WO2024031373A1 - 一种确定触发连续lbt失败的方法及装置 - Google Patents

一种确定触发连续lbt失败的方法及装置 Download PDF

Info

Publication number
WO2024031373A1
WO2024031373A1 PCT/CN2022/111260 CN2022111260W WO2024031373A1 WO 2024031373 A1 WO2024031373 A1 WO 2024031373A1 CN 2022111260 W CN2022111260 W CN 2022111260W WO 2024031373 A1 WO2024031373 A1 WO 2024031373A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
failures
lbt failures
terminal device
failure detection
Prior art date
Application number
PCT/CN2022/111260
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/111260 priority Critical patent/WO2024031373A1/zh
Priority to CN202280003062.0A priority patent/CN115669181A/zh
Publication of WO2024031373A1 publication Critical patent/WO2024031373A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method and device for determining failure to trigger continuous LBT.
  • uplink and downlink operations can be performed in unlicensed frequency bands, in which the channel access of downlink and uplink relies on the listen before talk (LBT) feature.
  • LBT listen before talk
  • a sidelink communication method is introduced. Sidelink communication can also use unlicensed frequency bands, and terminal equipment also needs to perform LBT when sending sidelink data on unlicensed frequency bands.
  • the embodiment of the first aspect of the present disclosure provides a method for determining failure to trigger continuous LBT, which is applied to a terminal device.
  • the method includes:
  • the number of LBT failures on the sidelink is counted.
  • the trigger is determined. Continuous LBT failed.
  • the embodiment of the second aspect of the present disclosure provides another method for determining failure to trigger continuous LBT, which is applied to network equipment.
  • the method includes:
  • the instruction information is sent to the terminal device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method when sending sidelink data on the unlicensed frequency band.
  • the network device can instruct the terminal device to count the number of LBT failures on the sidelink in a specified manner, so that the terminal device can count the number of LBT failures on the sidelink in a manner specified in the instruction information, thereby realizing side Count the number of LBT failures on the uplink and determine whether to trigger consecutive LBT failures.
  • a third embodiment of the present disclosure provides a communication device applied to terminal equipment.
  • the device includes:
  • a processing module configured to count the number of LBT failures on the sidelink when sending sidelink data on the unlicensed frequency band; and determine the trigger when the number of LBT failures is greater than or equal to the maximum number of LBT failures. Continuous LBT failed.
  • the fourth embodiment of the present disclosure provides another communication device, which is applied to network equipment.
  • the device includes:
  • the transceiver module is configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink link according to a specified counting method when sending sidelink data on the unlicensed frequency band.
  • An embodiment of the fifth aspect of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • the embodiment of the sixth aspect of the present disclosure provides another communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in the memory, it executes the method described in the second aspect.
  • a seventh embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • An eighth embodiment of the present disclosure provides another communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the second aspect above.
  • the ninth aspect of the present disclosure provides another communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the first aspect above.
  • An embodiment of the tenth aspect of the present disclosure provides another communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the second aspect above.
  • An eleventh aspect embodiment of the present disclosure provides a system for determining triggering of continuous LBT failure.
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • a twelfth aspect embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned communication device. When the instructions are executed, the communication device is caused to execute the above-mentioned first aspect. method.
  • a thirteenth aspect embodiment of the present disclosure provides another computer-readable storage medium for storing instructions used by the above-mentioned communication device. When the instructions are executed, the communication device is caused to execute the above-mentioned second aspect. Methods.
  • a fourteenth aspect embodiment of the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • An embodiment of the fifteenth aspect of the present disclosure also provides another computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • An embodiment of the sixteenth aspect of the present disclosure provides a chip system.
  • the chip system includes at least one processor and an interface for supporting the communication device to implement the functions involved in the first aspect, for example, determining or processing the functions involved in the above method. At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store computer programs and data necessary for the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the embodiment of the seventeenth aspect of the present disclosure also provides another chip system.
  • the chip system includes at least one processor and an interface for supporting the communication device to implement the functions involved in the second aspect, for example, determining or processing the above method. At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store computer programs and data necessary for the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An eighteenth aspect embodiment of the present disclosure also provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the nineteenth aspect embodiment of the present disclosure also provides another computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 8 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 9 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 11 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 12 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 13 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure
  • Figure 14 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 15 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Figure 16 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city (smart city), wireless terminal equipment in smart home (smart home), etc.
  • the present disclosure does not limit the specific technology and specific equipment form used by the terminal equipment.
  • uplink and downlink operations can be performed in unlicensed frequency bands, in which channel access of downlink and uplink relies on LBT characteristics.
  • a sidelink communication method is introduced. Sidelink communication can also use unlicensed frequency bands, and terminal equipment also needs to perform LBT when sending sidelink data on unlicensed frequency bands.
  • the terminal device can count the number of LBT failures on the sidelink when sending sidelink data on the unlicensed frequency band, and determine if the number of LBT failures is greater than or equal to the maximum number of LBT failures. Triggering continuous LBT failures solves the problem of how to count the number of LBT failures and how to determine whether to trigger continuous LBT failures when the terminal device sends sidelink data on the unlicensed frequency band.
  • Figure 2 is a schematic flowchart of a method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 When sending sidelink data on the unlicensed frequency band, count the number of LBT failures on the sidelink.
  • sidelink data can include data sent by terminal devices to other terminal devices, control signaling, hybrid automatic repeat request (HARQ) feedback, etc.
  • HARQ hybrid automatic repeat request
  • sidelink data may include control instructions sent on the physical sidelink control channel (PSCCH), data sent on the physical sidelink shared channel (PSSCH), and Control instructions, HARQ feedback sent on the physical sidelink feedback channel (PSFCH), etc.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • Control instructions HARQ feedback sent on the physical sidelink feedback channel (PSFCH)
  • the terminal device when the terminal device sends sidelink data on the unlicensed frequency band, it will first perform LBT failure detection, and then send the data when the LBT failure detection is successful. Therefore, the terminal device can send sidelink data on the unlicensed frequency band. The number of LBT failures during link data is counted.
  • the LBT failure detection timer and the LBT failure count counter can be used to count the number of LBT failures.
  • the initial value of the LBT failure counter can be zero.
  • the physical layer of the terminal device will first perform LBT failure detection. If the LBT fails, the physical layer of the terminal device will report to the media The access control (medium access control, MAC) layer submits an LBT failure indication.
  • the access control (medium access control, MAC) layer submits an LBT failure indication.
  • the MAC layer of the terminal device receives the LBT failure indication submitted by the physical layer, the LBT failure number counter is incremented by 1, and the LBT failure detection timer is started or restarted. If no LBT failure indication is received while the LBT failure detection timer is running, the LBT failure count counter can be reset to 0.
  • the terminal device can count the number of LBT failures according to the granularity of the resource pool on the unlicensed frequency band, or it can count the number of LBT failures according to the granularity of the source address and destination address, or it can also count the number of LBT failures according to the activation bandwidth on the unlicensed frequency band.
  • the number of LBT failures can be counted at the (bandwidth part, BWP) granularity.
  • BWP bandwidth part
  • the number of LBT failures can also be counted according to any two of these three granularities.
  • the number of LBT failures can also be counted according to three granularities.
  • counting the number of LBT failures according to the granularity of the resource pool on the unlicensed frequency band may refer to counting the number of LBT failures when using resources in the resource pool to send side link data; counting the number of LBT failures according to the granularity of the source address and the destination address.
  • sidelinks and air interface uplinks may have priorities in sending data.
  • the sidelink data can be counted when the number of LBT failures on the sidelink is counted.
  • the sidelink LBT result may be included, or the sidelink LBT result may not be included, or one may be randomly selected from the sidelink LBT result being included or the sidelink LBT result may not be included. implementation, this disclosure does not limit this.
  • Step 202 When the number of LBT failures is greater than or equal to the maximum number of LBT failures, it is determined to trigger consecutive LBT failures.
  • the number of LBT failures is counted.
  • the number of LBT failures is greater than or equal to the maximum number of LBT failures, it can be determined that continuous LBT failures are triggered.
  • the maximum number of LBT failures may be preconfigured or configured by the network device, and this disclosure does not limit this.
  • the number of LBT failures on the sidelink is counted.
  • the number of LBT failures is greater than or equal to the maximum number of LBT failures, it is determined Triggering continuous LBT failed.
  • Figure 3 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 When using resources in the resource pool to send sidelink data, use the LBT failure detection timer to count the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with the resource pool.
  • the PSSCH, PSCCH and PSFCH associated with the resource pool can be understood as the PSSCH, PSCCH and PSFCH resources of the resource pool.
  • the terminal device sends sidelink data on the unlicensed frequency band, and one or more resource pools can be configured on the activated BWP.
  • the number of LBT failures can be counted according to the resource pool granularity. .
  • the terminal device when the terminal device uses resources in the resource pool to send data on channels such as PSSCH, PSCCH, and PSFCH, it can use the LBT failure detection timer to perform LBT on one or more channels among PSSCH, PSCCH, and PSFCH. The number of failures is counted.
  • the length of the LBT failure detection timer used for each resource pool may be preconfigured or configured by the network device, and this disclosure does not limit this.
  • the terminal device may receive the first configuration information sent by the network device, and may determine the LBT failure detection timer and the maximum number of LBT failures based on the first configuration information. Among them, the maximum number of LBT failures is used to determine whether the resource pool triggers consecutive LBT failures.
  • the first configuration information may be dedicated RRC signaling or system information blocks (SIB) system messages, that is, the network device may send the first configuration information to the terminal device through dedicated RRC signaling or SIB system messages.
  • SIB system information blocks
  • the first configuration information may include any of the following: the maximum number of LBT failures and the LBT failure detection timer corresponding to the resource pool; the maximum number of LBT failures and the LBT failure detection timer corresponding to the bandwidth BWP to which the resource pool belongs; The maximum number of LBT failures and the LBT failure detection timer corresponding to the unlicensed frequency band; the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the LBT failure detection timer used by the terminal device to count the number of LBT failures in a certain resource pool, and the maximum number of LBT failures used to determine whether to trigger consecutive LBT failures can be the number corresponding to the resource pool.
  • the maximum number of LBT failures and the LBT failure detection timer can also be the maximum number of LBT failures and the LBT failure detection timer corresponding to the BWP to which the resource pool belongs, or the maximum number of LBT failures and the LBT failure detection timer corresponding to the unlicensed frequency band. , or it can be the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to each resource pool under BWP. Then when the terminal device counts the number of LBT failures for each resource pool under BWP, it can use each The LBT failure detection timer corresponding to each resource pool can be used to determine whether each resource pool triggers consecutive LBT failures. The maximum number of LBT failures corresponding to each resource pool can be used.
  • the network device configures the maximum number of LBT failures and the LBT failure detection timer corresponding to the BWP for the terminal device. Then the terminal device can use the LBT failure number corresponding to the BWP when counting the number of LBT failures for each resource pool under the BWP. Detection timer, when determining whether each resource pool triggers consecutive LBT failures, you can use the maximum number of LBT failures corresponding to the BWP.
  • the network device configures the terminal device with the maximum number of LBT failures corresponding to the unlicensed frequency band and the LBT failure detection timer. Then, when the terminal device counts the number of LBT failures in each resource pool, it can use the LBT failure detection timer to which the resource pool belongs. The LBT failure detection timer corresponding to the unlicensed frequency band. When determining whether each resource pool triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the unlicensed frequency band to which the resource pool belongs can be used.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. Then the terminal device can use the LBT failure number corresponding to the terminal device when counting the number of LBT failures in each resource pool. Detection timer, when determining whether each resource pool triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the terminal device can be used.
  • the resource pool can maintain an LBT failure counter.
  • the initial value of the LBT failure counter can be zero, and the LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with the resource pool are counted.
  • the MAC layer of the terminal device can start or restart the LBT failure detection timer when receiving the LBT failure indication submitted by the physical layer, and add 1 to the LBT failure count counter corresponding to the resource pool. If the LBT failure detection timer is running If no LBT failure indication is received during this period, the LBT failure counter corresponding to the resource pool can be reset to 0. Therefore, the count value of the LBT failure counter corresponding to the resource pool is the sum of the LBT failure times on one or more channels among PSSCH, PSCCH and PSFCH.
  • sidelinks and air interface uplinks may have priorities in sending data.
  • the sidelink link when counting the number of LBT failures on one or more of the PSSCH, PSCCH and PSFCH channels associated with the resource pool, if the sidelink link has a lower priority than the air interface uplink, the sidelink If the link data is not sent successfully, the side link LBT result can be included or not included, or the side link LBT result can be included or not included.
  • An implementation is randomly selected in the calculation of link LBT results, and this disclosure does not limit this.
  • Step 302 Determine the number of LBT failures in the resource pool based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • the sum of the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH may be used as the number of LBT failures of the resource pool.
  • the number of LBT failures corresponding to each resource pool can be determined using the above method.
  • Step 303 When the number of LBT failures in the resource pool is greater than or equal to the maximum number of LBT failures, determine that the resource pool triggers continuous LBT failures.
  • the number of LBT failures in the resource pool is greater than or equal to the maximum number of LBT failures, it can be determined that the resource pool triggers continuous LBT failures.
  • the maximum number of LBT failures may be preconfigured or configured by the network device, and this disclosure does not limit this.
  • the above method can be used to determine the number of LBT failures for each resource pool. According to the maximum number of LBT failures for each resource pool, it can be determined whether each resource pool has triggered continuous LBT. fail.
  • the maximum number of LBT failures used when determining whether each resource pool triggers consecutive LBT failures may be configured by the network device, as described above, or may be preconfigured, which is not limited by this disclosure.
  • the terminal device can count the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with the resource pool when using resources in the resource pool to send sidelink data. And determine the number of LBT failures in the resource pool based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH. When the number of LBT failures in the resource pool is greater than or equal to the maximum number of LBT failures, determine the resource pool trigger. Continuous LBT failed.
  • the terminal device when the terminal device sends sidelink data on the unlicensed frequency band, it can count the number of LBT failures according to the resource pool granularity, and determine whether the resource pool triggers continuous failure based on the number of LBT failures and the maximum number of LBT failures in the resource pool. LBT failed.
  • FIG. 4 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 When using resources in the resource pool to send sidelink data, use the LBT failure detection timer to count the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with the resource pool.
  • Step 402 Determine the number of LBT failures in the resource pool based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • Step 403 When the number of LBT failures in the resource pool is greater than or equal to the maximum number of LBT failures, determine that the resource pool triggers continuous LBT failures.
  • steps 401 to 403 can be implemented in the manner shown in the embodiment shown in FIG. 3, which will not be described again in the embodiment of the present disclosure.
  • Step 404 If it is determined that the resource pool fails to trigger continuous LBT, perform any of the following operations: release all PC5-RRC connections associated with the terminal device; release all PC5-RRC connections associated with the terminal device that use resource pool resources; Release the PC5-RRC connection associated with the terminal device that only uses resource pool resources.
  • the terminal device when the terminal device determines that a certain resource pool fails to trigger continuous LBT, it can release all PC5-radio resource control (PC5-RRC) connections associated with the terminal device based on the PC5 interface, or release the terminal device All associated PC5-RRC connections that use resources in this resource pool, or release only PC5-RRC connections associated with the terminal device that use resources in this resource pool.
  • PC5-RRC PC5-radio resource control
  • all PC5-RRC connections associated with the terminal device may refer to all PC5-RRC connections between the terminal device and other terminal devices; all PC5-RRC connections associated with the terminal device that use the resources of the resource pool may refer to all PC5-RRC connections between the terminal device and other terminal devices.
  • all PC5-RRC connections that use the resources of this resource pool; the PC5-RRC connections associated with the terminal device that only use the resources of this resource pool can refer to the connection between the terminal device and other terminal devices In the PC5-RRC connection, only the resources of this resource pool are used and the PC5-RRC connections that do not use other resource pool resources are used.
  • the number of LBT failures can be counted according to the resource pool granularity.
  • the number of LBT failures in the resource pool is greater than or equal to the maximum number of LBT failures, , it is determined that the resource pool has failed to trigger continuous LBT.
  • FIG. 5 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 For the source address and target address pair, use the LBT failure detection timer to count the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with the source address and target address pair.
  • the PSSCH, PSCCH and PSFCH associated with the source address and target address pair can be understood as all sideline PSSCH, PSCCH and PSFCH used by the source address and target address pair on one or more resource pools.
  • the terminal device U0 performs sidelink communication with the terminal devices U1, U2, and U3 respectively. Then for the terminal device U0, there are a total of 3 source addresses. and target address pairs, respectively U0 and U1, U0 and U2, U0 and U3.
  • the LBT failure detection timer can be used to control one of PSSCH, PSCCH and PSFCH used in sidelink communication. Or count the number of LBT failures on multiple channels without distinguishing between resource pools.
  • the length of the LBT failure detection timer used for each source address and destination address pair can be preconfigured or configured by the network device. There is no limit to this.
  • the terminal device may receive the second configuration information sent by the network device, and may determine the LBT failure detection timer and the maximum number of LBT failures based on the second configuration information.
  • the maximum number of LBT failures is used to determine whether the source address and destination address pair triggers continuous LBT failures.
  • the second configuration information may be dedicated RRC signaling or SIB system messages, that is, the network device may send the second configuration information to the terminal device through dedicated RRC signaling or SIB system messages.
  • the second configuration information may include any of the following: the maximum number of LBT failures and the LBT failure detection timer corresponding to the target address; the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. It can be understood that the terminal device is the terminal device corresponding to the source address.
  • the LBT failure detection timer used by the terminal device to count the number of LBT failures for a certain source address and destination address pair, and the maximum number of LBT failures used to determine whether to trigger consecutive LBT failures may be the The maximum number of LBT failures and the LBT failure detection timer corresponding to the target address in the source address and destination address pair may also be the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device (that is, the terminal device corresponding to the source address).
  • the network device configures the terminal device with the maximum number of LBT failures corresponding to each destination address and the LBT failure detection timer, then the terminal device corresponding to the source address counts the number of LBT failures for each source address and destination address pair. , the LBT failure detection timer corresponding to the target address can be used. When determining whether each source address and target address pair triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the target address can be used.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. Then when the terminal device corresponding to the source address counts the number of LBT failures for each source address and destination address pair, The LBT failure detection timer corresponding to the terminal device can be used. When determining whether each source address and destination address pair triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the terminal device can be used.
  • the source address and target address pair can maintain an LBT failure count counter, and the initial value of the LBT failure count counter can be zero.
  • the MAC layer of the terminal device When counting the number of LBT failures on the channel, the MAC layer of the terminal device can start or restart the LBT failure detection timer when receiving the LBT failure indication submitted by the physical layer, and match the source address and the destination address with the corresponding number of LBT failures. The counter is incremented by 1. If no LBT failure indication is received during the running of the LBT failure detection timer, the LBT failure counter corresponding to the source address and destination address pair can be reset to 0. Therefore, the count value of the LBT failure counter corresponding to the source address and target address pair is the sum of the LBT failure times on one or more channels among PSSCH, PSCCH and PSFCH.
  • sidelinks and air interface uplinks may have priorities in sending data.
  • the sidelink LBT result can be included in the sum, or the sidelink LBT result can not be included in the sum, or the sidelink LBT result can be included in the sum.
  • An implementation is randomly selected without counting the sidelink LBT results, and this disclosure does not limit this.
  • Step 502 Determine the number of LBT failures for the source address and target address pair based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • the sum of the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH can be used as the number of LBT failures for the source address and target address pair.
  • the above method can be used to determine the number of LBT failures corresponding to each source address and target address pair.
  • Step 503 When the number of LBT failures for the source address and target address pair is greater than or equal to the maximum number of LBT failures, determine that the source address and target address pair trigger continuous LBT failures.
  • the number of LBT failures for the source address and destination address pair is greater than or equal to the maximum number of LBT failures, it can be determined that the source address and destination address pair trigger continuous LBT failures.
  • the maximum number of LBT failures may be preconfigured or configured by the network device, and this disclosure does not limit this.
  • the number of LBT failures for each source address and destination address pair can be determined using the above method. According to the maximum number of LBT failures for each source address and destination address pair, it can be determined Whether each source address and destination address pair triggers consecutive LBT failures. Among them, the maximum number of LBT failures used when determining whether each source address and destination address pair triggers consecutive LBT failures may be configured by the network device, as described above, or may be preconfigured. This disclosure does not make any reference to this. limited.
  • the terminal device can count the number of LBT failures on one or more channels among the PSSCH, PSCCH and PSFCH associated with the source address and target address pair, and calculate the number of LBT failures based on the PSSCH, PSCCH and PSFCH.
  • the number of LBT failures on one or more channels in PSCCH and PSFCH determines the number of LBT failures for the source address and destination address pair.
  • the terminal device when the terminal device sends sidelink data on the unlicensed frequency band, it can count the number of LBT failures according to the granularity of the source address and destination address pair, and the number of LBT failures and the maximum number of LBT failures based on the source address and destination address pair. times to determine whether the source address and destination address pairs trigger consecutive LBT failures.
  • FIG. 6 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 For the source address and target address pair, use the LBT failure detection timer to count the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with the source address and target address pair.
  • Step 602 Determine the number of LBT failures for the source address and target address pair based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • Step 603 When the number of LBT failures for the source address and target address pair is greater than or equal to the maximum number of LBT failures, determine that the source address and target address pair trigger consecutive LBT failures.
  • steps 601 to 603 can be implemented in the manner shown in the embodiment shown in FIG. 5, which will not be described again in the embodiment of the present disclosure.
  • Step 604 When it is determined that the source address and destination address pair fails to trigger continuous LBT, perform any of the following operations: release the PC5-RRC connection associated with the source address and destination address pair; determine the broadcast service associated with the destination address or The anchor service triggers continuous LBT failure.
  • the PC5-RRC connection associated with the source address and target address pair may refer to the PC5-RRC connection between the terminal device corresponding to the source address and the terminal device corresponding to the target address.
  • the PC5-RRC connection associated with the source address and target address pair can be released, or the broadcast service associated with the target address in the source address and target address pair can be determined Or the anchor business triggers continuous LBT failure.
  • the terminal device upper layer such as the V2X layer, can also be notified that the broadcast service or anchor service associated with the target address fails to trigger continuous LBT.
  • the number of LBT failures can be counted according to the granularity of the source address and the target address pair.
  • the number of LBT failures of the source address and target address pair is greater than or When it is equal to the maximum number of LBT failures, it is determined that the source address and destination address pair triggers continuous LBT failures. It is also possible to release the source address and destination address pair associated with the source address and destination address pair when it is determined that the source address and destination address pair triggers continuous LBT failures.
  • PC5-RRC connection or it is determined that the broadcast service or anchor service associated with the destination address in the source address and destination address pair triggers continuous LBT failure.
  • FIG. 7 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 701 When activating resources in all resource pools under BWP to send sidelink data, use the LBT failure detection timer to perform LBT on one or more channels among PSSCH, PSCCH and PSFCH associated with all resource pools under BWP. The number of failures is counted.
  • the PSSCH, PSCCH and PSFCH associated with all resource pools under BWP can be understood as activating the PSSCH, PSCCH and PSFCH resources of all resource pools under BWP.
  • the terminal device when the terminal device uses the resources of all resource pools under the activated BWP on the unlicensed frequency band to send data on channels such as PSSCH, PSCCH, and PSFCH, it can use the LBT failure detection timer to detect one of the PSSCH, PSCCH, and PSFCH. Count the number of LBT failures on one or more channels.
  • the length of the LBT failure detection timer used may be preconfigured or configured by the network device, and this disclosure does not limit this.
  • the terminal device may receive third configuration information sent by the network device, and may determine the LBT failure detection timer and the maximum number of LBT failures based on the third configuration information.
  • the maximum number of LBT failures is used to determine whether BWP triggers consecutive LBT failures.
  • the third configuration information may be dedicated RRC signaling or SIB system messages, that is, the network device may send the third configuration information to the terminal device through dedicated RRC signaling or SIB system messages.
  • the third configuration information may include any of the following: the maximum number of LBT failures and the LBT failure detection timer corresponding to the BWP; the maximum number of LBT failures and the LBT failure detection timer corresponding to the unlicensed frequency band; the maximum number of LBT failures and the LBT failure detection timer corresponding to the unlicensed frequency band; The maximum number of LBT failures and the LBT failure detection timer.
  • the LBT failure detection timer used by the terminal device to count the number of LBT failures of the BWP, and the maximum number of LBT failures used to determine whether to trigger consecutive LBT failures may be the maximum number of LBT failures corresponding to the BWP.
  • the number of LBT failures and the LBT failure detection timer can also be the maximum number of LBT failures and the LBT failure detection timer corresponding to the unlicensed frequency band to which the BWP belongs, or the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the BWP
  • the LBT failure detection timer corresponding to the BWP can be used.
  • the terminal device can use the corresponding number of unlicensed frequency bands to which the BWP belongs when counting the number of LBT failures of the BWP.
  • the LBT failure detection timer when determining whether the BWP triggers continuous LBT failures, can use the maximum number of LBT failures corresponding to the unlicensed frequency band to which the BWP belongs.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. Then the terminal device can use the LBT failure detection timer corresponding to the terminal device when counting the number of LBT failures of the BWP. , when determining whether BWP triggers continuous LBT failures, the maximum number of LBT failures corresponding to the terminal device can be used.
  • BWP can maintain an LBT failure counter, and the initial value of the LBT failure counter can be zero.
  • the number of LBT failures on one or more channels of PSSCH, PSCCH and PSFCH associated with all resource pools under BWP When counting, the MAC layer of the terminal device can start or restart the LBT failure detection timer when receiving the LBT failure indication submitted by the physical layer, and add 1 to the LBT failure count counter corresponding to the BWP. If the LBT failure detection timer is If no LBT failure indication is received during operation, the LBT failure counter corresponding to the BWP can be reset to 0. Therefore, the count value of the LBT failure counter corresponding to the BWP is the sum of the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with all resource pools under the BWP.
  • sidelinks and air interface uplinks may have priorities in sending data.
  • the priority of the sidelink is lower than that of the air interface uplink, If the sidelink data is not sent successfully, the sidelink LBT result can be included or not included, or the sidelink LBT result can be included and not included.
  • An implementation is randomly selected when counting the sidelink LBT results, and this disclosure does not limit this.
  • Step 702 Determine the number of LBT failures of the BWP based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with all resource pools under the BWP.
  • the sum of the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with all resource pools under the BWP can be used as the number of LBT failures of the BWP.
  • Step 703 When the number of LBT failures of the BWP is greater than or equal to the maximum number of LBT failures, it is determined that the BWP triggers continuous LBT failures.
  • the number of LBT failures of the BWP is greater than or equal to the maximum number of LBT failures, it can be determined that the BWP triggers continuous LBT failures.
  • the maximum number of LBT failures may be pre-configured or configured by the network device. This disclosure does not limit this.
  • the method for configuring the maximum number of LBT failures by the network device is as described above. The embodiments of the disclosure will not be used here. Again.
  • the terminal device when the terminal device uses the resources of all resource pools under the activated BWP to send sidelink data, it can configure one or more of the PSSCH, PSCCH and PSFCH channels associated with all resource pools under the BWP.
  • the number of LBT failures is counted, and the number of LBT failures in the BWP is determined based on the number of LBT failures on one or more channels of PSSCH, PSCCH and PSFCH associated with all resource pools under the BWP.
  • the number of LBT failures in the BWP is greater than or equal to the LBT. In the case of the maximum number of failures, it is determined that BWP triggers consecutive LBT failures.
  • the terminal device when the terminal device sends sidelink data on the unlicensed frequency band, it can count the number of LBT failures according to BWP granularity, and determine whether the BWP triggers consecutive LBT failures based on the number of LBT failures and the maximum number of LBT failures of the BWP.
  • Figure 8 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • Step 801 When activating resources in all resource pools under BWP to send sidelink data, use the LBT failure detection timer to perform LBT on one or more channels among PSSCH, PSCCH and PSFCH associated with all resource pools under BWP. The number of failures is counted.
  • Step 802 Determine the number of LBT failures of the BWP based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • Step 803 When the number of LBT failures of the BWP is greater than or equal to the maximum number of LBT failures, it is determined that the BWP triggers continuous LBT failures.
  • steps 801 to 803 can be implemented in the manner shown in the embodiment shown in FIG. 3, which will not be described again in the embodiment of the present disclosure.
  • Step 804 If it is determined that BWP fails to trigger continuous LBT, perform any of the following operations: release all PC5-RRC connections associated with the terminal device; release all PC5-RRC connections associated with the terminal device that use BWP resource pool resources. .
  • all PC5-RRC connections associated with the terminal device may refer to all PC5-RRC connections between the terminal device and other terminal devices
  • all PC5-RRC connections associated with the terminal device using BWP resource pool resources may refer to the terminal device and Among the PC5-RRC connections between other terminal devices, all PC5-RRC connections that use BWP resource pool resources.
  • all PC5-RRC connections associated with the terminal device may be released, or all PC5-RRC connections associated with the terminal device that use BWP resource pool resources may be released.
  • the number of LBT failures can be counted according to the BWP granularity.
  • the number of LBT failures in the BWP is greater than or equal to the maximum number of LBT failures, it is determined BWP fails to trigger continuous LBT. If it is determined that BWP fails to trigger continuous LBT, the PC5-RRC connection associated with the terminal device can be released, or all PC5-RRC connections associated with the terminal device that use BWP resource pool resources can be released.
  • FIG. 9 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Step 901 Receive instruction information sent by the network device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method.
  • the terminal device may receive instruction information sent by the network device, where the instruction information may be used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method. Therefore, the terminal device can count the number of LBT failures on the sidelink according to the counting method indicated by the network device.
  • the instruction information may include any of the following: instruct the terminal device to count the number of LBT failures on the sidelink according to the resource pool granularity; instruct the terminal device to count the number of LBT failures on the sidelink according to the source address and destination address. Count the number of LBT failures; instruct the terminal device to count the number of LBT failures on the sidelink according to BWP granularity.
  • the terminal device can count the number of LBT failures on the sidelink according to the resource pool granularity; if the instruction The information is used to instruct the terminal device to count the number of LBT failures on the granular sidelink by source address and destination address. Then the terminal device can count the number of LBT failures on the granular sidelink by source address and destination address.
  • the terminal device can count the number of LBT failures on the sidelink according to the BWP granularity.
  • the indication information can also be used to instruct the terminal device to count the number of LBT failures on the sidelink according to any two of the above three granularities, or to instruct the terminal device to count the number of LBT failures on the sidelink according to three granularities.
  • the number of failures is counted, which is not limited in this embodiment of the disclosure.
  • Step 902 When sending sidelink data on the unlicensed frequency band, count the number of LBT failures on the sidelink according to a specified counting method.
  • Step 903 When the number of LBT failures is greater than or equal to the maximum number of LBT failures, it is determined to trigger continuous LBT failures.
  • steps 902 to 903 can be implemented in any manner in the embodiments of the present disclosure, which are not limited by the embodiments of the present disclosure and will not be described again.
  • the terminal device can receive the instruction information sent by the network device, and when sending sidelink data on the unlicensed frequency band, the number of LBT failures on the sidelink link can be counted according to the counting method specified by the instruction information. , when the number of LBT failures is greater than or equal to the maximum number of LBT failures, it is determined to trigger continuous LBT failures. Thus, the terminal device can count the number of LBT failures on the sidelink according to the counting method indicated by the network device, and determine whether to trigger consecutive LBT failures.
  • FIG. 10 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a network device. As shown in Figure 10, the method may include but is not limited to the following steps:
  • Step 1001 Send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method when sending sidelink data on the unlicensed frequency band.
  • the network device can instruct the terminal device to count the number of LBT failures on the sidelink in a specified manner by sending instruction information to the network device.
  • the instruction information may include any of the following: instruct the terminal device to count the number of LBT failures on the sidelink according to the resource pool granularity; instruct the terminal device to count the number of LBT failures on the sidelink according to the source address and destination address. Count the number of LBT failures; instruct the terminal device to count the number of LBT failures on the sidelink according to BWP granularity.
  • the terminal device can count the number of LBT failures on the sidelink according to the resource pool granularity; if the instruction The information is used to instruct the terminal device to count the number of LBT failures on the granular sidelink by source address and destination address. Then the terminal device can count the number of LBT failures on the granular sidelink by source address and destination address.
  • the terminal device can count the number of LBT failures on the sidelink according to the BWP granularity.
  • the indication information can also be used to instruct the terminal device to count the number of LBT failures on the sidelink according to any two of the above three granularities, or to instruct the terminal device to count the number of LBT failures on the sidelink according to three granularities.
  • the number of failures is counted, which is not limited in this embodiment of the disclosure.
  • counting the number of LBT failures according to the resource pool granularity may refer to counting the number of LBT failures when using resources in the resource pool to send sidelink data. If multiple resource pools are configured on the activated BWP on the unlicensed frequency band, The number of LBT failures for each resource pool can be counted; counting the number of LBT failures at the granularity of source address and destination address can refer to LBT failures when the terminal device corresponding to the source address sends data to the terminal device corresponding to the target address.
  • Counting the number of LBT failures by BWP may refer to counting the number of LBT failures when all resource pool resources under the activated BWP on the unlicensed frequency band are used to transmit sidelink link data.
  • the network device may send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to count the LBT on the sidelink according to a specified counting method when sending sidelink data on the unlicensed frequency band. The number of failures is counted.
  • the network device can instruct the terminal device to count the number of LBT failures on the sidelink in a specified manner, so that the terminal device can count the number of LBT failures on the sidelink in a manner specified in the instruction information, thereby realizing Count the number of LBT failures on the sidelink and determine whether to trigger consecutive LBT failures.
  • FIG. 11 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure.
  • the method is executed by a network device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • Step 1101 Send first configuration information to the terminal device, where the first configuration information is used by the terminal device to determine the maximum number of LBT failures and the LBT failure detection timer.
  • the LBT failure detection timer is used to count the number of LBT failures in the resource pool, and the maximum number of LBT failures is used to determine whether the resource pool triggers continuous LBT failures.
  • the network device may send first configuration information to the terminal device to configure the LBT failure detection timer used to count the number of LBT failures in the resource pool, and configure the LBT failure detection timer used to determine whether the resource pool triggers continuous LBT failures. The maximum number of LBT failures.
  • the first configuration information may be dedicated RRC signaling or SIB system message.
  • the first configuration information includes any of the following: the maximum number of LBT failures and the LBT failure detection timer corresponding to the resource pool: the maximum number of LBT failures and the LBT failure detection timer corresponding to the bandwidth BWP to which the resource pool belongs; unauthorized The maximum number of LBT failures and the LBT failure detection timer corresponding to the frequency band; the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to each resource pool under BWP. Then when the terminal device counts the number of LBT failures for each resource pool under BWP, it can use each The LBT failure detection timer corresponding to each resource pool can be used to determine whether each resource pool triggers consecutive LBT failures. The maximum number of LBT failures corresponding to each resource pool can be used.
  • the network device configures the maximum number of LBT failures and the LBT failure detection timer corresponding to the BWP for the terminal device. Then the terminal device can use the LBT failure number corresponding to the BWP when counting the number of LBT failures for each resource pool under the BWP. Detection timer, when determining whether each resource pool triggers consecutive LBT failures, you can use the maximum number of LBT failures corresponding to the BWP.
  • the network device configures the terminal device with the maximum number of LBT failures corresponding to the unlicensed frequency band and the LBT failure detection timer. Then, when the terminal device counts the number of LBT failures in each resource pool, it can use the LBT failure detection timer to which the resource pool belongs. The LBT failure detection timer corresponding to the unlicensed frequency band. When determining whether each resource pool triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the unlicensed frequency band to which the resource pool belongs can be used.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. Then the terminal device can use the LBT failure number corresponding to the terminal device when counting the number of LBT failures in each resource pool. Detection timer, when determining whether each resource pool triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the terminal device can be used.
  • the network device may send the first configuration information to the terminal device, configure the LBT failure detection timer used by the terminal device when counting the number of LBT failures in the resource pool, and determine the resource through the first configuration information.
  • the maximum number of LBT failures used when the pool triggers continuous LBT failures. Therefore, the terminal device can count the number of LBT failures of the resource pool on the sidelink according to the first configuration information, and determine whether the resource pool triggers continuous LBT failures. .
  • Figure 12 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 12, the method may include but is not limited to the following steps:
  • Step 1201 Send second configuration information to the terminal device, where the second configuration information is used by the terminal device to determine the maximum number of LBT failures and the LBT failure detection timer.
  • the network device may send second configuration information to the terminal device to configure the terminal device with an LBT failure detection timer used to count the number of LBT failures for the source address and destination address pairs, and configure the determination of the source address and the destination address.
  • the maximum number of LBT failures used to determine whether to trigger consecutive LBT failures.
  • the second configuration information may be dedicated RRC signaling or SIB system message.
  • the second configuration information includes any of the following: the maximum number of LBT failures and the LBT failure detection timer corresponding to the target address: the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the network device configures the terminal device with the maximum number of LBT failures corresponding to each destination address and the LBT failure detection timer, then the terminal device corresponding to the source address counts the number of LBT failures for each source address and destination address pair. , the LBT failure detection timer corresponding to the target address can be used. When determining whether each source address and target address pair triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the target address can be used.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. Then when the terminal device corresponding to the source address counts the number of LBT failures for each source address and destination address pair, The LBT failure detection timer corresponding to the terminal device can be used. When determining whether each source address and destination address pair triggers consecutive LBT failures, the maximum number of LBT failures corresponding to the terminal device can be used.
  • the network device may send second configuration information to the terminal device, and configure the LBT failure detection timer used in counting the number of LBT failures for the source address and destination address pairs to the terminal device through the second configuration information, and the maximum number of LBT failures used when determining whether the source address and destination address pairs trigger continuous LBT failures.
  • the terminal device can count the number of LBT failures for the source address and destination address pairs according to the second configuration information, and determine Whether the pair of source address and destination address triggers continuous LBT failure.
  • Figure 13 is a schematic flowchart of another method for determining failure to trigger continuous LBT provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 13, the method may include but is not limited to the following steps:
  • Step 1301 Send third configuration information to the terminal device, where the third configuration information is used by the terminal device to determine the maximum number of LBT failures and the LBT failure detection timer.
  • the network device can send third configuration information to the terminal device to configure the LBT failure detection timer used to count the number of LBT failures of the BWP to the terminal device, and configure the LBT failure used to determine whether the BWP triggers continuous LBT failures. Maximum number of times.
  • the third configuration information may be dedicated RRC signaling or SIB system message.
  • the third configuration information includes any of the following: the maximum number of LBT failures and the LBT failure detection timer corresponding to the BWP; the maximum number of LBT failures and the LBT failure detection timer corresponding to the unlicensed frequency band; the LBT failure corresponding to the terminal device Maximum times and LBT failure detection timer.
  • the terminal device can use the LBT failure detection timer corresponding to the BWP when counting the number of LBT failures of the BWP.
  • the terminal device can use the maximum number of LBT failures corresponding to the BWP.
  • the terminal device can use the corresponding number of unlicensed frequency bands to which the BWP belongs when counting the number of LBT failures of the BWP.
  • the LBT failure detection timer when determining whether the BWP triggers continuous LBT failures, can use the maximum number of LBT failures corresponding to the unlicensed frequency band to which the BWP belongs.
  • the network device configures the terminal device with the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device. Then the terminal device can use the LBT failure detection timer corresponding to the terminal device when counting the number of LBT failures of the BWP. , when determining whether BWP triggers continuous LBT failures, the maximum number of LBT failures corresponding to the terminal device can be used.
  • the network device may send third configuration information to the terminal device, and configure the LBT failure detection timer used by the terminal device when counting the number of LBT failures of the BWP through the third configuration information, and when determining whether the BWP The maximum number of LBT failures used when triggering continuous LBT failures. Therefore, the terminal device can count the number of LBT failures of the BWP according to the third configuration information, and determine whether the BWP triggers continuous LBT failures.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present disclosure.
  • the communication device 1400 shown in FIG. 14 may include a processing module 1401 and a transceiver module 1402.
  • the transceiving module 1402 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1402 may implement the sending function and/or the receiving function.
  • the communication device 1400 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 1400 is on the terminal equipment side, where:
  • the processing module 1401 is used to count the number of LBT failures on the sidelink when sending sidelink data on the unlicensed frequency band; when the number of LBT failures is greater than or equal to the maximum number of LBT failures, determine whether to trigger continuous LBT failed.
  • Optional processing module 1401 is used for:
  • the LBT failure detection timer is used to control the physical sidelink control channel PSSCH, physical sidelink shared channel PSCCH and physical sidelink associated with the resource pool. Count the number of LBT failures on one or more channels in the feedback channel PSFCH;
  • the number of LBT failures in the resource pool is determined based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • Optional processing module 1401 is used for:
  • the LBT failure counter corresponding to the resource pool is reset to 0.
  • Optional processing module 1401 is used for:
  • Optional processing module 1401 is used for:
  • the above devices may also include:
  • Transceiver module 1402 configured to receive the first configuration information sent by the network device
  • the processing module 1401 is configured to determine the maximum number of LBT failures and the LBT failure detection timer according to the first configuration information.
  • the first configuration information is any of the following:
  • the first configuration information includes any of the following:
  • the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device is the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • Optional processing module 1401 is used for:
  • LBT failure detection timer For the source address and destination address pairs, use the LBT failure detection timer to count the number of LBT failures on one or more channels among the PSSCH, PSCCH and PSFCH associated with the source address and destination address pair;
  • the number of LBT failures for the source address and target address pair is determined based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • Optional processing module 1401 is used for:
  • the LBT failure number counter corresponding to the source address and destination address pair is reset to 0.
  • Optional processing module 1401 is used for:
  • the source address and destination address pair trigger consecutive LBT failures.
  • Optional processing module 1401 is used for:
  • the above devices may also include:
  • Transceiver module 1402 configured to receive the second configuration information sent by the network device
  • the processing module 1401 is configured to determine the maximum number of LBT failures and the LBT failure detection timer according to the second configuration information.
  • the second configuration information is any of the following:
  • the second configuration information includes any of the following:
  • the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device is the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • Optional processing module 1401 is used for:
  • LBT failure detection timer When activating the resources of all resource pools under BWP to send sidelink data, use the LBT failure detection timer to measure the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH associated with all resource pools under BWP. count;
  • the number of LBT failures of the BWP is determined based on the number of LBT failures on one or more channels among PSSCH, PSCCH and PSFCH.
  • Optional processing module 1401 is used for:
  • the LBT failure count counter corresponding to the BWP is reset to 0.
  • Optional processing module 1401 is used for:
  • Optional processing module 1401 is used for:
  • the above devices may also include:
  • the transceiver module 1402 is used to receive the third configuration information sent by the network device;
  • a processing module configured to determine the maximum number of LBT failures and the LBT failure detection timer according to the third configuration information.
  • the third configuration information is any of the following:
  • the third configuration information includes any of the following:
  • the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device is the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the above devices may also include:
  • the transceiver module 1402 is configured to receive instruction information sent by the network device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method.
  • the instruction information includes any of the following:
  • Optional processing module 1401 is used for:
  • An implementation is randomly selected between counting sidelink LBT results and not counting sidelink LBT results.
  • the terminal device when the terminal device sends sidelink data on the unlicensed frequency band, it counts the number of LBT failures on the sidelink. When the number of LBT failures is greater than or equal to the maximum number of LBT failures, it is determined that the triggering sequence is continuous. LBT failed. Thus, it is possible to count the number of LBT failures and determine whether to trigger consecutive LBT failures when using unlicensed frequency bands for sidelink communications.
  • the communication device 1400 may be a network device, a device in the network device, or a device that can be used in conjunction with the network device.
  • the communication device 1400 is on the network device side, where:
  • the transceiver module 1402 is configured to send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method when sending sidelink data on the unlicensed frequency band. count.
  • the instruction information includes any of the following:
  • the transceiver module 1402 is also used for:
  • the LBT failure detection timer is used to count the number of LBT failures in the resource pool.
  • the maximum number of LBT failures is The number of times is used to determine whether the resource pool triggers consecutive LBT failures.
  • the first configuration information includes any of the following:
  • the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device is the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the transceiver module 1402 is also used for:
  • the second configuration information is used by the terminal device to determine the maximum number of LBT failures and the LBT failure detection timer, and the LBT failure detection timer is used to count the number of LBT failures for the source address and destination address pairs.
  • the maximum number of LBT failures is used to determine whether a source address and destination address pair triggers consecutive LBT failures.
  • the second configuration information includes any of the following:
  • the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device is the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the transceiver module 1402 is also used for:
  • the third configuration information is used by the terminal device to determine the maximum number of LBT failures and the LBT failure detection timer.
  • the LBT failure detection timer is used to count the number of LBT failures that activate the BWP.
  • the maximum number of LBT failures is The number of times is used to determine whether BWP triggers consecutive LBT failures.
  • the third configuration information includes any of the following:
  • the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device is the maximum number of LBT failures and the LBT failure detection timer corresponding to the terminal device.
  • the network device can send instruction information to the terminal device, where the instruction information is used to instruct the terminal device to count the number of LBT failures on the sidelink according to a specified counting method when sending sidelink data on the unlicensed frequency band. Make a count.
  • the network device can instruct the terminal device to count the number of LBT failures on the sidelink in a specified manner, so that the terminal device can count the number of LBT failures on the sidelink in a manner specified in the instruction information, thereby realizing side Count the number of LBT failures on the uplink and how to determine whether to trigger consecutive LBT failures.
  • FIG. 15 is a schematic structural diagram of another communication device 1500 provided by an embodiment of the present disclosure.
  • the communication device 1500 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1500 may include one or more processors 1501.
  • the processor 1501 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1500 may also include one or more memories 1502, on which a computer program 1504 may be stored.
  • the processor 1501 executes the computer program 1504, so that the communication device 1500 performs the steps described in the above method embodiments. method.
  • the memory 1502 may also store data.
  • the communication device 1500 and the memory 1502 can be provided separately or integrated together.
  • the communication device 1500 may also include a transceiver 1505 and an antenna 1506.
  • the transceiver 1505 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1505 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1500 may also include one or more interface circuits 1507.
  • the interface circuit 1507 is used to receive code instructions and transmit them to the processor 1501 .
  • the processor 1501 executes the code instructions to cause the communication device 1500 to perform the method described in the above method embodiment.
  • the communication device 1500 is a terminal device: the processor 1501 is used to perform steps 201 to 202 in Figure 2; steps 301 to 303 in Figure 3; steps 401 to 404 in Figure 4; steps 501 to 501 in Figure 5 Step 503; Step 601 to Step 604 in Figure 6; Step 701 to Step 703 in Figure 7; Step 801 to Step 804 in Figure 8; Step 902 to Step 903 in Figure 9; etc.
  • the communication device 1500 is a network device: the transceiver 1505 is used to perform step 1001 in Figure 10; step 1101 in Figure 11; step 1201 in Figure 12; and step 1301 in Figure 13.
  • the processor 1501 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1501 may store a computer program 1503, and the computer program 1503 runs on the processor 1501, causing the communication device 1500 to perform the method described in the above method embodiment.
  • the computer program 1503 may be solidified in the processor 1501, in which case the processor 1501 may be implemented by hardware.
  • the communication device 1500 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 16 refer to the schematic structural diagram of the chip shown in FIG. 16 .
  • the chip shown in Figure 16 includes a processor 1601 and an interface 1603.
  • the number of processors 1601 may be one or more, and the number of interfaces 163 may be multiple.
  • the chip also includes a memory 1603, which is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种确定触发连续LBT失败的方法及装置,可以应用于通信技术领域,该方法包括:在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数;在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。由此,终端设备可以实现在使用非授权频段进行侧行链路通信时,对LBT失败次数进行计数及确定是否触发连续LBT失败。

Description

一种确定触发连续LBT失败的方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种确定触发连续LBT失败的方法及装置。
背景技术
相关技术中,可以在未授权频段进行上行和下行操作,其中,下行链路和上行链路的通道接入都依赖于先听后说(listen before talk,LBT)特性。另外,为了支持终端设备与终端设备之间的直接通信,引入了侧行链路通信方式。而侧行链路通信也可以使用非授权频段,终端设备在非授权频段上发送侧行链路数据时也需要做LBT。
发明内容
本公开第一方面实施例提供了一种确定触发连续LBT失败的方法,应用于终端设备,该方法包括:
在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数;
在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
在该技术方案中,通过在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数,在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。由此,可以实现在使用非授权频段进行侧行链路通信时,对LBT失败次数进行计数及确定是否触发连续LBT失败。
本公开第二方面实施例提供了另一种确定触发连续LBT失败的方法,应用于网络设备,该方法包括:
向终端设备发送指示信息,其中,指示信息用于指示终端设备在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。
本公开中,通过向终端设备发送指示信息,其中,指示信息用于指示终端设备在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。由此,网络设备可以指示终端设备按照指定方式对侧行链路上的LBT失败次数进行计数,从而终端设备可以根据指示信息中指定方式对侧行链路上的LBT失败次数进行计数,实现侧行链路上LBT失败次数进行计数及如何确定是否触发连续LBT失败。
本公开第三方面实施例提供了一种通信装置,应用于终端设备,该装置包括:
处理模块,用于在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数;在所述LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
本公开第四方面实施例提供了另一种通信装置,应用于网络设备,该装置包括:
收发模块,用于向终端设备发送指示信息,其中,指示信息用于指示终端设备在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。
本公开第五方面实施例提供了一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
本公开第六方面实施例提供了另一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
本公开第七方面实施例提供了一种通信装置,该通信设备包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
本公开第八方面实施例提供了另一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
本公开第九方面实施例提供了另一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
本公开第十方面实施例提供了另一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
本公开第十一方面实施例提供了一种确定触发连续LBT失败系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
本公开第十二方面实施例提供了一种计算机可读存储介质,用于储存为上述通信装置所用的指令,当所述指令被执行时,使所述通信装置执行上述第一方面所述的方法。
本公开第十三方面实施例提供了另一种计算机可读存储介质,用于储存为上述通信装置所用的指令,当所述指令被执行时,使所述通信装置执行上述第二方面所述的方法。
本公开第十四方面实施例还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本公开第十五方面实施例还提供另一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
本公开第十六方面实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持通信设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第十七方面实施例还提供了另一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持通信设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少 一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第十八方面实施例还提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本公开第十九方面实施例还提供了另一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开实施例提供的一种确定触发连续LBT失败的方法的流程示意图;
图3为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图4为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图5为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图6为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图7为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图8为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图9为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图10为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图11为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图12为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图13为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图;
图14为本公开实施例提供的一种通信装置的结构示意图;
图15为本公开实施例提供的另一种通信装置的结构示意图;
图16为本公开实施例提供的芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种确定触发连续LBT失败的方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid了中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
相关技术中,可以在未授权频段进行上行和下行操作,其中,下行链路和上行链路的通道接入都依赖于LBT特性。另外,为了支持终端设备与终端设备之间的直接通信,引入了侧行链路通信方式。而侧行链路通信也可以使用非授权频段,终端设备在非授权频段上发送侧行链路数据时也需要做LBT。
本公开中,终端设备可以在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数,并在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败,从而解决了当终端设备在非授权频段上发送侧行链路数据时,如何对LBT失败次数进行计数和如何确定是否触发连续LBT失败的问题。
下面结合附图对本公开所提供的一种确定触发连续LBT失败的方法及装置进行详细地介绍。
请参见图2,图2为本公开实施例提供的一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数。
其中,侧行链路数据可以包括终端设备向其他终端设备发送的数据、控制信令、混合自动重传请求(hybrid automatic repeat request,HARQ)反馈等。
比如,侧行链路数据可以包括在物理侧链控制信道(physical sidelink control channel,PSCCH)上发送的控制指令、在物理侧行链路共享信道(physical sidelink shared channel,PSSCH)上发送的数据和控制指令、在物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)发送的HARQ反馈等。
本公开中,终端设备在非授权频段上发送侧行链路数据时,会先进行LBT失败检测,在LBT失败检测成功时再发送数据,因此,可以对终端设备在非授权频段上发送侧行链路数据时的LBT失败次数进行计数。
本公开中,可以利用LBT失败检测定时器和LBT失败次数计数器,对LBT失败次数进行计数。其中,LBT失败次数计数器的初始值可以为零,终端设备每次发送侧行链路数据前,终端设备的物理层会先进行LBT失败检测,若LBT失败,那么终端设备的物理层会向媒体访问控制(medium access control,MAC)层递交LBT失败指示,在终端设备的MAC层接收到物理层递交的LBT失败指示时,LBT失败次数计数器加1,并且启动或者重启LBT失败检测定时器,在LBT失败检测定时器运行期间如果未收到LBT失败指示,那么LBT失败次数计数器可以重置为0。
本公开中,终端设备可以按照非授权频段上的资源池粒度对LBT失败次数进行计数,也可以按照源地址和目标地址对粒度对LBT失败次数进行计数,也可以按照非授权频段上的激活带宽(bandwidth part,BWP)粒度对LBT失败次数进行计数,也可以按照这三种粒度中的任意两种粒度对LBT失败次数进行计数,也可以分别按照三种粒度对LBT失败次数进行计数。
其中,按照非授权频段上资源池粒度对LBT失败次数进行计数可以是指对利用资源池中的资源发送侧行链路数据时的LBT失败次数进行计数;按照源地址和目标地址对粒度对LBT失败次数进行计数可以是指对源地址对应的终端设备向目标地址对应的终端设备发送数据时的LBT失败次数进行计数;按照非授权频段上的激活BWP对LBT失败次数进行计数可以是指对利用BWP下所有资源池资源发送侧行链路数据时的LBT失败次数进行计数。
在实际应用中,侧行链路与空口上行链路在发送数据可能会有优先级。可选的,若由于侧行链路的优先级低于空口上行链路,使侧行链路数据未发送成功,在对侧行链路上的LBT失败次数进行计数的情况下,可以将侧行链路LBT结果计入,或者也可以不将侧行链路LBT结果计入,或者也可以从将侧行链路LBT结果计入和不将侧行链路LBT结果计入中随机选择一种实现,本公开对此不作限定。
步骤202,在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
本公开中,终端设备在非授权频段上发送侧行链路数据时,对LBT失败次数进行计数,在LBT失败次数大于或等于LBT失败最大次数时,可以确定触发连续LBT失败。其中,LBT失败最大次数可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
本公开实施例中,终端设备在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数,在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。由此,可以实现在使用非授权频段进行侧行链路通信时,对LBT失败次数进行计数及确定是否触发连续LBT失败。
请参见图3,图3为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,在利用资源池中的资源发送侧行链路数据时,利用LBT失败检测定时器,对资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
其中,侧行链路数据可以参见上述实施例中的详细描述,本公开实施例对此不再赘述。
其中,资源池关联的PSSCH、PSCCH及PSFCH可以理解为资源池的PSSCH、PSCCH及PSFCH资源。
本公开中,非授权频段上有激活BWP,激活BWP上可以配置一个或多个资源池,终端设备在非授权频段上发送侧行链路数据时,可以按照资源池粒度对LBT失败次数进行计数。
本公开中,终端设备在利用资源池中的资源在PSSCH、PSCCH、PSFCH等信道上发送数据时,可以利用LBT失败检测定时器,对PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
本公开中,若BWP上配置了多个资源池,针对每个资源池所用的LBT失败检测定时器的时长可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,终端设备可以接收网络设备发送的第一配置信息,可以根据第一配置信息确定LBT失败检测定时器和LBT失败最大次数。其中,LBT失败最大次数用于确定资源池是否触发连续LBT失败。
本公开中,第一配置信息可以是专用RRC信令或者系统信息块(system information blocks,SIB)系统消息,也即网络设备可以通过专用RRC信令或者SIB系统消息向终端设备发送第一配置信息。
本公开中,第一配置信息可以包括包括以下任一项:资源池对应的LBT失败最大次数和LBT失败检测定时器;资源池所属的带宽BWP对应的LBT失败最大次数和LBT失败检测定时器;非授权频段对应的LBT失败最大次数和LBT失败检测定时器;终端设备对应的LBT失败最大次数和LBT失败检测定时器。
也就是说,本公开中,终端设备对某资源池的LBT失败次数进行计数时所用的LBT失败检测定时器,及确定是否触发连续LBT失败所用的LBT失败最大次数,可以是该资源池对应的LBT失败最大次数和LBT失败检测定时器,也可以是该资源池所属的BWP对应的LBT失败最大次数和LBT失败检测定时器,也可以是非授权频段对应的LBT失败最大次数和LBT失败检测定时器,也可以是该终端设备对应的LBT失败最大次数和LBT失败检测定时器。
比如,网络设备给终端设备配置了BWP下每个资源池对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP下每个资源池的LBT失败次数进行计数时,可以使用每个资源池对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用每个资源池对应的LBT失败最大次数。
又如,网络设备给终端设备配置了BWP对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP下每个资源池的LBT失败次数进行计数时,可以使用BWP对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用BWP对应的LBT失败最大次数。
又如,网络设备给终端设备配置了非授权频段对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对每个资源池的LBT失败次数进行计数时,可以使用该资源池所属的非授权频段对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用该资源池所属的非授权频段对应的LBT失败最大次数。
又如,网络设备给终端设备配置了终端设备对应的LBT失败最大次数和LBT失败检测定时器,那么 终端设备在对每个资源池的LBT失败次数进行计数时,可以使用终端设备对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用终端设备对应的LBT失败最大次数。
本公开中,资源池可以维护一个LBT失败次数计数器,LBT失败次数计数器的初始值可以为零,在对资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数时,终端设备的MAC层可以在接收到物理层递交的LBT失败指示时,启动或者重启LBT失败检测定时器,并将资源池对应的LBT失败次数计数器加1,若在LBT失败检测定时器运行期间未接收到LBT失败指示,可以将资源池对应的LBT失败次数计数器重置为0。由此,资源池对应的LBT失败次数计数器的计数值,即为PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数之和。
在实际应用中,侧行链路与空口上行链路在发送数据可能会有优先级。可选的,在对资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数时,若由于侧行链路的优先级低于空口上行链路,使侧行链路数据未发送成功,可以将侧行链路LBT结果计入,或者也可以不将侧行链路LBT结果计入,或者也可以从将侧行链路LBT结果计入和不将侧行链路LBT结果计入中随机选择一种实现,本公开对此不作限定。
步骤302,根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定资源池的LBT失败次数。
本公开中,可以将PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数之和,作为资源池的LBT失败次数。
本公开中,若BWP上配置了多个资源池,利用上述方法可以确定每个资源池对应的LBT失败次数。
步骤303,在资源池的LBT失败次数大于或等于LBT失败最大次数的情况下,确定资源池触发连续LBT失败。
本公开中,若资源池的LBT失败次数大于或等于LBT失败最大次数,可以确定资源池触发连续LBT失败。其中,LBT失败最大次数可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
本公开中,若BWP上配置了多个资源池,利用上述方法可以确定每个资源池的LBT失败次数,根据每个资源池的LBT失败最大次数,可以确定每个资源池是否触发了连续LBT失败。其中,在确定每个资源池是否触发连续LBT失败时所用的LBT失败最大次数,可以是网络设备配置的,如上述所述,或者也可以是预配置的,本公开对此不作限定。
本公开实施例中,终端设备可以在利用资源池中的资源发送侧行链路数据时,可以对资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数,并根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定资源池的LBT失败次数,在资源池的LBT失败次数大于或等于LBT失败最大次数的情况下,确定资源池触发连续LBT失败。由此,终端设备在非授权频段上发送侧行链路数据时,可以按资源池粒度对LBT失败次数进行计数,以及根据资源池的LBT失败次数和LBT失败最大次数,确定资源池是否触发连续LBT失败。
请参见图4,图4为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,在利用资源池中的资源发送侧行链路数据时,利用LBT失败检测定时器,对资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
步骤402,根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定资源池的LBT失败次数。
步骤403,在资源池的LBT失败次数大于或等于LBT失败最大次数的情况下,确定资源池触发连续LBT失败。
本公开中,步骤401-步骤403可以采用图3所示实施例中的方式实现,本公开实施例对此不再赘述。
步骤404,在确定资源池触发连续LBT失败的情况下,执行以下操作中任一项:释放终端设备关联的所有PC5-RRC连接;释放终端设备关联的所有使用资源池资源的PC5-RRC连接;释放终端设备关联的仅使用资源池资源的PC5-RRC连接。
本公开中,终端设备在确定某资源池触发连续LBT失败的情况下,可以释放终端设备关联的所有基于PC5接口的无线资源控制(PC5-radio resource control,PC5-RRC)连接,或者释放终端设备关联的所有使用该资源池资源的PC5-RRC连接,或者释放终端设备关联的仅使用该资源池资源的PC5-RRC连接。
其中,终端设备关联的所有PC5-RRC连接可以是指终端设备与其他终端设备之间的所有PC5-RRC连接;终端设备关联的所有使用该资源池资源的PC5-RRC连接可以是指终端设备与其他终端设备之间的PC5-RRC连接中,所有使用该资源池资源的PC5-RRC连接;终端设备关联的仅使用该资源池资源的PC5-RRC连接可以是指终端设备与其他终端设备之间的PC5-RRC连接中,仅使用该资源池资源没有使用其他资源池资源的PC5-RRC连接。
本公开实施例中,终端设备在非授权频段上发送侧行链路数据时,可以按资源池粒度对LBT失败次数进行计数,在资源池的LBT失败次数大于或等于LBT失败最大次数的情况下,确定资源池触发连续LBT失败,还可以在确定某资源池触发连续LBT失败的情况下,释放终端设备关联的PC5-RRC连接,或者释放终端设备关联的所有使用资源池资源的PC5-RRC连接,或者释放终端设备关联仅使用资源池资源的PC5-RRC连接。
请参见图5,图5为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,针对源地址和目标地址对,利用LBT失败检测定时器,对源地址和目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
其中,源地址和目标地址对关联的PSSCH、PSCCH及PSFCH可以理解为源地址和目标地址对在一个或者多个资源池上所用的所有侧行PSSCH、PSCCH及PSFCH。
本公开中,源地址和目标地址对可能有一个或多个,比如终端设备U0分别与终端设备U1、U2和U3进行侧行链路通信,那么对于终端设备U0而言,共有3个源地址和目标地址对,分别为U0与U1、U0与U2、U0与U3。
本公开中,源地址对应的终端设备与目标地址对应的终端设备进行侧行链路通信时,可以利用LBT失败检测定时器,对侧行链路通信时所用的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数,无需区分资源池。
本公开中,若有多个源地址与目标地址对,针个每源地址和目标地址对所用的LBT失败检测定时器 的时长可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,终端设备可以接收网络设备发送的第二配置信息,可以根据第二配置信息确定LBT失败检测定时器和LBT失败最大次数。其中,LBT失败最大次数用于确定源地址与目标地址对是否触发连续LBT失败。
本公开中,第二配置信息可以是专用RRC信令或者SIB系统消息,也即网络设备可以通过专用RRC信令或者SIB系统消息向终端设备发送第二配置信息。
本公开中,第二配置信息可以包括包括以下任一项:目标地址对应的LBT失败最大次数和LBT失败检测定时器;终端设备对应的LBT失败最大次数和LBT失败检测定时器。可以理解的是,该终端设备是源地址对应的终端设备。
也就是说,本公开中,终端设备对某源地址与目标地址对的LBT失败次数进行计数时所用的LBT失败检测定时器,及确定是否触发连续LBT失败所用的LBT失败最大次数,可以是该源地址与目标地址对中目标地址对应的LBT失败最大次数和LBT失败检测定时器,也可以是终端设备(也即源地址对应的终端设备)对应的LBT失败最大次数和LBT失败检测定时器。
比如,网络设备给终端设备配置了每个目标地址对应的LBT失败最大次数和LBT失败检测定时器,那么源地址对应的终端设备在对每个源地址与目标地址对的LBT失败次数进行计数时,可以使用目标地址对应的LBT失败检测定时器,在确定每个源地址与目标地址对是否触发连续LBT失败时,可以用目标地址对应的LBT失败最大次数。
又如,网络设备给终端设备配置了终端设备对应的LBT失败最大次数和LBT失败检测定时器,那么源地址对应的终端设备在对每个源地址与目标地址对的LBT失败次数进行计数时,可以使用终端设备对应的LBT失败检测定时器,在确定每个源地址与目标地址对是否触发连续LBT失败时,可以使用终端设备对应的LBT失败最大次数。
本公开中,源地址与目标地址对可以维护一个LBT失败次数计数器,LBT失败次数计数器的初始值可以为零,在对源地址与目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数时,终端设备的MAC层可以在接收到物理层递交的LBT失败指示时,启动或者重启LBT失败检测定时器,并将源地址与目标地址对对应的LBT失败次数计数器加1,若在LBT失败检测定时器运行期间未接收到LBT失败指示,可以将源地址与目标地址对对应的LBT失败次数计数器重置为0。由此,源地址与目标地址对对应的LBT失败次数计数器的计数值,即为PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数之和。
在实际应用中,侧行链路与空口上行链路在发送数据可能会有优先级。可选的,在对源地址和目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数时,若由于侧行链路的优先级低于空口上行链路,使侧行链路数据未发送成功,可以将侧行链路LBT结果计入,或者也可以不将侧行链路LBT结果计入,或者也可以从将侧行链路LBT结果计入和不将侧行链路LBT结果计入中随机选择一种实现,本公开对此不作限定。
步骤502,根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定源地址和目标地址对的LBT失败次数。
本公开中,可以将PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数之和,作为源地址和目标地址对的LBT失败次数。
本公开中,若有多个源地址与目标地址对,利用上述方法可以确定每个源地址与目标地址对对应的LBT失败次数。
步骤503,在源地址和目标地址对的LBT失败次数大于或等于LBT失败最大次数的情况下,确定源地址和目标地址对触发连续LBT失败。
本公开中,若源地址和目标地址对的LBT失败次数大于或等于LBT失败最大次数,可以确定源地址和目标地址对触发连续LBT失败。其中,LBT失败最大次数可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
本公开中,若有多个源地址与目标地址对,利用上述方法可以确定每个源地址与目标地址对的LBT失败次数,根据每个源地址与目标地址对的LBT失败最大次数,可以确定每个源地址与目标地址对是否触发了连续LBT失败。其中,在确定每个源地址与目标地址对是否触发连续LBT失败时所用的LBT失败最大次数,可以是网络设备配置的,如上述所述,或者也可以是预配置的,本公开对此不作限定。
本公开实施例中,终端设备针对源地址与目标地址对,可以对源地址与目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数,并根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定源地址与目标地址对的LBT失败次数,在源地址与目标地址对的LBT失败次数大于或等于LBT失败最大次数的情况下,确定源地址与目标地址对触发连续LBT失败。由此,终端设备在非授权频段上发送侧行链路数据时,可以按源地址与目标地址对粒度对LBT失败次数进行计数,以及根据源地址与目标地址对的LBT失败次数和LBT失败最大次数,确定源地址与目标地址对是否触发连续LBT失败。
请参见图6,图6为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,针对源地址和目标地址对,利用LBT失败检测定时器,对源地址和目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
步骤602,根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定源地址和目标地址对的LBT失败次数。
步骤603,在源地址和目标地址对的LBT失败次数大于或等于LBT失败最大次数的情况下,确定源地址和目标地址对触发连续LBT失败。
本公开中,步骤601-步骤603可以采用图5所示实施例中的方式实现,本公开实施例对此不再赘述。
步骤604,在确定源地址和目标地址对触发连续LBT失败的情况下,执行以下操作中的任一项:释放源地址和目标地址对关联的PC5-RRC连接;确定目标地址关联的广播业务或主播业务触发连续LBT失败。
其中,源地址和目标地址对关联的PC5-RRC连接可以是指源地址对应的终端设备与目标地址对应的终端设备之间的PC5-RRC连接。
本公开中,在确定源地址和目标地址对触发连续LBT失败的情况下,可以释放源地址和目标地址对 关联的PC5-RRC连接,或者确定源地址和目标地址对中目标地址关联的广播业务或主播业务触发连续LBT失败。
可选的,在确定目标地址关联的广播业务或主播业务触发连续LBT失败后,还可以通知终端设备高层,比如V2X层,目标地址关联的广播业务或主播业务触发连续LBT失败。
本公开实施例中,终端设备在非授权频段上发送侧行链路数据时,可以按源地址与目标地址对粒度对LBT失败次数进行计数,在源地址与目标地址对的LBT失败次数大于或等于LBT失败最大次数的情况下,确定源地址与目标地址对触发连续LBT失败,还可以在确定某源地址与目标地址对触发连续LBT失败的情况下,可以释放源地址和目标地址对关联的PC5-RRC连接,或者确定源地址和目标地址对中目标地址关联的广播业务或主播业务触发连续LBT失败。
请参见图7,图7为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,在激活BWP下所有资源池的资源发送侧行链路数据时,利用LBT失败检测定时器,对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
其中,侧行链路数据可以参见上述实施例中的详细描述,本公开实施例对此不再赘述。
其中,BWP下所有资源池关联的PSSCH、PSCCH及PSFCH可以理解为激活BWP下所有资源池的PSSCH、PSCCH及PSFCH资源。
本公开中,终端设备在利用非授权频段上的激活BWP下所有资源池的资源在PSSCH、PSCCH、PSFCH等信道上发送数据时,可以利用LBT失败检测定时器,对PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
本公开中,所用的LBT失败检测定时器的时长可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,终端设备可以接收网络设备发送的第三配置信息,可以根据第三配置信息确定LBT失败检测定时器和LBT失败最大次数。其中,LBT失败最大次数用于确定BWP是否触发连续LBT失败。
本公开中,第三配置信息可以是专用RRC信令或者SIB系统消息,也即网络设备可以通过专用RRC信令或者SIB系统消息向终端设备发送第三配置信息。
本公开中,第三配置信息可以包括包括以下任一项:BWP对应的LBT失败最大次数和LBT失败检测定时器;非授权频段对应的LBT失败最大次数和LBT失败检测定时器;终端设备对应的LBT失败最大次数和LBT失败检测定时器。
也就是说,本公开中,终端设备对BWP的LBT失败次数进行计数时所用的LBT失败检测定时器,及确定是否触发连续LBT失败所用的LBT失败最大次数,可以是该BWP对应的LBT失败最大次数和LBT失败检测定时器,也可以是该BWP所属的非授权频段对应的LBT失败最大次数和LBT失败检测定时器,也可以是该终端设备对应的LBT失败最大次数和LBT失败检测定时器。
比如,网络设备给终端设备配置了BWP对应的LBT失败最大次数和LBT失败检测定时器,那么在终端设备对BWP的LBT失败次数进行计数时,可以使用该BWP对应的LBT失败检测定时器,在确定BWP是否触发连续LBT失败时,可以使用该BWP对应的LBT失败最大次数。
又如,网络设备给终端设备配置了非授权频段对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP的LBT失败次数进行计数时,可以使用该BWP所属的非授权频段对应的LBT失败检测定时器,在确定BWP是否触发连续LBT失败时,可以使用该BWP所属的非授权频段对应的LBT失败最大次数。
又如,网络设备给终端设备配置了终端设备对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP的LBT失败次数进行计数时,可以使用终端设备对应的LBT失败检测定时器,在确定BWP是否触发连续LBT失败时,可以使用终端设备对应的LBT失败最大次数。
本公开中,BWP可以维护一个LBT失败次数计数器,LBT失败次数计数器的初始值可以为零,在对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数时,终端设备的MAC层可以在接收到物理层递交的LBT失败指示时,启动或者重启LBT失败检测定时器,并将BWP对应的LBT失败次数计数器加1,若在LBT失败检测定时器运行期间未接收到LBT失败指示,可以将BWP对应的LBT失败次数计数器重置为0。由此,BWP对应的LBT失败次数计数器的计数值,即为BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数之和。
在实际应用中,侧行链路与空口上行链路在发送数据可能会有优先级。可选的,在对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数时,若由于侧行链路的优先级低于空口上行链路,使侧行链路数据未发送成功,可以将侧行链路LBT结果计入,或者也可以不将侧行链路LBT结果计入,或者也可以从将侧行链路LBT结果计入和不将侧行链路LBT结果计入中随机选择一种实现,本公开对此不作限定。
步骤702,根据BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定BWP的LBT失败次数。
本公开中,可以将BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数之和,作为BWP的LBT失败次数。
步骤703,在BWP的LBT失败次数大于或等于LBT失败最大次数的情况下,确定BWP触发连续LBT失败。
本公开中,若BWP的LBT失败次数大于或等于LBT失败最大次数,可以确定BWP触发连续LBT失败。其中,LBT失败最大次数可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定,其中网络设备配置LBT失败最大次数的方法如上述所述,本公开实施例在此不再赘述。
本公开实施例中,终端设备可以在利用激活BWP下所有资源池的资源发送侧行链路数据时,可以对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数,并根据BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定BWP的LBT失败次数,在BWP的LBT失败次数大于或等于LBT失败最大次数的情况下,确定BWP触发连续LBT失败。由此,终端设备在非授权频段上发送侧行链路数据时,可以按BWP粒度对LBT失败次数进行计数,以及根据BWP的LBT失败次数和LBT失败最大次数,确定BWP是否触发连续LBT失败。
请参见图8,图8为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法 由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,在激活BWP下所有资源池的资源发送侧行链路数据时,利用LBT失败检测定时器,对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数。
步骤802,根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定BWP的LBT失败次数。
步骤803,在BWP的LBT失败次数大于或等于LBT失败最大次数的情况下,确定BWP触发连续LBT失败。
本公开中,步骤801-步骤803可以采用图3所示实施例中的方式实现,本公开实施例对此不再赘述。
步骤804,在确定BWP触发连续LBT失败的情况下,执行以下操作中的任一项:释放终端设备关联的所有PC5-RRC连接;释放终端设备关联的所有使用BWP资源池资源的PC5-RRC连接。
其中,终端设备关联的所有PC5-RRC连接可以是指终端设备与其他终端设备之间的所有PC5-RRC连接,终端设备关联的所有使用BWP资源池资源的PC5-RRC连接可以是指终端设备与其他终端设备之间的PC5-RRC连接中,所有使用BWP资源池资源的PC5-RRC连接。
本公开中,在确定BWP触发连续LBT失败的情况下,可以释放终端设备关联的所有PC5-RRC连接,或者释放终端设备关联的所有使用BWP资源池资源的PC5-RRC连接。
本公开实施例中,终端设备在非授权频段上发送侧行链路数据时,可以按BWP粒度对LBT失败次数进行计数,在BWP的LBT失败次数大于或等于LBT失败最大次数的情况下,确定BWP触发连续LBT失败,还可以在确定BWP触发连续LBT失败的情况下,释放终端设备关联的PC5-RRC连接,或者释放终端设备关联的所有使用BWP资源池资源的PC5-RRC连接。
请参见图9,图9为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,接收网络设备发送的指示信息,其中,指示信息用于指示终端设备按照指定计数方式对侧行链路上的LBT失败次数进行计数。
本公开中,终端设备可以接收网络设备发送的指示信息,其中,指示信息可以用于指示终端设备按照指定计数方式对侧行链路上的LBT失败次数进行计数。由此,终端设备可以按照网络设备指示的计数方式对侧行链路上LBT失败次数进行计数。
可选的,指示信息可以包括以下任一项:指示终端设备按资源池粒度对侧行链路上的LBT失败次数进行计数;指示终端设备按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数;指示终端设备按BWP粒度对侧行链路上的LBT失败次数进行计数。
那么,若指示信息用于指示终端设备按资源池粒度对侧行链路上的LBT失败次数进行计数,那么终端设备可以按资源池粒度对侧行链路上的LBT失败次数进行计数;若指示信息用于指示终端设备按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数,那么终端设备可以按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数;若指示信息用于指示终端设备按BWP粒度对侧行链路上的LBT失败次数进行计数,那么终端设备可以按BWP粒度对侧行链路上的LBT失败次数进行计数。
可选的,指示信息也可以用于指示终端设备按照上述三种粒度中的任意两种粒度对侧行链路上的LBT失败次数进行计数,也可以用于指示终端设备按照三种粒度对LBT失败次数进行计数,本公开实施例对此不作限定。
步骤902,在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。
步骤903,在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
本公开中,步骤902-步骤903可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例中,终端设备可以接收网络设备发送的指示信息,在非授权频段上发送侧行链路数据时,可以按照指示信息指定的计数方式对侧行链路上的LBT失败次数进行计数,在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。由此,终端设备可以根据网络设备指示的计数方式对侧行链路上的LBT失败次数进行计数,以及确定是否触发连续LBT失败。
请参见图10,图10为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,向终端设备发送指示信息,其中,指示信息用于指示终端设备在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。
本公开中,网络设备可以通过向网络设备发送指示信息,以指示终端设备按照指定方式对侧行链路上的LBT失败次数进行计数。
可选的,指示信息可以包括以下任一项:指示终端设备按资源池粒度对侧行链路上的LBT失败次数进行计数;指示终端设备按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数;指示终端设备按BWP粒度对侧行链路上的LBT失败次数进行计数。
那么,若指示信息用于指示终端设备按资源池粒度对侧行链路上的LBT失败次数进行计数,那么终端设备可以按资源池粒度对侧行链路上的LBT失败次数进行计数;若指示信息用于指示终端设备按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数,那么终端设备可以按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数;若指示信息用于指示终端设备按BWP粒度对侧行链路上的LBT失败次数进行计数,那么终端设备可以按BWP粒度对侧行链路上的LBT失败次数进行计数。
可选的,指示信息也可以用于指示终端设备按照上述三种粒度中的任意两种粒度对侧行链路上的LBT失败次数进行计数,也可以用于指示终端设备按照三种粒度对LBT失败次数进行计数,本公开实施例对此不作限定。
其中,按资源池粒度对LBT失败次数进行计数可以是指对利用资源池中的资源发送侧行链路数据时的LBT失败次数进行计数,若非授权频段上激活BWP上配置有多个资源池,可以对每个资源池的LBT失败次数进行计数;按源地址和目标地址对粒度对LBT失败次数进行计数可以是指对源地址对应的终端设备向目标地址对应的终端设备发送数据时的LBT失败次数进行计数;按BWP对LBT失败次数进行计数可以是指对利用非授权频段上激活BWP下所有资源池资源发送侧行链路数据时的LBT失败次数进行计数。
本公开实施例中,网络设备可以向终端设备发送指示信息,其中,指示信息用于指示终端设备在非 授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。由此,网络设备可以指示终端设备按照指定方式对侧行链路上的LBT失败次数进行计数,从而终端设备可以根据指示信息中指定方式对侧行链路上的LBT失败次数进行计数,实现对侧行链路上的LBT失败次数进行计数及如何确定是否触发连续LBT失败。
请参见图11,图11为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,向终端设备发送第一配置信息,其中,第一配置信息用于终端设备确定LBT失败最大次数和LBT失败检测定时器。
其中,LBT失败检测定时器用于对资源池的LBT失败次数进行计数,LBT失败最大次数用于确定资源池是否触发连续LBT失败。
本公开中,网络设备可以向终端设备发送第一配置信息,以给终端设备配置对资源池的LBT失败次数进行计数所用的LBT失败检测定时器,以及配置确定资源池是否触发连续LBT失败所用的LBT失败最大次数。
可选的,第一配置信息可以为专用RRC信令或者SIB系统消息。
可选的,第一配置信息包括以下任一项:资源池对应的LBT失败最大次数和LBT失败检测定时器:资源池所属的带宽BWP对应的LBT失败最大次数和LBT失败检测定时器;非授权频段对应的LBT失败最大次数和LBT失败检测定时器;终端设备对应的LBT失败最大次数和LBT失败检测定时器。
比如,网络设备给终端设备配置了BWP下每个资源池对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP下每个资源池的LBT失败次数进行计数时,可以使用每个资源池对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用每个资源池对应的LBT失败最大次数。
又如,网络设备给终端设备配置了BWP对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP下每个资源池的LBT失败次数进行计数时,可以使用BWP对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用BWP对应的LBT失败最大次数。
又如,网络设备给终端设备配置了非授权频段对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对每个资源池的LBT失败次数进行计数时,可以使用该资源池所属的非授权频段对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用该资源池所属的非授权频段对应的LBT失败最大次数。
又如,网络设备给终端设备配置了终端设备对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对每个资源池的LBT失败次数进行计数时,可以使用终端设备对应的LBT失败检测定时器,在确定每个资源池是否触发连续LBT失败时,可以使用终端设备对应的LBT失败最大次数。
本公开实施例中,网络设备可以向终端设备发送第一配置信息,通过第一配置信息给终端设备配置在对资源池的LBT失败次数进行计数时所用的LBT失败检测定时器,以及在确定资源池是否触发连续LBT失败时所用的LBT失败最大次数,由此,终端设备可以根据第一配置信息实现对侧行链路上资源池的LBT失败次数进行计数,以及确定资源池是否触发连续LBT失败。
请参见图12,图12为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由网络设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤1201,向终端设备发送第二配置信息,其中,第二配置信息用于终端设备确定LBT失败最大次数和LBT失败检测定时器。
本公开中,网络设备可以向终端设备发送第二配置信息,以给终端设备配置对源地址与目标地址对的LBT失败次数进行计数所用的LBT失败检测定时器,以及配置确定源地址与目标地址对是否触发连续LBT失败所用的LBT失败最大次数。
可选的,第二配置信息可以为专用RRC信令或者SIB系统消息。
可选的,第二配置信息包括以下任一项:目标地址对应的LBT失败最大次数和LBT失败检测定时器:终端设备对应的LBT失败最大次数和LBT失败检测定时器。
比如,网络设备给终端设备配置了每个目标地址对应的LBT失败最大次数和LBT失败检测定时器,那么源地址对应的终端设备在对每个源地址与目标地址对的LBT失败次数进行计数时,可以使用目标地址对应的LBT失败检测定时器,在确定每个源地址与目标地址对是否触发连续LBT失败时,可以用目标地址对应的LBT失败最大次数。
又如,网络设备给终端设备配置了终端设备对应的LBT失败最大次数和LBT失败检测定时器,那么源地址对应的终端设备在对每个源地址与目标地址对的LBT失败次数进行计数时,可以使用终端设备对应的LBT失败检测定时器,在确定每个源地址与目标地址对是否触发连续LBT失败时,可以使用终端设备对应的LBT失败最大次数。
本公开实施例中,网络设备可以向终端设备发送第二配置信息,通过第二配置信息给终端设备配置在对源地址与目标地址对的LBT失败次数进行计数时所用的LBT失败检测定时器,以及在确定源地址与目标地址对是否触发连续LBT失败时所用的LBT失败最大次数,由此,终端设备可以根据第二配置信息实现对源地址与目标地址对的LBT失败次数进行计数,以及确定源地址与目标地址对是否触发连续LBT失败。
请参见图13,图13为本公开实施例提供的另一种确定触发连续LBT失败的方法的流程示意图,该方法由网络设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤1301,向终端设备发送第三配置信息,其中,第三配置信息用于终端设备确定LBT失败最大次数和LBT失败检测定时器。
本公开中,网络设备可以向终端设备发送第三配置信息,以给终端设备配置对BWP的LBT失败次数进行计数所用的LBT失败检测定时器,以及配置确定BWP是否触发连续LBT失败所用的LBT失败最大次数。
可选的,第三配置信息可以为专用RRC信令或者SIB系统消息。
可选的,第三配置信息包括以下任一项:BWP对应的LBT失败最大次数和LBT失败检测定时器;非授权频段对应的LBT失败最大次数和LBT失败检测定时器;终端设备对应的LBT失败最大次数和LBT失败检测定时器。
比如,网络设备给终端设备配置了BWP对应的LBT失败最大次数和LBT失败检测定时器,那么终端 设备在对BWP的LBT失败次数进行计数时,可以使用该BWP对应的LBT失败检测定时器,在确定BWP是否触发连续LBT失败时,可以使用该BWP对应的LBT失败最大次数。
又如,网络设备给终端设备配置了非授权频段对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP的LBT失败次数进行计数时,可以使用该BWP所属的非授权频段对应的LBT失败检测定时器,在确定BWP是否触发连续LBT失败时,可以使用该BWP所属的非授权频段对应的LBT失败最大次数。
又如,网络设备给终端设备配置了终端设备对应的LBT失败最大次数和LBT失败检测定时器,那么终端设备在对BWP的LBT失败次数进行计数时,可以使用终端设备对应的LBT失败检测定时器,在确定BWP是否触发连续LBT失败时,可以使用终端设备对应的LBT失败最大次数。
本公开实施例中,网络设备可以向终端设备发送第三配置信息,通过第三配置信息给终端设备配置在对BWP的LBT失败次数进行计数时所用的LBT失败检测定时器,以及在确定BWP是否触发连续LBT失败时所用的LBT失败最大次数,由此,终端设备可以根据第三配置信息实现对BWP的LBT失败次数进行计数,以及确定BWP是否触发连续LBT失败。
请参见图14,图14为本公开实施例提供的一种通信装置1400的结构示意图。图14所示的通信装置1400可包括处理模块1401和收发模块1402。收发模块1402可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1402可以实现发送功能和/或接收功能。
可以理解的是,通信装置1400可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置1400在终端设备侧,其中:
处理模块1401,用于在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数;在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
可选的,处理模块1401,用于:
在利用资源池中的资源发送侧行链路数据时,利用LBT失败检测定时器,对资源池关联的物理侧行链路控制信道PSSCH、物理侧行链路共享信道PSCCH及物理侧行链路反馈信道PSFCH中一种或多种信道上的LBT失败次数进行计数;
根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定资源池的LBT失败次数。
可选的,处理模块1401,用于:
在接收到物理层递交的LBT失败指示时,启动或者重启LBT失败检测定时器,并将资源池对应的LBT失败次数计数器加1;
在LBT失败检测定时器运行期间未接收到LBT失败指示,将资源池对应的LBT失败次数计数器重置为0。
可选的,处理模块1401,用于:
在资源池的LBT失败次数大于或等于LBT失败最大次数的情况下,确定资源池触发连续LBT失败。
可选的,处理模块1401,用于:
在确定资源池触发连续LBT失败的情况下,执行以下操作中的任一项:
释放终端设备关联的所有基于PC5接口的无线资源控制PC5-RRC连接;
释放终端设备关联的所有使用资源池资源的PC5-RRC连接;
释放终端设备关联的仅使用资源池资源的PC5-RRC连接。
可选的,上述装置,还可以包括:
收发模块1402,用于接收网络设备发送的第一配置信息;
处理模块1401,用于根据第一配置信息,确定LBT失败最大次数和LBT失败检测定时器。
可选的,第一配置信息为以下任一项:
专用RRC信令;
系统信息块SIB系统消息。
可选的,第一配置信息包括以下任一项:
资源池对应的LBT失败最大次数和LBT失败检测定时器;
资源池所属的带宽BWP对应的LBT失败最大次数和LBT失败检测定时器;
非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
终端设备对应的LBT失败最大次数和LBT失败检测定时器。
可选的,处理模块1401,用于:
针对源地址和目标地址对,利用LBT失败检测定时器,对源地址和目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数;
根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定源地址和目标地址对的LBT失败次数。
可选的,处理模块1401,用于:
在接收到物理层递交的LBT失败指示时,启动或者重启LBT失败检测定时器,并将源地址和目标地址对对应的LBT失败次数计数器加1;
在LBT失败检测定时器运行期间未接收到LBT失败指示,将源地址和目标地址对对应的LBT失败次数计数器重置为0。
可选的,处理模块1401,用于:
在源地址和目标地址对的LBT失败次数大于或等于LBT失败最大次数的情况下,确定源地址和目标地址对触发连续LBT失败。
可选的,处理模块1401,用于:
在确定源地址和目标地址对触发连续LBT失败的情况下,执行以下操作中的任一项:
释放源地址和目标地址对关联的PC5-RRC连接;
确定目标地址关联的广播业务或主播业务触发连续LBT失败。
可选的,上述装置还可以包括:
收发模块1402,用于接收网络设备发送的第二配置信息;
处理模块1401,用于根据第二配置信息,确定LBT失败最大次数和LBT失败检测定时器。
可选的,第二配置信息为以下任一项:
专用RRC信令;
SIB系统消息。
可选的,第二配置信息包括以下任一项:
目标地址对应的LBT失败最大次数和LBT失败检测定时器;
终端设备对应的LBT失败最大次数和LBT失败检测定时器。
可选的,处理模块1401,用于:
在激活BWP下所有资源池的资源发送侧行链路数据时,利用LBT失败检测定时器,对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数;
根据PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数,确定BWP的LBT失败次数。
可选的,处理模块1401,用于:
在接收到物理层递交的LBT失败指示时,启动或者重启LBT失败检测定时器,并将BWP对应的LBT失败次数计数器加1;
在LBT失败检测定时器运行期间未接收到LBT失败指示时,将BWP对应的LBT失败次数计数器重置为0。
可选的,处理模块1401,用于:
在BWP的LBT失败次数大于或等于LBT失败最大次数的情况下,确定BWP触发连续LBT失败。
可选的,处理模块1401,用于:
在确定BWP触发连续LBT失败的情况下,执行以下操作中的任一项:
释放终端设备关联的所有PC5-RRC连接;
释放终端设备关联的所有使用BWP资源池资源的PC5-RRC连接。
可选的,上述装置还可以包括:
收发模块1402,用于接收网络设备发送的第三配置信息;
处理模块,用于根据第三配置信息,确定LBT失败最大次数和LBT失败检测定时器。
可选的,第三配置信息为以下任一项:
专用RRC信令;
SIB系统消息。
可选的,第三配置信息包括以下任一项:
BWP对应的LBT失败最大次数和LBT失败检测定时器;
非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
终端设备对应的LBT失败最大次数和LBT失败检测定时器。
可选的,上述装置还可以包括:
收发模块1402,用于接收网络设备发送的指示信息,其中,指示信息用于指示终端设备按照指定计数方式对侧行链路上的LBT失败次数进行计数。
可选的,指示信息包括以下任一项:
指示终端设备按资源池粒度对侧行链路上的LBT失败次数进行计数;
指示终端设备按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数;
指示终端设备按BWP粒度对侧行链路上的LBT失败次数进行计数。
可选的,处理模块1401,用于:
在因侧行链路的优先级低于空口上行链路,使侧行链路数据未发送成功的情况下,执行以下操作中的任一项:
将侧行链路LBT结果计入;
不将侧行链路LBT结果计入;
从将侧行链路LBT结果计入和不将侧行链路LBT结果计入中随机选择一种实现。
本公开中,终端设备在非授权频段上发送侧行链路数据时,对侧行链路上的LBT失败次数进行计数,在LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。由此,可以实现在使用非授权频段进行侧行链路通信时,对LBT失败次数进行计数及确定是否触发连续LBT失败。
可以理解的是,通信装置1400可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置1400在网络设备侧,其中:
收发模块1402,用于向终端设备发送指示信息,其中,指示信息用于指示终端设备在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。
可选的,指示信息包括以下任一项:
指示终端设备按资源池粒度对侧行链路上的LBT失败次数进行计数;
指示终端设备按源地址和目标地址对粒度对侧行链路上的LBT失败次数进行计数;
指示终端设备按BWP粒度对侧行链路上的LBT失败次数进行计数。
可选的,收发模块1402,还用于:
向终端设备发送第一配置信息,其中,第一配置信息用于终端设备确定LBT失败最大次数和LBT失败检测定时器,LBT失败检测定时器用于对资源池的LBT失败次数进行计数,LBT失败最大次数用于确定资源池是否触发连续LBT失败。
可选的,第一配置信息包括以下任一项:
资源池对应的LBT失败最大次数和LBT失败检测定时器;
资源池所属的带宽BWP对应的LBT失败最大次数和LBT失败检测定时器;
非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
终端设备对应的LBT失败最大次数和LBT失败检测定时器。
可选的,收发模块1402,还用于:
向终端设备发送第二配置信息,其中,第二配置信息用于终端设备确定LBT失败最大次数和LBT失败检测定时器,LBT失败检测定时器用于对源地址和目标地址对的LBT失败次数进行计数,LBT失 败最大次数用于确定源地址和目标地址对是否触发连续LBT失败。
可选的,第二配置信息包括以下任一项:
目标地址对应的LBT失败最大次数和LBT失败检测定时器;
终端设备对应的LBT失败最大次数和LBT失败检测定时器。
可选的,收发模块1402,还用于:
向终端设备发送第三配置信息,其中,第三配置信息用于终端设备确定LBT失败最大次数和LBT失败检测定时器,LBT失败检测定时器用于对激活BWP的LBT失败次数进行计数,LBT失败最大次数用于确定BWP是否触发连续LBT失败。
可选的,第三配置信息包括以下任一项:
BWP对应的LBT失败最大次数和LBT失败检测定时器;
非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
终端设备对应的LBT失败最大次数和LBT失败检测定时器。
本公开中,网络设备可以向终端设备发送指示信息,其中,指示信息用于指示终端设备在非授权频段上发送侧行链路数据时,按照指定计数方式对侧行链路上的LBT失败次数进行计数。由此,网络设备可以指示终端设备按照指定方式对侧行链路上的LBT失败次数进行计数,从而终端设备可以根据指示信息中指定方式对侧行链路上的LBT失败次数进行计数,实现侧行链路上LBT失败次数的计数及如何确定是否触发连续LBT失败。
请参见图15,图15为本公开实施例提供的另一种通信装置1500的结构示意图。通信装置1500可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1500可以包括一个或多个处理器1501。处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1500中还可以包括一个或多个存储器1502,其上可以存有计算机程序1504,处理器1501执行所述计算机程序1504,以使得通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1502中还可以存储有数据。通信装置1500和存储器1502可以单独设置,也可以集成在一起。
可选的,通信装置1500还可以包括收发器1505、天线1506。收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1500中还可以包括一个或多个接口电路1507。接口电路1507用于接收代码指令并传输至处理器1501。处理器1501运行所述代码指令以使通信装置1500执行上述方法实施例中描述的方法。
通信装置1500为终端设备:处理器1501用于执行图2中的步骤201-步骤202;图3中的步骤301-步骤303;图4中的步骤401-步骤404;图5中的步骤501-步骤503;图6中的步骤601-步骤604;图7中的步骤701-步骤703;图8中的步骤801-步骤804;图9中的步骤902-步骤903;等。
通信装置1500为网络设备:收发器1505用于执行图10中的步骤1001;图11中的步骤1101;图12中的步骤1201;图13中的步骤1301。
在一种实现方式中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1501可以存有计算机程序1503,计算机程序1503在处理器1501上运行,可使得通信装置1500执行上述方法实施例中描述的方法。计算机程序1503可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
在一种实现方式中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备,或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。图16所示的芯片包括处理器1601和接口1603。其中,处理器1601的数量可以是一个或多个,接口163的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1603,用于执行图9中的步骤9019等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1603,用于执行图10中的步骤1001;图11中的步骤1101;图12中的步骤1201;图13中的步骤1301等。
可选的,芯片还包括存储器1603,存储器1603用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。

Claims (37)

  1. 一种确定触发连续先听后说LBT失败的方法,其特征在于,由终端设备执行,所述方法包括:
    在非授权频段上发送例行链路数据时,对例行链路上的LBT失败次数进行计数;
    在所述LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
  2. 如权利要求1所述的方法,其特征在于,所述对例行链路上的LBT失败次数进行计数,包括:
    在利用资源池中的资源发送例行链路数据时,利用LBT失败检测定时器,对所述资源池关联的物理例行链路控制信道PSSCH、物理例行链路共享信道PSCCH及物理例行链路反馈信道PSFCH中一种或多种信道上的LBT失败次数进行计数;
    根据所述PSSCH、所述PSCCH及所述PSFCH中一种或多种信道上的LBT失败次数,确定所述资源池的LBT失败次数。
  3. 如权利要求2所述的方法,其特征在于,所述利用LBT失败检测定时器,对所述资源池关联的物理例行链路控制信道PSSCH、物理例行链路共享信道PSCCH及物理例行链路反馈信道PSFCH中一种或多种信道上的LBT失败次数进行计数,包括:
    在接收到物理层递交的LBT失败指示时,启动或者重启所述LBT失败检测定时器,并将资源池对应的LBT失败次数计数器加1;
    在所述LBT失败检测定时器运行期间未接收到LBT失败指示,将所述资源池对应的LBT失败次数计数器重置为0。
  4. 如权利要求2所述的方法,其特征在于,所述确定触发连续LBT失败,包括:
    在所述资源池的LBT失败次数大于或等于所述LBT失败最大次数的情况下,确定所述资源池触发连续LBT失败。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    在所述确定所述资源池触发连续LBT失败的情况下,执行以下操作中的任一项:
    释放所述终端设备关联的所有基于PC5接口的无线资源控制PC5-RRC连接;
    释放所述终端设备关联的所有使用所述资源池资源的PC5-RRC连接;
    释放所述终端设备关联的仅使用所述资源池资源的PC5-RRC连接。
  6. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第一配置信息;
    根据所述第一配置信息,确定所述LBT失败最大次数和所述LBT失败检测定时器。
  7. 如权利要求6所述的方法,其特征在于,所述第一配置信息为以下任一项:
    专用RRC信令;
    系统信息块SIB系统消息。
  8. 如权利要求6所述的方法,其特征在于,所述第一配置信息包括以下任一项:
    所述资源池对应的LBT失败最大次数和LBT失败检测定时器;
    所述资源池所属的带宽BWP对应的LBT失败最大次数和LBT失败检测定时器;
    所述非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
    所述终端设备对应的LBT失败最大次数和LBT失败检测定时器。
  9. 如权利要求1所述的方法,其特征在于,所述对例行链路上的LBT失败次数进行计数,包括:
    针对源地址和目标地址对,利用LBT失败检测定时器,对所述源地址和目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数;
    根据所述PSSCH、所述PSCCH及所述PSFCH中一种或多种信道上的LBT失败次数,确定所述源地址和目标地址对的LBT失败次数。
  10. 如权利要求9所述的方法,其特征在于,所述利用LBT失败检测定时器,对所述源地址和目标地址对关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数,包括:
    在接收到物理层递交的LBT失败指示时,启动或者重启所述LBT失败检测定时器,并将所述源地址和目标地址对对应的LBT失败次数计数器加1;
    在所述LBT失败检测定时器运行期间未接收到LBT失败指示,将所述源地址和目标地址对对应的LBT失败次数计数器重置为0。
  11. 如权利要求9所述的方法,其特征在于,所述确定触发连续LBT失败,包括:
    在所述源地址和目标地址对的LBT失败次数大于或等于所述LBT失败最大次数的情况下,确定所述源地址和目标地址对触发连续LBT失败。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    在所述确定所述源地址和目标地址对触发连续LBT失败的情况下,执行以下操作中的任一项:
    释放所述源地址和目标地址对关联的PC5-RRC连接;
    确定所述目标地址关联的广播业务或主播业务触发连续LBT失败。
  13. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第二配置信息;
    根据所述第二配置信息,确定所述LBT失败最大次数和所述LBT失败检测定时器。
  14. 如权利要求13所述的方法,其特征在于,所述第二配置信息为以下任一项:
    专用RRC信令;
    SIB系统消息。
  15. 如权利要求13所述的方法,其特征在于,所述第二配置信息包括以下任一项:
    所述目标地址对应的LBT失败最大次数和LBT失败检测定时器;
    所述终端设备对应的LBT失败最大次数和LBT失败检测定时器。
  16. 如权利要求1所述的方法,其特征在于,所述对例行链路上的LBT失败次数进行计数,包括:
    在激活BWP下所有资源池的资源发送例行链路数据时,利用LBT失败检测定时器,对所述BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数;
    根据所述PSSCH、所述PSCCH及所述PSFCH中一种或多种信道上的LBT失败次数,确定所述BWP的LBT失败次数。
  17. 如权利要求16所述的方法,其特征在于,所述利用LBT失败检测定时器,对所述BWP下所有资源池关联的PSSCH、PSCCH及PSFCH中一种或多种信道上的LBT失败次数进行计数,包括:
    在接收到物理层递交的LBT失败指示时,启动或者重启所述LBT失败检测定时器,并将所述BWP对应的LBT失败次数计数器加1;
    在所述LBT失败检测定时器运行期间未接收到LBT失败指示时,将所述BWP对应的LBT失败次数计数器重置为0。
  18. 如权利要求16所述的方法,其特征在于,所述确定触发连续LBT失败,包括:
    在所述BWP的LBT失败次数大于或等于所述LBT失败最大次数的情况下,确定所述BWP触发连续LBT失败。
  19. 如权利要求18所述的方法,其特征在于,还包括:
    在所述确定所述BWP触发连续LBT失败的情况下,执行以下操作中的任一项:
    释放所述终端设备关联的所有PC5-RRC连接;
    释放所述终端设备关联的所有使用所述BWP资源池资源的PC5-RRC连接。
  20. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第三配置信息;
    根据所述第三配置信息,确定所述LBT失败最大次数和所述LBT失败检测定时器。
  21. 如权利要求20所述的方法,其特征在于,所述第三配置信息为以下任一项:
    专用RRC信令;
    SIB系统消息。
  22. 如权利要求20所述的方法,其特征在于,所述第三配置信息包括以下任一项:
    所述BWP对应的LBT失败最大次数和LBT失败检测定时器;
    所述非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
    所述终端设备对应的LBT失败最大次数和LBT失败检测定时器。
  23. 如权利要求1-22任一项所述的方法,其特征在于,还包括:
    接收网络设备发送的指示信息,其中,所述指示信息用于指示所述终端设备按照指定计数方式对例行链路上的LBT失败次数进行计数。
  24. 如权利要求23所述的方法,其特征在于,所述指示信息包括以下任一项:
    指示所述终端设备按资源池粒度对例行链路上的LBT失败次数进行计数;
    指示所述终端设备按源地址和目标地址对粒度对例行链路上的LBT失败次数进行计数;
    指示所述终端设备按BWP粒度对例行链路上的LBT失败次数进行计数。
  25. 如权利要求1-24任一项所述的方法,其特征在于,所述对例行链路上的LBT失败次数进行计数,包括:
    在因例行链路的优先级低于空口上行链路,使例行链路数据未发送成功的情况下,执行以下操作中的任一项:
    将例行链路LBT结果计入;
    不将例行链路LBT结果计入;
    从将例行链路LBT结果计入和不将例行链路LBT结果计入中随机选择一种实现。
  26. 一种确定触发连续LBT失败的方法,其特征在于,由网络设备执行,所述方法包括:
    向终端设备发送指示信息,其中,所述指示信息用于指示所述终端设备在非授权频段上发送例行链路数据时,按照指定计数方式对例行链路上的LBT失败次数进行计数。
  27. 如权利要求26所述的方法,其特征在于,所述指示信息包括以下任一项:
    指示所述终端设备按资源池粒度对例行链路上的LBT失败次数进行计数;
    指示所述终端设备按源地址和目标地址对粒度对例行链路上的LBT失败次数进行计数;
    指示所述终端设备按BWP粒度对例行链路上的LBT失败次数进行计数。
  28. 如权利要求26所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一配置信息,其中,所述第一配置信息用于所述终端设备确定LBT失败最大次数和LBT失败检测定时器,所述LBT失败检测定时器用于对资源池的LBT失败次数进行计数,所述LBT失败最大次数用于确定所述资源池是否触发连续LBT失败。
  29. 如权利要求28所述的方法,其特征在于,所述第一配置信息包括以下任一项:
    所述资源池对应的LBT失败最大次数和LBT失败检测定时器;
    所述资源池所属的带宽BWP对应的LBT失败最大次数和LBT失败检测定时器;
    所述非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
    所述终端设备对应的LBT失败最大次数和LBT失败检测定时器。
  30. 如权利要求26所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,其中,所述第二配置信息用于所述终端设备确定LBT失败最大次数和LBT失败检测定时器,所述LBT失败检测定时器用于对源地址和目标地址对的LBT失败次数进行计数,所述LBT失败最大次数用于确定所述源地址和目标地址对是否触发连续LBT失败。
  31. 如权利要求30所述的方法,其特征在于,所述第二配置信息包括以下任一项:
    所述目标地址对应的LBT失败最大次数和LBT失败检测定时器;
    所述终端设备对应的LBT失败最大次数和LBT失败检测定时器。
  32. 如权利要求26所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三配置信息,其中,所述第三配置信息用于所述终端设备确定LBT失败最大次数和LBT失败检测定时器,所述LBT失败检测定时器用于对激活BWP的LBT失败次数进行计数,所述LBT失败最大次数用于确定所述BWP是否触发连续LBT失败。
  33. 如权利要求32所述的方法,其特征在于,所述第三配置信息包括以下任一项:
    所述BWP对应的LBT失败最大次数和LBT失败检测定时器;
    所述非授权频段对应的LBT失败最大次数和LBT失败检测定时器;
    所述终端设备对应的LBT失败最大次数和LBT失败检测定时器。
  34. 一种通信装置,其特征在于,包括:
    处理模块,用于在非授权频段上发送例行链路数据时,对例行链路上的LBT失败次数进行计数;在所述LBT失败次数大于或等于LBT失败最大次数的情况下,确定触发连续LBT失败。
  35. 一种通信装置,其特征在于,包括:
    收发模块,用于向终端设备发送指示信息,其中,所述指示信息用于指示所述终端设备在非授权频段上发送例行链路数据时,按照指定计数方式对例行链路上的LBT失败次数进行计数。
  36. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至25中任一项所述的方法,或者执行如权利要求26至33中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至25中任一项所述的方法被实现,或者使如权利要求26至33中任一项所述的方法被实现。
PCT/CN2022/111260 2022-08-09 2022-08-09 一种确定触发连续lbt失败的方法及装置 WO2024031373A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/111260 WO2024031373A1 (zh) 2022-08-09 2022-08-09 一种确定触发连续lbt失败的方法及装置
CN202280003062.0A CN115669181A (zh) 2022-08-09 2022-08-09 一种确定触发连续lbt失败的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111260 WO2024031373A1 (zh) 2022-08-09 2022-08-09 一种确定触发连续lbt失败的方法及装置

Publications (1)

Publication Number Publication Date
WO2024031373A1 true WO2024031373A1 (zh) 2024-02-15

Family

ID=85022362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111260 WO2024031373A1 (zh) 2022-08-09 2022-08-09 一种确定触发连续lbt失败的方法及装置

Country Status (2)

Country Link
CN (1) CN115669181A (zh)
WO (1) WO2024031373A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863777A (zh) * 2019-01-16 2019-06-07 北京小米移动软件有限公司 Lbt失败的处理方法和lbt失败的处理装置
CN110945949A (zh) * 2017-08-11 2020-03-31 Lg电子株式会社 在无线通信系统中基于lbt过程处置预配置的ul资源的方法及其装置
CN111294871A (zh) * 2019-01-31 2020-06-16 展讯通信(上海)有限公司 触发小区重选的方法及装置、存储介质、用户终端
CN113261373A (zh) * 2019-01-07 2021-08-13 高通股份有限公司 对信道接入问题的处理
CN113273269A (zh) * 2019-01-09 2021-08-17 鸿颖创新有限公司 用于lbt失败检测的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945949A (zh) * 2017-08-11 2020-03-31 Lg电子株式会社 在无线通信系统中基于lbt过程处置预配置的ul资源的方法及其装置
CN113261373A (zh) * 2019-01-07 2021-08-13 高通股份有限公司 对信道接入问题的处理
CN113273269A (zh) * 2019-01-09 2021-08-17 鸿颖创新有限公司 用于lbt失败检测的方法和设备
CN109863777A (zh) * 2019-01-16 2019-06-07 北京小米移动软件有限公司 Lbt失败的处理方法和lbt失败的处理装置
CN111294871A (zh) * 2019-01-31 2020-06-16 展讯通信(上海)有限公司 触发小区重选的方法及装置、存储介质、用户终端

Also Published As

Publication number Publication date
CN115669181A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023133736A1 (zh) 一种确定先听后说失败的方法及装置
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2023216203A1 (zh) 资源配置方法及装置
WO2023206034A1 (zh) 混合自动重传请求harq反馈的处理方法及其装置
WO2024031373A1 (zh) 一种确定触发连续lbt失败的方法及装置
WO2024060154A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024092622A1 (zh) 一种lbt失败次数的计数方法及装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024060234A1 (zh) 信息上报方法和装置
WO2024026799A1 (zh) 数据传输方法和装置
WO2023230971A1 (zh) 一种多prach传输方法及其装置
WO2024060233A1 (zh) 信息上报方法和装置
WO2024026800A1 (zh) 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2024045039A1 (zh) 一种能力交互方法/装置/设备及存储介质
WO2024031272A1 (zh) 一种上报方法、装置、设备及存储介质
WO2024000207A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质
WO2024000208A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质
WO2024011547A1 (zh) 数据传输方法和装置
WO2023240419A1 (zh) 一种接入控制的方法及装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2024016360A1 (zh) 一种随机接入方法/装置/设备及存储介质
WO2024000205A1 (zh) 传输控制方法及其装置
WO2024092532A1 (zh) 一种侧行链路harq rtt定时器的启动或重启方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954349

Country of ref document: EP

Kind code of ref document: A1