WO2024092622A1 - 一种lbt失败次数的计数方法及装置 - Google Patents

一种lbt失败次数的计数方法及装置 Download PDF

Info

Publication number
WO2024092622A1
WO2024092622A1 PCT/CN2022/129565 CN2022129565W WO2024092622A1 WO 2024092622 A1 WO2024092622 A1 WO 2024092622A1 CN 2022129565 W CN2022129565 W CN 2022129565W WO 2024092622 A1 WO2024092622 A1 WO 2024092622A1
Authority
WO
WIPO (PCT)
Prior art keywords
psfch
continuous
lbt
lbt failure
failure detection
Prior art date
Application number
PCT/CN2022/129565
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280004826.8A priority Critical patent/CN118303127A/zh
Priority to PCT/CN2022/129565 priority patent/WO2024092622A1/zh
Publication of WO2024092622A1 publication Critical patent/WO2024092622A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method and device for counting the number of LBT failures.
  • uplink and downlink operations can be performed in unlicensed frequency bands, wherein channel access for both downlink and uplink relies on a listen before talk (LBT) feature.
  • LBT listen before talk
  • the transmitting terminal device sends sidelink control information (SCI) on the physical sidelink control channel (PSCCH) and the second stage SCI on the physical sidelink shared channel (PSSCH).
  • SCI sidelink control information
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • HARQ hybrid automatic repeat request
  • the receiving terminal device performs HARQ feedback on the physical sidelink feedback channel (PSFCH) for PSSCH. LBT failure detection is required before sending HARQ feedback on PSFCH.
  • the first aspect of the present disclosure provides a method for counting the number of LBT failures, the method comprising:
  • the number of LBT failures of the PSFCH is counted.
  • the second aspect of the present disclosure provides another method for counting the number of LBT failures, including:
  • Send first configuration information to a terminal device wherein the first configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a resource pool, and the continuous PSFCH LBT failure detection timer corresponding to the resource pool is used to count the number of LBT failures of the PSFCH on the resource pool.
  • a third aspect of the present disclosure provides a communication device, including:
  • a processing module used to determine the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH;
  • the number of LBT failures of the PSFCH is counted.
  • a fourth aspect of the present disclosure provides another communication device, including:
  • a transceiver module is used to send first configuration information to a terminal device, wherein the first configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a resource pool, and the continuous PSFCH LBT failure detection timer corresponding to the resource pool is used to count the number of LBT failures of the PSFCH on the resource pool.
  • a fifth aspect of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the first aspect is executed.
  • a sixth aspect of the present disclosure provides another communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the second aspect is executed.
  • the seventh aspect embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the first aspect above.
  • An eighth aspect embodiment of the present disclosure provides another communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the second aspect above.
  • a ninth aspect of the present disclosure provides another communication device, which includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to enable the device to execute the method described in the first aspect above.
  • a tenth aspect embodiment of the present disclosure provides another communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the method described in the second aspect above.
  • An eleventh embodiment of the present disclosure provides a system for counting the number of LBT failures, the system comprising the communication device described in the third aspect and the communication device described in the fourth aspect, or the system comprising the communication device described in the fifth aspect and the communication device described in the sixth aspect, or the system comprising the communication device described in the seventh aspect and the communication device described in the eighth aspect, or the system comprising the communication device described in the ninth aspect and the communication device described in the tenth aspect.
  • the twelfth aspect embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned communication device. When the instructions are executed, the communication device executes the method described in the first aspect.
  • a thirteenth aspect of the present disclosure provides another computer-readable storage medium for storing instructions for the above-mentioned communication device. When the instructions are executed, the communication device executes the method described in the second aspect.
  • the fourteenth aspect embodiment of the present disclosure further provides a computer program product comprising a computer program, which, when executed on a computer, enables the computer to execute the method described in the first aspect above.
  • the fifteenth aspect embodiment of the present disclosure also provides another computer program product including a computer program, which, when executed on a computer, enables the computer to execute the method described in the second aspect above.
  • the sixteenth aspect embodiment of the present disclosure provides a chip system, which includes at least one processor and an interface, for supporting a communication device to implement the functions involved in the first aspect, for example, determining or processing at least one of the data and information involved in the above method.
  • the chip system also includes a memory, which is used to store computer programs and data necessary for the communication device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the seventeenth aspect embodiment of the present disclosure further provides another chip system, which includes at least one processor and an interface for supporting the communication device to implement the functions involved in the second aspect, for example, determining or processing at least one of the data and information involved in the above method.
  • the chip system also includes a memory, which is used to store computer programs and data necessary for the communication device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the eighteenth aspect embodiment of the present disclosure also provides a computer program, which, when executed on a computer, enables the computer to execute the method described in the first aspect above.
  • the nineteenth aspect embodiment of the present disclosure also provides another computer program, which, when executed on a computer, enables the computer to execute the method described in the second aspect above.
  • FIG1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • FIG2 is a flow chart of a method for counting the number of LBT failures provided in an embodiment of the present disclosure
  • FIG3 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG4 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG5 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG6 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG7 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG8 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG9 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG10 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG11 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG12 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG13 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG14 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG15 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG16 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG17 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG18 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG19 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG20 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG21 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG22 is a flow chart of another method for counting the number of LBT failures provided in an embodiment of the present disclosure.
  • FIG23 is a schematic diagram of the structure of a communication device provided in an embodiment of the present disclosure.
  • FIG24 is a schematic diagram of the structure of another communication device provided in an embodiment of the present disclosure.
  • FIG. 25 is a schematic diagram of the structure of a chip provided in an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of devices shown in FIG. 1 are only used as examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in FIG. 1 includes, for example, a network device 11 and a terminal device 12.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved NodeB (eNB), a transmission point (TRP), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission point
  • gNB next generation NodeB
  • WiFi wireless fidelity
  • the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in the embodiment of the present disclosure may be composed of a central unit (CU) and a distributed unit (DU), wherein the CU may also be referred to as a control unit.
  • CU central unit
  • DU distributed unit
  • the CU-DU structure may be used to split the protocol layer of the network device, such as a base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • the terminal device 12 in the disclosed embodiment is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (MS), a mobile terminal device (MT), etc.
  • the terminal device may be a car with communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control (industrial control), a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid (smart grid), a wireless terminal device in transportation safety (transportation safety), a wireless terminal device in a smart city (smart city), a wireless terminal device in a smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the communication system described in the embodiment of the present disclosure is for the purpose of more clearly illustrating the technical solution of the embodiment of the present disclosure, and does not constitute a limitation on the technical solution provided by the embodiment of the present disclosure.
  • a person skilled in the art can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present disclosure is also applicable to similar technical problems.
  • the transmitting terminal device sends SCI on PSCCH and second-stage SCI on PSSCH.
  • the receiving terminal device performs HARQ feedback on PSSCH on PSFCH.
  • LBT failure detection is required.
  • a HARQ-enabled PSSCH resource is associated with multiple PSFCH resources, the terminal device needs to perform LBT before sending each PSFCH resource. These PSFCH resources may be closely spaced. If the terminal device includes the LBT failures of multiple consecutive PSFCHs when counting the number of consecutive LBT failures, the terminal device may frequently trigger consecutive LBT failures of the sidelink, affecting the link communication quality.
  • the terminal device can determine the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, and count the number of LBT failures of the PSFCH based on the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, thereby avoiding frequent triggering of continuous LBT failures of the side link and improving the link communication quality.
  • Figure 2 is a flow chart of a method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 determining the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH.
  • the HARQ-enabled PSSCH may be understood as a PSSCH indicating that HARQ feedback is required, wherein the HARQ-enabled PSSCH may be associated with multiple PSFCHs.
  • LBT failure detection is performed before HARQ feedback is performed on the PSFCH associated with the HARQ-enabled PSSCH, the number of PSFCHs with LBT failures in the PSFCH associated with the HARQ-enabled PSSCH is determined, and based on the number of PSFCHs with LBT failures in the PSFCH associated with the HARQ-enabled PSSCH, the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH is determined.
  • a HARQ-enabled PSSCH is associated with five PSFCHs, and LBT failure detection is performed before HARQ feedback. If three consecutive PSFCHs have LBT failures, it can be determined that the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH is three.
  • Step 202 Count the number of LBT failures of the PSFCH according to the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH.
  • the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH is 1, it can be determined that the LBT failure of the PSFCH has occurred once, thereby counting the number of LBT failures of the PSFCH. If there are multiple PSFCHs associated with the HARQ-enabled PSSCH, it can also be determined that the LBT failure of the PSFCH has occurred once when the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH is multiple times, so as to count the number of LBT failures of the PSFCH.
  • the terminal device can send HARQ feedback on all PSFCHs associated with the PSSCH.
  • N consecutive PSFCHs associated with the PSSCH all have LBT failures causing HARQ transmission failure
  • the terminal device can determine that the LBT failure has occurred once and count it as 1 when counting the number of LBT failures of the PSFCH.
  • the maximum value of N is the number of PSFCHs that the PSSCH can be associated with, and the minimum value of N is 1.
  • LBT failure detection is performed before HARQ feedback. If an LBT failure indication submitted by the physical layer PHY is received, LBT failure has occurred, indicating that the PSFCH is occupied. If HARQ feedback is sent, the HARQ feedback transmission will fail.
  • the disclosed embodiment by determining the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, and counting the number of LBT failures of the PSFCH based on the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, frequent triggering of consecutive LBT failures of the side link can be avoided, thereby improving the link communication quality.
  • Figure 3 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 determining the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH.
  • step 301 may be implemented in any manner in the various embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 302 When LBT failures occur in N consecutive PSFCHs associated with the HARQ-enabled PSSCH, it is determined that the LBT failure of the PSFCH occurs once.
  • a HARQ-enabled PSSCH may be associated with multiple PSFCHs. For example, assuming that the number of PSFCHs associated with a HARQ-enabled PSSCH is M, where M is a positive integer greater than 1.
  • N is a positive integer less than or equal to M.
  • the terminal device can determine that LBT occurs once when any PSFCH associated with the HARQ-enabled PSSCH fails to generate LBT, resulting in HARQ feedback failure; if the value of N is 2, then the terminal device can determine that LBT occurs once when any two consecutive PSFCHs associated with the HARQ-enabled PSSCH fail to generate LBT, resulting in HARQ feedback failure; if the value of N is 6, then the terminal device can determine that LBT occurs once when all PSFCHs associated with the HARQ-enabled PSSCH fail to generate LBT.
  • a HARQ-enabled PSSCH resource is associated with multiple PSFCH resources, the terminal device needs to perform LBT before sending each PSFCH resource. These PSFCH resources may be closely spaced. If the terminal device includes the LBT failures of multiple consecutive PSFCHs when counting the number of consecutive LBT failures, the terminal device may frequently trigger consecutive LBT failures of the sidelink, affecting the link communication quality.
  • the value of N can be greater than 1, that is, when multiple consecutive PSFCHs associated with the HARQ-enabled PSSCH fail to send LBT, it is determined that the LBT failure occurs once, thereby solving the problem that if the LBT failures of multiple consecutive PSFCHs are taken into account, the terminal device may frequently trigger continuous LBT failures of the side link, affecting the link communication quality.
  • the value of N may be configured by the network device, may be pre-configured, or may be determined by the terminal device itself, and the present disclosure does not limit this.
  • HARQ feedback is sent on the PSFCH resource associated with the PSSCH. If N consecutive PSFCH resources fail in LBT, the terminal device can consider that the continuous PSFCH LBT failure has occurred once, and the terminal device starts or restarts the continuous PSFCH LBT failure detection timer, and the terminal device adds 1 to the continuous PSFCH LBT failure detection counter.
  • the number of LBT failures of PSFCH can be counted by determining that the number of LBT failures of PSFCH occurs once when LBT failures occur in N consecutive PSFCHs associated with the HARQ-enabled PSSCH.
  • the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH can be determined, and when N consecutive PSFCHs associated with the HARQ-enabled PSSCH have LBT failures, it can be determined that the LBT failure of the PSFCH has occurred once, thereby avoiding frequent triggering of continuous LBT failures of the side link and improving the link communication quality.
  • Figure 4 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • one or more resource pools can be configured on the activated BWP, and the terminal device can count the number of LBT failures of PSFCH according to the granularity of the resource pool.
  • one or more HARQ-enabled PSSCHs may be received on a resource pool, each HARQ-enabled PSSCH may be associated with multiple PSFCHs, and the number of PSFCHs associated with different PSSCHs may be the same or different, which is not limited in the present disclosure.
  • an LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of the multiple PSFCHs associated with each HARQ-enabled PSSCH, which is similar to the above-mentioned method for determining the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, so it is not repeated here.
  • Step 402 in the event of LBT failures of N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource pool, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource pool.
  • the duration of the continuous PSFCH LBT failure detection timer used for each resource pool can be pre-configured or configured by the network device, and the present disclosure does not limit this.
  • the terminal device can receive the first configuration information sent by the network device, and determine the continuous PSFCH LBT failure detection timer and/or the maximum value of continuous PSFCH LBT failure detection used to count the number of LBT failures of PSFCH on the resource pool according to the first configuration information.
  • the maximum value of continuous PSFCH LBT failure detection is used to determine whether the resource pool triggers continuous PSFCH LBT failure.
  • the first configuration information may include any of the following items: a continuous PSFCH LBT failure detection timer and/or a maximum continuous PSFCH LBT failure detection value corresponding to the resource pool; a continuous PSFCH LBT failure detection timer and/or a maximum continuous PSFCH LBT failure detection value corresponding to the bandwidth (bandwidth part, BWP) to which the resource pool belongs; a continuous PSFCH LBT failure detection timer and/or a maximum continuous PSFCH LBT failure detection value corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer used by the terminal device to count the number of LBT failures of the PSFCH on a certain resource pool may be the continuous PSFCH LBT failure detection timer corresponding to the resource pool in the first configuration information, or the continuous PSFCH LBT failure detection timer corresponding to the BWP to which the resource pool belongs, or the continuous PSFCH LBT failure detection timer corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value may be configured at the resource pool granularity, or at the BWP granularity, or at the cell granularity.
  • the first configuration information may be dedicated radio resource control (RRC) signaling or system information blocks (SIB) signaling, that is, the terminal device may obtain the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value through dedicated RRC signaling or SIB signaling.
  • RRC radio resource control
  • SIB system information blocks
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value can be obtained through pre-configuration.
  • a resource pool may maintain a continuous PSFCH LBT failure detection counter, the initial value of which may be zero. If any consecutive N PSFCHs associated with a HARQ-enabled PSSCH fail to reach LBT, the continuous PSFCH LBT failure detection timer corresponding to the resource pool may be started or restarted, and the continuous PSFCH LBT failure detection counter corresponding to the resource pool may be increased by 1.
  • the number of LBT failures counted by the continuous PSFCH LBT failure detection counter for multiple PSFCHs associated with all HARQ-enabled PSSCHs received by the resource pool is the number of LBT failures of the PSFCH on the resource pool.
  • N is an integer less than or equal to M
  • M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • the way in which the terminal device obtains the value of N can be implemented by any of the methods in the various embodiments of the present disclosure, so it will not be repeated here.
  • HARQ feedback is sent on the PSFCH resource associated with the PSSCH. If N consecutive PSFCH resources fail in LBT, the terminal device can consider that the continuous PSFCH LBT failure has occurred once, and the terminal device starts or restarts the continuous PSFCH LBT failure detection timer, and the terminal device adds 1 to the continuous PSFCH LBT failure detection counter.
  • the continuous PSFCH LBT failure detection counter corresponding to the resource pool can be reset to 0 to improve the accuracy of counting the number of LBT failures of PSFCH on the resource pool.
  • the number of LBT failures of PSFCH can be counted by determining that the number of LBT failures of PSFCH occurs once when LBT failures occur in N consecutive PSFCHs associated with any HARQ-enabled PSSCH.
  • LBT failure detection can be performed on multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH, and when LBT failures occur in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, the continuous PSFCH LBT failure detection timer corresponding to the resource pool is started or restarted, and the continuous PSFCH LBT failure detection counter corresponding to the resource pool is increased by 1. In this way, the number of LBT failures of PSFCH can be counted according to the granularity of the resource pool.
  • Figure 5 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool, LBT failure detection is performed before sending HARQ feedback to determine the number of LBT failures that occur for the multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 502 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource pool, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource pool.
  • step 501 to step 502 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 503 when the number of LBT failures of the PSFCH corresponding to the resource pool is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the resource pool triggers continuous PSFCH LBT failure.
  • the resource pool triggers continuous PSFCH LBT failure.
  • the maximum value of continuous PSFCH LBT failure detection can be pre-configured or configured by the network device, and the present disclosure does not limit this.
  • the above method can be used to determine the number of LBT failures of PSFCH on each resource pool, and based on the maximum value of continuous PSFCH LBT failure detection corresponding to each resource pool, it can be determined whether each resource pool has triggered continuous PSFCH LBT failure.
  • the maximum value of continuous PSFCH LBT failure detection used to determine whether each resource pool triggers continuous PSFCH LBT failure can be configured by the network device, as described above, or can be pre-configured, and the present disclosure does not limit this.
  • the maximum value of continuous PSFCH LBT failure detection used by the terminal device to determine whether a certain resource pool triggers continuous PSFCH LBT failure can be the maximum value of continuous PSFCH LBT failure detection corresponding to the resource pool in the first configuration information, or the maximum value of continuous PSFCH LBT failure detection corresponding to the BWP to which the resource pool belongs, or the maximum value of continuous PSFCH LBT failure detection corresponding to the cell to which the terminal device belongs.
  • the maximum value of continuous PSFCH LBT failure detection can be configured at the resource pool granularity, or at the BWP granularity, or at the cell granularity.
  • the continuous PSFCH LBT failure detection timer corresponding to the resource pool can be used to count the number of LBT failures of the PSFCH on the resource pool, and when the number of LBT failures of the PSFCH corresponding to the resource pool is equal to or greater than the maximum value of the continuous PSFCH LBT failure detection, it is determined that the resource pool triggers a continuous PSFCH LBT failure.
  • Figure 6 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool, LBT failure detection is performed before sending HARQ feedback to determine the number of LBT failures that occur for multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 602 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource pool, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource pool.
  • Step 603 when the number of LBT failures of the PSFCH corresponding to the resource pool is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the resource pool triggers continuous PSFCH LBT failure.
  • step 601 to step 603 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 604 when it is determined that the resource pool triggers a continuous PSFCH LBT failure, continuous PSFCH LBT failure indication information is sent to the network device.
  • the terminal device can send continuous PSFCH LBT failure indication information to the network device when it is determined that the resource pool triggers a continuous PSFCH LBT failure to notify the network device that a continuous PSFCH LBT failure has occurred in the resource pool.
  • the continuous PSFCH LBT failure indication information may include indication information of the resource pool, such as an identifier of the resource pool, etc.
  • the network device can determine which resource pool has experienced the continuous PSFCH LBT failure based on the continuous PSFCH LBT failure indication information.
  • the resource allocation method sent in the side link communication may include a network dynamic scheduling method, a terminal device autonomously selecting from a resource pool broadcast by the network, etc.
  • the terminal device is a terminal device whose resource allocation method is a network dynamic scheduling method, or a terminal device that autonomously selects a resource pool in a radio resource control (Radio Resource Control, RRC) connection state.
  • RRC Radio Resource Control
  • the continuous PSFCH LBT failure indication information may be a media access control control element (MAC CE) or RRC signaling, etc., and the present disclosure does not limit this.
  • MAC CE media access control control element
  • RRC signaling etc.
  • the number of LBT failures of PSFCH can be counted at the resource pool granularity, and based on the number of LBT failures of PSFCH on the resource pool and the maximum value of continuous PSFCH LBT failure detection, it can be determined whether the resource pool triggers continuous PSFCH LBT failures.
  • continuous PSFCH LBT failure indication information can be sent to the network device to notify the network device that continuous PSFCH LBT failures have occurred in the resource pool.
  • Figure 7 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 701 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool, LBT failure detection is performed before sending HARQ feedback to determine the number of LBT failures that occur for multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 702 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource pool, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource pool.
  • Step 703 when the number of LBT failures of the PSFCH corresponding to the resource pool is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the resource pool triggers continuous PSFCH LBT failure.
  • step 701 to step 703 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 704 when it is determined that the resource pool has failed to trigger continuous PSFCH LBT, if the resource allocation method used by the terminal device is an autonomous selection method in the resource pool, resource reselection is triggered to reselect resources in the resource pool where no continuous PSFCH LBT failure has occurred.
  • the terminal device determines that the resource pool triggers continuous PSFCH LBT failure and the resource allocation method used by the terminal device is an autonomous selection method in the resource pool, then the terminal device can trigger resource reselection and reselect resources in the resource pool where continuous PSFCH LBT failure has not occurred, so as to use the reselected resources for HARQ feedback.
  • the above-mentioned steps 701 to 703 may be used, or other methods may be used to determine it, and the present disclosure does not limit this.
  • the number of LBT failures of PSFCH can be counted at the resource pool granularity, and based on the number of LBT failures of PSFCH on the resource pool and the maximum value of continuous PSFCH LBT failure detection, it is determined whether the resource pool triggers continuous PSFCH LBT failures, and when it is determined that the resource pool triggers continuous PSFCH LBT failures and the resource allocation method used by the terminal device is an autonomously selected method in the resource pool, resource reselection is triggered to reselect resources in the resource pool where no continuous PSFCH LBT failures have occurred, so as to use the reselected resources for HARQ feedback, thereby improving the transmission success rate of HARQ feedback.
  • Figure 8 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • Step 801 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool, LBT failure detection is performed before sending HARQ feedback to determine the number of LBT failures that occur for multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 802 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource pool, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource pool.
  • step 801 to step 802 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 803 when the continuous PSFCH LBT failure detection timer corresponding to the resource pool times out, the continuous PSFCH LBT failure detection counter corresponding to the resource pool is reset to 0.
  • the duration of the continuous PSFCH LBT failure detection timer corresponding to the resource pool can be a network device setting or pre-configured, and the present disclosure does not limit this.
  • the continuous PSFCH LBT failure detection counter corresponding to the resource pool can be reset to 0, so that the next time the resource pool meets the PSFCH LBT failure counting condition, the PSFCH LBT failure number on the resource pool can be recounted.
  • the number of LBT failures of PSFCH can be counted at the resource pool granularity, and when the continuous PSFCH LBT failure detection timer corresponding to the resource pool times out, the continuous PSFCH LBT failure detection counter corresponding to the resource pool is reset to 0, so that the next time the resource pool meets the counting condition of the number of LBT failures of PSFCH, the number of LBT failures of PSFCH on the resource pool can be recounted, thereby improving the accuracy of the number of LBT failures of PSFCH on the resource pool.
  • Figure 9 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Step 901 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the BWP, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • one or more HARQ-enabled PSSCHs may be received on the BWP, each HARQ-enabled PSSCH may be associated with multiple PSFCHs, and the number of PSFCHs associated with different PSSCHs may be the same or different, which is not limited in the present disclosure.
  • LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of the multiple PSFCHs associated with each HARQ-enabled PSSCH. This is similar to the above-mentioned method for determining the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, so it will not be repeated here.
  • Step 902 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the BWP, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the BWP.
  • the duration of the continuous PSFCH LBT failure detection timer used for BWP can be pre-configured or configured by the network device, and the present disclosure does not limit this.
  • the terminal device can receive the second configuration information sent by the network device, and determine the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value used to count the number of LBT failures of PSFCH on BWP according to the second configuration information.
  • the continuous PSFCH LBT failure detection maximum value is used to determine whether the BWP triggers a continuous PSFCH LBT failure.
  • the second configuration information includes any one of the following items: a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the BWP; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer used by the terminal device to count the number of LBT failures of PSFCH on a certain BWP may be the continuous PSFCH LBT failure detection timer corresponding to the BWP, or the continuous PSFCH LBT failure detection timer corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer and/or the maximum value of continuous PSFCH LBT failure detection may be configured at the BWP granularity or at the cell granularity.
  • the second configuration information may be dedicated RRC signaling or SIB signaling, that is, the terminal device may obtain the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value through dedicated RRC signaling or SIB signaling.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value can be obtained through pre-configuration.
  • the BWP may maintain a continuous PSFCH LBT failure detection counter, the initial value of which may be zero. If any consecutive N PSFCHs associated with a HARQ-enabled PSSCH fail to reach LBT, the continuous PSFCH LBT failure detection timer corresponding to the BWP may be started or restarted, and the continuous PSFCH LBT failure detection counter corresponding to the BWP may be increased by 1.
  • the number of LBT failures counted by the continuous PSFCH LBT failure detection counter is the number of LBT failures of the PSFCH on the BWP.
  • N is an integer less than or equal to M
  • M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • the way in which the terminal device obtains the value of N can be implemented in any way in the various embodiments of the present disclosure.
  • the embodiments of the present disclosure do not limit this and will not be repeated.
  • HARQ feedback is sent on the PSFCH resource associated with the PSSCH. If N consecutive PSFCH resources fail in LBT, the terminal device can consider that the continuous PSFCH LBT failure has occurred once, and the terminal device starts or restarts the continuous PSFCH LBT failure detection timer, and the terminal device adds 1 to the continuous PSFCH LBT failure detection counter.
  • the continuous PSFCH LBT failure detection counter corresponding to the BWP can be reset to 0 to improve the accuracy of counting the number of LBT failures of PSFCH on the BWP.
  • the number of LBT failures of PSFCH can be counted by determining that the number of LBT failures of PSFCH occurs once when LBT failures occur in N consecutive PSFCHs associated with any HARQ-enabled PSSCH.
  • a plurality of PSFCHs associated with each HARQ-enabled PSSCH received on the BWP may be subjected to LBT failure detection before HARQ feedback is sent, so as to determine the number of consecutive LBT failures of the plurality of PSFCHs associated with each HARQ-enabled PSSCH, and in the case of LBT failures of consecutive N PSFCHs associated with any HARQ-enabled PSSCH, a continuous PSFCH LBT failure detection timer corresponding to the BWP is started or restarted, and a continuous PSFCH LBT failure detection counter corresponding to the BWP is increased by 1.
  • the number of LBT failures of the PSFCH may be counted at the BWP granularity.
  • Figure 10 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 10, the method may include but is not limited to the following steps:
  • Step 1001 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the BWP, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1002 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the BWP, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the BWP.
  • step 1001 to step 1002 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1003 when the number of LBT failures of the PSFCH corresponding to the BWP is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the BWP triggers continuous PSFCH LBT failure.
  • the BWP if the number of LBT failures of the PSFCH corresponding to the BWP is greater than or equal to the maximum value of the continuous PSFCH LBT failure detection, it can be determined that the BWP triggers a continuous PSFCH LBT failure.
  • the maximum value of the continuous PSFCH LBT failure detection can be pre-configured or configured by the network device, and the present disclosure does not limit this.
  • the terminal device may obtain second configuration information sent by the network device, and determine the maximum value of continuous PSFCH LBT failure detection based on the second configuration information.
  • the maximum value of continuous PSFCH LBT failure detection used by the terminal device to determine whether BWP triggers continuous PSFCH LBT failure can be the maximum value of continuous PSFCH LBT failure detection corresponding to BWP in the second configuration information, or the maximum value of continuous PSFCH LBT failure detection corresponding to the cell to which the terminal device belongs.
  • the maximum value of continuous PSFCH LBT failure detection can be configured at the BWP granularity or at the cell granularity.
  • the continuous PSFCH LBT failure detection timer corresponding to the BWP can be used to count the number of LBT failures of the PSFCH on the BWP, and when the number of LBT failures of the PSFCH corresponding to the BWP is equal to or greater than the maximum value of the continuous PSFCH LBT failure detection, it is determined that the BWP triggers a continuous PSFCH LBT failure.
  • the number of LBT failures of the PSFCH can be counted according to the BWP granularity, and according to the number of LBT failures of the PSFCH on the BWP and the maximum value of the continuous PSFCH LBT failure detection, it is determined whether the BWP triggers a continuous PSFCH LBT failure.
  • Figure 11 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • Step 1101 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the BWP, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1102 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the BWP, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the BWP.
  • Step 1103 when the number of LBT failures of the PSFCH corresponding to the BWP is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the BWP triggers continuous PSFCH LBT failure.
  • steps 1101 to 1103 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1104 when it is determined that BWP triggers a failure in continuous PSFCH LBT, a continuous PSFCH LBT failure indication message is sent to the network device.
  • the terminal device when it is determined that BWP triggers continuous PSFCH LBT failure, the terminal device can send continuous PSFCH LBT failure indication information to the network device to notify the network device that the BWP has experienced continuous PSFCH LBT failure.
  • the continuous PSFCH LBT failure indication information may include indication information of the BWP, such as the identification of the BWP, etc.
  • the network device can determine that the BWP has experienced continuous PSFCH LBT failures based on the continuous PSFCH LBT failure indication information.
  • the continuous PSFCH LBT failure indication information may be MAC CE or RRC signaling, etc., and the present disclosure does not limit this.
  • the number of LBT failures of PSFCH can be counted at the BWP granularity, and based on the number of LBT failures of PSFCH on the BWP and the maximum value of continuous PSFCH LBT failure detection, it can be determined whether the BWP triggers continuous PSFCH LBT failures, and when it is determined that the BWP triggers continuous PSFCH LBT failures, continuous PSFCH LBT failure indication information can be sent to the network device to notify the network device that continuous PSFCH LBT failures have occurred on the BWP.
  • Figure 12 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 12, the method may include but is not limited to the following steps:
  • Step 1201 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the BWP, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1202 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the BWP, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the BWP.
  • Step 1203 when the number of LBT failures of the PSFCH corresponding to the BWP is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the BWP triggers continuous PSFCH LBT failure.
  • step 1201 to step 1203 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1204 when it is determined that the BWP triggering continuous PSFCH LBT fails, determine to trigger the sidelink radio link failure RLF.
  • the terminal device determines that the BWP triggering continuous PSFCH LBT fails, it can determine to trigger the sidelink radio link failure (RLF).
  • RLF sidelink radio link failure
  • the number of LBT failures of PSFCH can be counted at the BWP granularity, and based on the number of LBT failures of PSFCH on BWP and the maximum value of continuous PSFCH LBT failure detection, it can be determined whether BWP triggers continuous PSFCH LBT failures, and when it is determined that BWP triggers continuous PSFCH LBT failures, it is determined to trigger the sidelink RLF, so that terminal devices can reconnect and communicate in time.
  • Figure 13 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 13, the method may include but is not limited to the following steps:
  • Step 1301 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on the BWP, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1302 When LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the consecutive PSFCH LBT failure detection timer corresponding to the BWP, and add 1 to the consecutive PSFCH LBT failure detection counter corresponding to the BWP.
  • step 1301 to step 1302 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1303 when the continuous PSFCH LBT failure detection timer corresponding to the BWP times out, the continuous PSFCH LBT failure detection counter corresponding to the BWP is reset to 0.
  • the duration of the continuous PSFCH LBT failure detection timer corresponding to the BWP can be a network device setting or a pre-configured one, and the present disclosure does not limit this.
  • the continuous PSFCH LBT failure detection counter corresponding to the BWP can be reset to 0, so that the next time the BWP meets the PSFCH LBT failure counting condition, the PSFCH LBT failure number on the BWP can be recounted.
  • the number of LBT failures of PSFCH can be counted at the BWP granularity, and when the continuous PSFCH LBT failure detection timer corresponding to the BWP times out, the continuous PSFCH LBT failure detection counter corresponding to the BWP is reset to 0, so that the next time the BWP meets the counting condition of the number of LBT failures of PSFCH, the number of LBT failures of PSFCH on the BWP can be recounted, thereby improving the accuracy of the number of LBT failures of PSFCH on the BWP.
  • Figure 14 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 14, the method may include but is not limited to the following steps:
  • Step 1401 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • one or more resource block sets can be configured on the activated BWP, and the terminal device can count the number of LBT failures of PSFCH according to the granularity of the resource block set.
  • one or more HARQ-enabled PSSCHs may be received on a resource block set, each HARQ-enabled PSSCH may be associated with multiple PSFCHs, and the number of PSFCHs associated with different PSSCHs may be the same or different, which is not limited in the present disclosure.
  • an LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of the multiple PSFCHs associated with each HARQ-enabled PSSCH. This is similar to the above-mentioned method for determining the number of consecutive LBT failures of the PSFCH associated with the HARQ-enabled PSSCH, so it will not be repeated here.
  • Step 1402 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource block set, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource block set.
  • the duration of the continuous PSFCH LBT failure detection timer used for the resource block set can be pre-configured or configured by the network device, and the present disclosure does not limit this.
  • the terminal device can receive the third configuration information sent by the network device, and determine the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value used to count the number of LBT failures of the PSFCH on the resource block set according to the third configuration information.
  • the continuous PSFCH LBT failure detection maximum value is used to determine whether the resource block set triggers a continuous PSFCH LBT failure.
  • the third configuration information includes any one of the following items: a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to a resource block set; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the BWP to which the resource block set belongs; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer used by the terminal device to count the number of LBT failures of PSFCH on a certain resource block set can be the continuous PSFCH LBT failure detection timer corresponding to the resource block set, or the continuous PSFCH LBT failure detection timer corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer and/or the maximum value of continuous PSFCH LBT failure detection can be configured at the resource block set granularity, or at the BWP granularity, or at the cell granularity.
  • the third configuration information may be dedicated RRC signaling or SIB signaling, that is, the terminal device may obtain the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value through dedicated RRC signaling or SIB signaling.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value can be obtained through pre-configuration.
  • a resource block set can maintain a continuous PSFCH LBT failure detection counter, and the initial value of the continuous PSFCH LBT failure detection counter can be zero. If any consecutive N PSFCHs associated with a HARQ-enabled PSSCH fail to reach LBT, the continuous PSFCH LBT failure detection timer corresponding to the resource block set can be started or restarted, and the continuous PSFCH LBT failure detection counter corresponding to the resource block set can be increased by 1.
  • the number of LBT failures counted by the continuous PSFCH LBT failure detection counter is the number of LBT failures of the PSFCH on the resource block set.
  • N is an integer less than or equal to M
  • M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • the value of N may be configured by the network device, may be pre-configured, or may be determined by the terminal device itself, and the present disclosure does not limit this.
  • HARQ feedback is sent on the PSFCH resource associated with the PSSCH. If N consecutive PSFCH resources fail in LBT, the terminal device may consider that the continuous PSFCH LBT failure has occurred once, and the terminal device starts or restarts the continuous PSFCH LBT failure detection timer, and the terminal device adds 1 to the continuous PSFCH LBT failure detection counter.
  • the terminal device may obtain the fourth configuration information sent by the network device, and determine the value of N according to the fourth configuration information. If the terminal device is not within the network coverage, the value of N may be obtained through pre-configuration.
  • the fourth configuration information may be dedicated RRC signaling or SIB signaling, that is, the terminal device may obtain the value of N through dedicated RRC signaling or SIB signaling.
  • the continuous PSFCH LBT failure detection counter corresponding to the resource block set can be reset to 0 to improve the accuracy of counting the number of LBT failures of PSFCH on the resource block set.
  • the number of LBT failures of PSFCH can be counted by determining that the number of LBT failures of PSFCH occurs once when LBT failures occur in N consecutive PSFCHs associated with any HARQ-enabled PSSCH.
  • a plurality of PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set may be subjected to LBT failure detection before HARQ feedback is sent to determine the number of consecutive LBT failures of the plurality of PSFCHs associated with each HARQ-enabled PSSCH, and in the case of LBT failures of consecutive N PSFCHs associated with any HARQ-enabled PSSCH, a continuous PSFCH LBT failure detection timer corresponding to the resource block set is started or restarted, and a continuous PSFCH LBT failure detection counter corresponding to the resource block set is incremented by 1.
  • the number of LBT failures of the PSFCH may be counted at the resource block set granularity.
  • Figure 15 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 15, the method may include but is not limited to the following steps:
  • Step 1501 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1502 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource block set, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource block set.
  • step 1501 to step 1502 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1503 when the number of LBT failures of the PSFCH corresponding to the resource block set is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the resource block set triggers continuous PSFCH LBT failure.
  • the resource block set triggers continuous PSFCH LBT failure.
  • the maximum value of continuous PSFCH LBT failure detection can be pre-configured or configured by the network device, and the present disclosure does not limit this.
  • the terminal device may obtain third configuration information sent by the network device, and determine the maximum value of continuous PSFCH LBT failure detection according to the third configuration information.
  • the maximum value of continuous PSFCH LBT failure detection used by the terminal device to determine whether a resource block set triggers a continuous PSFCH LBT failure may be the maximum value of continuous PSFCH LBT failure detection corresponding to the resource block set in the third configuration information, or the maximum value of continuous PSFCH LBT failure detection corresponding to the BWP, or the maximum value of continuous PSFCH LBT failure detection corresponding to the cell to which the terminal device belongs.
  • the maximum value of continuous PSFCH LBT failure detection may be configured at the granularity of the resource block set, or at the granularity of the BWP, or at the granularity of the cell.
  • the continuous PSFCH LBT failure detection timer corresponding to the resource block set can be used to count the number of LBT failures of the PSFCH on the resource block set, and when the number of LBT failures of the PSFCH corresponding to the resource block set is equal to or greater than the maximum value of the continuous PSFCH LBT failure detection, it is determined that the resource block set triggers continuous PSFCH LBT failure.
  • Figure 16 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 16, the method may include but is not limited to the following steps:
  • Step 1601 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1602 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the consecutive PSFCH LBT failure detection timer corresponding to the resource block set, and add 1 to the consecutive PSFCH LBT failure detection counter corresponding to the resource block set.
  • Step 1603 when the number of LBT failures of the PSFCH corresponding to the resource block set is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the resource block set triggers continuous PSFCH LBT failure.
  • step 1601 to step 1603 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1604 when it is determined that the resource block set triggers the failure of continuous PSFCH LBT, a continuous PSFCH LBT failure indication message is sent to the network device.
  • the terminal device when it is determined that a resource block set triggers a continuous PSFCH LBT failure, the terminal device can send continuous PSFCH LBT failure indication information to the network device to notify the network device that a continuous PSFCH LBT failure has occurred in the resource block set.
  • the continuous PSFCH LBT failure indication information may include indication information of the resource block set, such as an identifier of the resource block set, etc.
  • the network device may determine that continuous PSFCH LBT failures have occurred in the resource block set according to the continuous PSFCH LBT failure indication information.
  • the continuous PSFCH LBT failure indication information may be MAC CE or RRC signaling, etc., and the present disclosure does not limit this.
  • the resource allocation method sent in the sidelink communication may include a network dynamic scheduling method, a terminal device autonomously selecting from a set of resource blocks broadcast by the network, etc.
  • the terminal device when it is determined that the resource block set triggers a continuous PSFCH LBT failure, it can send a continuous PSFCH LBT failure indication message to the network device.
  • the terminal device when determining whether a resource block set triggers a continuous PSFCH LBT failure, the above-mentioned steps 1601-1603 can be used, or other methods can be used to determine, and the present disclosure does not limit this.
  • the number of LBT failures of PSFCH can be counted at the granularity of resource block sets, and based on the number of LBT failures of PSFCH on the resource block set and the maximum value of continuous PSFCH LBT failure detection, it can be determined whether the resource block set triggers continuous PSFCH LBT failures, and when it is determined that the resource block set triggers continuous PSFCH LBT failures, continuous PSFCH LBT failure indication information can be sent to the network device to notify the network device that continuous PSFCH LBT failures have occurred in the resource block set.
  • Figure 17 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 17, the method may include but is not limited to the following steps:
  • Step 1701 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1702 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource block set, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource block set.
  • Step 1703 when the number of LBT failures of the PSFCH corresponding to the resource block set is equal to or greater than the maximum value of continuous PSFCH LBT failure detection, it is determined that the resource block set triggers continuous PSFCH LBT failure.
  • steps 1701 to 1703 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1704 when it is determined that the resource block set triggers continuous PSFCH LBT failure, if the resource allocation method used by the terminal device is an autonomous selection method in the resource block set, resource reselection is triggered to reselect resources in the resource block set where no continuous PSFCH LBT failure has occurred.
  • the terminal device determines that a resource block set triggers continuous PSFCH LBT failures and the resource allocation method used by the terminal device is an autonomous selection method in the resource block set, then the terminal device can trigger resource reselection and reselect resources in the resource block set where no continuous PSFCH LBT failures have occurred, so as to use the reselected resources for HARQ feedback.
  • the number of LBT failures of PSFCH can be counted at the granularity of resource block sets, and based on the number of LBT failures of PSFCH on the resource block set and the maximum value of continuous PSFCH LBT failure detection, it is determined whether the resource block set triggers continuous PSFCH LBT failures, and when it is determined that the resource block set triggers continuous PSFCH LBT failures and the resource allocation method used by the terminal device is an autonomous selection method in the resource block set, resource reselection is triggered to reselect resources in the resource block set where no continuous PSFCH LBT failures have occurred, so as to use the reselected resources for HARQ feedback, thereby improving the transmission success rate of HARQ feedback.
  • Figure 18 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 18, the method may include but is not limited to the following steps:
  • Step 1801 for multiple PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set, LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • Step 1802 when LBT failure occurs in N consecutive PSFCHs associated with any HARQ-enabled PSSCH, start or restart the continuous PSFCH LBT failure detection timer corresponding to the resource block set, and add 1 to the continuous PSFCH LBT failure detection counter corresponding to the resource block set.
  • step 1801 to step 1802 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1803 when the continuous PSFCH LBT failure detection timer corresponding to the resource block set times out, the continuous PSFCH LBT failure detection counter corresponding to the resource block set is reset to 0.
  • the duration of the continuous PSFCH LBT failure detection timer corresponding to the resource block set can be a network device setting or a pre-configured one, and the present disclosure does not limit this.
  • the continuous PSFCH LBT failure detection counter corresponding to the resource block set can be reset to 0, so that the next time the resource block set meets the PSFCH LBT failure counting condition, the LBT failure number of PSFCH on the resource block set can be recounted.
  • the number of LBT failures of PSFCH can be counted at the granularity of resource block sets, and when the continuous PSFCH LBT failure detection timer corresponding to the resource block set times out, the continuous PSFCH LBT failure detection counter corresponding to the resource block set is reset to 0, so that the next time the resource block set meets the counting condition of the number of LBT failures of PSFCH, the number of LBT failures of PSFCH on the resource block set can be recounted, thereby improving the accuracy of the number of LBT failures of PSFCH on the resource block set.
  • Figure 19 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 19, the method may include but is not limited to the following steps:
  • Step 1901 sending first configuration information to the terminal device, wherein the first configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a resource pool.
  • a network device may send first configuration information to a terminal device to configure a continuous PSFCH LBT failure detection timer for the terminal device used to count the number of LBT failures of PSFCH on a resource pool, and/or configure a maximum continuous PSFCH LBT failure detection value used to determine whether a resource pool triggers a continuous PSFCH LBT failure.
  • the first configuration information may be dedicated RRC signaling or SIB signaling, that is, the network device may configure the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value to the terminal device through dedicated RRC signaling or SIB signaling.
  • the first configuration information may include any of the following items: a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the resource pool; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the BWP to which the resource pool belongs; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value may be configured at the resource pool granularity, or at the BWP granularity, or at the cell granularity.
  • the network device may send first configuration information to the terminal device, and configure the continuous PSFCH LBT failure detection timer used to count the number of LBT failures of PSFCH on the resource pool to the terminal device through the first configuration information.
  • the terminal device may count the number of LBT failures of PSFCH on the resource pool according to the first configuration information.
  • Figure 20 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 20, the method may include but is not limited to the following steps:
  • Step 2001 sending second configuration information to the terminal device, wherein the second configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to the BWP.
  • the network device may send second configuration information to the terminal device to configure the terminal device with a continuous PSFCH LBT failure detection timer used to count the number of LBT failures of PSFCH on BWP, and/or configure a continuous PSFCH LBT failure detection maximum value used to determine whether BWP triggers a continuous PSFCH LBT failure.
  • the second configuration information may be dedicated RRC signaling or SIB signaling, that is, the network device may configure the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value to the terminal device through dedicated RRC signaling or SIB signaling.
  • the second configuration information may include any of the following: a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the BWP; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to the cell to which the terminal device belongs.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value may be configured at the BWP granularity or at the cell granularity.
  • the network device may send second configuration information to the terminal device, and configure the continuous PSFCH LBT failure detection timer used to count the number of LBT failures of PSFCH on BWP to the terminal device through the second configuration information.
  • the terminal device may count the number of LBT failures of PSFCH on BWP according to the second configuration information.
  • Figure 21 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 21, the method may include but is not limited to the following steps:
  • Step 2101 sending third configuration information to the terminal device, wherein the third configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a resource block set.
  • the network device may send third configuration information to the terminal device to configure the terminal device with a continuous PSFCH LBT failure detection timer used to count the number of LBT failures of the PSFCH on a resource block set, and/or configure a continuous PSFCH LBT failure detection maximum value used to determine whether a resource block set triggers a continuous PSFCH LBT failure.
  • the third configuration information may be dedicated RRC signaling or SIB signaling, that is, the network device may configure the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value to the terminal device through dedicated RRC signaling or SIB signaling.
  • the third configuration information may include any of the following items: a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to a resource block set; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to a BWP to which a resource block set belongs; a continuous PSFCH LBT failure detection timer and/or a continuous PSFCH LBT failure detection maximum value corresponding to a cell to which a terminal device belongs.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value may be configured at a resource block set granularity, or at a BWP granularity, or at a cell granularity.
  • the network device may send third configuration information to the terminal device, and configure the continuous PSFCH LBT failure detection timer used to count the number of LBT failures of the PSFCH on the resource block set to the terminal device through the third configuration information.
  • the terminal device may count the number of LBT failures of the PSFCH on the resource block set according to the third configuration information.
  • Figure 22 is a flow chart of another method for counting the number of LBT failures provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 22, the method may include but is not limited to the following steps:
  • Step 2201 Send fourth configuration information to the terminal device, where the fourth configuration information is used by the terminal device to determine the value of N.
  • N is the number of PSFCHs in which LBT failures occur continuously among the PSFCHs associated with the HARQ-enabled PSSCHs determined by the terminal device, wherein N is a positive integer less than or equal to M, and M is the number of PSFCHs associated with the HARQ-enabled PSSCHs.
  • the network device may send fourth configuration information to the terminal device to configure the value of N for the terminal device.
  • the fourth configuration information may be dedicated RRC signaling or SIB signaling, that is, the network device may configure the value of N for the terminal device through dedicated RRC signaling or SIB signaling.
  • the network device may send fourth configuration information to the terminal device to configure the terminal device with a value of N.
  • the terminal device may count the number of LBT failures of the PSFCH according to the number of PSFCHs with consecutive LBT failures in the PSFCH associated with the HARQ-enabled PSSCH configured by the network device.
  • a PSFCH resource associated with a PSSCH has N consecutive LBT failures, and the UE determines that the LBT failure has occurred once.
  • the UE When a PSSCH can be associated with multiple PSFCH resources, for the sidelink MAC PDU enabled with HARQ feedback, the UE sends HARQ feedback on all PSFCH resources associated with the PSSCH.
  • LBT failure occurs at the timing of N consecutive PSFCH resources associated with the PSSCH (LBT failure indication is received from the PHY), resulting in HARQ feedback transmission failure, the UE determines that the LBT failure occurs once, and only counts once when counting the number of LBT failures.
  • the maximum value of N is the number of PSFCH resources that a PSSCH can be associated with, and the minimum value of N is 1.
  • the UE When the value of N is 1, the UE has an LBT failure at the timing of any PSFCH resource associated with the PSSCH (LBT failure indication is received from the PHY), resulting in HARQ transmission failure. The UE determines that LBT occurs once, and counts once when counting the number of LBT failures.
  • N is taken as the number of PSFCH resources that can be associated with PSSCH, when LBT failure occurs on the timing of all PSFCH resources associated with PSSCH (LBT failure indication is received from PHY), resulting in HARQ transmission failure, the UE determines that LBT failure occurs once and only counts 1 when counting the number of LBT failures.
  • the UE can obtain the value of N through network configuration or pre-configuration, or the terminal device can select it itself according to conditions.
  • a UE within the network coverage can obtain the value of N through dedicated RRC signaling or SIB signaling, and a UE not within the network coverage can obtain the value of N through pre-configuration.
  • the timer/maximum value may be configured per BWP/cell or per resource pool or per resource block set.
  • the timer and counter are maintained per BWP/cell or per resource pool or per resource block set.
  • the timer/maximum value may be configured or preconfigured by a network device.
  • a UE within network coverage may obtain the timer/maximum value through dedicated RRC signaling or SIB signaling, and a UE not within network coverage may obtain the timer/maximum value through preconfiguration.
  • the UE may maintain a continuous PSFCH LBT failure detection counter in each BWP/each resource pool/each resource block set. The UE detects whether an LBT failure occurs on multiple PSFCH resources associated with each PSSCH received on each BWP/each resource pool/each resource block set. If LTB failure occurs on N consecutive PSFCH resources associated with any PSSCH, the UE starts or restarts the continuous PSFCH LBT failure detection timer, and the UE adds 1 to the continuous PSFCH LBT failure detection counter.
  • the maximum value of N is the number of PSFCH resources that can be associated with a PSSCH, and the minimum value of N is 1. Please refer to the above embodiment for details.
  • the UE as a receiving UE, sends HARQ feedback on the PSFCH resource associated with this PSSCH for each HARQ-enabled PSSCH received on this BWP, regardless of whether it is unicast, multicast or broadcast. If N consecutive PSFCH resources fail LBT, the UE considers that the PSFCH LBT failure occurs once, and the UE starts or restarts the continuous PSFCH LBT failure detection timer. The UE adds 1 to the continuous PSFCH LBT failure detection counter.
  • the continuous PSFCH LBT failure detection counter reaches or exceeds the maximum value, and the UE triggers continuous PSFCH LBT failure.
  • the UE resets the continuous PSFCH LBT failure detection counter to 0.
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value are reconfigured, and the UE resets the continuous PSFCH LBT failure detection counter to 0.
  • the UE triggers continuous PSFCH LBT failure, and the UE reports it to the network device through continuous PSFCH LBT failure report.
  • the UE triggers continuous PSFCH LBT failure, mode1UE or mode2UE in RRC connected state reports to the network side through PSFCH LBT failure report.
  • the PSFCH LBT failure report can be MAC CE or RRC signaling, carrying BWP/RP/RB set indication of continuous PSFCH LBT failure.
  • the UE determines that the resource pool triggers continuous PSFCH LBT failure, and the UE triggers resource reselection, and reselects the resource pool where no continuous PSFCH LBT failure occurs.
  • the UE determines that the resource pool triggers continuous PSFCH LBT failure, and the mode2UE triggers resource pool reselection, reselecting resources in the resource pool where continuous PSFCH LBT failure has not occurred.
  • mode1UE refers to, for example, a UE whose resource allocation method is a method of dynamic network scheduling
  • mode2UE refers to, for example, a UE whose resource allocation method is a method of autonomous selection in a resource pool.
  • the communication device 12300 shown in Figure 23 may include a processing module 2301 and a transceiver module 2302.
  • the transceiver module 2302 may include a sending module and/or a receiving module, the sending module is used to implement the sending function, the receiving module is used to implement the receiving function, and the transceiver module 2302 may implement the sending function and/or the receiving function.
  • the communication device 2300 can be a terminal device, a device in a terminal device, or a device that can be used in conjunction with a terminal device.
  • the communication device 2300 is on the terminal device side, wherein:
  • the processing module 2301 is used to determine the number of consecutive LBT failures of the physical sidelink feedback channel PSFCH associated with the hybrid automatic repeat request HARQ enabled physical sidelink shared channel PSSCH;
  • the number of LBT failures of the PSFCH is counted.
  • the processing module 2301 is used to: when LBT failure occurs in N consecutive PSFCHs associated with the HARQ-enabled PSSCH, determine that the LBT failure of the PSFCH occurs once; wherein N is a positive integer less than or equal to M, and M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • processing module 2301 is used to perform LBT failure detection on multiple PSFCHs associated with each HARQ-enabled PSSCH received on the resource pool before sending HARQ feedback to determine the number of consecutive LBT failures that occur for multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • processing module 2301 is used to:
  • the consecutive PSFCH LBT failure detection timer corresponding to the resource pool is started or restarted, and the consecutive PSFCH LBT failure detection counter corresponding to the resource pool is increased by 1; wherein N is a positive integer less than or equal to M, and M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • processing module 2301 is further used to:
  • the communication device 2300 may further include:
  • the transceiver module 2302 is used to send continuous PSFCH LBT failure indication information to the network device when it is determined that the resource pool triggers continuous PSFCH LBT failure; wherein the continuous PSFCH LBT failure indication information includes indication information of the resource pool.
  • processing module 2301 is further used to:
  • resource allocation method used by the terminal device is an autonomous selection method in the resource pool, resource reselection is triggered to reselect resources in the resource pool where no continuous PSFCH LBT failure has occurred.
  • processing module 2301 is further used to:
  • the continuous PSFCH LBT failure detection counter corresponding to the resource pool is reset to 0.
  • processing module 2301 is further used to:
  • the continuous PSFCH LBT failure detection counter corresponding to the resource pool is reset to 0.
  • the network device 2300 may further include:
  • the transceiver module 2302 is used to receive first configuration information sent by the network device;
  • the processing module 2301 is also used to determine the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value based on the first configuration information.
  • the first configuration information includes any one of the following:
  • processing module 2301 is used to:
  • LBT failure detection is performed before sending HARQ feedback to determine the number of consecutive LBT failures of the multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • processing module 2301 is used to:
  • the consecutive PSFCH LBT failure detection timer corresponding to the BWP is started or restarted, and the consecutive PSFCH LBT failure detection counter corresponding to the BWP is increased by 1; wherein N is a positive integer less than or equal to M, and M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • processing module 2301 is used to:
  • the communication device 2300 further includes:
  • the transceiver module 2302 is used to send continuous PSFCH LBT failure indication information to the network device when it is determined that the BWP triggers the failure of continuous PSFCH LBT; wherein the continuous PSFCH LBT failure indication information includes the indication information of the BWP.
  • processing module 2301 is used to:
  • processing module 2301 is used to:
  • the continuous PSFCH LBT failure detection counter corresponding to the BWP is reset to 0.
  • processing module 2301 is used to:
  • the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value corresponding to the BWP are reconfigured, the continuous PSFCH LBT failure detection counter corresponding to the BWP is reset to 0.
  • the communication device 2300 further includes:
  • the transceiver module 2302 is used to receive the second configuration information sent by the network device;
  • the processing module 2301 is also used to determine the continuous PSFCH LBT failure detection timer and/or the continuous PSFCH LBT failure detection maximum value based on the second configuration information.
  • the second configuration information includes any one of the following:
  • processing module 2301 is used to perform LBT failure detection on multiple PSFCHs associated with each HARQ-enabled PSSCH received on a resource block set before sending HARQ feedback to determine the number of consecutive LBT failures that occur for multiple PSFCHs associated with each HARQ-enabled PSSCH.
  • processing module 2301 is used to:
  • the consecutive PSFCH LBT failure detection timer corresponding to the resource block set is started or restarted, and the consecutive PSFCH LBT failure detection counter corresponding to the resource block set is increased by 1; wherein N is a positive integer less than or equal to M, and M is the number of PSFCHs associated with the HARQ-enabled PSSCH.
  • the processing module 2301 is also used to determine that the resource block set triggers continuous PSFCH LBT failure when the number of LBT failures of the PSFCH corresponding to the resource block set is equal to or greater than the maximum value of continuous PSFCH LBT failure detection.
  • the communication device 2300 further includes:
  • the transceiver module 2302 is used to send continuous PSFCH LBT failure indication information to the network device when it is determined that the resource block set triggers continuous PSFCH LBT failure; wherein the continuous PSFCH LBT failure indication information includes the indication information of the resource block set.
  • processing module 2301 is further used to:
  • the resource allocation method used by the terminal device is an autonomous selection method in the resource block set, resource reselection is triggered to reselect resources in the resource block set where no continuous PSFCH LBT failure has occurred.
  • processing module 2301 is further used to:
  • the continuous PSFCH LBT failure detection counter corresponding to the resource block set is reset to 0.
  • processing module 2301 is further used to:
  • the continuous PSFCH LBT failure detection counter corresponding to the resource block set is reset to 0.
  • the communication device 2300 may further include:
  • the transceiver module 2302 is used to obtain fourth configuration information sent by the network device;
  • the processing module 2301 is further used to determine the value of N according to the fourth configuration information.
  • the problem of how the terminal device counts the number of LBT failures on the PSFCH when the HARQ-enabled PSSCH is associated with multiple PSFCH resources can be solved, which can avoid frequent triggering of continuous LBT failures of the side link and improve the link communication quality.
  • the communication device 1000 can be a network device, a device in a network device, or a device that can be used in conjunction with a network device.
  • the communication device 2300 is on the network device side, wherein:
  • the transceiver module 2301 is used to send first configuration information to the terminal device, wherein the first configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a resource pool, and the continuous PSFCH LBT failure detection timer corresponding to the resource pool is used to count the number of LBT failures of the PSFCH on the resource pool.
  • the first configuration information includes any one of the following:
  • the transceiver module 2301 is further used for:
  • the second configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a BWP, and the continuous PSFCH LBT failure detection timer corresponding to the BWP is used to count the number of LBT failures of the PSFCH on the BWP.
  • the second configuration information includes any one of the following:
  • the transceiver module 2301 is further used for:
  • the third configuration information is used by the terminal device to determine a continuous PSFCH LBT failure detection timer corresponding to a resource block set, and the continuous PSFCH LBT failure detection timer corresponding to the resource block set is used to count the number of LBT failures of the PSFCH on the resource block set.
  • the third configuration information includes any one of the following:
  • the transceiver module 2301 is further used for:
  • the fourth configuration information is used by the terminal device to determine the value of N, wherein N is the number of PSFCHs in which LBT failures have occurred consecutively in the PSFCH associated with the HARQ-enabled PSSCH determined by the terminal device.
  • a network device may send first configuration information to a terminal device, and configure a continuous PSFCH LBT failure detection timer used to count the number of LBT failures of PSFCH on a resource pool to the terminal device through the first configuration information.
  • the terminal device may count the number of LBT failures of PSFCH on a resource pool according to the first configuration information.
  • the communication device 2400 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 2400 may include one or more processors 2401.
  • the processor 2401 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 2400 may further include one or more memories 2402, on which a computer program 2404 may be stored, and the processor 2401 executes the computer program 2404 so that the communication device 2400 performs the method described in the above method embodiment.
  • data may also be stored in the memory 2402.
  • the communication device 2400 and the memory 2402 may be provided separately or integrated together.
  • the communication device 2400 may further include a transceiver 2405 and an antenna 2406.
  • the transceiver 2405 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 2405 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., and is used to implement a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., and is used to implement a transmitting function.
  • the communication device 2400 may further include one or more interface circuits 2407.
  • the interface circuit 2407 is used to receive code instructions and transmit them to the processor 2401.
  • the processor 2401 runs the code instructions to enable the communication device 2400 to perform the method described in the above method embodiment.
  • the communication device 2400 is a terminal device: the processor 2401 is used to execute steps 201 and 202 in Figure 2; steps 301 and 302 in Figure 3; steps 401 and 402 in Figure 4; steps 501 and 502 in Figure 5, etc.
  • the communication device 2400 is a network device: the transceiver 2405 is used to execute step 604 in FIG. 6 ; step 1104 in FIG. 11 ; and step 1601 in FIG. 16 .
  • the processor 2401 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 2401 may store a computer program 2403, which runs on the processor 2401 and enables the communication device 2400 to perform the method described in the above method embodiment.
  • the computer program 2403 may be fixed in the processor 2401, in which case the processor 2401 may be implemented by hardware.
  • the communication device 2400 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the present disclosure may be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver may also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 24.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 25 includes a processor 2501 and an interface 2503.
  • the number of processors 2501 can be one or more, and the number of interfaces 2503 can be multiple.
  • Interface 2503 is used to execute step 604 in FIG. 6 ; step 1104 in FIG. 11 ; step 1601 in FIG. 16 , etc.
  • Interface 2503 is used to execute step 1901 in FIG. 19 ; step 2001 in FIG. 20 ; step 2101 in FIG. 21 ; step 2201 in FIG. 22 , etc.
  • the chip 2500 further includes a memory 2502, and the memory 2502 is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present disclosure also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least one in the present disclosure may also be described as one or more, and a plurality may be two, three, four or more, which is not limited in the present disclosure.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in the tables in the present disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by the present disclosure.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种LBT 失败次数的计数方法及装置,可以应用于移动通信技术,该方法包括:确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数(201);根据HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的 LBT失败次数进行计数(202)。该方法可以避免频繁触发侧行链路连续LBT失败,提高了链路通信质量。

Description

一种LBT失败次数的计数方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种LBT失败次数的计数方法及装置。
背景技术
相关技术中,可以在未授权频段进行上行和下行操作,其中,下行链路和上行链路的通道接入都依赖于先听后说(listen before talk,LBT)特性。
在侧行链路通信中,发送终端设备在物理侧行链路控制信道(physical sidelink control channel,PSCCH)上发送侧行链路控制信息(sidelinkcontrolinformation,SCI)以及在物理侧行链路共享信道(physical sidelink shared channel,PSSCH)上发送第二阶段SCI,对于混合自动重传请求(hybrid automatic repeat request,HARQ)反馈使能的数据包,接收终端设备在物理侧行链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)上对PSSCH进行HARQ反馈。在PSFCH上发送HARQ反馈之前,需要进行LBT失败检测。
发明内容
本公开第一方面实施例提供了一种LBT失败次数的计数方法,该方法包括:
确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数;
根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数。
本公开第二方面实施例提供了另一种LBT失败次数的计数方法,包括:
向终端设备发送第一配置信息,其中,所述第一配置信息用于所述终端设备确定资源池对应的连续PSFCH LBT失败检测定时器,所述资源池对应的连续PSFCH LBT失败检测定时器用于对所述资源池上PSFCH的LBT失败次数进行计数。
本公开第三方面实施例提供了一种通信装置,包括:
处理模块,用于确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数;
根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数。
本公开第四方面实施例提供了另一种通信装置,包括:
收发模块,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于所述终端设备确定资源池对应的连续PSFCH LBT失败检测定时器,所述资源池对应的连续PSFCH LBT失败检测定时器用于对所述资源池上PSFCH的LBT失败次数进行计数。
本公开第五方面实施例提供了一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
本公开第六方面实施例提供了另一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
本公开第七方面实施例提供了一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
本公开第八方面实施例提供了另一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
本公开第九方面实施例提供了另一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
本公开第十方面实施例提供了另一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
本公开第十一方面实施例提供了一种LBT失败次数的计数系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
本公开第十二方面实施例提供了一种计算机可读存储介质,用于储存为上述通信装置所用的指令,当 所述指令被执行时,使所述通信装置执行上述第一方面所述的方法。
本公开第十三方面实施例提供了另一种计算机可读存储介质,用于储存为上述通信装置所用的指令,当所述指令被执行时,使所述通信装置执行上述第二方面所述的方法。
本公开第十四方面实施例还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本公开第十五方面实施例还提供另一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
本公开第十六方面实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持通信装置实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第十七方面实施例还提供了另一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持通信装置实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第十八方面实施例还提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本公开第十九方面实施例还提供了另一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开实施例提供的一种LBT失败次数的计数方法的流程示意图;
图3为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图4为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图5为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图6为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图7为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图8为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图9为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图10为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图11为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图12为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图13为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图14为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图15为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图16为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图17为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图18为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图19为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图20为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图21为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图22为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图;
图23为本公开实施例提供的一种通信装置的结构示意图;
图24为本公开实施例提供的另一种通信装置的结构示意图;
图25是本公开实施例提供的芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种LBT失败次数的计数方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备、和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
在侧行链路通信中,发送终端设备在PSCCH上发送SCI以及在PSSCH上发送第二阶段SCI,对于HARQ反馈使能的数据包,接收终端设备在PSFCH上对PSSCH进行HARQ反馈。在PSFCH上发送HARQ反馈之前,需要进行LBT失败检测。
如果一个HARQ使能的PSSCH资源关联多个PSFCH资源,终端设备需要在发送每个PSFCH资源之前做LBT,这些PSFCH资源可能间隔比较近,如果终端设备在对连续LBT失败次数进行计数时将连续多个PSFCH的LBT失败都计算进去,终端设备可能频繁触发侧行链路连续LBT失败,影响链路通信质量。
本公开中,终端设备可以确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,并根据HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,从而可以避免频繁触发侧行链路连续LBT失败,提高了链路通信质量。
下面结合附图对本公开所提供的一种LBT失败次数的计数方法及装置进行详细地介绍。
请参见图2,图2为本公开实施例提供的一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数。
本公开中,HARQ使能的PSSCH可以理解为指示需要进行HARQ反馈的PSSCH。其中,HARQ使能的PSSCH可以关联多个PSFCH。
本公开中,在HARQ使能的PSSCH关联的PSFCH进行HARQ反馈之前进行LBT失败检测,确定HARQ使能的PSSCH关联的PSFCH中发生LBT失败的PSFCH的数量,并根据HARQ使能的PSSCH关联的PSFCH中发生LBT失败的PSFCH的数量,确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数。
比如,HARQ使能的PSSCH关联5个PSFCH,在HARQ反馈之前进行LBT失败检测,如果有连续3个PSFCH发生LBT失败,可以确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数是3次。
步骤202,根据HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数。
本公开中,可以在HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数为1次时,确定PSFCH的LBT失败发生1次,从而对PSFCH的LBT失败次数进行计数。如果HARQ使能的PSSCH关联的多个PSFCH,也可以在HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数为多次时,确定PSFCH的LBT失败发生1次,以对PSFCH的LBT失败次数进行计数。
可选的,如果一个PSSCH关联多个PSFCH,针对HARQ反馈使能的侧行链路媒体访问控制协议数据单元(media access control protocol data unit,MAC PDU),终端设备可以在PSSCH关联的所有PSFCH上发送HARQ反馈,当PSSCH关联的连续N个PSFCH都发生LBT失败造成HARQ传输失败,终端设备可以确定LBT失败发生1次,在对PSFCH的LBT失败次数进行计数时计入1次。其中,N的最大取值是该PSSCH可以关联的PSFCH的数量,N的最小取值是1。
比如,对于HARQ使能的PSSCH关联的PSFCH,在HARQ反馈之前进行LBT失败检测,如果接收到物理层PHY递交的LBT失败指示,即发生了LBT失败,说明PSFCH被占用,如果发送HARQ反馈会造成HARQ反馈传输失败。
本公开实施例中,通过确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,并根据HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,从而可以避免频繁触发侧行链路连续LBT失败,提高了链路通信质量。
请参见图3,图3为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数。
本公开中,步骤301可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤302,在HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,确定PSFCH的LBT失败发生1次。
本公开中,HARQ使能的PSSCH可以关联多个PSFCH,比如假设HARQ使能的PSSCH关联的PSFCH数量为M,其中,M为大于1的正整数。
如果HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败,可以确定PSFCH的LBT失败发生1次。其中,N为小于或者等于M的正整数。
比如,M的取值6,N的取值为1,那么终端设备可以在HARQ使能的PSSCH关联的任一PSFCH发生LBT失败造成HARQ反馈失败时,确定LBT发生1次;N的取值为2,那么终端设备可以在HARQ使能的PSSCH关联的任意连续2个PSFCH发生LBT失败造成HARQ反馈失败时,确定LBT发生1次;N的取值为6,那么终端设备可以在HARQ使能的PSSCH关联的所有PSFCH都发生LBT失败时,确定LBT发生1次。
如果一个HARQ使能的PSSCH资源关联多个PSFCH资源,终端设备需要在发送每个PSFCH资源之前做LBT,这些PSFCH资源可能间隔比较近,如果终端设备在对连续LBT失败次数进行计数时将连续多个PSFCH的LBT失败都计算进去,终端设备可能频繁触发侧行链路连续LBT失败,影响链路通信质量。
基于此,本公开中,N的取值可以大于1,也即在HARQ使能的PSSCH关联的连续多个PSFCH发LBT失败时,确定LBT失败发生1次,从而可以解决将连续多个PSFCH的LBT失败都计算进去,终端设备可能频繁触发侧行链路连续LBT失败,影响链路通信质量的问题。
本公开中,N的取值可以是网络设备配置的,也可以是预配置的,也可以是终端设备自己确定的,本公开对此不作限定。
本公开中,针对每个在资源池上接收到的HARQ使能的PSSCH,不区分单播、组播或者广播,在该PSSCH关联的PSFCH资源上发HARQ反馈,如果连续N个PSFCH资源都LBT失败,终端设备可以认为连续PSFCH LBT失败发生1次,终端设备启动或者重启连续PSFCH LBT失败检测定时器,终端设备将连续PSFCH LBT失败检测计数器加1。
另外,在对侧行链路上的LBT失败次数进行计数时,对于PSFCH的LBT失败次数,可以按照在HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败时,确定PSFCH的LBT失败次数发生1次的方式进行计数。
本公开实施例中,可以确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,并在HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,确定PSFCH的LBT失败发生1次,从而可以避免频繁触发侧行链路连续LBT失败,提高了链路通信质量。
请参见图4,图4为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
本公开中,非授权频段上有激活BWP,激活BWP上可以配置一个或多个资源池,终端设备可以按照资源池粒度对PSFCH的LBT失败次数进行计数。
本公开中,资源池上可以接收到一个多个或多个HARQ使能的PSSCH,每个HARQ使能的PSSCH可以关联多个PSFCH,不同PSSCH关联的PSFCH的数量可以相同,也可以不相同,本公开对此不作限定。
本公开中,对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数,与上述确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数的方法类似,故在此不再赘述。步骤402,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源池对应的连续PSFCH LBT失败检测定时器,将资源池对应的连续PSFCH LBT失败检测计数器加1。
本公开中,若BWP上配置了多个资源池,针对每个资源池所用的连续PSFCH LBT失败检测定时器的时长可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,如果终端设备在网络覆盖范围内,终端设备可以接收网络设备发送的第一配置信息,并根据第一配置信息,确定对资源池上PSFCH的LBT失败次数进行计数所用连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。其中,连续PSFCH LBT失败检测最大值用于确定资源池是否触发连续PSFCH LBT失败。
可选的,第一配置信息可以包括以下任一项:资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;资源池所属的带宽(bandwidth part,BWP)对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
本公开中,终端设备对某资源池上PSFCH的LBT失败次数进行计数时所用的连续PSFCH LBT失败检测定时器,可以是第一配置信息中该资源池对应的连续PSFCH LBT失败检测定时器,也可以是该资源池所属的BWP对应的连续PSFCH LBT失败检测定时器,也可以是终端设备所属小区对应的连续PSFCH LBT失败检测定时器。也就是说,连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值可以是按资源池粒度配置的,或者按BWP粒度配置的,或者按小区粒度配置的。
可选的,本公开中,第一配置信息可以是专用无线资源控制(radio resource control,RRC)信令或者系统信息块(system information blocks,SIB)信令,也即终端设备可以通过专用RRC信令或者SIB信令获取连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,如果终端设备未在网络覆盖范围内,可以通过预配置获取连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
本公开中,资源池可以维护一个连续PSFCH LBT失败检测计数器,连续PSFCH LBT失败检测计数器的初始值可以为零,如果任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败,可以启动或重启资源池对应的连续PSFCH LBT失败检测定时器,并将资源池对应的连续PSFCH LBT失败检测计数器加1,在资源池对应的连续PSFCH LBT失败检测定时器运行期间,针对资源池接收的所有HARQ使能的PSSCH关联的多个PSFCH,连续PSFCH LBT失败检测计数器计数得到的LBT失败次数,即为资源池上PSFCH的LBT失败次数。其中,N为小于或者等于M的整数,M为HARQ使能的PSSCH关联的PSFCH的数量。
本公开中,终端设备获取N的取值的方式,可以采用本公开的各实施例中的任一种方式实现,故在此不再赘述。
本公开中,针对每个在资源池上接收到的HARQ使能的PSSCH,不区分单播、组播或者广播,在该PSSCH关联的PSFCH资源上发HARQ反馈,如果连续N个PSFCH资源都LBT失败,终端设备可以认为连续PSFCH LBT失败发生1次,终端设备启动或者重启连续PSFCH LBT失败检测定时器,终端设备将连续PSFCH LBT失败检测计数器加1。
可选的,在资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,可以将资源池对应的连续PSFCH LBT失败检测计数器重置为0,以提高资源池上PSFCH的LBT失败次数计数的准确性。
另外,在对资源池关联的PSSCH、PSCCH及PSFCH等多种信道上的LBT失败次数进行计数时,对 于PSFCH的LBT失败次数,可以按照在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败时,确定PSFCH的LBT失败次数发生1次的方式进行计数。
本公开实施例中,可以对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生连续LBT失败的次数,并在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源池对应的连续PSFCH LBT失败检测定时器,将资源池对应的连续PSFCH LBT失败检测计数器加1。由此,可以实现按资源池粒度对PSFCH的LBT失败次数进行计数。
请参见图5,图5为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生LBT失败的次数。
步骤502,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源池对应的连续PSFCH LBT失败检测定时器,将资源池对应的连续PSFCH LBT失败检测计数器加1。
本公开中,步骤501-步骤502可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤503,在资源池对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源池触发连续PSFCH LBT失败。
本公开中,若资源池对应的PSFCH的LBT失败次数大于或等于连续PSFCH LBT失败检测最大值,可以确定资源池触发连续PSFCH LBT失败。其中,连续PSFCH LBT失败检测最大值可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,若BWP上配置了多个资源池,利用上述方法可以确定每个资源池上PSFCH的LBT失败次数,根据每个资源池对应的连续PSFCH LBT失败检测最大值,可以确定每个资源池是否触发了连续PSFCH LBT失败。其中,在确定每个资源池是否触发连续PSFCH LBT失败时所用的连续PSFCH LBT失败检测最大值,可以是网络设备配置的,如上述所述,或者也可以是预配置的,本公开对此不作限定。
可选的,终端设备确定某资源池是否触发连续PSFCH LBT失败所用的连续PSFCH LBT失败检测最大值,可以是第一配置信息中该资源池对应的连续PSFCH LBT失败检测最大值,也可以是该资源池所属的BWP对应的连续PSFCH LBT失败检测最大值,也可以是终端设备所属小区对应的连续PSFCH LBT失败检测最大值。也就是说,连续PSFCH LBT失败检测最大值可以是按资源池粒度配置的,或者按BWP粒度配置的,或者按小区粒度配置的。
本公开实施例中,可以利用资源池对应的连续PSFCH LBT失败检测定时器,对资源池上PSFCH的LBT失败次数进行计数,在资源池对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源池触发连续PSFCH LBT失败。由此,可以实现按资源池粒度对PSFCH的LBT失败次数进行计数,以及根据资源池上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定资源池是否触发连续PSFCH LBT失败。
请参见图6,图6为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生LBT失败的次数。
步骤602,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源池对应的连续PSFCH LBT失败检测定时器,将资源池对应的连续PSFCH LBT失败检测计数器加1。
步骤603,在资源池对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源池触发连续PSFCH LBT失败。
本公开中,步骤601-步骤603可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤604,在确定资源池触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息。本公开中,终端设备可以在确定资源池触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息,以通知网络设备资源池发生了连续PSFCH LBT失败。
其中,连续PSFCH LBT失败指示信息中可以包括资源池的指示信息,比如资源池的标识等信息。由此,网络设备可以根据连续PSFCH LBT失败指示信息,确定哪个资源池发生了连续PSFCH LBT失败。
可选的,在侧行链路通信中发送资源分配方式可以包括网络动态调度的方式、终端设备在网络广播的 资源池中自主选择的方式等。
可选地的,终端设备是资源分配方式为网络动态调度方式的终端设备,或者是处于无线资源控制(Radio Resource Control,RRC)连接状态的资源池中自主选择方式的终端设备,在确定资源池触发连续PSFCH LBT失败的情况下,可以向网络设备发送连续PSFCH LBT失败指示信息。
可选的,本公开中,连续PSFCH LBT失败指示信息可以是媒体访问控制控制单元(media access control controlelement,MAC CE)或者RRC信令等,本公开对此不作限定。
需要说明的是,本公开中,在确定资源池是否触发连续PSFCH LBT失败时,可以采用上述步骤601-步骤603的方式,也可以采用其他方式确定,本公开对此不作限定。
本公开实施例中,可以按资源池粒度对PSFCH的LBT失败次数进行计数,以及根据资源池上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定资源池是否触发连续PSFCH LBT失败,并在确定资源池触发连续PSFCH LBT失败时,可以向网络设备发送连续PSFCH LBT失败指示信息,以通知网络设备资源池发生了连续PSFCH LBT失败。
请参见图7,图7为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生LBT失败的次数。
步骤702,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源池对应的连续PSFCH LBT失败检测定时器,将资源池对应的连续PSFCH LBT失败检测计数器加1。
步骤703,在资源池对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源池触发连续PSFCH LBT失败。
本公开中,步骤701-步骤703可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤704,在确定资源池触发连续PSFCH LBT失败的情况下,如果终端设备使用的资源分配方式为在资源池中自主选择的方式,则触发资源重选,重选未发生过连续PSFCH LBT失败的资源池中的资源。
在侧行链路通信中有两种发送资源分配方式,一种是网络动态调度的方式,另一种是终端设备在网络广播的资源池或资源块集中自主选择的方式。
本公开中,终端设备如果确定资源池触发连续PSFCH LBT失败且终端设备使用的资源分配方式为在资源池中自主选择的方式,那么终端设备可以触发资源重选,重选未发生过连续PSFCH LBT失败的资源池中的资源,以利用重选后的资源进行HARQ反馈。
需要说明的是,本公开中,在确定资源池是否触发连续PSFCH LBT失败时,可以采用上述步骤701-步骤703的方式,也可以采用其他方式确定,本公开对此不作限定。
本公开实施例中,可以按资源池粒度对PSFCH的LBT失败次数进行计数,以及根据资源池上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定资源池是否触发连续PSFCH LBT失败,并在确定资源池触发连续PSFCH LBT失败及终端设备使用的资源分配方式为在资源池中自主选择的方式时,触发资源重选,重选未发生过连续PSFCH LBT失败的资源池中的资源,以利用重选后的资源进行HARQ反馈,从而提高了HARQ反馈的传输成功率。
请参见图8,图8为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生LBT失败的次数。
步骤802,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源池对应的连续PSFCH LBT失败检测定时器,将资源池对应的连续PSFCH LBT失败检测计数器加1。
本公开中,步骤801-步骤802可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤803,在资源池对应的连续PSFCH LBT失败检测定时器超时的情况下,将资源池对应的连续PSFCH LBT失败检测计数器重置为0。
本公开中,资源池对应的连续PSFCH LBT失败检测定时器的时长,可以是网络设备设置,也可以预配置的,本公开对此不作限定。
本公开中,如果资源池对应的连续PSFCH LBT失败检测定时器超时,可以将资源池对应的连续PSFCH LBT失败检测计数器重置为0,以在下次资源池满足PSFCH的LBT失败次数计数条件时,对资源池上PSFCH的LBT失败次数重新计数。
本公开实施例中,可以按资源池粒度对PSFCH的LBT失败次数进行计数,并在资源池对应的连续PSFCH LBT失败检测定时器超时的情况下,将资源池对应的连续PSFCH LBT失败检测计数器重置为0,以在下次资源池满足PSFCH的LBT失败次数计数条件时,对资源池上PSFCH的LBT失败次数重新计数,提高了资源池上PSFCH的LBT失败次数的准确性。
请参见图9,图9为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
本公开中,BWP上可以接收到一个多个或多个HARQ使能的PSSCH,每个HARQ使能的PSSCH可以关联多个PSFCH,不同PSSCH关联的PSFCH的数量可以相同,也可以不相同,本公开对此不作限定。
本公开中,对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数,与上述确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数的方法类似,故在此不再赘述。
步骤902,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启BWP对应的连续PSFCH LBT失败检测定时器,将BWP对应的连续PSFCH LBT失败检测计数器加1。
本公开中,针对BWP所用的连续PSFCH LBT失败检测定时器的时长可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,如果终端设备在网络覆盖范围内,终端设备可以接收网络设备发送的第二配置信息,并根据第二配置信息,确定对BWP上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。其中,连续PSFCH LBT失败检测最大值用于确定BWP是否触发连续PSFCH LBT失败。
本公开中,第二配置信息包括以下任一项:BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
本公开中,终端设备对某BWP上PSFCH的LBT失败次数进行计数时所用的连续PSFCH LBT失败检测定时器,可以是该BWP对应的连续PSFCH LBT失败检测定时器,也可以是终端设备所属小区对应的连续PSFCH LBT失败检测定时器。也就是说,连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值可以是按BWP粒度配置的,或者按小区粒度配置的。
可选的,本公开中,第二配置信息可以是专用RRC信令或者SIB信令,也即终端设备可以通过专用RRC信令或者SIB信令获取连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,如果终端设备未在网络覆盖范围内,可以通过预配置获取连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
本公开中,BWP可以维护一个连续PSFCH LBT失败检测计数器,连续PSFCH LBT失败检测计数器的初始值可以为零,如果任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败,可以启动或重启BWP对应的连续PSFCH LBT失败检测定时器,并将BWP对应的连续PSFCH LBT失败检测计数器加1,在BWP对应的连续PSFCH LBT失败检测定时器运行期间,针对BWP接收的所有HARQ使能的PSSCH关联的多个PSFCH,连续PSFCH LBT失败检测计数器计数得到的LBT失败次数,即为BWP上PSFCH的LBT失败次数。其中,N为小于或者等于M的整数,M为HARQ使能的PSSCH关联的PSFCH的数量。
本公开中,终端设备获取N的取值的方式,可以采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开中,针对每个在BWP上接收到的HARQ使能的PSSCH,不区分单播、组播或者广播,在该PSSCH关联的PSFCH资源上发HARQ反馈,如果连续N个PSFCH资源都LBT失败,终端设备可以认为连续PSFCH LBT失败发生1次,终端设备启动或者重启连续PSFCH LBT失败检测定时器,终端设备将连续PSFCH LBT失败检测计数器加1。
可选的,在BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,可以将BWP对应的连续PSFCH LBT失败检测计数器重置为0,以提高BWP上PSFCH的LBT失败次数计数的准确性。
另外,在对BWP下所有资源池关联的PSSCH、PSCCH及PSFCH等多种信道上的LBT失败次数进行计数时,对于PSFCH的LBT失败次数,可以按照在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败时,确定PSFCH的LBT失败次数发生1次的方式进行计数。
本公开实施例中,可以对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生连续LBT失败的次数,并在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启BWP对应的连续PSFCH LBT失败检测定时器,将BWP对应的连续PSFCH LBT失败检测计数器加1。由此,可以实现按BWP粒度对PSFCH的LBT失败次数进行计数。
请参见图10,图10为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1002,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启BWP对应的连续PSFCH LBT失败检测定时器,将BWP对应的连续PSFCH LBT失败检测计数器加1。
本公开中,步骤1001-步骤1002可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1003,在BWP对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定BWP触发连续PSFCH LBT失败。
本公开中,若BWP对应的PSFCH的LBT失败次数大于或等于连续PSFCH LBT失败检测最大值,可以确定BWP触发连续PSFCH LBT失败。其中,连续PSFCH LBT失败检测最大值可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,终端设备可以获取网络设备发送的第二配置信息,根据第二配置信息,确定连续PSFCH LBT失败检测最大值。
本公开中,对第二配置信息的解释说明,可以参见上述实施例,在此不再赘述。
可选的,终端设备确定BWP是否触发连续PSFCH LBT失败所用的连续PSFCH LBT失败检测最大值,可以是第二配置信息中BWP对应的连续PSFCH LBT失败检测最大值,也可以是终端设备所属小区对应的连续PSFCH LBT失败检测最大值。也就是说,连续PSFCH LBT失败检测最大值可以是按BWP粒度配置的,或者按小区粒度配置的。
本公开实施例中,可以利用BWP对应的连续PSFCH LBT失败检测定时器,对BWP上PSFCH的LBT失败次数进行计数,在BWP对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定BWP触发连续PSFCH LBT失败。由此,可以按BWP粒度对PSFCH的LBT失败次数进行计数,以及根据BWP上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定BWP是否触发连续PSFCH LBT失败。
请参见图11,图11为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1102,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启BWP对应的连续PSFCH LBT失败检测定时器,将BWP对应的连续PSFCH LBT失败检测计数器加1。
步骤1103,在BWP对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定BWP触发连续PSFCH LBT失败。
本公开中,步骤1101-步骤1103可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1104,在确定BWP触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息。
本公开中,终端设备可以在确定BWP触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息,以通知网络设备BWP发生了连续PSFCH LBT失败。
其中,连续PSFCH LBT失败指示信息中可以包括BWP的指示信息,比如BWP的标识等信息。由此,网络设备可以根据连续PSFCH LBT失败指示信息,确定BWP发生了连续PSFCH LBT失败。
可选的,本公开中,连续PSFCH LBT失败指示信息可以是MAC CE或者RRC信令等,本公开对此不作限定。
需要说明的是,本公开中,在确定BWP是否触发连续PSFCH LBT失败时,可以采用上述步骤1101-步骤1103的方式,也可以采用其他方式确定,本公开对此不作限定。
本公开实施例中,可以按BWP粒度对PSFCH的LBT失败次数进行计数,以及根据BWP上PSFCH 的LBT失败次数和连续PSFCH LBT失败检测最大值,确定BWP是否触发连续PSFCH LBT失败,并在确定BWP触发连续PSFCH LBT失败时,可以向网络设备发送连续PSFCH LBT失败指示信息,以通知网络设备BWP发生了连续PSFCH LBT失败。
请参见图12,图12为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤1201,对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1202,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启BWP对应的连续PSFCH LBT失败检测定时器,将BWP对应的连续PSFCH LBT失败检测计数器加1。
步骤1203,在BWP对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定BWP触发连续PSFCH LBT失败。
本公开中,步骤1201-步骤1203可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1204,在确定BWP触发连续PSFCH LBT失败的情况下,确定触发侧行链路无线链路失败RLF。
本公开中,终端设备如果确定BWP触发连续PSFCH LBT失败,可以确定触发侧行链路无线链路(radio link failure,RLF)。
需要说明的是,本公开中,在确定BWP是否触发连续PSFCH LBT失败时,可以采用上述步骤1201-步骤1203的方式,也可以采用其他方式确定,本公开对此不作限定。
本公开实施例中,可以按BWP粒度对PSFCH的LBT失败次数进行计数,以及根据BWP上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定BWP是否触发连续PSFCH LBT失败,并在确定BWP触发连续PSFCH LBT失败的情况下,确定触发侧行链路RLF,可以使终端设备之间及时重新连接并进行通信。
请参见图13,图13为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤1301,对BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1302,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启BWP对应的连续PSFCH LBT失败检测定时器,将BWP对应的连续PSFCH LBT失败检测计数器加1。
本公开中,步骤1301-步骤1302可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1303,在BWP对应的连续PSFCH LBT失败检测定时器超时的情况下,将BWP对应的连续PSFCH LBT失败检测计数器重置为0。
本公开中,BWP对应的连续PSFCH LBT失败检测定时器的时长,可以是网络设备设置,也可以预配置的,本公开对此不作限定。
本公开中,如果BWP对应的连续PSFCH LBT失败检测定时器超时,可以将BWP对应的连续PSFCH LBT失败检测计数器重置为0,以在下次BWP满足PSFCH的LBT失败次数计数条件时,对BWP上PSFCH的LBT失败次数重新计数。
本公开实施例中,可以按BWP粒度对PSFCH的LBT失败次数进行计数,并在BWP对应的连续PSFCH LBT失败检测定时器超时的情况下,将BWP对应的连续PSFCH LBT失败检测计数器重置为0,以在下次BWP满足PSFCH的LBT失败次数计数条件时,对BWP上PSFCH的LBT失败次数重新计数,提高了BWP上PSFCH的LBT失败次数的准确性。
请参见图14,图14为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图14所示,该方法可以包括但不限于如下步骤:
步骤1401,对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
本公开中,非授权频段上有激活BWP,激活BWP上可以配置一个或多个资源块集,终端设备可以按照资源块集粒度对PSFCH的LBT失败次数进行计数。
本公开中,资源块集上可以接收到一个多个或多个HARQ使能的PSSCH,每个HARQ使能的PSSCH可以关联多个PSFCH,不同PSSCH关联的PSFCH的数量可以相同,也可以不相同,本公开对此不作限定。
本公开中,对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈 之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数,与上述确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数的方法类似,故在此不再赘述。
步骤1402,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,将资源块集对应的连续PSFCH LBT失败检测计数器加1。
本公开中,针对资源块集所用的连续PSFCH LBT失败检测定时器的时长可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,本公开中,如果终端设备在网络覆盖范围内,终端设备可以接收网络设备发送的第三配置信息,并根据第三配置信息,确定对资源块集上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。其中,连续PSFCH LBT失败检测最大值用于确定资源块集是否触发连续PSFCH LBT失败。
本公开中,第三配置信息包括以下任一项:资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;资源块集所属的BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
本公开中,终端设备对某资源块集上PSFCH的LBT失败次数进行计数时所用的连续PSFCH LBT失败检测定时器,可以是该资源块集对应的连续PSFCH LBT失败检测定时器,也可以是终端设备所属小区对应的连续PSFCH LBT失败检测定时器。也就是说,连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值可以是按资源块集粒度配置的,或者按BWP粒度配置的,或者按小区粒度配置的。
可选的,本公开中,第三配置信息可以是专用RRC信令或者SIB信令,也即终端设备可以通过专用RRC信令或者SIB信令获取连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,如果终端设备未在网络覆盖范围内,可以通过预配置获取连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
本公开中,资源块集可以维护一个连续PSFCH LBT失败检测计数器,连续PSFCH LBT失败检测计数器的初始值可以为零,如果任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败,可以启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,并将资源块集对应的连续PSFCH LBT失败检测计数器加1,在资源块集对应的连续PSFCH LBT失败检测定时器运行期间,针对资源块集接收的所有HARQ使能的PSSCH关联的多个PSFCH,连续PSFCH LBT失败检测计数器计数得到的LBT失败次数,即为资源块集上PSFCH的LBT失败次数。其中,N为小于或者等于M的整数,M为HARQ使能的PSSCH关联的PSFCH的数量。
本公开中,N的取值可以是网络设备配置,也可以是预配置的,也可以终端设备自己确定的,本公开对此不作限定。
本公开中,针对每个在资源块集上接收到的HARQ使能的PSSCH,不区分单播、组播或者广播,在该PSSCH关联的PSFCH资源上发HARQ反馈,如果连续N个PSFCH资源都LBT失败,终端设备可以认为连续PSFCH LBT失败发生1次,终端设备启动或者重启连续PSFCH LBT失败检测定时器,终端设备将连续PSFCH LBT失败检测计数器加1。
可选的,本公开中,如果终端设备在网络覆盖范围内,终端设备可以获取网络设备发送的第四配置信息,根据第四配置信息确定N的取值。如果终端设备未在网络覆盖范围内,可以通过预配置获取N的取值。
可选的,第四配置信息可以是专用RRC信令或者SIB信令,也即终端设备可以通过专用RRC信令或者SIB信令获取N的取值。
可选的,在资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,可以将资源块集对应的连续PSFCH LBT失败检测计数器重置为0,以提高资源块集上PSFCH的LBT失败次数计数的准确性。
另外,在对资源块集关联的PSSCH、PSCCH及PSFCH等多种信道上的LBT失败次数进行计数时,对于PSFCH的LBT失败次数,可以按照在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败时,确定PSFCH的LBT失败次数发生1次的方式进行计数。
本公开实施例中,可以对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生连续LBT失败的次数,并在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,将资源块集对应的连续PSFCH LBT失败检测计数器 加1。由此,可以按资源块集粒度对PSFCH的LBT失败次数进行计数。
请参见图15,图15为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图15所示,该方法可以包括但不限于如下步骤:
步骤1501,对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1502,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,将资源块集对应的连续PSFCH LBT失败检测计数器加1。
本公开中,步骤1501-步骤1502可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1503,在资源块集对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源块集触发连续PSFCH LBT失败。
本公开中,若资源块集对应的PSFCH的LBT失败次数大于或等于连续PSFCH LBT失败检测最大值,可以确定资源块集触发连续PSFCH LBT失败。其中,连续PSFCH LBT失败检测最大值可以是预配置的,也可以是由网络设备配置的,本公开对此不作限定。
可选的,终端设备可以获取网络设备发送的第三配置信息,根据第三配置信息,确定连续PSFCH LBT失败检测最大值。
本公开中,对第三配置信息的解释说明,可以参见上述实施例,在此不再赘述。
可选的,终端设备确定资源块集是否触发连续PSFCH LBT失败所用的连续PSFCH LBT失败检测最大值,可以是第三配置信息中资源块集对应的连续PSFCH LBT失败检测最大值,也可以是BWP对应的连续PSFCH LBT失败检测最大值,也可以是终端设备所属小区对应的连续PSFCH LBT失败检测最大值。也就是说,连续PSFCH LBT失败检测最大值可以是按资源块集粒度配置的,或者按BWP粒度配置的,或者按小区粒度配置的。
本公开实施例中,可以利用资源块集对应的连续PSFCH LBT失败检测定时器,对资源块集上PSFCH的LBT失败次数进行计数,在资源块集对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源块集触发连续PSFCH LBT失败。由此,可以实现按资源块集粒度对PSFCH的LBT失败次数进行计数,以及根据资源块集上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定资源块集是否触发连续PSFCH LBT失败。
请参见图16,图16为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图16所示,该方法可以包括但不限于如下步骤:
步骤1601,对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1602,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,将资源块集对应的连续PSFCH LBT失败检测计数器加1。
步骤1603,在资源块集对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源块集触发连续PSFCH LBT失败。
本公开中,步骤1601-步骤1603可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1604,在确定资源块集触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息。
本公开中,终端设备可以在确定资源块集触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息,以通知网络设备资源块集发生了连续PSFCH LBT失败。
其中,连续PSFCH LBT失败指示信息中可以包括资源块集的指示信息,比如资源块集的标识等信息。由此,网络设备可以根据连续PSFCH LBT失败指示信息,确定资源块集发生了连续PSFCH LBT失败。
可选的,本公开中,连续PSFCH LBT失败指示信息可以是MAC CE或者RRC信令等,本公开对此不作限定。
可选的,在侧行链路通信中发送资源分配方式可以包括网络动态调度的方式、终端设备在网络广播的资源块集中自主选择的方式等。
可选地的,若终端设备是资源分配方式为网络动态调度方式的终端设备,或者是处于RRC连接状态的资源块集中自主选择方式的终端设备,在确定资源块集触发连续PSFCH LBT失败的情况下,都可以向 网络设备发送连续PSFCH LBT失败指示信息。需要说明的是,本公开中,在确定资源块集是否触发连续PSFCH LBT失败时,可以采用上述步骤1601-步骤1603的方式,也可以采用其他方式确定,本公开对此不作限定。
本公开实施例中,可以按资源块集粒度对PSFCH的LBT失败次数进行计数,以及根据资源块集上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定资源块集是否触发连续PSFCH LBT失败,并在确定资源块集触发连续PSFCH LBT失败时,可以向网络设备发送连续PSFCH LBT失败指示信息,以通知网络设备资源块集发生了连续PSFCH LBT失败。
请参见图17,图17为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图17所示,该方法可以包括但不限于如下步骤:
步骤1701,对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1702,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,将资源块集对应的连续PSFCH LBT失败检测计数器加1。
步骤1703,在资源块集对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定资源块集触发连续PSFCH LBT失败。
本公开中,步骤1701-步骤1703可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1704,在确定资源块集触发连续PSFCH LBT失败的情况下,如果终端设备使用的资源分配方式为在资源块集中自主选择的方式,则触发资源重选,重选未发生过连续PSFCH LBT失败的资源块集中的资源。
本公开中,终端设备如果确定资源块集触发连续PSFCH LBT失败且终端设备使用的资源分配方式为在资源块集中自主选择的方式,那么终端设备可以触发资源重选,重选未发生过连续PSFCH LBT失败的资源块集中的资源,以利用重选后的资源进行HARQ反馈。
需要说明的是,本公开中,在确定资源块集是否触发连续PSFCH LBT失败时,可以采用上述步骤1701-步骤1703的方式,也可以采用其他方式确定,本公开对此不作限定。
本公开实施例中,可以按资源块集粒度对PSFCH的LBT失败次数进行计数,以及根据资源块集上PSFCH的LBT失败次数和连续PSFCH LBT失败检测最大值,确定资源块集是否触发连续PSFCH LBT失败,并在确定资源块集触发连续PSFCH LBT失败及终端设备使用的资源分配方式为在资源块集中自主选择的方式时,触发资源重选,重选未发生过连续PSFCH LBT失败的资源块集中的资源,以利用重选后的资源进行HARQ反馈,从而提高了HARQ反馈的传输成功率。
请参见图18,图18为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由终端设备执行。如图18所示,该方法可以包括但不限于如下步骤:
步骤1801,对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
步骤1802,在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启资源块集对应的连续PSFCH LBT失败检测定时器,将资源块集对应的连续PSFCH LBT失败检测计数器加1。
本公开中,步骤1801-步骤1802可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1803,在资源块集对应的连续PSFCH LBT失败检测定时器超时的情况下,将资源块集对应的连续PSFCH LBT失败检测计数器重置为0。
本公开中,资源块集对应的连续PSFCH LBT失败检测定时器的时长,可以是网络设备设置,也可以预配置的,本公开对此不作限定。
本公开中,如果资源块集对应的连续PSFCH LBT失败检测定时器超时,可以将资源块集对应的连续PSFCH LBT失败检测计数器重置为0,以在下次资源块集满足PSFCH的LBT失败次数计数条件时,对资源块集上PSFCH的LBT失败次数重新计数。
本公开实施例中,可以按资源块集粒度对PSFCH的LBT失败次数进行计数,并在资源块集对应的连续PSFCH LBT失败检测定时器超时的情况下,将资源块集对应的连续PSFCH LBT失败检测计数器重置为0,以在下次资源块集满足PSFCH的LBT失败次数计数条件时,对资源块集上PSFCH的LBT失败次数重新计数,提高了资源块集上PSFCH的LBT失败次数的准确性。
请参见图19,图19为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由网络设备执行。如图19所示,该方法可以包括但不限于如下步骤:
步骤1901,向终端设备发送第一配置信息,其中,第一配置信息用于终端设备确定资源池对应的连续PSFCH LBT失败检测定时器。
本公开中,网络设备可以向终端设备发送第一配置信息,以给终端设备配置对资源池上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器,和/或配置确定资源池是否触发连续PSFCH LBT失败所用的连续PSFCH LBT失败检测最大值。
可选的,第一配置信息可以是专用RRC信令或者SIB信令,也即网络设备可以通过专用RRC信令或者SIB信令,向终端设备配置连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,第一配置信息可以包括以下任一项:资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;资源池所属的BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。也就是说,连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值可以是按资源池粒度配置的,或者按BWP粒度配置的,或者按小区粒度配置的。
本公开实施例中,网络设备可以向终端设备发送第一配置信息,通过第一配置信息给终端设备配置在对资源池上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器。由此,终端设备可以根据第一配置信息对资源池上PSFCH的LBT失败次数进行计数。
请参见图20,图20为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由网络设备执行。如图20所示,该方法可以包括但不限于如下步骤:
步骤2001,向终端设备发送第二配置信息,其中,第二配置信息用于终端设备确定BWP对应的连续PSFCH LBT失败检测定时器。
本公开中,网络设备可以向终端设备发送第二配置信息,以给终端设备配置对BWP上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器,和/或配置确定BWP是否触发连续PSFCH LBT失败所用的连续PSFCH LBT失败检测最大值。
可选的,第二配置信息可以是专用RRC信令或者SIB信令,也即网络设备可以通过专用RRC信令或者SIB信令,向终端设备配置连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,第二配置信息可以包括以下任一项:BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。也就是说,连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值可以是按BWP粒度配置的,或者按小区粒度配置的。
本公开实施例中,网络设备可以向终端设备发送第二配置信息,通过第二配置信息给终端设备配置在对BWP上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器。由此,终端设备可以根据第二配置信息对BWP上PSFCH的LBT失败次数进行计数。
请参见图21,图21为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由网络设备执行。如图21所示,该方法可以包括但不限于如下步骤:
步骤2101,向终端设备发送第三配置信息,其中,第三配置信息用于终端设备确定资源块集对应的连续PSFCH LBT失败检测定时器。
本公开中,网络设备可以向终端设备发送第三配置信息,以给终端设备配置对资源块集上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器,和/或配置确定资源块集是否触发连续PSFCH LBT失败所用的连续PSFCH LBT失败检测最大值。
可选的,第三配置信息可以是专用RRC信令或者SIB信令,也即网络设备可以通过专用RRC信令或者SIB信令,向终端设备配置连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,第三配置信息可以包括以下任一项:资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;资源块集所属的BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。也就是说,连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值可以是按资源块集粒度配置的,或者按BWP粒度配置的,或者按小区粒度配置的。
本公开实施例中,网络设备可以向终端设备发送第三配置信息,通过第三配置信息给终端设备配置在对资源块集上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器。由此,终端设备可以根据第三配置信息对资源块集上PSFCH的LBT失败次数进行计数。
请参见图22,图22为本公开实施例提供的另一种LBT失败次数的计数方法的流程示意图,该方法由 网络设备执行。如图22所示,该方法可以包括但不限于如下步骤:
步骤2201,向终端设备发送第四配置信息,其中,第四配置信息用于终端设备确定N的取值。
本公开中,N为终端设备确定HARQ使能的PSSCH关联的PSFCH中连续发生LBT失败的PSFCH的数量。其中,N为小于或者等于M的正整数,M为HARQ使能的PSSCH关联的PSFCH的数量。
本公开中,网络设备可以向终端设备发送第四配置信息,以给终端设备配置N的取值。
可选的,第四配置信息可以为专用RRC信令或者SIB信令,也即网络设备可以通过专用RRC信令或者SIB信令给终端设备配置N的取值。
本公开实施例中,网络设备可以向终端设备发送第四配置信息,以给终端设备配置N的取值。由此,终端设备可以根据网络设备配置的HARQ使能的PSSCH关联的PSFCH中连续发生LBT失败的PSFCH的数量,对PSFCH的LBT失败次数进行计数。
为了便于理解本公开的LBT失败次数的计数方法,下面结合下述实施例进一步说明。
一、一个PSSCH关联的PSFCH资源连续发生N次LBT失败,UE确定LBT失败发生1次。
当一个PSSCH可以关联多个PSFCH资源,针对HARQ反馈使能的侧行链路MACPDU,UE在PSSCH关联的所有PSFCH资源上发送HARQ反馈,当PSSCH关联的连续N个PSFCH资源的时机上都发生LBT失败(收到PHY的LBT失败指示)造成HARQ反馈传输失败,UE确定LBT失败发生1次,在统计LBT失败次数的时候只统计1次。N的最大取值是一个PSSCH可以关联的PSFCH资源数目,N最小取值是1。当N取值为1时,UE在PSSCH关联的任一PSFCH资源的时机发生LBT失败(收到PHY的LBT失败指示)造成HARQ传输失败,UE确定LBT发生1次,在统计LBT失败次数的时候统计1次。当N取值为PSSCH可以关联的PSFCH资源数目时,当PSSCH关联的所有PSFCH资源的时机上都发生LBT失败(收到PHY的LBT失败指示)造成HARQ传输失败,UE确定LBT失败发生1次,在统计LBT失败次数的时候只统计1。
UE可以通过网络测配置或者预配置获取N的取值,也可以由终端设备根据条件自己选择。
在网络覆盖范围内的UE可以通过专用RRC信令或者SIB信令获取N的取值,未在网络覆盖范围内的UE可以通过预配置获取N的取值。
二、配置一个连续PSFCH LBT失败检测定时器,连续PSFCH LBT失败检测计数器,连续PSFCH LBT失败检测最大值。
该定时器/最大值可以按每个BWP/小区或者每个资源池或者每个资源块集配置。该定时器和计数器每个BWP/小区或者每个资源池或者每个资源块集维护。该定时器/最大值可以由网络设备配置或者预配置。在网络覆盖范围内的UE可以通过专用RRC信令或者SIB信令获取该定时器/最大值,未在网络覆盖范围内的UE可以通过预配置获取该定时器/最大值。
三、UE可以在每个BWP/每个资源池/每个资源块集维护一个连续PSFCH LBT失败检测计数器,UE针对在这个每个BWP/每个资源池/每个资源块集上接收到的每个PSSCH关联的多个PSFCH资源上检测是否发生LBT失败,如果任一PSSCH关联的连续N个PSFCH资源发生LTB失败,UE启动或者重启连续PSFCH LBT失败检测定时器,UE将连续PSFCH LBT失败检测计数器加1。
N的最大取值是一个PSSCH可以关联的PSFCH资源数量,N最小取值是1。具体参考上述实施例。以BWP为例,UE作为接收UE,针对每个在这个BWP上接收到的HARQ使能的PSSCH,不区分是单播组播或者广播,在这个PSSCH关联的PSFCH资源上发送HARQ反馈,如果连续N个PSFCH资源都LBT失败,UE认为PSFCH LBT失败发生一次,UE启动或者重启连续PSFCH LBT失败检测定时器,UE将连续PSFCH LBT失败检测计数器加1。
四、连续PSFCH LBT失败检测计数器达到或者超过最大值,UE触发连续PSFCH LBT失败。
五、连续PSFCH LBT失败检测定时器超时,UE将连续PSFCH LBT失败检测计数器重置为0。
六、连续PSFCH LBT失败检测定时器和/或者连续PSFCH LBT失败检测最大值重配置,UE将连续PSFCH LBT失败检测计数器重置为0。
七、UE触发连续PSFCH LBT失败,UE通过连续PSFCH LBT失败报告上报给网络设备。
UE触发连续PSFCH LBT失败,mode1UE或者处于RRC连接态的mode2UE通过PSFCH LBT失败报告上报给网络侧。该PSFCH LBT失败报告可以是MAC CE或者是RRC信令,携带发生连续PSFCH LBT失败的BWP/RP/RB set指示。
八、UE确定资源池触发连续PSFCH LBT失败,UE触发资源重选,重选没有发生连续PSFCH LBT失败的资源池。
UE确定资源池触发连续PSFCH LBT失败,mode2UE触发资源池重选,重选未发生过连续PSFCH LBT失败的资源池中的资源。
需要说明的是,本公开中,mode1UE例如是指资源分配方式为网络动态调度的方式的UE,mode2UE例如是指资源分配方式为在资源池中自主选择的方式的UE。
请参见图23,图23为本公开实施例提供的一种通信装置的结构示意图。图23所示的通信装置12300可包括处理模块2301和收发模块2302。收发模块2302可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块2302可以实现发送功能和/或接收功能。
可以理解的是,通信装置2300可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置2300在终端设备侧,其中:
处理模块2301,用于确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数;
根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数。
可选的,处理模块2301,用于:在所述HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,确定PSFCH的LBT失败发生1次;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
可选的,处理模块2301,用于对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生连续LBT失败的次数。
可选的,处理模块2301,用于:
在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启所述资源池对应的连续PSFCH LBT失败检测定时器,将所述资源池对应的连续PSFCH LBT失败检测计数器加1;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
可选的,处理模块2301,还用于:
在所述资源池对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定所述资源池触发连续PSFCH LBT失败。
可选的,该通信装置2300还可以包括:
收发模块2302,用于在确定所述资源池触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息;其中,所述连续PSFCH LBT失败指示信息中包括所述资源池的指示信息。
可选的,处理模块2301,还用于:
在确定所述资源池触发连续PSFCH LBT失败的情况下,如果所述终端设备使用的资源分配方式为在资源池中自主选择的方式,则触发资源重选,重选未发生过连续PSFCH LBT失败的资源池中的资源。
可选的,处理模块2301,还用于:
在所述资源池对应的连续PSFCH LBT失败检测定时器超时的情况下,将所述资源池对应的连续PSFCH LBT失败检测计数器重置为0。
可选的,处理模块2301,还用于:
在所述资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,将所述资源池对应的连续PSFCH LBT失败检测计数器重置为0。
可选的,该网络设备2300还可以包括:
收发模块2302,用于接收网络设备发送的第一配置信息;
处理模块2301,还用于根据所述第一配置信息,确定所述连续PSFCH LBT失败检测定时器和/或所述连续PSFCH LBT失败检测最大值。
处理模块2301,所述第一配置信息包括以下任一项:
所述资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述资源池所属的带宽BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,处理模块2301,用于:
对带宽BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
可选的,处理模块2301,用于:
在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启所述BWP对应的连续PSFCH LBT失败检测定时器,将所述BWP对应的连续PSFCH LBT失败检测计数器加1;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
可选的,处理模块2301,用于:
在所述BWP对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定所述BWP触发连续PSFCH LBT失败。
可选的,通信装置2300还包括:
收发模块2302,用于在确定所述BWP触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息;其中,所述连续PSFCH LBT失败指示信息中包括所述BWP的指示信息。
可选的,处理模块2301,用于:
在确定所述BWP触发连续PSFCH LBT失败的情况下,确定触发侧行链路无线链路失败RLF。
可选的,处理模块2301,用于:
在所述BWP对应的连续PSFCH LBT失败检测定时器超时的情况下,将所述BWP对应的连续PSFCH LBT失败检测计数器重置为0。
可选的,处理模块2301,用于:
在所述BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,将所述BWP对应的连续PSFCH LBT失败检测计数器重置为0。
可选的,通信装置2300还包括:
收发模块2302,用于接收网络设备发送的第二配置信息;
处理模块2301,还用于根据所述第二配置信息,确定所述连续PSFCH LBT失败检测定时器和/或所述连续PSFCH LBT失败检测最大值。
可选的,所述第二配置信息包括以下任一项:
所述BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,处理模块2301,用于对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
可选的,处理模块2301,用于:
在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启所述资源块集对应的连续PSFCH LBT失败检测定时器,将所述资源块集对应的连续PSFCH LBT失败检测计数器加1;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
可选的,处理模块2301,还用于在所述资源块集对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定所述资源块集触发连续PSFCH LBT失败。
可选的,通信装置2300还包括:
收发模块2302,用于在确定所述资源块集触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息;其中,所述连续PSFCH LBT失败指示信息中包括所述资源块集的指示信息。
可选的,处理模块2301,还用于:
在确定所述资源块集触发连续PSFCH LBT失败的情况下,如果所述终端设备使用的资源分配方式为在资源块集中自主选择的方式,则触发资源重选,重选未发生过连续PSFCH LBT失败的资源块集中的资源。
可选的,处理模块2301,还用于:
在所述资源块集对应的连续PSFCH LBT失败检测定时器超时的情况下,将所述资源块集对应的连续PSFCH LBT失败检测计数器重置为0。
可选的,处理模块2301,还用于:
在所述资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,将所述资源块集对应的连续PSFCH LBT失败检测计数器重置为0。
可选的,通信装置2300还可以包括:
收发模块2302,用于获取网络设备发送的第四配置信息;
处理模块2301,还用于根据所述第四配置信息,确定N的取值。
本公开中,通过确定HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,并根据HARQ 使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,从而可以解决HARQ使能的PSSCH关联多个PSFCH资源时,终端设备如何对PSFCH上的LBT失败次数进行计数的问题,可以避免频繁触发侧行链路连续LBT失败,提高了链路通信质量。
可以理解的是,通信装置1000可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置2300在网络设备侧,其中:
收发模块2301,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于所述终端设备确定资源池对应的连续PSFCH LBT失败检测定时器,所述资源池对应的连续PSFCH LBT失败检测定时器用于对所述资源池上PSFCH的LBT失败次数进行计数。
可选的,所述第一配置信息包括以下任一项:
所述资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述资源池所属的带宽BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,收发模块2301,还用于:
向所述终端设备发送第二配置信息,其中,所述第二配置信息用于所述终端设备确定BWP对应的连续PSFCH LBT失败检测定时器,所述BWP对应的连续PSFCH LBT失败检测定时器用于对所述BWP上PSFCH的LBT失败次数进行计数。
可选的,所述第二配置信息包括以下任一项:
所述BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,收发模块2301,还用于:
向所述终端设备发送第三配置信息,其中,所述第三配置信息用于所述终端设备确定资源块集对应的连续PSFCH LBT失败检测定时器,所述资源块集对应的连续PSFCH LBT失败检测定时器用于对所述资源块集上PSFCH的LBT失败次数进行计数。
可选的,所述第三配置信息包括以下任一项:
所述资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述资源块集所属的BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
可选的,收发模块2301,还用于:
向所述终端设备发送第四配置信息,其中,所述第四配置信息用于所述终端设备确定N的取值,其中,N为所述终端设备确定HARQ使能的PSSCH关联的PSFCH中连续发生LBT失败的PSFCH的数量。
本公开中,网络设备可以向终端设备发送第一配置信息,通过第一配置信息给终端设备配置在对资源池上PSFCH的LBT失败次数进行计数所用的连续PSFCH LBT失败检测定时器。由此,终端设备可以根据第一配置信息对资源池上PSFCH的LBT失败次数进行计数。
请参见图24,图24为本公开实施例提供的另一种通信装置的结构示意图。图24中,该通信装置2400可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置2400可以包括一个或多个处理器2401。处理器2401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置2400中还可以包括一个或多个存储器2402,其上可以存有计算机程序2404,处理器2401执行所述计算机程序2404,以使得通信装置2400执行上述方法实施例中描述的方法。可选的,所述存储器2402中还可以存储有数据。通信装置2400和存储器2402可以单独设置,也可以集成在一起。
可选的,通信装置2400还可以包括收发器2405、天线2406。收发器2405可以称为收发单元、收发 机、或收发电路等,用于实现收发功能。收发器2405可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置2400中还可以包括一个或多个接口电路2407。接口电路2407用于接收代码指令并传输至处理器2401。处理器2401运行所述代码指令以使通信装置2400执行上述方法实施例中描述的方法。
通信装置2400为终端设备:处理器2401用于执行图2中的步骤201、步骤202;图3中的步骤301、步骤302;图4中的步骤401、步骤402;图5中的步骤501、步骤502等。
通信装置2400为网络设备:收发器2405用于执行图6中的步骤604;图11中的步骤1104;图16中的步骤1601。
在一种实现方式中,处理器2401中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器2401可以存有计算机程序2403,计算机程序2403在处理器2401上运行,可使得通信装置2400执行上述方法实施例中描述的方法。计算机程序2403可能固化在处理器2401中,该种情况下,处理器2401可能由硬件实现。
在一种实现方式中,通信装置2400可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备,或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图24的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图25所示的芯片的结构示意图。图25所示的芯片2500包括处理器2501和接口2503。其中,处理器2501的数量可以是一个或多个,接口2503的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口2503,用于执行执行图6中的步骤604;图11中的步骤1104;图16中的步骤1601等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口2503,用于执行图19中的步骤1901;图20中的步骤2001;图21中的步骤2101;图22中的步骤2201等。
可选的,芯片2500还包括存储器2502,存储器2502用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。

Claims (41)

  1. 一种连续先听后说LBT失败次数的计数方法,其特征在于,由终端设备执行,所述方法包括:
    确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数;
    根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,包括:
    在所述HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,确定PSFCH的LBT失败发生1次;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
  3. 如权利要求1所述的方法,其特征在于,所述确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数,包括:
    对资源池上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH发生连续LBT失败的次数。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,包括:
    在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启所述资源池对应的连续PSFCH LBT失败检测定时器,将所述资源池对应的连续PSFCH LBT失败检测计数器加1;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    在所述资源池对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定所述资源池触发连续PSFCH LBT失败。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    在确定所述资源池触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息;其中,所述连续PSFCH LBT失败指示信息中包括所述资源池的指示信息。
  7. 如权利要求5所述的方法,其特征在于,还包括:
    在确定所述资源池触发连续PSFCH LBT失败的情况下,如果所述终端设备使用的资源分配方式为在资源池中自主选择的方式,则触发资源重选,重选未发生过连续PSFCH LBT失败的资源池中的资源。
  8. 如权利要求4所述的方法,其特征在于,还包括:
    在所述资源池对应的连续PSFCH LBT失败检测定时器超时的情况下,将所述资源池对应的连续PSFCH LBT失败检测计数器重置为0。
  9. 如权利要求5-8任一项所述的方法,其特征在于,还包括:
    在所述资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,将所述资源池对应的连续PSFCH LBT失败检测计数器重置为0。
  10. 如权利要求5-8任一项所述的方法,其特征在于,还包括:
    接收网络设备发送的第一配置信息;
    根据所述第一配置信息,确定所述连续PSFCH LBT失败检测定时器和/或所述连续PSFCH LBT失败检测最大值。
  11. 如权利要求10所述的方法,其特征在于,所述第一配置信息包括以下任一项:
    所述资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述资源池所属的带宽BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
  12. 如权利要求1所述的方法,其特征在于,所述确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数,包括:
    对带宽BWP上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
  13. 如权利要求12所述的方法,其特征在于,所述根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,包括:
    在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启所述BWP对应的连续PSFCH LBT失败检测定时器,将所述BWP对应的连续PSFCH LBT失败检测计数器加1;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    在所述BWP对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定所述BWP触发连续PSFCH LBT失败。
  15. 如权利要求14所述的方法,其特征在于,还包括:
    在确定所述BWP触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息;其中,所述连续PSFCH LBT失败指示信息中包括所述BWP的指示信息。
  16. 如权利要求14所述的方法,其特征在于,还包括:
    在确定所述BWP触发连续PSFCH LBT失败的情况下,确定触发侧行链路无线链路失败RLF。
  17. 如权利要求13所述的方法,其特征在于,还包括:
    在所述BWP对应的连续PSFCH LBT失败检测定时器超时的情况下,将所述BWP对应的连续PSFCH LBT失败检测计数器重置为0。
  18. 如权利要求14-17任一项所述的方法,其特征在于,还包括:
    在所述BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配置的情况下,将所述BWP对应的连续PSFCH LBT失败检测计数器重置为0。
  19. 如权利要求14-17任一项所述的方法,其特征在于,还包括:
    接收网络设备发送的第二配置信息;
    根据所述第二配置信息,确定所述连续PSFCH LBT失败检测定时器和/或所述连续PSFCH LBT失败检测最大值。
  20. 如权利要求19所述的方法,其特征在于,所述第二配置信息包括以下任一项:
    所述BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
  21. 如权利要求1所述的方法,其特征在于,所述确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数,包括:
    对资源块集上接收到每个HARQ使能的PSSCH关联的多个PSFCH,在发送HARQ反馈之前进行LBT失败检测,以确定每个HARQ使能的PSSCH关联的多个PSFCH连续发生LBT失败的次数。
  22. 如权利要求21所述的方法,其特征在于,所述根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数,包括:
    在任一HARQ使能的PSSCH关联的连续N个PSFCH发生LBT失败的情况下,启动或重启所述资源块集对应的连续PSFCH LBT失败检测定时器,将所述资源块集对应的连续PSFCH LBT失败检测计数器加1;其中,N为小于或等于M的正整数,M为所述HARQ使能的PSSCH关联的PSFCH的数量。
  23. 如权利要求22所述的方法,其特征在于,还包括:
    在所述资源块集对应的PSFCH的LBT失败次数等于或大于连续PSFCH LBT失败检测最大值的情况下,确定所述资源块集触发连续PSFCH LBT失败。
  24. 如权利要求23所述的方法,其特征在于,还包括:
    在确定所述资源块集触发连续PSFCH LBT失败的情况下,向网络设备发送连续PSFCH LBT失败指示信息;其中,所述连续PSFCH LBT失败指示信息中包括所述资源块集的指示信息。
  25. 如权利要求23所述的方法,其特征在于,还包括:
    在确定所述资源块集触发连续PSFCH LBT失败的情况下,如果所述终端设备使用的资源分配方式为在资源块集中自主选择的方式,则触发资源重选,重选未发生过连续PSFCH LBT失败的资源块集中的资源。
  26. 如权利要求22所述的方法,其特征在于,还包括:
    在所述资源块集对应的连续PSFCH LBT失败检测定时器超时的情况下,将所述资源块集对应的连续PSFCH LBT失败检测计数器重置为0。
  27. 如权利要求23-26任一项所述的方法,其特征在于,还包括:
    在所述资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值重配 置的情况下,将所述资源块集对应的连续PSFCH LBT失败检测计数器重置为0。
  28. 如权利要求23-26任一项所述的方法,其特征在于,还包括:
    接收网络设备发送的第三配置信息;
    根据所述第三配置信息,确定所述连续PSFCH LBT失败检测定时器和/或所述连续PSFCH LBT失败检测最大值。
  29. 如权利要求28所述的方法,其特征在于,所述第三配置信息包括以下任一项:
    所述资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述资源块集所属的BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
  30. 如权利要求2、4-11、13-20、22-29之中任一项所述的方法,其特征在于,还包括:
    获取网络设备发送的第四配置信息;
    根据所述第四配置信息,确定N的取值。
  31. 一种连续先听后说LBT失败次数的计数方法,其特征在于,由网络设备执行,所述方法包括:
    向终端设备发送第一配置信息,其中,所述第一配置信息用于所述终端设备确定资源池对应的连续PSFCH LBT失败检测定时器,所述资源池对应的连续PSFCH LBT失败检测定时器用于对所述资源池上PSFCH的LBT失败次数进行计数。
  32. 如权利要求31所述的方法,其特征在于,所述第一配置信息包括以下任一项:
    所述资源池对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述资源池所属的带宽BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
  33. 如权利要求31所述的方法,其特征在于,还包括:
    向所述终端设备发送第二配置信息,其中,所述第二配置信息用于所述终端设备确定BWP对应的连续PSFCH LBT失败检测定时器,所述BWP对应的连续PSFCH LBT失败检测定时器用于对所述BWP上PSFCH的LBT失败次数进行计数。
  34. 如权利要求33所述的方法,其特征在于,所述第二配置信息包括以下任一项:
    所述BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
  35. 如权利要求31所述的方法,其特征在于,还包括:
    向所述终端设备发送第三配置信息,其中,所述第三配置信息用于所述终端设备确定资源块集对应的连续PSFCH LBT失败检测定时器,所述资源块集对应的连续PSFCH LBT失败检测定时器用于对所述资源块集上PSFCH的LBT失败次数进行计数。
  36. 如权利要求35所述的方法,其特征在于,所述第三配置信息包括以下任一项:
    所述资源块集对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述资源块集所属的BWP对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值;
    所述终端设备所属小区对应的连续PSFCH LBT失败检测定时器和/或连续PSFCH LBT失败检测最大值。
  37. 如权利要求31所述的方法,其特征在于,还包括:
    向所述终端设备发送第四配置信息,其中,所述第四配置信息用于所述终端设备确定N的取值,其中,N为所述终端设备确定HARQ使能的PSSCH关联的PSFCH中连续发生LBT失败的PSFCH的数量
  38. 一种通信装置,其特征在于,包括:
    处理模块,用于确定混合自动重传请求HARQ使能的物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH连续发生LBT失败的次数;
    根据所述HARQ使能的PSSCH关联的PSFCH连续发生LBT失败的次数,对PSFCH的LBT失败次数进行计数。
  39. 一种通信装置,其特征在于,包括:
    收发模块,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于所述终端设备确定资源池对应的连续PSFCH LBT失败检测定时器,所述资源池对应的连续PSFCH LBT失败检测定时器用于对所述资源池上PSFCH的LBT失败次数进行计数。
  40. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至30中任一项所述的方法,或者执行如权利要求31至37中任一项所述的方法。
  41. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至30中任一项所述的方法被实现,或者使如权利要求31至37中任一项所述的方法被实现。
PCT/CN2022/129565 2022-11-03 2022-11-03 一种lbt失败次数的计数方法及装置 WO2024092622A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004826.8A CN118303127A (zh) 2022-11-03 2022-11-03 一种lbt失败次数的计数方法及装置
PCT/CN2022/129565 WO2024092622A1 (zh) 2022-11-03 2022-11-03 一种lbt失败次数的计数方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129565 WO2024092622A1 (zh) 2022-11-03 2022-11-03 一种lbt失败次数的计数方法及装置

Publications (1)

Publication Number Publication Date
WO2024092622A1 true WO2024092622A1 (zh) 2024-05-10

Family

ID=90929285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129565 WO2024092622A1 (zh) 2022-11-03 2022-11-03 一种lbt失败次数的计数方法及装置

Country Status (2)

Country Link
CN (1) CN118303127A (zh)
WO (1) WO2024092622A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159709A1 (en) * 2020-11-16 2022-05-19 Qualcomm Incorporated Techniques for configuring multiple frequency domain opportunities for sidelink feedback
CN114667795A (zh) * 2019-11-13 2022-06-24 鸿颖创新有限公司 用于先听后说故障检测和恢复的方法和设备
WO2022165851A1 (en) * 2021-02-08 2022-08-11 Lenovo (Beijing) Limited Method for sidelink communication and terminal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114667795A (zh) * 2019-11-13 2022-06-24 鸿颖创新有限公司 用于先听后说故障检测和恢复的方法和设备
US20220159709A1 (en) * 2020-11-16 2022-05-19 Qualcomm Incorporated Techniques for configuring multiple frequency domain opportunities for sidelink feedback
WO2022165851A1 (en) * 2021-02-08 2022-08-11 Lenovo (Beijing) Limited Method for sidelink communication and terminal device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE: "On Rel-18 Sidelink Enhancement", 3GPP DRAFT; RP-212451, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052050418 *
OPPO: "Discussion on LBT impact in SL-U", 3GPP DRAFT; R2-2209386, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20221001, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052262717 *
XIAOMI: "Discussion on LBT for sidelink operation on unlicensed spectrum", 3GPP DRAFT; R2-2210380, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052263700 *

Also Published As

Publication number Publication date
CN118303127A (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
WO2022233064A1 (zh) 一种释放远端终端设备的方法及其装置
WO2024065842A1 (zh) 路径添加方法和装置
WO2023133736A1 (zh) 一种确定先听后说失败的方法及装置
WO2024031373A1 (zh) 一种确定触发连续lbt失败的方法及装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024031272A1 (zh) 一种上报方法、装置、设备及存储介质
WO2023230971A1 (zh) 一种多prach传输方法及其装置
WO2024092622A1 (zh) 一种lbt失败次数的计数方法及装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2024138396A1 (zh) 非授权频谱中侧行链路的无线链路失败检测方法及其装置
WO2024092824A1 (zh) 一种失败报告的上报方法及其装置
WO2024182954A1 (zh) 感知节点发现方法及其装置
WO2024040484A1 (zh) 基于harq属性的载波选择或重选方法、装置及设备
WO2024187389A1 (zh) 一种成功切换报告shr的生成方法、装置、设备及存储介质
WO2024000208A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质
WO2024060154A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024187476A1 (zh) 一种sl重传定时器的启动或重启方法及通信装置
WO2023240419A1 (zh) 一种接入控制的方法及装置
WO2024045042A1 (zh) 一种能力交互触发方法/装置/设备及存储介质
WO2024092711A1 (zh) 一种信道接入优先级capc的确定方法、配置方法及其装置
WO2024138584A1 (zh) 一种中继终端设备的选择或重选方法及通信装置
WO2024168551A1 (zh) 一种drx激活时间的确定方法及通信装置
WO2024065128A1 (zh) 一种控制终端设备连接的方法及其装置
WO2024168631A1 (zh) 一种侧行cgt的启动或重启方法及通信装置
WO2024000207A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004826.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963933

Country of ref document: EP

Kind code of ref document: A1