system includes at least one processor and an interface for supporting the network side device to implement the functions involved in the second aspect, for example, determining or processing the functions involved in the above method. At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network side device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in the second aspect.
  • Figure 1 is an example diagram of the SDT process
  • Figure 2 is an example diagram of the CG-SDT retransmission process
  • Figure 3 is an architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 4 is a flow chart of a capability reporting method provided by an embodiment of the present disclosure.
  • Figure 5 is a flow chart of an information transmission method provided by an embodiment of the present disclosure.
  • Figure 6 is a flow chart of another information transmission method provided by an embodiment of the present disclosure.
  • Figure 7 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • Figure 8 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • Figure 9 is a flow chart of another capability reporting method provided by an embodiment of the present disclosure.
  • Figure 10 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • Figure 11 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • Figure 12 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • Figure 13 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • Figure 14 is a structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 15 is a structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • the beam can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to send signals can be called a transmission beam (transmission beam, Tx beam), a spatial domain transmission filter (spatialdomain transmission filter) or a spatial transmission parameter (spatial transmission parameter);
  • the beam used to receive signals can be called a Receive beam (reception beam, Rx beam) can be called spatial domain receive filter (spatial domain receive filter) or spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beam forming technology or other technologies.
  • the beamforming technology can be digital beamforming technology, analog beamforming technology, or hybrid digital/analog beamforming technology.
  • Beams generally correspond to resources.
  • the network side device when performing beam measurement, can use different beams to send signals in different resources, the terminal device can use different beams to receive signals in different resources, and the terminal device can feedback to the network side device the signals in different The quality of the signal measured on the resource, so that the network side device knows the quality of the corresponding beam.
  • beam information is also indicated by its corresponding resources.
  • the network-side device uses the transmission configuration indicator (TCI) resource in the downlink control information (DCI) to instruct the terminal device about the physical downlink shared channel (PDSCH) beam information.
  • TCI transmission configuration indicator
  • DCI downlink control information
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam corresponds to one or more antenna ports and is used to transmit data channels, control channels, detection signals, etc.
  • One or more antenna ports corresponding to a beam can also be regarded as an antenna port set.
  • each beam of the network side device corresponds to a resource, so the beam corresponding to the resource can be uniquely identified through the identifier (or index) of the resource.
  • the terminal device can determine its own uplink transmit beam based on the downlink receive beam or determine its own downlink receive beam based on the uplink transmit beam. For example, if receiving beam A is a better/optimal choice for receiving downlink signals, the terminal device infers from the downlink receiving beam A that its corresponding uplink transmitting beam A' is also a better/optimal uplink transmitting beam. If the network side device indicates the downlink reference signal X corresponding to a certain downlink transmit beam A, the terminal device can know its corresponding transmit beam A' based on the receive beam A corresponding to the received signal X.
  • data can be transmitted between the terminal device and the network-side device when the terminal device is in the RRC connected state (CONNECTED).
  • the data packets that terminal equipment in RRC idle state (IDLE) or RRC inactive state (INACTIVE) need to transmit are very small.
  • This type of data packets can be called small data packets (small data), and terminal equipment
  • the signaling required to enter the RRC CONNECTED state from the RRC IDLE state or the RRC INACTIVE state is even larger than small data, resulting in unnecessary power consumption and signaling overhead for the terminal device.
  • the terminal device in the RRC IDLE state or RRCINACTIVE state can transmit small data during the random access (RA) process or transmit small data on the resources configured by the network side device without entering the RRC CONNECTED state. Then transmit small data.
  • RA random access
  • the above transmission process can be called SDT (small data transmission, small data packet transmission).
  • SDT small data transmission, small data packet transmission
  • CG-SDT Configure Grant small data transmission, configuration authorization). small packet transmission).
  • the data can be sent directly to the network side device through the following methods:
  • Msg3 of the four-step random access process for initial access or 4-step RACH SDT
  • Dedicated uplink PUSCH Physical Uplink Shared Channel
  • resources configured by the network (i.e. CG (Configure Grant) or PUR (Preallocated Uplink Resource)); or CG SDT.
  • CG Physical Uplink Shared Channel
  • PUR Preallocated Uplink Resource
  • the SDT process may include an initial data sending phase and a subsequent data sending phase.
  • the initial data sending stage starting from triggering SDT initial data sending to receiving confirmation information for the initial data from the network side.
  • the confirmation information will have the following three differences compared with different SDT processes:
  • the confirmation information is the contention resolution identification of successfully received Msg4;
  • the confirmation information is the data reception success indication sent by the network side device (such as the ACK (affirmative response) information indicated by the physical layer DCI (Downlink Control Information).)
  • Subsequent data sending phase from receiving the confirmation information of the initial data from the network side device to receiving the connection release message sent by the network side device.
  • the terminal device can send and receive uplink and downlink data.
  • the terminal device will monitor the PDCCH (Physical downlink control channel, physical downlink control channel) to receive the C-RNTI (Cell Radio Network Temporary Identifier, cell wireless network temporary identifier) and perform subsequent CG-PUSCH is sent at all times.
  • the terminal device Before receiving the connection release message sent by the network side device, the terminal device will repeatedly monitor the PDCCH and then send CG-PUSCH.
  • SSB Synchronization Signal and PBCH block, synchronization signal block
  • Figure 2 is an example diagram of the CG-SDT retransmission process.
  • the terminal device uses the CG resource to send data, it will start the feedback timer ( For example, feedbackTimer) monitors feedback information from network-side devices. If the terminal device does not receive a successful reception confirmation from the network side device during the running of the feedback timer, the terminal device will retransmit data in subsequent CG resources and perform CG-SDT retransmission.
  • the configuration authorization timer corresponding to the HARQ process will be started.
  • CG-RetransmissionTimer Per Configured Grant for automatic uplink retransmission.
  • the terminal device sends an uplink new transmission or retransmission on a HARQ process
  • the CG-RetransmissionTimer corresponding to the HARQ process will be started.
  • no uplink automatic retransmission will be performed.
  • automatic uplink retransmission is started.
  • Quasi-co-location means that the large-scale parameters of the channel experienced by symbols on one antenna port can be inferred from the channel experienced by symbols on another antenna port.
  • the large-scale parameters may include delay spread, average delay, Doppler spread, Doppler shift, average gain, and spatial reception parameters.
  • the concept of QCL was introduced with the emergence of Coordinated Multiple Point transmission (CoMP) technology.
  • the multiple sites involved in the CoMP transmission process may correspond to multiple sites with different geographical locations or multiple sectors with different antenna panel orientations.
  • the spatial differences of each site will lead to differences in large-scale channel parameters of the receiving links from different sites, such as Doppler frequency offset, delay spread, etc.
  • the large-scale parameters of the channel will directly affect the adjustment and optimization of the filter coefficients during channel estimation.
  • different channel estimation filter parameters should be used to adapt to the corresponding channel propagation characteristics.
  • the terminal device can consider that the two ports originate from the same location (i.e., quasi-coherent). site address).
  • QCL-TypeA ⁇ Doppler frequency shift, Doppler extension, average delay, delay extension ⁇
  • spatial reception parameters may not be required.
  • this parameter is mainly targeted at frequency bands above 6GHz, it is treated as a separate QCL type.
  • FIG. 3 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to one network side device and one terminal device.
  • the number and form of devices shown in Figure 3 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more devices may be included.
  • the communication system 10 shown in FIG. 3 includes a network side device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present disclosure may also be called a side link or a through link.
  • the network side device 101 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network side device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other future mobile communication systems.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • WiFi wireless fidelity
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the base station.
  • the base station may be composed of a centralized unit (central unit, CU) and a distributed unit (DU), where the CU may also be called a control unit (control unit), and CU-DU is used.
  • the structure can separate the protocol layer of the base station, such as the base station. Some protocol layer functions are centralized controlled by the CU, and the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the communication protocol stack between the terminal device and the network side device may include an RRC (radio resource control) layer.
  • the status of the terminal device may include a connected state (also called a CONNCETED state or RRC_CONNCETED state), an inactive state (also called an inactive state, or RRC_INACTIVE state), and an idle state (also called an idle state, or RRC_IDLE state).
  • the terminal device is in a non-connected state, which may be that the terminal device is in an idle state, or the terminal device is in an inactive state, or in a state other than a connected state; the terminal device In the non-connected state, the terminal device may be in an idle state, or the terminal device may be in an inactive state, or the terminal device may be in another state other than the connected state.
  • "for indicating” may include for direct indicating and for indirect indicating.
  • the indication information may be included to directly indicate A or indirectly indicate A, but it does not mean that the indication information must include A.
  • Figure 4 is a flow chart of a capability reporting method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • the terminal device sends capability indication information to the network side device in the connected state, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the process of configuring authorized small data packet transmission CG-SDT.
  • terminal equipment In response to the problem in related technologies, terminal equipment is not supported to report the ability to support beam reciprocity during the CG-SDT process.
  • the terminal device may send capability indication information to the network side device in the connected state, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the CG-SDT process. This allows the terminal device to report to the network side device the ability of the terminal device to support beam reciprocity during CG-SDT.
  • the terminal device can send the information field (IE) beamcorrespondence-cg-SDT-r18ENUMERATED ⁇ supported ⁇ to the network side device and send capability indication information to the network side device to report that the terminal device supports beam correspondence during the CG-SDT process.
  • IE information field
  • the terminal device supports beam reciprocity so that the terminal device can determine the uplink transmit beam based on the downlink receive beam without performing uplink beam scanning.
  • the terminal equipment when the terminal equipment does not support beam reciprocity, the terminal equipment needs to perform uplink beam scanning to determine the beam with better or best beam quality, determine it as the uplink transmission beam, and then use the uplink transmission beam to perform CG -SDT, sends small data packets to network side devices.
  • the terminal device supports beam reciprocity during the CG-SDT process.
  • the terminal device can configure the downlink receiving beam used by the dedicated PUSCH resource according to the network side device, determine the uplink transmitting beam, and then use the dedicated PUSCH resource.
  • Use the determined uplink transmission beam to send small data packets to the network side device for CG-SDT and/or CG-SDT retransmission. Therefore, the terminal equipment does not need to perform uplink beam scanning to determine the uplink beam, which can save energy consumption of the terminal equipment. Moreover, the terminal equipment does not need to perform beam scanning to determine the candidate uplink transmission beam, which can reduce delay.
  • the terminal device receives the radio resource control RRC release message sent by the network side device in the connected state, and switches to the non-connected state, where the RRC release message is used to indicate the dedicated physical uplink shared channel for CG-SDT.
  • PUSCH resources the terminal equipment in the non-connected state determines the candidate uplink transmission beam according to the candidate downlink reception beam that receives the RRC release message; the terminal equipment in the non-connection state uses the candidate uplink transmission beam on the dedicated PUSCH resource to perform CG-SDT and/or Perform CG-SDT retransmission.
  • the terminal device in the connected state receives the RRC connection release message sent by the network side device and switches to the non-connected state, wherein the network side device sends the RRC connection release message to the terminal device in the connected state, and the release can be synchronized QCL information.
  • the RRC connection release message sent by the network side device to the terminal device in the connected state is used to indicate the dedicated PUSCH resources for CG-SDT.
  • the terminal device in the connected state after the terminal device in the connected state receives the RRC connection release message sent by the network side device, it switches from the connected state to the non-connected state.
  • the terminal device in the non-connected state can determine the candidate for receiving the RRC release message.
  • Downlink receive beam and further, since the terminal device supports beam reciprocity in the CG-SDT process, the terminal device can determine the candidate uplink transmit beam based on the candidate downlink receive beam.
  • the terminal equipment can use the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission and send small data packets.
  • the terminal equipment when the terminal equipment does not support beam reciprocity during the CG-SDT process, the terminal equipment needs to perform uplink beam scanning to determine the better or best candidate uplink transmission beam, and use the determined candidate uplink transmission beam.
  • the beam is sent for CG-SDT and small data packets are sent.
  • the terminal device supports beam reciprocity during the CG-SDT process, and can determine the candidate uplink transmission beam based on the candidate downlink reception beam used by the network side device to send the RRC release message, and then use the candidate uplink transmission beam.
  • the beam performs CG-SDT and sends small data packets. Therefore, the terminal equipment does not need to perform uplink beam scanning to determine the uplink beam, which can save energy consumption of the terminal equipment. Moreover, the terminal equipment does not need to perform beam scanning to determine the candidate uplink transmission beam, which can reduce delay.
  • the terminal device receives a data reception success indication sent by the network side device in a non-connected state, where the data reception success indication is used to indicate that the network side device has received the data received by the terminal device in the CG-SDT process and/or in the CG. -Data sent during SDT retransmission.
  • the terminal device uses the candidate uplink transmission beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data to the network side device, that is, sending a small data packet.
  • the network side device After receiving the data sent by the terminal device, that is, receiving the small data packet sent by the terminal device, a data reception success indication can be sent to the terminal device to inform the terminal device that it has received the terminal device for CG-SDT and/or CG. -SDT retransmits the data sent.
  • CG-SDT includes two stages: the initial data transmission stage and the subsequent data transmission stage.
  • the initial data sending phase includes: the terminal equipment in the non-connected state uses the candidate uplink transmission beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data (small data packets) to the network side equipment. ).
  • the network side device may send a data reception success indication to the terminal device.
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process, and that the SSB beam and the PUSCH resource are associated.
  • the network side device can determine the relationship between the SSB beam and the PUSCH resource.
  • the association relationship, and the exclusive PUSCH resource used by the terminal device when performing CG-SDT and/or performing CG-SDT retransmission determine the downlink beam, and then send a data reception success indication to the terminal device on the downlink beam.
  • the subsequent data sending phase may be after the terminal device receives the data reception success indication sent by the network side device, and before receiving the connection release message sent by the network side device.
  • the terminal device will continuously monitor the PDCCH repeatedly.
  • the SSB beam has a mapping relationship with the PUSCH resource.
  • the terminal device After receiving the data reception success indication sent by the network side device, and before receiving the connection release message sent by the network side device, the terminal device further includes: monitoring physical downlink Control the channel PDCCH, and receive the PDCCH carrying C-RNTI on the candidate SSB beam.
  • the candidate SSB beam is determined by the network side device based on the dedicated PUSCH resources and mapping relationship when it is determined that the terminal device supports beam reciprocity.
  • the terminal device may monitor the physical downlink control channel PDCCH in the subsequent data sending phase. And receive the PDCCH carrying C-RNTI on the candidate SSB beam.
  • SSB and PUSCH resources have a mapping relationship
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process.
  • the network side device can according to the terminal The device performs SDT and/or SDT retransmission using exclusive PUSCH resources and mapping relationships, determines the corresponding candidate SSB beam, and sends the PDCCH carrying C-RNTI to the terminal device on the candidate SSB beam.
  • the terminal device monitors the PDCCH and can receive the PDCCH carrying the C-RNTI on the candidate SSB beam to further send the PUSCH to the network side device.
  • the terminal device determines the uplink SSB beam according to the candidate SSB beam; and sends the PUSCH to the network side device on the uplink SSB beam.
  • the terminal equipment supports beam reciprocity in the CG-SDT process.
  • the terminal equipment monitors the PDCCH, receives the PDCCH carrying C-RNTI on the candidate SSB beam, and can determine the uplink SSB beam based on the candidate SSB beam. Further Yes, PUSCH can be sent to the network side device on the uplink SSB beam.
  • the terminal equipment when the terminal equipment does not support beam reciprocity, the terminal equipment needs to perform uplink beam scanning to determine the beam with better or best beam quality, determine it as the uplink transmission beam, and then use the uplink transmission beam to send PUSCH .
  • the terminal equipment supports beam reciprocity during the CG-SDT process. After the terminal equipment receives the PDCCH on the candidate SSB beam, it can directly determine the uplink SSB beam based on the candidate SSB beam. The terminal equipment does not need to perform uplink beam selection. Scanning can directly determine the uplink SSB beam, which can save energy consumption of terminal equipment and reduce latency.
  • Figure 5 is a flow chart of an information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • the terminal device receives the radio resource control RRC release message sent by the network side device in the connected state, and switches to the non-connected state.
  • the RRC release message is used to indicate the dedicated physical uplink shared channel PUSCH resources for CG-SDT.
  • the terminal device determines the candidate uplink transmit beam based on the candidate downlink receive beam that receives the RRC release message in the non-connected state, where the terminal device supports beam reciprocity in the CG-SDT process.
  • the terminal equipment uses the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission in the non-connected state.
  • the terminal device in the connected state receives the RRC connection release message sent by the network side device and switches to the non-connected state, wherein the network side device sends the RRC connection release message to the terminal device in the connected state, and the release can be synchronized QCL information.
  • the RRC connection release message sent by the network side device to the terminal device in the connected state is used to indicate the dedicated PUSCH resources for CG-SDT.
  • the terminal device in the connected state after the terminal device in the connected state receives the RRC connection release message sent by the network side device, it switches from the connected state to the non-connected state.
  • the terminal device in the non-connected state can determine the candidate for receiving the RRC release message.
  • Downlink receive beam and further, since the terminal device supports beam reciprocity in the CG-SDT process, the terminal device can determine the candidate uplink transmit beam based on the candidate downlink receive beam.
  • the terminal equipment can use the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission and send small data packets.
  • the terminal equipment when the terminal equipment does not support beam reciprocity during the CG-SDT process, the terminal equipment needs to perform uplink beam scanning to determine the better or best candidate uplink transmission beam, and use the determined candidate uplink transmission beam.
  • the beam is sent for CG-SDT and small data packets are sent.
  • the terminal device supports beam reciprocity during the CG-SDT process, and can determine the candidate uplink transmission beam based on the candidate downlink reception beam used by the network side device to send the RRC release message, and then use the candidate uplink transmission beam. Perform CG-SDT and send small data packets. Therefore, the terminal equipment does not need to perform uplink beam scanning to determine the uplink beam, which can save energy consumption of the terminal equipment. Moreover, the terminal equipment does not need to perform beam scanning to determine the candidate uplink transmission beam, which can reduce delay.
  • S51 to S53 can be implemented alone or in combination with any other steps in the embodiment of the present disclosure.
  • they can be implemented in conjunction with S41 in the embodiment of the present disclosure.
  • the disclosed embodiments do not limit this.
  • FIG. 6 is a flow chart of another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • the terminal device receives the radio resource control RRC release message sent by the network side device in the connected state, and switches to the non-connected state.
  • the RRC release message is used to indicate the dedicated physical uplink shared channel PUSCH resources for CG-SDT.
  • the terminal device determines the candidate uplink transmit beam based on the candidate downlink receive beam that receives the RRC release message in the non-connected state, where the terminal device supports beam reciprocity in the CG-SDT process.
  • the terminal equipment uses the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission in the non-connected state.
  • the terminal device receives the data reception success indication sent by the network side device in the non-connected state, where the data reception success indication is used to indicate that the network side device receives the terminal device's retransmission in the CG-SDT process and/or CG-SDT. data sent during the process.
  • the terminal device uses the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data to the network side device, that is, sending a small data packet.
  • the network side device After receiving the data sent by the terminal device, that is, receiving the small data packet sent by the terminal device, a data reception success indication can be sent to the terminal device to inform the terminal device that it has received the terminal device for CG-SDT and/or CG. -SDT retransmits the data sent.
  • S61 to S64 can be implemented alone or in combination with any other steps in the embodiment of the present disclosure.
  • they can be implemented in conjunction with S41 in the embodiment of the present disclosure.
  • the disclosed embodiments do not limit this.
  • FIG. 7 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • CG-SDT includes two stages: the initial data transmission stage and the subsequent data transmission stage.
  • the initial data sending phase includes: the terminal equipment in the non-connected state uses the candidate uplink transmission beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data (small data packets) to the network side equipment. ), after the network side device receives the data (small data packet) sent by the terminal device for CG-SDT and/or CG-SDT retransmission, the network side device can send a data reception success indication to the terminal device.
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process, and that the SSB beam has an associated relationship with the PUSCH resource.
  • the network side device can determine the relationship between the SSB beam and the PUSCH resource.
  • the association relationship, and the exclusive PUSCH resource used by the terminal device when performing CG-SDT and/or performing CG-SDT retransmission determine the downlink beam, and then send a data reception success indication to the terminal device on the downlink beam.
  • the subsequent data sending phase may be after the terminal device receives the data reception success indication sent by the network side device, and before receiving the connection release message sent by the network side device.
  • the terminal device will continuously monitor the PDCCH repeatedly.
  • the terminal device may monitor the physical downlink control channel PDCCH in the subsequent data sending phase. And receive the PDCCH carrying C-RNTI on the candidate SSB beam.
  • SSB and PUSCH resources have a mapping relationship
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process.
  • the network side device can according to the terminal The device performs SDT and/or SDT retransmission using exclusive PUSCH resources and mapping relationships, determines the corresponding candidate SSB beam, and sends the PDCCH carrying C-RNTI to the terminal device on the candidate SSB beam.
  • the terminal device monitors the PDCCH and can receive the PDCCH carrying the C-RNTI on the candidate SSB beam to further send the PUSCH to the network side device.
  • S71 can be implemented alone or in combination with any other step in the embodiment of the present disclosure, for example, in combination with S41 and/or S51 to S53 and /Or S61 to S64 are implemented together, and the embodiment of the present disclosure does not limit this.
  • FIG. 8 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • PDCCH of RNTI in which the candidate SSB beam is determined by the network side equipment based on the dedicated PUSCH resources and mapping relationship when it is determined that the terminal equipment supports beam reciprocity.
  • the synchronization signal block SSB beam has a mapping relationship with the PUSCH resource.
  • S82 Determine the uplink SSB beam according to the candidate SSB beam, where the terminal equipment supports beam reciprocity in the CG-SDT process.
  • S83 Send PUSCH to the network side device on the uplink SSB beam.
  • the terminal equipment supports beam reciprocity in the CG-SDT process.
  • the terminal equipment monitors the PDCCH, receives the PDCCH carrying C-RNTI on the candidate SSB beam, and can determine the uplink SSB beam based on the candidate SSB beam. Further Yes, PUSCH can be sent to the network side device on the uplink SSB beam.
  • the network side device can determine one or more candidate SSB beams based on the dedicated PUSCH resources and mapping relationships, and the network side device can send the PDCCH carrying C-RNTI to the terminal device on multiple candidate SSB beams.
  • the terminal equipment monitors the PDCCH and receives the PDCCH carrying C-RNTI on the candidate SSB beam. Since the terminal equipment supports beam reciprocity, the terminal equipment can determine the uplink SSB beam based on the candidate SSB beam.
  • the terminal device when there is one candidate SSB beam, can determine an uplink SSB beam to send PUSCH to the network side device on the uplink SSB beam, and when there are multiple candidate SSB beams, the terminal device can After determining multiple uplink beams corresponding to the candidate SSB beam, the terminal device can randomly select one as the uplink SSB beam, or it can also compare multiple uplink beams and select one as the uplink SSB beam.
  • the terminal device may use methods in related technologies to compare multiple uplink beams, and the embodiments of the present disclosure do not specifically limit this.
  • the terminal device can also determine that the uplink beam corresponding to the multiple candidate SSB beams is the uplink SSB beam, and the terminal device can send PUSCH to the terminal device on the multiple uplink SSB beams.
  • This disclosure The embodiment does not specifically limit this.
  • the terminal equipment when the terminal equipment does not support beam reciprocity, the terminal equipment needs to perform uplink beam scanning to determine the beam with better or best beam quality, determine it as the uplink transmission beam, and then use the uplink transmission beam to send PUSCH .
  • the terminal equipment supports beam reciprocity during the CG-SDT process. After the terminal equipment receives the PDCCH on the candidate SSB beam, it can directly determine the uplink SSB beam based on the candidate SSB beam. The terminal equipment does not need to perform uplink beam selection. Scanning can directly determine the uplink SSB beam, which can save energy consumption of terminal equipment and reduce latency.
  • S81 to S83 can be implemented alone or in combination with any other steps in the embodiment of the present disclosure, for example, in combination with S41 and/or S51 to S51 in the embodiment of the present disclosure.
  • S53 and/or S61 to S64 are implemented together, which is not limited by the embodiment of the present disclosure.
  • Figure 9 is a flow chart of another capability reporting method provided by an embodiment of the present disclosure.
  • the method is executed by the network side device.
  • the method may include but is not limited to the following steps:
  • S91 Receive capability indication information sent by the terminal device in the connected state, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the process of configuring authorized small data packet transmission CG-SDT.
  • terminal equipment In response to the problem in related technologies, terminal equipment is not supported to report the ability to support beam reciprocity during the CG-SDT process.
  • the terminal device in the connected state can send capability indication information to the network side device, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the CG-SDT process. This allows the terminal device to report to the network side device the ability of the terminal device to support beam reciprocity during CG-SDT.
  • the terminal device can send the information field (IE) beamcorrespondence-cg-SDT-r18ENUMERATED ⁇ supported ⁇ to the network side device and send capability indication information to the network side device to report that the terminal device supports beam correspondence during the CG-SDT process.
  • IE information field
  • the terminal device supports beam reciprocity so that the terminal device can determine the uplink transmit beam based on the downlink receive beam without performing uplink beam scanning.
  • the terminal equipment when the terminal equipment does not support beam reciprocity, the terminal equipment needs to perform uplink beam scanning to determine the beam with better or best beam quality, determine it as the uplink transmission beam, and then use the uplink transmission beam to perform CG -SDT, sends small data packets to network side devices.
  • the terminal device supports beam reciprocity during the CG-SDT process.
  • the terminal device can configure the downlink receiving beam used by the dedicated PUSCH resource according to the network side device, determine the uplink transmitting beam, and then use the dedicated PUSCH resource. Use the determined uplink transmission beam to send small data packets to the network side device for CG-SDT and/or CG-SDT retransmission.
  • the network side device sends an RRC release message to the terminal device in the connected state and releases the QCL information, where the RRC release message is used to indicate the dedicated PUSCH resources for CG-SDT; receiving the terminal device in the non-connected state
  • the device uses the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission of data.
  • the candidate uplink transmit beam is determined by the terminal device based on the candidate downlink receive beam that receives the RRC release message.
  • the terminal device in the connected state receives the RRC connection release message sent by the network side device and switches to the non-connected state.
  • the network side device sends the RRC connection release message to the terminal device in the connected state, and the release can be synchronized.
  • QCL information
  • the RRC connection release message sent by the network side device to the terminal device in the connected state is used to indicate the dedicated PUSCH resources for CG-SDT.
  • the terminal device in the connected state after the terminal device in the connected state receives the RRC connection release message sent by the network side device, it switches from the connected state to the non-connected state.
  • the terminal device in the non-connected state can determine the candidate for receiving the RRC release message.
  • Downlink receive beam and further, since the terminal device supports beam reciprocity in the CG-SDT process, the terminal device can determine the candidate uplink transmit beam based on the candidate downlink receive beam.
  • the terminal equipment can use the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission and send small data packets.
  • the terminal equipment when the terminal equipment does not support beam reciprocity during the CG-SDT process, the terminal equipment needs to perform uplink beam scanning to determine the better or best candidate uplink transmission beam, and use the determined candidate uplink transmission beam.
  • the beam is sent for CG-SDT and small data packets are sent.
  • the terminal device supports beam reciprocity during the CG-SDT process, and can determine the candidate uplink transmission beam based on the candidate downlink reception beam used by the network side device to send the RRC release message, and then use the candidate uplink transmission beam.
  • the beam performs CG-SDT and sends small data packets. Therefore, the terminal equipment does not need to perform uplink beam scanning to determine the uplink beam, which can save energy consumption of the terminal equipment. Moreover, the terminal equipment does not need to perform beam scanning to determine the candidate uplink transmission beam, which can reduce delay.
  • the network side device sends a data reception success indication to the terminal device in the non-connected state, where the data reception success indication is used to indicate that the network side device has received the data received by the terminal device during the CG-SDT process and/or during the CG- Data sent during SDT retransmission.
  • the terminal device uses the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data to the network side device, that is, sending a small data packet.
  • the network side device After receiving the data sent by the terminal device, that is, receiving the small data packet sent by the terminal device, a data reception success indication can be sent to the terminal device to inform the terminal device that it has received the terminal device for CG-SDT and/or CG. -SDT retransmits the data sent.
  • CG-SDT includes two stages: the initial data transmission stage and the subsequent data transmission stage.
  • the initial data sending phase includes: the terminal equipment in the non-connected state uses the candidate uplink transmission beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data (small data packets) to the network side equipment. ).
  • the network side device may send a data reception success indication to the terminal device.
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process, and that the SSB beam has an associated relationship with the PUSCH resource.
  • the network side device can determine the relationship between the SSB beam and the PUSCH resource.
  • the association relationship, and the exclusive PUSCH resource used by the terminal device when performing CG-SDT and/or performing CG-SDT retransmission determine the downlink beam, and then send a data reception success indication to the terminal device on the downlink beam.
  • the subsequent data sending phase may be after the terminal device receives the data reception success indication sent by the network side device and before receiving the connection release message sent by the network side device.
  • the terminal device will continuously monitor the PDCCH repeatedly.
  • the synchronization signal block SSB beam has a mapping relationship with the PUSCH resource.
  • the method further includes: according to the dedicated PUSCH resource and the mapping relationship Determine the candidate SSB beam; send the PDCCH carrying C-RNTI to the terminal device on the candidate SSB beam.
  • the terminal device may monitor the physical downlink control channel PDCCH in the subsequent data sending phase. And receive the PDCCH carrying C-RNTI on the candidate SSB beam.
  • SSB and PUSCH resources have a mapping relationship
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process.
  • the network side device can according to the terminal The device performs SDT and/or SDT retransmission using exclusive PUSCH resources and mapping relationships, determines the corresponding candidate SSB beam, and sends the PDCCH carrying C-RNTI to the terminal device on the candidate SSB beam.
  • the terminal device monitors the PDCCH and can receive the PDCCH carrying C-RNTI on the candidate SSB beam to further send the PUSCH to the network side device.
  • the network side device receives the PUSCH sent by the terminal device in the non-connected state on the uplink SSB beam, where the uplink SSB beam is determined by the terminal device based on the candidate SSB beam.
  • the terminal equipment supports beam reciprocity in the CG-SDT process.
  • the terminal equipment monitors the PDCCH, receives the PDCCH carrying C-RNTI on the candidate SSB beam, and can determine the uplink SSB beam based on the candidate SSB beam. Further Yes, PUSCH can be sent to the network side device on the uplink SSB beam.
  • the terminal equipment when the terminal equipment does not support beam reciprocity, the terminal equipment needs to perform uplink beam scanning to determine the beam with better or best beam quality, determine it as the uplink transmission beam, and then use the uplink transmission beam to send PUSCH .
  • the terminal equipment supports beam reciprocity during the CG-SDT process. After the terminal equipment receives the PDCCH on the candidate SSB beam, it can directly determine the uplink SSB beam based on the candidate SSB beam. The terminal equipment does not need to perform uplink beam selection. Scanning can directly determine the uplink SSB beam, which can save energy consumption of terminal equipment and reduce latency.
  • Figure 10 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the network side device.
  • the method may include but is not limited to the following steps:
  • S101 Send an RRC release message to the terminal device in the connected state, and release the quasi-co-located QCL information, where the RRC release message is used to indicate exclusive PUSCH resources for CG-SDT.
  • S102 Receive data sent by the terminal equipment in the non-connected state on the dedicated PUSCH resource using the candidate uplink transmission beam in the CG-SDT process and/or in the CG-SDT retransmission process, where the candidate uplink transmission beam is the terminal equipment according to The candidate downlink reception beam that receives the RRC release message is determined, and the terminal device supports beam reciprocity during the CG-SDT process.
  • the terminal device in the connected state receives the RRC connection release message sent by the network side device and switches to the non-connected state, wherein the network side device sends the RRC connection release message to the terminal device in the connected state, and the release can be synchronized QCL information.
  • the RRC connection release message sent by the network side device to the terminal device in the connected state is used to indicate the dedicated PUSCH resources for CG-SDT.
  • the terminal device in the connected state after the terminal device in the connected state receives the RRC connection release message sent by the network side device, it switches from the connected state to the non-connected state.
  • the terminal device in the non-connected state can determine the candidate for receiving the RRC release message.
  • Downlink receive beam and further, since the terminal device supports beam reciprocity in the CG-SDT process, the terminal device can determine the candidate uplink transmit beam based on the candidate downlink receive beam.
  • the terminal equipment can use the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission and send small data packets.
  • the terminal equipment when the terminal equipment does not support beam reciprocity during the CG-SDT process, the terminal equipment needs to perform uplink beam scanning to determine the better or best candidate uplink transmission beam, and use the determined candidate uplink transmission beam.
  • the beam is sent for CG-SDT and small data packets are sent.
  • the terminal device supports beam reciprocity during the CG-SDT process, and can determine the candidate uplink transmission beam based on the candidate downlink reception beam used by the network side device to send the RRC release message, and then use the candidate uplink transmission beam.
  • S101 and S102 can be implemented alone or in combination with any other step in the embodiment of the present disclosure.
  • they can be implemented in conjunction with S91 in the embodiment of the present disclosure.
  • the disclosed embodiments do not limit this.
  • Figure 11 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the network side device.
  • the method may include but is not limited to the following steps:
  • S111 Send an RRC release message to the terminal device in the connected state, and release the quasi-co-located QCL information.
  • the RRC release message is used to indicate the exclusive PUSCH resources for CG-SDT.
  • S112 Receive data sent by the terminal equipment in the non-connected state on the dedicated PUSCH resource using the candidate uplink transmission beam in the CG-SDT process and/or in the CG-SDT retransmission process, where the candidate uplink transmission beam is the terminal equipment according to The candidate downlink receiving beams that receive the RRC release message are determined.
  • S113 Send a data reception success indication to the terminal device in the non-connected state, where the data reception success indication is used to indicate that the network side device has received the data sent by the terminal device during the CG-SDT process and/or during the CG-SDT retransmission process. data.
  • the terminal device uses the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data to the network side device, that is, sending a small data packet.
  • the network side device After receiving the data sent by the terminal device, that is, receiving the small data packet sent by the terminal device, a data reception success indication can be sent to the terminal device to inform the terminal device that the terminal device has received the CG-SDT and/or CG. -SDT retransmits the data sent.
  • S111 to S113 can be implemented alone or in combination with any other steps in the embodiment of the present disclosure, for example, in combination with S91 in the embodiment of the present disclosure.
  • the disclosed embodiments do not limit this.
  • Figure 12 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • S121 After sending a data reception success indication to the terminal device and before sending a connection release message to the terminal device, if it is determined that the terminal device supports beam reciprocity, determine the candidate SSB beam according to the dedicated PUSCH resources and mapping relationship; in the candidate The PDCCH carrying C-RNTI is sent to the terminal equipment on the SSB beam, where the synchronization signal block SSB beam has a mapping relationship with the PUSCH resource.
  • CG-SDT includes two stages: the initial data transmission stage and the subsequent data transmission stage.
  • the initial data sending phase includes: the terminal equipment in the non-connected state uses the candidate uplink transmission beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission, and sends data (small data packets) to the network side equipment. ), after the network side device receives the data (small data packet) sent by the terminal device for CG-SDT and/or CG-SDT retransmission, the network side device can send a data reception success indication to the terminal device.
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process, and that the SSB beam has an associated relationship with the PUSCH resource.
  • the network side device can determine the relationship between the SSB beam and the PUSCH resource.
  • the association relationship, and the exclusive PUSCH resource used by the terminal device when performing CG-SDT and/or performing CG-SDT retransmission determine the downlink beam, and then send a data reception success indication to the terminal device on the downlink beam.
  • the subsequent data sending phase may be after the terminal device receives the data reception success indication sent by the network side device, and before receiving the connection release message sent by the network side device.
  • the terminal device will continuously monitor the PDCCH repeatedly.
  • the terminal device may monitor the physical downlink control channel PDCCH in the subsequent data sending phase. And receive the PDCCH carrying C-RNTI on the candidate SSB beam.
  • SSB and PUSCH resources have a mapping relationship
  • the network side device when the terminal device is in the connected state, the network side device has learned that the terminal device supports beam reciprocity in the CG-SDT process.
  • the network side device can according to the terminal The device performs SDT and/or SDT retransmission using exclusive PUSCH resources and mapping relationships, determines the corresponding candidate SSB beam, and sends the PDCCH carrying C-RNTI to the terminal device on the candidate SSB beam.
  • the terminal device monitors the PDCCH and can receive the PDCCH carrying the C-RNTI on the candidate SSB beam to further send the PUSCH to the network side device.
  • S121 can be implemented alone or in combination with any other step in the embodiment of the present disclosure, for example, in combination with S91 and/or S101 and S102 in the embodiment of the present disclosure. /Or S111 to S1134 are implemented together, and the embodiment of the present disclosure does not limit this.
  • Figure 13 is a flow chart of yet another information transmission method provided by an embodiment of the present disclosure.
  • the method is executed by the terminal device.
  • the method may include but is not limited to the following steps:
  • S131 After sending a data reception success indication to the terminal device and before sending a connection release message to the terminal device, if it is determined that the terminal device supports beam reciprocity, determine the candidate SSB beam according to the dedicated PUSCH resources and mapping relationship; in the candidate The PDCCH carrying C-RNTI is sent to the terminal equipment on the SSB beam, where the synchronization signal block SSB beam has a mapping relationship with the PUSCH resource.
  • S132 Receive the PUSCH sent by the terminal device in the non-connected state on the uplink SSB beam, where the uplink SSB beam is determined by the terminal device based on the candidate SSB beam.
  • the terminal equipment supports beam reciprocity in the CG-SDT process.
  • the terminal equipment monitors the PDCCH, receives the PDCCH carrying C-RNTI on the candidate SSB beam, and can determine the uplink SSB beam based on the candidate SSB beam. Further Yes, PUSCH can be sent to the network side device on the uplink SSB beam.
  • the terminal equipment when the terminal equipment does not support beam reciprocity, the terminal equipment needs to perform uplink beam scanning to determine the beam with better or best beam quality, determine it as the uplink transmission beam, and then use the uplink transmission beam to transmit PUSCH .
  • the terminal equipment supports beam reciprocity during the CG-SDT process. After the terminal equipment receives the PDCCH on the candidate SSB beam, it can directly determine the uplink SSB beam based on the candidate SSB beam. The terminal equipment does not need to perform uplink beam selection. Scanning can directly determine the uplink SSB beam, which can save energy consumption of terminal equipment and reduce latency.
  • S131 and S132 can be implemented alone or in combination with any other step in the embodiment of the present disclosure, for example, in combination with S91 and/or S101 and S102 and/or S111 to S113 are implemented together, and the embodiment of the present disclosure does not limit this.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of terminal equipment and network side equipment respectively.
  • the terminal device and the network side device may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 14 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present disclosure.
  • the communication device 1 shown in FIG. 14 may include a transceiver module 11 and a processing module 12.
  • the transceiver module 11 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 11 may implement the sending function and/or the receiving function.
  • the communication device 1 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 1 may be a network-side device, a device in the network-side device, or a device that can be used in conjunction with the network-side device.
  • Communication device 1 is terminal equipment:
  • the device includes: a transceiver module 11.
  • the transceiver module 11 is configured to send capability indication information to the network side device in the connected state, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the process of configuring authorized small data packet transmission CG-SDT.
  • the terminal device supports beam reciprocity so that the terminal device can determine the uplink transmit beam based on the downlink receive beam without performing uplink beam scanning.
  • the transceiver module 11 is also configured to receive a radio resource control RRC release message sent by the network side device in the connected state, and switch to the non-connected state, where the RRC release message is used to indicate CG-SDT.
  • RRC release message sent by the network side device in the connected state, and switch to the non-connected state, where the RRC release message is used to indicate CG-SDT.
  • Dedicated physical uplink shared channel PUSCH resources are also configured to receive a radio resource control RRC release message sent by the network side device in the connected state, and switch to the non-connected state, where the RRC release message is used to indicate CG-SDT.
  • the processing module 12 is configured to determine the candidate uplink transmission beam according to the candidate downlink reception beam that receives the RRC release message in the non-connected state.
  • the transceiver module 11 is also configured to use the candidate uplink transmit beam on the dedicated PUSCH resource to perform CG-SDT and/or perform CG-SDT retransmission in the non-connected state.
  • the transceiver module 11 is also configured to enable the terminal device in the non-connected state to receive a data reception success indication sent by the network side device, where the data reception success indication is used to indicate that the network side device has received the data received by the terminal device in the CG.
  • the synchronization signal block SSB beam has a mapping relationship with the PUSCH resource.
  • the transceiver module 11 is also configured to monitor the physical downlink control channel PDCCH, and receive the PDCCH carrying the cell wireless network temporary identifier C-RNTI on the candidate SSB beam, where the candidate SSB beam is the network side device when it is determined that the terminal device supports beam interoperability. In the case of portability, it is determined based on the exclusive PUSCH resources and mapping relationship.
  • the processing module 12 is further configured to determine the uplink SSB beam according to the candidate SSB beam.
  • the transceiver module 11 is also configured to send PUSCH to the network side device on the uplink SSB beam.
  • Communication device 1 is a network side device:
  • the device includes: a transceiver module 11.
  • the transceiver module 11 is configured to receive capability indication information sent by a terminal device in a connected state, where the capability indication information is used to instruct the terminal device to support beam reciprocity in the process of configuring authorized small data packet transmission CG-SDT.
  • the terminal device supports beam reciprocity so that the terminal device can determine the uplink transmit beam based on the downlink receive beam without performing uplink beam scanning.
  • the transceiver module 11 is also configured to send an RRC release message to the terminal device in the connected state and release the quasi-co-located QCL information, where the RRC release message is used to indicate the dedicated PUSCH resources for CG-SDT. .
  • the transceiver module 11 is also configured to receive data sent by a terminal device in a non-connected state using candidate uplink transmission beams for CG-SDT and/or CG-SDT retransmission on dedicated PUSCH resources, where the candidate uplink transmission beams are The terminal equipment determines the candidate downlink reception beam based on receiving the RRC release message.
  • the transceiver module 11 is also configured to send a data reception success indication to the terminal device in the non-connected state, where the data reception success indication is used to indicate that the network side device has received the data received by the terminal device during the CG-SDT process and /or data sent during CG-SDT retransmission.
  • the synchronization signal block SSB beam has a mapping relationship with the PUSCH resource.
  • the processing module 12 is configured to determine that the terminal equipment supports beam reciprocity, and determine candidate SSB beams according to dedicated PUSCH resources and mapping relationships.
  • the transceiver module 11 is also configured to send the PDCCH carrying the C-RNTI to the terminal device on the candidate SSB beam.
  • the transceiver module 11 is further configured to receive the PUSCH sent by the terminal device in the non-connected state on the uplink SSB beam, where the uplink SSB beam is determined by the terminal device based on the candidate SSB beam.
  • the communication device 1 provided in the above embodiments of the present disclosure achieves the same or similar beneficial effects as the capability reporting methods provided in some of the above embodiments, and will not be described again here.
  • FIG. 15 is a schematic structural diagram of another communication device 1000 provided by an embodiment of the present disclosure.
  • the communication device 1000 may be a network-side device, a terminal device, a chip, a chip system, a processor, etc. that supports a network-side device to implement the above method, or a chip or a chip system that supports a terminal device to implement the above method. , or processor, etc.
  • the communication device 1000 can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1000 may include one or more processors 1001.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control and execute communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program processes data for a computer program.
  • the communication device 1000 may also include one or more memories 1002, on which a computer program 1004 may be stored.
  • the memory 1002 executes the computer program 1004, so that the communication device 1000 performs the method described in the above method embodiment.
  • the memory 1002 may also store data.
  • the communication device 1000 and the memory 1002 can be provided separately or integrated together.
  • the communication device 1000 may also include a transceiver 1005 and an antenna 1006.
  • the transceiver 1005 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1005 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1000 may also include one or more interface circuits 1007.
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 executes the code instructions to cause the communication device 1000 to perform the method described in the above method embodiment.
  • the communication device 1000 is a terminal device: the transceiver 1005 is used to perform S41 in Figure 4; S51 and S53 in Figure 5; S61, S63 and S64 in Figure 6; S71 in Figure 7; S81 and S83 in Figure 8 ; The processor 1001 is used to execute S52 in Figure 5; S62 in Figure 6; S82 in Figure 8.
  • the communication device 1000 is a network side device: the transceiver 1005 is used to perform S91 in Figure 9; S101 and S102 in Figure 10; S111 to S113 in Figure 11; S121 in Figure 12; and S131 and S132 in Figure 13.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001, causing the communication device 1000 to perform the method described in the above method embodiment.
  • the computer program 1003 may be solidified in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device in the description of the above embodiments may be a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 15 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • FIG. 16 is a structural diagram of a chip provided in an embodiment of the present disclosure.
  • Chip 1100 includes processor 1101 and interface 1103.
  • the number of processors 1101 may be one or more, and the number of interfaces 1103 may be multiple.
  • Interface 1103, used to receive code instructions and transmit them to the processor.
  • the processor 1101 is used to run code instructions to perform the capability reporting method as described in some of the above embodiments.
  • Interface 1103, used to receive code instructions and transmit them to the processor.
  • the processor 1101 is used to run code instructions to perform the capability reporting method as described in some of the above embodiments.
  • the chip 1100 also includes a memory 1102, which is used to store necessary computer programs and data.
  • Embodiments of the present disclosure also provide a capability reporting system.
  • the system includes a communication device as a terminal device in the embodiment of FIG. 14 and a communication device as a network-side device.
  • the system includes a communication device as a terminal device in the embodiment of FIG. 15 communication device and a communication device as a network side device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种能力上报方法和装置,其中,该方法包括:终端设备在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。由此,能够支持终端设备向网络侧设备上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。

Description

能力上报方法和装置 技术领域
本公开涉及通信技术领域,尤其涉及一种能力上报方法和装置。
背景技术
相关技术中,在进行CG-SDT(Configured Grant Small Data Transmission,配置授权的小数据包传输)的过程中,处于非连接态的终端设备不支持波束互易性,不支持终端设备向网络侧设备上报终端设备在进行CG-SDT的过程中支持波束互易性的能力,这是亟需解决的问题。
发明内容
本公开实施例提供一种能力上报方法和装置,终端设备在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。由此,能够支持终端设备向网络侧设备上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。
第一方面,本公开实施例提供一种能力上报方法,所述方法由终端设备执行,所述方法包括:在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
在该技术方案中,终端设备在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。由此,能够支持终端设备向网络侧设备上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。
第二方面,本公开实施例提供另一种能力上报方法,所述方法由网络侧设备执行,所述方法包括:接收处于连接态的终端设备发送的能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
第三方面,本公开实施例提供一种通信装置,该装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施例本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:收发模块,被配置为在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
第四方面,本公开实施例提供另一种通信装置,该装置具有实现上述第二方面所述的方法中网络侧设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施例本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:收发模块,被配置为接收处于连接态的终端设备发送的能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有 计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种随机接入系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络侧设备所用的指令,当所述指令被执行时,使所述网络侧设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络侧设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络侧设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1为SDT过程的示例图;
图2为CG-SDT重传的流程的示例图;
图3是本公开实施例提供的一种通信系统的架构图;
图4是本公开实施例提供的一种能力上报方法的流程图;
图5是本公开实施例提供的一种信息传输方法的流程图;
图6是本公开实施例提供的另一种信息传输方法的流程图;
图7是本公开实施例提供的又一种信息传输方法的流程图;
图8是本公开实施例提供的又一种信息传输方法的流程图;
图9是本公开实施例提供的另一种能力上报方法的流程图;
图10是本公开实施例提供的又一种信息传输方法的流程图;
图11是本公开实施例提供的又一种信息传输方法的流程图;
图12是本公开实施例提供的又一种信息传输方法的流程图;
图13是本公开实施例提供的又一种信息传输方法的流程图;
图14是本公开实施例提供的一种通信装置的结构图;
图15是本公开实施例提供的另一种通信装置的结构图;
图16是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
为了便于理解本公开的技术方案,下面简单介绍本公开实施例涉及的一些术语。
1、波束(beam)
波束可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatialdomain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络侧设备可以在不同资源使用不同的波束发送信号,终端设备在不同的资源使用不同的波束接收信号,并且终端设备可以向网络侧设备反馈在不同资源上测得的信号的质量,从而网络侧设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络侧设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmissionconfiguration indicator,TCI)资源,来指示终端设备物理下行共享信道(physicaldownlink shared channel,PDSCH)波束的信息。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。一个波束对应的一个或多个天线端口也可以看作是一个天线端口集。
在波束测量中,网络侧设备的每一个波束对应一个资源,因此可以通过资源的标识(或者称索引)来唯一标识该资源对应的波束。
2、波束互易性(Beam correspondence)
终端设备可以根据下行接收波束来确定自己的上行发射波束或根据上行发送波束来确定自己的下行接收波束。示例性地,如果接收波束A是接收下行信号的较佳/最佳选择,终端设备根据下行接收波束A推断出其对应的上行发射波束A’也是较佳/最佳的上行发送波束。如果网络侧设备指示某个下行发送波束A对应的下行参考信号X,则终端设备能够根据接收信号X对应的接收波束A知道其对应的发送波束A’。
3、小数据传输(Small Data Transmission,SDT)
一般情况下,终端设备处于RRC连接态(CONNECTED)时,终端设备与网络侧设备之间才能传输数据。但在一些场景下,处于RRC空闲态(IDLE)或RRC非激活态(INACTIVE)的终端设备需传输的数据包很小,可以称这类数据包为小数据包(small data),而终端设备从RRC IDLE态或RRC INACTIVE态进入RRC CONNECTED态所需的信令甚至大于small data,从而导致终端设备不必要的功耗和信令开销。为了避免上述情况,处于RRC IDLE态或RRCINACTIVE态的终端设备可以在随机接入(random access,RA)过程中传输small data或者在网络侧设备配置的资源上传输small data,而无须进入RRC CONNECTED态后再传输small data。
上述传输过程可以称为SDT(small data transmission,小数据包传输),其中,终端设备在网络侧设 备配置的资源上传输small data的方式可以称为CG-SDT(Configure Grant small data transmission,配置授权小数据包传输)。
根据网络侧配置的资源,终端设备在非连接态,例如:IDLE(空闲态)或INACTIVE(非激活态)时,可以通过以下方法发送将数据直接发送给网络侧设备:
1)初始接入的四步随机接入过程的Msg3(或称为4-step RACH SDT);
2)初始接入的两步随机接入过程的MsgA。(或称为2-step RACH SDT);
3)网络配置的专属上行PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源(即CG(Configure Grant)或PUR(Preallocated Uplink Resource,预先分配的上行资源));或称为CG SDT。
如图1所示,SDT过程可以包括初始数据发送阶段和后续数据发送阶段。
其中,初始数据发送阶段:从触发SDT初始数据发送开始,到接收到网络侧对于该初始数据的确认信息。
其中,该确认信息对比于不同SDT过程会有以下三种不同:
(1)4-step RACH SDT:确认信息为成功接收到Msg4的竞争解决标识;
(2)2-step RACH SDT:确认信息为成功接收到MsgB的竞争解决标识;
(3)CG-SDT:确认信息为网络侧设备发送的数据接收成功指示(如,物理层DCI(Downlink Control Information,下行控制信息)指示的ACK(肯定应答)信息。)
后续数据发送阶段:从接收到网络侧设备对于该初始数据的确认信息,到接收到网络侧设备发送的连接释放消息。在该阶段,终端设备可以进行上下行数据的收发。
CG-SDT的后续数据发送阶段,在这一过程中终端设备会监听PDCCH(Physical downlink control channel,物理下行控制信道)以接收C-RNTI(Cell Radio NetworkTemporary Identifier,小区无线网络临时标识)并在后续时刻发送CG-PUSCH,在接收到网络侧设备发送的连接释放消息之前,终端设备会不断重复监听PDCCH后发送CG-PUSCH。
其中,SSB(Synchronization Signal and PBCH block,同步信号块)波束与CG-PUSCH有相关映射关系。
如图2所示,图2为CG-SDT重传的流程的示例图,对于网络侧设备配置的CG-SDT资源,终端设备在采用了该CG资源发送了数据后,会启动反馈定时器(如,feedbackTimer)监听网络侧设备的反馈信息。如果终端设备在反馈定时器运行期间没有接收到网络侧设备的成功接收确认,则终端设备在后续的CG资源进行数据重传,进行CG-SDT重传。对上行配置授权Configured Grant,在每次终端设备在一个HARQ process上发送上行新数据传输后就会启动该HARQ process对应的配置授权定时器,在该定时器运行期间,该HARQ process上不能调度其它新传。配置授权重传定时器(CG-RetransmissionTimer)可以Per Configured Grant配置,用于进行上行自动重传。在每次终端设备在一个HARQ process上发送上行新传或重传后就会启动该HARQ process对应的CG-RetransmissionTimer,在该定时器运行期间,不进行上行自动重传。在该定时器停止运行后,启动上行自动重传。
4、QCL(Quasi-collocation,准共址)
准共址(QCL)是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道所推断出来。其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数等。
QCL的概念是随着多点协作传输(Coordinated Multiple Point transmission,CoMP)技术的出现而引入的。CoMP传输过程中涉及到的多个站点可能对应于多个地理位置不同的站点或者天线面板朝向有差异的多个扇区。例如当终端设备从不同的站点接收数据时,各个站点在空间上的差异会导致来自不同站点的接收链路的大尺度信道参数的差别,如多普勒频偏,时延扩展等。而信道的大尺度参数将直接影响到信道估计时滤波器系数的调整与优化,对应于不同站点发出的信号,应当使用不同的信道估计滤波参数以适应相应的信道传播特性。
因此,尽管各个站点在空间位置或角度上的差异对于UE以及CoMP操作本身而言是透明的,但是上述空间差异对于信道大尺度参数的影响则是终端设备进行信道估计与接收检测时需要考虑的重要因素。所谓两个天线端口在某些大尺度参数意义下QCL,就是指这两个端口的这些大尺度参数是相同的。或者说,只要两个端口的某些大尺度参数一致,不论他们的实际物理位置或对应的天线面板朝向是否存在差异,终端设备就可以认为这两个端口是发自相同的位置(即准共站址)。
针对一些典型的应用场景,考虑到各种参考信号之间可能的QCL关系,从简化信令的角度出发,NR中将几种信道大尺度参数分为以下4个类型,便于系统根据不同场景进行配置/指示:
1)QCL-TypeA:{Doppler频移,Doppler扩展,平均时延,时延扩展}
-除了空间接收参数参数之外,的其他大尺度参数均相同。
-对于6GHz以下频段而言,可能并不需要空间接收参数。
2)QCL-TypeB:{Doppler频移,Doppler扩展}
-仅针对6GHz以下频段的如下两种情况
3)QCL-TypeC:{Doppler频移,平均时延}
4)QCL-TypeD:{空间接收参数}
如前所述,由于这一参数主要针对6GHz以上频段,因此将其单独作为一个QCL type。
为了更好的理解本公开实施例公开的一种能力上报方法和装置,下面首先对本公开实施例适用的通信系统进行描述。
请参见图3,图3为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络侧设备和一个终端设备,图3所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络侧设备,两个或两个以上的终端设备。图3所示的通信系统10以包括一个网络侧设备101和一个终端设备102为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本公开实施例中的侧链路还可以称为侧行链路或直通链路。
本公开实施例中的网络侧设备101是网络侧的一种用于发射或接收信号的实体。例如,网络侧设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对基站所采用的具体技术和具体设备形态不做限定。本公开实施例提供的基站可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将基站,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
在通信系统中,终端设备与网络侧设备的通信协议栈中可以包括RRC(radio resource control,无线资源控制)层。其中,终端设备的状态可以包括连接态(也称为CONNCETED态或RRC_CONNCETED状态)、非激活态(也称为inactive态,或RRC_INACTIVE态)、空闲态(也称为idle状态,或RRC_IDLE态)。
需要说明的是,在本公开实施例中的全文描述中,终端设备处于非连接态,可以为终端设备处于空闲态,或者终端设备处于非激活态,或者处于其他连接态以外的状态;终端设备在非连接态下,可以为终端设备在空闲态下,或者终端设备在非激活状态下,或者终端设备在连接态以外的其他的状态下。
在本公开实施例中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定包括有A。
下面结合附图对本公开所提供的能力上报方法和装置进行详细地介绍。
请参见图4,图4是本公开实施例提供的一种能力上报方法的流程图。
如图4所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S41:终端设备在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
针对相关技术中,不支持终端设备上报在CG-SDT过程中支持波束互易性的能力的问题。
本公开实施例中,终端设备在连接态下可以向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在CG-SDT过程中支持波束互易性。由此,能够支持终端设备向网络侧设备上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。
其中,终端设备可以向网络侧设备发送信息域(IE)beamcorrespondence-cg-SDT-r18ENUMERATED{supported},向网络侧设备发送能力指示信息,以上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。
在一些实施例中,终端设备支持波束互易性为终端设备无须进行上行波束扫描可根据下行接收波束确定上行发送波束。
可以理解的是,终端设备不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定波束质量较佳或最佳的波束,确定为上行发送波束,进而使用上行发送波束进行CG-SDT,向网络侧设备发送小数据包。
而本公开实施例中,终端设备在CG-SDT过程中,支持波束互易性,终端设备可以根据网络侧设备配置专属PUSCH资源使用的下行接收波束,确定上行发送波束,进而在专属PUSCH资源上使用确定的上行发送波束向网络侧设备发送小数据包,进行CG-SDT和/或进行CG-SDT重传。由此,终端设备无须进行上行波束扫描确定上行波束,可以节省终端设备的能耗,并且,终端设备无须进行波束扫描可以确定候选上行发送波束,能够减少时延。
在一些实施例中,终端设备在连接态下接收网络侧设备发送的无线资源控制RRC释放消息,并切换至非连接态,其中,RRC释放消息用于指示进行CG-SDT的专属物理上行共享信道PUSCH资源;处于非连接态的终端设备根据接收RRC释放消息的候选下行接收波束确定候选上行发送波束;处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传。
本公开实施例中,处于连接态的终端设备接收网络侧设备发送的RRC连接释放消息,切换至非连接态,其中,网络侧设备向处于连接态的终端设备发送RRC连接释放消息,可以同步释放QCL信息。
其中,网络侧设备向处于连接态的终端设备发送的RRC连接释放消息用于指示进行CG-SDT的专属PUSCH资源。
本公开实施例中,处于连接态的终端设备接收到网络侧设备发送的RRC连接释放消息之后,由连接态切换至非连接态,处于非连接态的终端设备可以确定接收RRC释放消息使用的候选下行接收波束,进而,由于终端设备在CG-SDT过程中支持波束互易性,终端设备可以根据候选下行接收波束确定候选上行发送波束。
之后,终端设备可以在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,发送小数据包。
其中,终端设备进行CG-SDT和/或进行CG-SDT重传的过程可以参见上述相关描述,相同的内容此处不再赘述。
可以理解的是,终端设备在CG-SDT过程中不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定较佳或最佳的候选上行发送波束,进行使用确定的候选上行发送波束进行CG-SDT,发送小数据包。
但是,在本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,可以根据网络侧设备发送RRC释放消息使用的候选下行接收波束,确定候选上行发送波束,进而使用候选上行发送波束进行CG-SDT,发送小数据包。由此,终端设备无须进行上行波束扫描确定上行波束,可以节省终端设备的能耗,并且,终端设备无须进行波束扫描可以确定候选上行发送波束,能够减少时延。
在一些实施例中,终端设备在非连接态下接收网络侧设备发送的数据接收成功指示,其中,数据接收成功指示用于指示网络侧设备接收到终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
本公开实施例中,终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据,也即发送小数据包,网络侧设备在接收到终端设备发送的数据,也即接收到终端设备发送的小数据包,之后,可以向终端设备发送数据接收成功指示,以告知终端设备已接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据。
可以理解的是,CG-SDT包括两个阶段:初始数据发送阶段和后续数据发送阶段。
其中,初始数据发送阶段,包括:处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据(小数据包)。
网络侧设备接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据(小数据包)之后,可以向终端设备发送数据接收成功指示。
其中,网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性, 并且,SSB波束与PUSCH资源具有关联关系,网络侧设备可以根据SSB波束与PUSCH的关联关系,以及终端设备进行CG-SDT和/或进行CG-SDT重传时使用的专属PUSCH资源确定下行波束,进而在下行波束上向终端设备发送数据接收成功指示。
其中,后续数据发送阶段,可以为终端设备接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前。在后续数据发送阶段,终端设备会不断重复监听PDCCH。
在一些实施例中,SSB波束与PUSCH资源具有映射关系,终端设备在接收网络侧设备发送的数据接收成功指示之后,且在接收到网络侧设备发送的连接释放消息之前,还包括:监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带C-RNTI的PDCCH,其中,候选SSB波束为网络侧设备在确定终端设备支持波束互易性的情况下,根据专属PUSCH资源和映射关系确定的。
可以理解的是,终端设备在接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前,可以为在后续数据发送阶段,终端设备监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带C-RNTI的PDCCH。
其中,SSB与PUSCH资源具有映射关系,并且网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,在后续数据发送阶段,网络侧设备可以根据终端设备进行SDT和/或SDT重传使用的专属PUSCH资源和映射关系,确定对应的候选SSB波束,并在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。
基于此,终端设备监听PDCCH,可以在候选SSB波束上接收携带C-RNTI的PDCCH,以进一步向网络侧设备发送PUSCH。
在一些实施例中,终端设备根据候选SSB波束,确定上行SSB波束;在上行SSB波束上向网络侧设备发送PUSCH。
本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备监听PDCCH,在候选SSB波束上接收携带C-RNTI的PDCCH,可以根据候选SSB波束,确定上行SSB波束,进一步的,可以在上行SSB波束上向网络侧设备发送PUSCH。
可以理解的是,终端设备不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定波束质量较佳或最佳的波束,确定为上行发送波束,进而使用上行发送波束发送PUSCH。
而本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备在候选SSB波束上接收到PDCCH之后,可以根据候选SSB波束直接确定上行SSB波束,终端设备无须进行上行波束扫描,可以直接确定上行SSB波束,可以节省终端设备的能耗,并且降低时延。
请参见图5,图5是本公开实施例提供的一种信息传输方法的流程图。
如图5所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S51:终端设备在连接态下接收网络侧设备发送的无线资源控制RRC释放消息,并切换至非连接态,其中,RRC释放消息用于指示进行CG-SDT的专属物理上行共享信道PUSCH资源。
S52:终端设备在非连接态下根据接收RRC释放消息的候选下行接收波束确定候选上行发送波束,其中,终端设备在CG-SDT过程中支持波束互易性。
S53:终端设备在非连接态下在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传。
本公开实施例中,处于连接态的终端设备接收网络侧设备发送的RRC连接释放消息,切换至非连接态,其中,网络侧设备向处于连接态的终端设备发送RRC连接释放消息,可以同步释放QCL信息。
其中,网络侧设备向处于连接态的终端设备发送的RRC连接释放消息用于指示进行CG-SDT的专属PUSCH资源。
本公开实施例中,处于连接态的终端设备接收到网络侧设备发送的RRC连接释放消息之后,由连接态切换至非连接态,处于非连接态的终端设备可以确定接收RRC释放消息使用的候选下行接收波束,进而,由于终端设备在CG-SDT过程中支持波束互易性,终端设备可以根据候选下行接收波束确定候选上行发送波束。
之后,终端设备可以在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,发送小数据包。
其中,终端设备进行CG-SDT和/或进行CG-SDT重传的过程可以参见上述相关描述,相同的内容此处不再赘述。
可以理解的是,终端设备在CG-SDT过程中不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定较佳或最佳的候选上行发送波束,进行使用确定的候选上行发送波束进行CG-SDT,发送小数据包。
而在本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,可以根据网络侧设备发送RRC 释放消息使用的候选下行接收波束,确定候选上行发送波束,进而使用候选上行发送波束进行CG-SDT,发送小数据包。由此,终端设备无须进行上行波束扫描确定上行波束,可以节省终端设备的能耗,并且,终端设备无须进行波束扫描可以确定候选上行发送波束,能够减少时延。
需要说明的是,本公开实施例中,S51至S53可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S41一起被实施,本公开实施例并不对此做出限定。
请参见图6,图6是本公开实施例提供的另一种信息传输方法的流程图。
如图6所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S61:终端设备在连接态下接收网络侧设备发送的无线资源控制RRC释放消息,并切换至非连接态,其中,RRC释放消息用于指示进行CG-SDT的专属物理上行共享信道PUSCH资源。
S62:终端设备在非连接态下根据接收RRC释放消息的候选下行接收波束确定候选上行发送波束,其中,终端设备在CG-SDT过程中支持波束互易性。
S63:终端设备在非连接态下在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传。
其中,S61至S63的相关描述可以参见上述实施例中的相关描述,此处不再赘述。
S64:终端设备在非连接态下接收网络侧设备发送的数据接收成功指示,其中,数据接收成功指示用于指示网络侧设备接收到终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
本公开实施例中,终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据,也即发送小数据包,网络侧设备在接收到终端设备发送的数据,也即接收到终端设备发送的小数据包,之后,可以向终端设备发送数据接收成功指示,以告知终端设备已接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据。
需要说明的是,本公开实施例中,S61至S64可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S41一起被实施,本公开实施例并不对此做出限定。
请参见图7,图7是本公开实施例提供的又一种信息传输方法的流程图。
如图7所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S71:在接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前,监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带小区无线网络临时标识C-RNTI的PDCCH,其中,候选SSB波束为网络侧设备在确定终端设备支持波束互易性的情况下,根据专属PUSCH资源和映射关系确定的,同步信号块SSB波束与PUSCH资源具有映射关系。
可以理解的是,CG-SDT包括两个阶段:初始数据发送阶段和后续数据发送阶段。
其中,初始数据发送阶段,包括:处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据(小数据包),网络侧设备接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据(小数据包)之后,可以向终端设备发送数据接收成功指示。
其中,网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,并且,SSB波束与PUSCH资源具有关联关系,网络侧设备可以根据SSB波束与PUSCH的关联关系,以及终端设备进行CG-SDT和/或进行CG-SDT重传时使用的专属PUSCH资源确定下行波束,进而在下行波束上向终端设备发送数据接收成功指示。
其中,后续数据发送阶段,可以为终端设备接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前。在后续数据发送阶段,终端设备会不断重复监听PDCCH。
可以理解的是,终端设备在接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前,可以为在后续数据发送阶段,终端设备监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带C-RNTI的PDCCH。
其中,SSB与PUSCH资源具有映射关系,并且网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,在后续数据发送阶段,网络侧设备可以根据终端设备进行SDT和/或SDT重传使用的专属PUSCH资源和映射关系,确定对应的候选SSB波束,并在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。
基于此,终端设备监听PDCCH,可以在候选SSB波束上接收携带C-RNTI的PDCCH,以进一步向网络侧设备发送PUSCH。
需要说明的是,本公开实施例中,S71可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S41和/或S51至S53和/或S61至S64一起被实施,本 公开实施例并不对此做出限定。
请参见图8,图8是本公开实施例提供的又一种信息传输方法的流程图。
如图8所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S81:在接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前,监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带小区无线网络临时标识C-RNTI的PDCCH,其中,候选SSB波束为网络侧设备在确定终端设备支持波束互易性的情况下,根据专属PUSCH资源和映射关系确定的,同步信号块SSB波束与PUSCH资源具有映射关系。
其中,S81的相关描述可以参见上述实施例中的相关描述,此处不再赘述。
S82:根据候选SSB波束,确定上行SSB波束,其中,终端设备在CG-SDT过程中支持波束互易性。
S83:在上行SSB波束上向网络侧设备发送PUSCH。
本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备监听PDCCH,在候选SSB波束上接收携带C-RNTI的PDCCH,可以根据候选SSB波束,确定上行SSB波束,进一步的,可以在上行SSB波束上向网络侧设备发送PUSCH。
其中,网络侧设备根据专属PUSCH资源和映射关系,可以确定一个或多个候选SSB波束,网络侧设备可以在多个候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。终端设备监听PDCCH,在候选SSB波束上接收携带C-RNTI的PDCCH,由于终端设备支持波束互易性,终端设备可以根据候选SSB波束确定上行SSB波束。
其中,在候选SSB波束为一个的情况下,终端设备可以确定一个上行SSB波束,以在该上行SSB波束上向网络侧设备发送PUSCH,而在候选SSB波束为多个的情况下,终端设备可以确定候选SSB波束对应的多个上行波束,终端设备可以随机选择一个作为上行SSB波束,或者还可以对多个上行波束进行比较,从中选择一个作为上行SSB波束。其中,终端设备对多个上行波束进行比较可以采用相关技术中的方法,本公开实施例对此不作具体限制。
当然,在候选SSB波束为多个的情况下,终端设备也可以确定多个候选SSB波束对应的上行波束为上行SSB波束,终端设备可以在多个上行SSB波束上向终端设备发送PUSCH,本公开实施例对此不作具体限制。
可以理解的是,终端设备不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定波束质量较佳或最佳的波束,确定为上行发送波束,进而使用上行发送波束发送PUSCH。
而本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备在候选SSB波束上接收到PDCCH之后,可以根据候选SSB波束直接确定上行SSB波束,终端设备无须进行上行波束扫描,可以直接确定上行SSB波束,可以节省终端设备的能耗,并且降低时延。
需要说明的是,本公开实施例中,S81至S83可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S41和/或S51至S53和/或S61至S64一起被实施,本公开实施例并不对此做出限定。
请参见图9,图9是本公开实施例提供的另一种能力上报方法的流程图。
如图9所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S91:接收处于连接态的终端设备发送的能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
针对相关技术中,不支持终端设备上报在CG-SDT过程中支持波束互易性的能力的问题。
本公开实施例中,处于连接态的终端设备可以向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在CG-SDT过程中支持波束互易性。由此,能够支持终端设备向网络侧设备上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。
其中,终端设备可以向网络侧设备发送信息域(IE)beamcorrespondence-cg-SDT-r18ENUMERATED{supported},向网络侧设备发送能力指示信息,以上报终端设备在进行CG-SDT的过程中支持波束互易性的能力。
在一些实施例中,终端设备支持波束互易性为终端设备无须进行上行波束扫描可根据下行接收波束确定上行发送波束。
可以理解的是,终端设备不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定波束质量较佳或最佳的波束,确定为上行发送波束,进而使用上行发送波束进行CG-SDT,向网络侧设备发送小数据包。
而本公开实施例中,终端设备在CG-SDT过程中,支持波束互易性,终端设备可以根据网络侧设备配置专属PUSCH资源使用的下行接收波束,确定上行发送波束,进而在专属PUSCH资源上使用确 定的上行发送波束向网络侧设备发送小数据包,进行CG-SDT和/或进行CG-SDT重传。
在一些实施例中,网络侧设备向处于连接态的终端设备发送RRC释放消息,并释放QCL信息,其中,RRC释放消息用于指示进行CG-SDT的专属PUSCH资源;接收处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传发送的数据,其中,候选上行发送波束为终端设备根据接收RRC释放消息的候选下行接收波束确定。
本公开实施例中,处于连接态的终端设备接收网络侧设备发送的RRC连接释放消息,切换至非连接态,其中,网络侧设备向处于连接态的终端设备发送RRC连接释放消息,可以同步释放QCL信息。
其中,网络侧设备向处于连接态的终端设备发送的RRC连接释放消息用于指示进行CG-SDT的专属PUSCH资源。
本公开实施例中,处于连接态的终端设备接收到网络侧设备发送的RRC连接释放消息之后,由连接态切换至非连接态,处于非连接态的终端设备可以确定接收RRC释放消息使用的候选下行接收波束,进而,由于终端设备在CG-SDT过程中支持波束互易性,终端设备可以根据候选下行接收波束确定候选上行发送波束。
之后,终端设备可以在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,发送小数据包。
其中,终端设备进行CG-SDT和/或进行CG-SDT重传的过程可以参见上述相关描述,相同的内容此处不再赘述。
可以理解的是,终端设备在CG-SDT过程中不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定较佳或最佳的候选上行发送波束,进行使用确定的候选上行发送波束进行CG-SDT,发送小数据包。
但是,在本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,可以根据网络侧设备发送RRC释放消息使用的候选下行接收波束,确定候选上行发送波束,进而使用候选上行发送波束进行CG-SDT,发送小数据包。由此,终端设备无须进行上行波束扫描确定上行波束,可以节省终端设备的能耗,并且,终端设备无须进行波束扫描可以确定候选上行发送波束,能够减少时延。
在一些实施例中,网络侧设备向处于非连接态的终端设备发送数据接收成功指示,其中,数据接收成功指示用于指示网络侧设备接收到终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
本公开实施例中,终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据,也即发送小数据包,网络侧设备在接收到终端设备发送的数据,也即接收到终端设备发送的小数据包,之后,可以向终端设备发送数据接收成功指示,以告知终端设备已接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据。
可以理解的是,CG-SDT包括两个阶段:初始数据发送阶段和后续数据发送阶段。
其中,初始数据发送阶段,包括:处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据(小数据包)。
网络侧设备接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据(小数据包)之后,可以向终端设备发送数据接收成功指示。
其中,网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,并且,SSB波束与PUSCH资源具有关联关系,网络侧设备可以根据SSB波束与PUSCH的关联关系,以及终端设备进行CG-SDT和/或进行CG-SDT重传时使用的专属PUSCH资源确定下行波束,进而在下行波束上向终端设备发送数据接收成功指示。
其中,后续数据发送阶段,可以为终端设备接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前。在后续数据发送阶段,终端设备会不断重复监听PDCCH。
在一些实施例中,同步信号块SSB波束与PUSCH资源具有映射关系,在向终端设备发送数据接收成功指示之后,且在向终端设备发送连接释放消息之前,还包括:根据专属PUSCH资源和映射关系确定候选SSB波束;在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。
可以理解的是,终端设备在接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前,可以为在后续数据发送阶段,终端设备监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带C-RNTI的PDCCH。
其中,SSB与PUSCH资源具有映射关系,并且网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,在后续数据发送阶段,网络侧设备可以根据终端设备进行SDT和/或SDT重传使用的专属PUSCH资源和映射关系,确定对应的候选SSB波束,并在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。
基于此,终端设备监听PDCCH,可以在候选SSB波束上接收携带C-RNTI的PDCCH,以进一步 向网络侧设备发送PUSCH。
在一些实施例中,网络侧设备在上行SSB波束上接收处于非连接态的终端设备发送的PUSCH,其中,上行SSB波束为终端设备根据候选SSB波束确定的。
本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备监听PDCCH,在候选SSB波束上接收携带C-RNTI的PDCCH,可以根据候选SSB波束,确定上行SSB波束,进一步的,可以在上行SSB波束上向网络侧设备发送PUSCH。
可以理解的是,终端设备不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定波束质量较佳或最佳的波束,确定为上行发送波束,进而使用上行发送波束发送PUSCH。
而本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备在候选SSB波束上接收到PDCCH之后,可以根据候选SSB波束直接确定上行SSB波束,终端设备无须进行上行波束扫描,可以直接确定上行SSB波束,可以节省终端设备的能耗,并且降低时延。
请参见图10,图10是本公开实施例提供的又一种信息传输方法的流程图。
如图10所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S101:向处于连接态的终端设备发送RRC释放消息,并释放准共址QCL信息,其中,RRC释放消息用于指示进行CG-SDT的专属PUSCH资源。
S102:接收处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束在CG-SDT过程和/或在CG-SDT重传过程中发送的数据,其中,候选上行发送波束为终端设备根据接收RRC释放消息的候选下行接收波束确定的,终端设备在CG-SDT过程中支持波束互易性。
本公开实施例中,处于连接态的终端设备接收网络侧设备发送的RRC连接释放消息,切换至非连接态,其中,网络侧设备向处于连接态的终端设备发送RRC连接释放消息,可以同步释放QCL信息。
其中,网络侧设备向处于连接态的终端设备发送的RRC连接释放消息用于指示进行CG-SDT的专属PUSCH资源。
本公开实施例中,处于连接态的终端设备接收到网络侧设备发送的RRC连接释放消息之后,由连接态切换至非连接态,处于非连接态的终端设备可以确定接收RRC释放消息使用的候选下行接收波束,进而,由于终端设备在CG-SDT过程中支持波束互易性,终端设备可以根据候选下行接收波束确定候选上行发送波束。
之后,终端设备可以在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,发送小数据包。
其中,终端设备进行CG-SDT和/或进行CG-SDT重传的过程可以参见上述相关描述,相同的内容此处不再赘述。
可以理解的是,终端设备在CG-SDT过程中不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定较佳或最佳的候选上行发送波束,进行使用确定的候选上行发送波束进行CG-SDT,发送小数据包。
而在本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,可以根据网络侧设备发送RRC释放消息使用的候选下行接收波束,确定候选上行发送波束,进而使用候选上行发送波束进行CG-SDT,发送小数据包。由此,终端设备无须进行上行波束扫描确定上行波束,可以节省终端设备的能耗,并且,终端设备无须进行波束扫描可以确定候选上行发送波束,能够减少时延。
需要说明的是,本公开实施例中,S101和S102可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S91一起被实施,本公开实施例并不对此做出限定。
请参见图11,图11是本公开实施例提供的又一种信息传输方法的流程图。
如图11所示,该方法由网络侧设备执行,该方法可以包括但不限于如下步骤:
S111:向处于连接态的终端设备发送RRC释放消息,并释放准共址QCL信息,其中,RRC释放消息用于指示进行CG-SDT的专属PUSCH资源。
S112:接收处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束在CG-SDT过程和/或在CG-SDT重传过程中发送的数据,其中,候选上行发送波束为终端设备根据接收RRC释放消息的候选下行接收波束确定的。
其中,S111和S112的相关描述可以参见上述实施例中的相关描述,此处不再赘述。
S113:向处于非连接态的终端设备发送数据接收成功指示,其中,数据接收成功指示用于指示网络侧设备接收到终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
本公开实施例中,终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据,也即发送小数据包,网络侧设备在接收到终端设备发送的数据, 也即接收到终端设备发送的小数据包,之后,可以向终端设备发送数据接收成功指示,以告知终端设备已接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据。
需要说明的是,本公开实施例中,S111至S113可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S91一起被实施,本公开实施例并不对此做出限定。
请参见图12,图12是本公开实施例提供的又一种信息传输方法的流程图。
如图12所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S121:在向终端设备发送数据接收成功指示之后,且在向终端设备发送连接释放消息之前,确定终端设备支持波束互易性的情况下,根据专属PUSCH资源和映射关系确定候选SSB波束;在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH,其中,同步信号块SSB波束与PUSCH资源具有映射关系。
可以理解的是,CG-SDT包括两个阶段:初始数据发送阶段和后续数据发送阶段。
其中,初始数据发送阶段,包括:处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传,向网络侧设备发送数据(小数据包),网络侧设备接收到终端设备进行CG-SDT和/或进行CG-SDT重传发送的数据(小数据包)之后,可以向终端设备发送数据接收成功指示。
其中,网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,并且,SSB波束与PUSCH资源具有关联关系,网络侧设备可以根据SSB波束与PUSCH的关联关系,以及终端设备进行CG-SDT和/或进行CG-SDT重传时使用的专属PUSCH资源确定下行波束,进而在下行波束上向终端设备发送数据接收成功指示。
其中,后续数据发送阶段,可以为终端设备接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前。在后续数据发送阶段,终端设备会不断重复监听PDCCH。
可以理解的是,终端设备在接收网络侧设备发送的数据接收成功指示之后,以及接收到网络侧设备发送的连接释放消息之前,可以为在后续数据发送阶段,终端设备监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带C-RNTI的PDCCH。
其中,SSB与PUSCH资源具有映射关系,并且网络侧设备在终端设备处于连接态时,已获知终端设备在CG-SDT过程中支持波束互易性,在后续数据发送阶段,网络侧设备可以根据终端设备进行SDT和/或SDT重传使用的专属PUSCH资源和映射关系,确定对应的候选SSB波束,并在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。
基于此,终端设备监听PDCCH,可以在候选SSB波束上接收携带C-RNTI的PDCCH,以进一步向网络侧设备发送PUSCH。
需要说明的是,本公开实施例中,S121可以单独被实施,也可以结合本公开实施例中的任何一个其他步骤一起被实施,例如结合本公开实施例中的S91和/或S101和S102和/或S111至S1134一起被实施,本公开实施例并不对此做出限定。
请参见图13,图13是本公开实施例提供的又一种信息传输方法的流程图。
如图13所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S131:在向终端设备发送数据接收成功指示之后,且在向终端设备发送连接释放消息之前,确定终端设备支持波束互易性的情况下,根据专属PUSCH资源和映射关系确定候选SSB波束;在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH,其中,同步信号块SSB波束与PUSCH资源具有映射关系。
其中,S131的相关描述可以参见上述实施例中的相关描述,此处不再赘述。
S132:在上行SSB波束上接收处于非连接态的终端设备发送的PUSCH,其中,上行SSB波束为终端设备根据候选SSB波束确定的。
本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备监听PDCCH,在候选SSB波束上接收携带C-RNTI的PDCCH,可以根据候选SSB波束,确定上行SSB波束,进一步的,可以在上行SSB波束上向网络侧设备发送PUSCH。
可以理解的是,终端设备不支持波束互易性的情况下,终端设备需要进行上行波束扫描,以确定波束质量较佳或最佳的波束,确定为上行发送波束,进而使用上行发送波束发送PUSCH。
而本公开实施例中,终端设备在CG-SDT过程中支持波束互易性,终端设备在候选SSB波束上接收到PDCCH之后,可以根据候选SSB波束直接确定上行SSB波束,终端设备无须进行上行波束扫描,可以直接确定上行SSB波束,可以节省终端设备的能耗,并且降低时延。
需要说明的是,本公开实施例中,S131和S132可以单独被实施,也可以结合本公开实施例中的任 何一个其他步骤一起被实施,例如结合本公开实施例中的S91和/或S101和S102和/或S111至S113一起被实施,本公开实施例并不对此做出限定。
上述本公开提供的实施例中,分别从终端设备和网络侧设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,终端设备和网络侧设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图14,为本公开实施例提供的一种通信装置1的结构示意图。图14所示的通信装置1可包括收发模块11和处理模块12。收发模块11可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块11可以实现发送功能和/或接收功能。
通信装置1可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置1可以是网络侧设备,也可以是网络侧设备中的装置,还可以是能够与网络侧设备匹配使用的装置。
通信装置1为终端设备:
该装置,包括:收发模块11。
收发模块11,被配置为在连接态下向网络侧设备发送能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
在一些实施例中,终端设备支持波束互易性为终端设备无须进行上行波束扫描可根据下行接收波束确定上行发送波束。
在一些实施例中,收发模块11,还被配置为在连接态下接收网络侧设备发送的无线资源控制RRC释放消息,并切换至非连接态,其中,RRC释放消息用于指示进行CG-SDT的专属物理上行共享信道PUSCH资源。
处理模块12,被配置为在非连接态下根据接收RRC释放消息的候选下行接收波束确定候选上行发送波束。
收发模块11,还被配置为在非连接态下在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传。
在一些实施例中,收发模块11,还被配置为处于非连接态的终端设备接收网络侧设备发送的数据接收成功指示,其中,数据接收成功指示用于指示网络侧设备接收到终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
在一些实施例中,同步信号块SSB波束与PUSCH资源具有映射关系,在接收网络侧设备发送的数据接收成功指示之后,且在接收到网络侧设备发送的连接释放消息之前,
收发模块11,还被配置为监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带小区无线网络临时标识C-RNTI的PDCCH,其中,候选SSB波束为网络侧设备在确定终端设备支持波束互易性的情况下,根据专属PUSCH资源和映射关系确定的。
在一些实施例中,处理模块12,还被配置为根据候选SSB波束,确定上行SSB波束。
收发模块11,还被配置为在上行SSB波束上向网络侧设备发送PUSCH。
通信装置1为网络侧设备:
该装置,包括:收发模块11。
收发模块11,被配置为接收处于连接态的终端设备发送的能力指示信息,其中,能力指示信息用于指示终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
在一些实施例中,终端设备支持波束互易性为终端设备无须进行上行波束扫描可根据下行接收波束确定上行发送波束。
在一些实施例中,收发模块11,还被配置为向处于连接态的终端设备发送RRC释放消息,并释放准共址QCL信息,其中,RRC释放消息用于指示进行CG-SDT的专属PUSCH资源。
收发模块11,还被配置为接收处于非连接态的终端设备在专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传发送的数据,其中,候选上行发送波束为终端设备根据接收RRC释放消息的候选下行接收波束确定的。
在一些实施例中,收发模块11,还被配置为向处于非连接态的终端设备发送数据接收成功指示,其中,数据接收成功指示用于指示网络侧设备接收到终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
在一些实施例中,同步信号块SSB波束与PUSCH资源具有映射关系,在向终端设备发送数据接收成功指示之后,以及向终端设备发送连接释放消息之前,
处理模块12,被配置为确定终端设备支持波束互易性,以及根据专属PUSCH资源和映射关系确定 候选SSB波束。
收发模块11,还被配置为在候选SSB波束上向终端设备发送携带C-RNTI的PDCCH。
在一些实施例中,收发模块11,还被配置为在上行SSB波束上接收处于非连接态的终端设备发送的PUSCH,其中,上行SSB波束为终端设备根据候选SSB波束确定的。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开上述实施例中提供的通信装置1,与上面一些实施例中提供的能力上报方法取得相同或相似的有益效果,此处不再赘述。
请参见图15,图15是本公开实施例提供的另一种通信装置1000的结构示意图。通信装置1000可以是网络侧设备,也可以是终端设备,也可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置1000可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,存储器1002执行所述计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行所述代码指令以使通信装置1000执行上述方法实施例中描述的方法。
通信装置1000为终端设备:收发器1005用于执行图4中的S41;图5中的S51和S53;图6中的S61、S63和S64;图7中的S71;图8中的S81和S83;处理器1001用于执行图5中的S52;图6中的S62;图8中的S82。
通信装置1000为网络侧设备:收发器1005用于执行图9中的S91;图10中的S101和S102;图11中的S111至S113;图12中的S121;图13中的S131和S132。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,请参见图16,为本公开实施例中提供的一种芯片的结构图。
芯片1100包括处理器1101和接口1103。其中,处理器1101的数量可以是一个或多个,接口1103的数量可以是多个。
对于芯片用于实现本公开实施例中网络侧设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的能力上报方法。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的能力上报方法。
可选的,芯片1100还包括存储器1102,存储器1102用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种能力上报系统,该系统包括前述图14实施例中作为终端设备的通信装置和作为网络侧设备的通信装置,或者,该系统包括前述图15实施例中作为终端设备的通信装置和作为网络侧设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种能力上报方法,其特征在于,所述方法由终端设备执行,包括:
    所述终端设备在连接态下向网络侧设备发送能力指示信息,其中,所述能力指示信息用于指示所述终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述终端设备在连接态下接收网络侧设备发送的无线资源控制RRC释放消息,并切换至非连接态,其中,所述RRC释放消息用于指示进行CG-SDT的专属物理上行共享信道PUSCH资源;
    所述终端设备在非连接态下根据接收所述RRC释放消息的候选下行接收波束确定候选上行发送波束;
    所述终端设备在非连接态下在所述专属PUSCH资源上使用所述候选上行发送波束进行CG-SDT和/或进行CG-SDT重传。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    所述终端设备在非连接态下接收所述网络侧设备发送的数据接收成功指示,其中,所述数据接收成功指示用于指示所述网络侧设备接收到所述终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
  4. 如权利要求3所述的方法,其特征在于,同步信号块SSB波束与PUSCH资源具有映射关系,在接收所述网络侧设备发送的所述数据接收成功指示之后,且在接收到所述网络侧设备发送的连接释放消息之前,还包括:
    监听物理下行控制信道PDCCH,并在候选SSB波束上接收携带小区无线网络临时标识C-RNTI的PDCCH,其中,所述候选SSB波束为所述网络侧设备在确定所述终端设备支持波束互易性的情况下,根据所述专属PUSCH资源和所述映射关系确定的。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    根据所述候选SSB波束,确定上行SSB波束;
    在所述上行SSB波束上向所述网络侧设备发送PUSCH。
  6. 一种能力上报方法,其特征在于,所述方法由网络侧设备执行,包括:
    接收处于连接态的终端设备发送的能力指示信息,其中,所述能力指示信息用于指示所述终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    向处于连接态的所述终端设备发送RRC释放消息,并释放准共址QCL信息,其中,所述RRC释放消息用于指示进行CG-SDT的专属PUSCH资源;
    接收处于非连接态的所述终端设备在所述专属PUSCH资源上使用候选上行发送波束进行CG-SDT和/或进行CG-SDT重传发送的数据,其中,所述候选上行发送波束为所述终端设备根据接收所述RRC释放消息的候选下行接收波束确定的。
  8. 如权利要求7所述的方法,其特征在于,还包括:
    向处于非连接态的所述终端设备发送数据接收成功指示,其中,所述数据接收成功指示用于指示所述网络侧设备接收到所述终端设备在CG-SDT过程和/或在CG-SDT重传过程中发送的数据。
  9. 如权利要求8所述的方法,其特征在于,同步信号块SSB波束与PUSCH资源具有映射关系,在向所述终端设备发送所述数据接收成功指示之后,以及向所述终端设备发送连接释放消息之前,还包括:
    确定所述终端设备支持波束互易性,以及根据所述专属PUSCH资源和所述映射关系确定候选SSB波束;
    在所述候选SSB波束上向所述终端设备发送携带C-RNTI的PDCCH。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    在上行SSB波束上接收处于非连接态的所述终端设备发送的PUSCH,其中,所述上行SSB波束为所述终端设备根据所述候选SSB波束确定的。
  11. 一种通信装置,其特征在于,所述装置设置于终端设备,包括:
    收发模块,被配置为在连接态下向网络侧设备发送能力指示信息,其中,所述能力指示信息用于指示所述终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
  12. 一种通信装置,其特征在于,所述装置设置于网络侧设备,包括:
    收发模块,被配置为接收处于连接态的终端设备发送的能力指示信息,其中,所述能力指示信息用于指示所述终端设备在配置授权的小数据包传输CG-SDT过程中支持波束互易性。
  13. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至5中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求6至10中任一项所述的方法。
  14. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至5中任一项所述的方法,或用于运行所述代码指令以执行如权利要求6至10中任一项所述的方法。
  15. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至5中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求6至10中任一项所述的方法被实现。
PCT/CN2022/107530 2022-07-22 2022-07-22 能力上报方法和装置 WO2024016359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/107530 WO2024016359A1 (zh) 2022-07-22 2022-07-22 能力上报方法和装置
CN202280002513.9A CN115516909A (zh) 2022-07-22 2022-07-22 能力上报方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107530 WO2024016359A1 (zh) 2022-07-22 2022-07-22 能力上报方法和装置

Publications (1)

Publication Number Publication Date
WO2024016359A1 true WO2024016359A1 (zh) 2024-01-25

Family

ID=84513780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107530 WO2024016359A1 (zh) 2022-07-22 2022-07-22 能力上报方法和装置

Country Status (2)

Country Link
CN (1) CN115516909A (zh)
WO (1) WO2024016359A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560839A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种确定波束互易性能力当前状态的方法及终端
CN111867093A (zh) * 2019-04-24 2020-10-30 华为技术有限公司 一种波束互易性能力上报方法及装置
US20210160686A1 (en) * 2018-08-09 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and Device for Reporting Capability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560839A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种确定波束互易性能力当前状态的方法及终端
US20210160686A1 (en) * 2018-08-09 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and Device for Reporting Capability
CN111867093A (zh) * 2019-04-24 2020-10-30 华为技术有限公司 一种波束互易性能力上报方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Details of CG based SDT", 3GPP TSG-RAN WG2 #115-E ELECTRONIC MEETING R2-2108086, 5 August 2021 (2021-08-05), XP052032448 *

Also Published As

Publication number Publication date
CN115516909A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206106A1 (zh) 一种终端设备调度方法及其装置
WO2023092467A1 (zh) 一种智能中继的波束指示方法及装置
WO2023133736A1 (zh) 一种确定先听后说失败的方法及装置
WO2023230971A1 (zh) 一种多prach传输方法及其装置
WO2023230972A1 (zh) 资源配置方法及装置
WO2023206034A1 (zh) 混合自动重传请求harq反馈的处理方法及其装置
WO2024016359A1 (zh) 能力上报方法和装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023225876A1 (zh) 波束确定方法和装置
WO2024016360A1 (zh) 一种随机接入方法/装置/设备及存储介质
WO2024026887A1 (zh) 直连sidelink终端设备间内部协调信息请求的发送方法及其装置
WO2023220942A1 (zh) 随机接入方法及装置
EP4362564A1 (en) Timing relationship adjustment method and apparatus
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2024031373A1 (zh) 一种确定触发连续lbt失败的方法及装置
WO2024026801A1 (zh) 一种侧行链路sl波束配置方法、装置、设备及存储介质
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2024026799A1 (zh) 数据传输方法和装置
WO2024040484A1 (zh) 基于harq属性的载波选择或重选方法、装置及设备
WO2024060234A1 (zh) 信息上报方法和装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023159505A1 (zh) 波束管理方法和装置
WO2023173257A1 (zh) 一种请求系统信息的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951628

Country of ref document: EP

Kind code of ref document: A1