WO2024016360A1 - 一种随机接入方法/装置/设备及存储介质 - Google Patents

一种随机接入方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2024016360A1
WO2024016360A1 PCT/CN2022/107532 CN2022107532W WO2024016360A1 WO 2024016360 A1 WO2024016360 A1 WO 2024016360A1 CN 2022107532 W CN2022107532 W CN 2022107532W WO 2024016360 A1 WO2024016360 A1 WO 2024016360A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
triggered
transmission
beam reciprocity
sdt
Prior art date
Application number
PCT/CN2022/107532
Other languages
English (en)
French (fr)
Inventor
张娟
李明菊
吴昱民
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/107532 priority Critical patent/WO2024016360A1/zh
Priority to CN202280002574.5A priority patent/CN115486197A/zh
Publication of WO2024016360A1 publication Critical patent/WO2024016360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to random access methods/devices/equipment and storage media.
  • a non-connected terminal device needs to communicate with a network device, it usually needs to initiate a random access (RA) process to access the network device, and then communicate with the network device.
  • RA random access
  • the terminal device and the network device will conduct signaling interactions. For example, in the 2-step random access process, the terminal device will send msgA to the network device and receive msgB sent by the network device; 4-step random access During the process, the terminal device will send msg1 and msg3 to the network device, and receive msg2 and msg4 sent by the network device.
  • the random access method/device/equipment and storage medium proposed by this disclosure are used to determine the transmitting and/or receiving beams to be used in the random access process.
  • embodiments of the present disclosure provide a random access method, which is executed by a network device and includes:
  • Information and/or data in the currently triggered RA process are transmitted based on the transmitting and/or receiving beams of the terminal device.
  • terminal equipment for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. , and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • embodiments of the present disclosure provide a random access method, which is executed by a terminal device and includes:
  • the network device In response to determining that the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity, determine whether the network device wants to implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device;
  • transmission of information and/or data in the currently triggered RA process is implemented based on beam scanning.
  • an embodiment of the present disclosure provides a communication device, which is included in a network device and includes:
  • a processing module configured to determine the transmitting and/or receiving beams of the terminal device based on the beam reciprocity in response to the terminal device supporting beam reciprocity triggering an RA process
  • a transceiver module configured to transmit information and/or data in the currently triggered RA process based on the transmitting and/or receiving beams of the terminal device.
  • embodiments of the present disclosure provide a communication device, which is configured in a terminal device and includes:
  • a processing module configured to, in response to the terminal device triggering the RA process, determine whether the terminal device implements transmission in the currently triggered RA process based on beam reciprocity
  • the processing module is further configured to, in response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement the currently triggered RA process based on beam reciprocity of the terminal device. Transmission during RA;
  • a transceiver module configured to respond to determining that the network device is to implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device, and to implement information in the currently triggered RA process based on the beam reciprocity of the terminal device and/ or transmission of data;
  • the transceiver module is further configured to respond to determining that the network device does not implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device, and implement information and/or data in the currently triggered RA process based on beam scanning. transmission.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, which includes the communication device described in the third aspect to the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect to The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect to the communication device according to the eighth aspect, or the system includes the communication device according to the tenth aspect to the eleventh aspect the communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned network device.
  • the terminal device When the instructions are executed, the terminal device is caused to perform the above-mentioned first aspect to the second aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in any one of the above first to second aspects.
  • the present disclosure provides a chip system that includes at least one processor and an interface for supporting a network device to implement the functions involved in the method described in any one of the first to second aspects, For example, at least one of the data and information involved in the above method is determined or processed.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data of the source secondary node.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in any one of the above first to second aspects.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of a random access method provided by another embodiment of the present disclosure.
  • Figure 3 is a schematic flow chart of a random access method provided by yet another embodiment of the present disclosure.
  • Figure 4 is a schematic flow chart of a random access method provided by yet another embodiment of the present disclosure.
  • Figure 5 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of a random access method provided by yet another embodiment of the present disclosure.
  • Figure 7 is a schematic flowchart of a random access method provided by yet another embodiment of the present disclosure.
  • Figure 8 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a communication device provided by another embodiment of the present disclosure.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • the terminal device may determine its own uplink transmit beam based on the downlink receive beam or determine its own downlink receive beam based on the uplink transmit beam.
  • the terminal device can directly send small data when it is in the Radio Resource Control (RRC) IDLE (idle)/INACTIVE (inactive) state. to the network device side.
  • RRC Radio Resource Control
  • an idle or inactive terminal device can send data directly to the network device in the following process:
  • the random access process of initial access that is, sending small data through Msg3 or MsgA;
  • the 4-step random access process of the initial access (or, called 4-step RACH SDT), that is, sending small data through Msg3.
  • the 2-step random access process of the initial access (or, called 2-step RACH SDT), that is, sending small data through MsgA.
  • CG Configure Grant, configuration grant
  • SDT business process that is, dedicated uplink physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resources configured through network equipment (such as configuration authorization (Configured Grant, CG) resources; or, preconfigured uplink Link resource (Preallocated Uplink Resource, PUR)) sends small data.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PUR Preconfigured Uplink Resource
  • the time-frequency domain resources occupied by a certain Random Access Channel (RACH) format are occupied by a certain Random Access Channel (RACH) format.
  • RACH Random Access Channel
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more devices may be included. Network equipment, two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Base stations or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • CU-DU is used.
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • FIG. 2 is a schematic flow chart of a random access method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 2, the random access method may include the following steps:
  • Step 201 In response to the terminal device supporting beam reciprocity triggering the RA process, determine the transmitting and/or receiving beams of the terminal device based on the beam reciprocity.
  • the RA process may include any of the following:
  • RA-SDT process RA process related to SDT
  • Non-SDT related RA process (hereinafter referred to as RA-non-SDT process).
  • the above-mentioned beam reciprocity is a beam reciprocity that does not require beam scanning, that is, a beam reciprocity that does not require downlink beam scanning and/or uplink beam scanning.
  • the present disclosure can be agreed in advance based on the protocol that for terminal equipment that supports beam reciprocity, it must implement transmission in the RA process based on beam reciprocity.
  • the terminal device when a terminal that supports beam reciprocity triggers an RA process, the terminal device usually needs to indicate to the network device whether the RA process triggered by the terminal device is based on beam reciprocity. To implement the RA process of transmission, so that when the RA process is to implement the RA process of transmission based on beam reciprocity, the network device can subsequently further determine whether the network device wants to implement the currently triggered RA process based on the beam reciprocity of the terminal device. transmission in.
  • the method for the terminal device to indicate to the network device whether the RA process is an RA process that implements transmission based on beam reciprocity may be any of the following:
  • the first type the terminal device triggers the RA process based on some specific RO and/or preamble preamble to implicitly indicate to the network device whether the RA process triggered by the terminal device is based on beam reciprocity to implement the RA process of transmission.
  • a terminal device that supports beam reciprocity will first determine the first mapping relationship and/or the second mapping relationship.
  • the first mapping relationship may include: a first RO corresponding to the RA-SDT process and/or a first preamble.
  • the first RO is used to: indicate if the RO corresponding to the triggered RA-SDT process is the first RO.
  • the terminal equipment will implement the transmission in the triggered RA-SDT process based on beam reciprocity; the first preamble is used: if the preamble corresponding to the triggered RA-SDT process is the first preamble, it indicates that the terminal equipment will perform transmission based on the beam reciprocity. Reciprocity realizes the transmission during the RA-SDT triggered this time.
  • the second mapping relationship may include: a second RO corresponding to the RA-non-SDT process and/or a second preamble, where the second RO is used: if the RO corresponding to the triggered RA-non-SDT process is the second RO, indicates that the terminal equipment will implement the transmission in the triggered RA-non-SDT process based on beam reciprocity; the second preamble is used: if the preamble corresponding to the triggered RA-non-SDT process is the second preamble , then the terminal equipment is instructed to implement the transmission in the RA-non-SDT process triggered this time based on beam reciprocity.
  • the terminal device supporting beam reciprocity determines the first mapping relationship and/or the second mapping relationship, if it wants to trigger the RA-SDT process, it will determine the first RO and/or the first RO based on the first mapping relationship.
  • the first preamble and triggers the RA-SDT process based on the first RO and/or the first preamble; if it wants to trigger (or initiate) the RA-non-SDT process, the second RO and/or the second RO will be determined based on the second mapping relationship. or the second preamble, and trigger the RA-non-SDT process based on the second RO and/or the second preamble.
  • the network device only needs to determine whether the RO corresponding to the RA process triggered by the terminal device is the above-mentioned first RO or the second RO, and/or determine whether the preamble corresponding to the RA process triggered by the terminal device is the above-mentioned.
  • the first preamble or the second preamble can be used to determine whether the RA process currently triggered by the terminal device is an RA process that implements transmission based on beam reciprocity.
  • the second type the terminal device reports capability information to the network device to indicate whether the RA process it triggers is an RA process that implements transmission based on beam reciprocity.
  • the terminal device may report capability information to the network device, and the capability information is used to indicate whether the terminal device supports beam reciprocity during the RA process.
  • the capability information reported by the terminal device received by the network device indicates that the terminal device supports beam reciprocity during the RA process
  • the protocol stipulates for the terminal device that supports beam reciprocity, it must be based on beam reciprocity. Reciprocity implements transmission in the RA process. Therefore, the network device can directly know that the RA processes triggered by the terminal device should all be RA processes that implement transmission based on beam reciprocity.
  • the terminal device when the terminal device indicates whether the RA process it triggers by reporting capability information to the network device is an RA process that implements transmission based on beam reciprocity, due to Based on the capability information reported by the terminal device, the network device can directly know whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity. Therefore, the terminal device no longer needs to pass the RA process based on certain specific ROs and/or preambles.
  • the terminal device can trigger the RA process based on any RO and/or any preamble.
  • the above capability information can be carried in the information domain, for example, it can be carried in the information domain IE beamcorrespondence-ra-SDT-r18ENUMERATED ⁇ supported ⁇ .
  • the above-mentioned method of determining the transmitting and/or receiving beams of the terminal device based on beam reciprocity may include:
  • the receiving beam used when the terminal device receives the synchronization signal block (Synchronization Signal Block, SSB) associated with the RO and/or preamble corresponding to the currently triggered RA process is determined as the receiving beam of the terminal device; and then based on the beam reciprocity and The receiving beam of the terminal device determines the transmitting beam of the terminal device, that is, based on the beam reciprocity, the receiving beam of the terminal device is determined to be the transmitting beam of the terminal device at the same time. In other words, the terminal device will also on its receiving beam at the same time. Send upstream.
  • SSB Synchronization Signal Block
  • Step 202 Transmit information and/or data in the currently triggered RA process based on the sending and/or receiving beams of the terminal device.
  • information and data in response to the currently triggered RA process being the RA-SDT process, information and data can be sent to the network device based on the transmit beam of the terminal device, and received based on the receive beam of the terminal device.
  • Information and data sent by network devices can be sent to the network device based on the transmit beam of the terminal device, and received based on the receive beam of the terminal device.
  • information may be sent to the network device based on the transmit beam of the terminal device, and the information sent by the network device may be received based on the receive beam of the terminal device.
  • the terminal device can use the transmit beam of the terminal device to send small data in the msg1/msg3/msgA/RA-SDT process to the network device, and use the receive beam of the terminal device to receive msg2/msg4/msgB/RA sent by the network device. -Small data in the SDT process.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • FIG 3 is a schematic flow chart of a random access method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 3, the random access method may include the following steps:
  • Step 301 In response to the terminal device supporting beam reciprocity, determine the first mapping relationship and/or the second mapping relationship.
  • Step 302 In response to the terminal device supporting beam reciprocity needing to trigger (or initiate) an RA process, trigger the RA process based on the first mapping relationship and/or the second mapping relationship.
  • Step 303 Determine the transmitting and/or receiving beams of the terminal device based on beam reciprocity.
  • Step 304 Transmit information and/or data in the currently triggered RA process based on the sending and/or receiving beams of the terminal device.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • Figure 4 is a schematic flow chart of a random access method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 4, the random access method may include the following steps:
  • Step 401 In response to the terminal device supporting beam reciprocity, report capability information to the network device, where the capability information indicates that the terminal device supports beam reciprocity.
  • Step 402 In response to the terminal device supporting beam reciprocity needing to trigger (or initiate) the RA process, trigger the RA process.
  • the terminal device when a terminal device that supports beam reciprocity reports capability information to the network device, and the capability information indicates that the terminal device supports beam reciprocity, the terminal device triggers the RA process.
  • the RA process does not need to be triggered based on some specific RO and/or preamble (such as the above-mentioned first RO, second RO, first preamble, or second preamble), but can be based on any RO and/or Any preamble to trigger the RA process.
  • Step 403 Determine the transmitting and/or receiving beams of the terminal device based on beam reciprocity.
  • Step 404 Transmit information and/or data in the currently triggered RA process based on the sending and/or receiving beams of the terminal device.
  • steps 401-404 please refer to the above embodiment description.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • FIG. 5 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 5, the random access method may include the following steps:
  • Step 501 In response to the terminal device triggering the RA process, determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity.
  • the RA process includes any of the following:
  • the beam reciprocity is beam reciprocity that does not require beam scanning (such as uplink beam scanning and/or downlink beam scanning).
  • the method for the network device to determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity may include any of the following:
  • Method 1 Determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity based on the RO and/or preamble corresponding to the RA process triggered by the terminal device.
  • the network device may first determine the first mapping relationship and/or the second mapping relationship.
  • the first mapping relationship includes: the first RO corresponding to the RA-SDT process and/or the first preamble, and the first RO is used: if the RO corresponding to the triggered RA-SDT process is the first RO , indicating that the terminal equipment implements transmission in the triggered RA-SDT process based on beam reciprocity;
  • the first preamble is used: if the preamble corresponding to the triggered RA-SDT process is the first preamble, then Indicates that the terminal equipment implements the transmission during the triggered RA-SDT process based on beam reciprocity;
  • the second mapping relationship includes: a second RO corresponding to the RA-non-SDT process and/or a second preamble, wherein the second RO is used: if the RO corresponding to the triggered RA-non-SDT process is the The second RO indicates that the terminal equipment implements the transmission in the triggered RA-non-SDT process based on beam reciprocity; the second preamble is used for: if the preamble corresponding to the triggered RA-non-SDT process is the second preamble, indicating that the terminal equipment implements transmission in the RA-non-SDT process triggered this time based on beam reciprocity.
  • the RA process in response to the currently triggered RA process is an RA-SDT process. If the currently triggered RA process The RO and/or preamble corresponding to the RA process is the first RO and/or the first preamble, and it is determined that the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity; in response to the currently triggered RA The process is a RA-non-SDT process. If the RO and/or preamble corresponding to the currently triggered RA process is the second RO and/or the second preamble, it is determined that the RA process triggered by the terminal device is based on beam reciprocity. Implement the RA process of transmission.
  • Method 2 Determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity based on the capability information reported by the terminal device.
  • the network device can directly determine that the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity.
  • Step 502 In response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device.
  • the above-mentioned method of determining whether the network device wants to implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device may include:
  • Step 503 In response to determining that the network device wants to implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device, implement transmission of information and/or data in the currently triggered RA process based on the beam reciprocity of the terminal device. .
  • the method for realizing the transmission of information and/or data in the currently triggered RA process based on the beam reciprocity of the terminal device may include the following steps:
  • the receive beam of the network device is determined based on beam reciprocity to determine the transmit beam of the network device as the receive beam of the network device.
  • the information and/or data sent by the terminal device is also received on the transmit beam of the network device.
  • the information and/or data in the currently triggered RA process sent by the terminal device is received based on the receiving beam of the network device; and the currently triggered RA process is sent to the terminal device based on the transmitting beam of the network device. information and/or data.
  • the information and data in the currently triggered RA process sent by the terminal device are received; in response to the currently triggered RA process
  • the triggered RA process is a RA-non-SDT process, and the information in the currently triggered RA process sent by the terminal device is received.
  • sending the information and data in the currently triggered RA process to the terminal device in response to the currently triggered RA process being the RA-non-SDT process, sending information in the currently triggered RA process to the terminal device.
  • the network device can use the receiving beam of the network device to receive the small data in the msg1/msg3/msgA/RA-SDT process sent by the terminal device, and the network device can use the transmitting beam of the network device to send msg2/msg4 to the terminal device. /msgB/RA-Small data during SDT process.
  • the network device when the terminal device transmits the information and/or data in the RA process triggered by the beam reciprocity, the network device will also transmit the RA process triggered by the terminal device based on the beam reciprocity. information and/or data in the network device, thereby further reducing the overhead of beam management, and there is no need to perform beam scanning on the network device side. This ensures that information and/or data can be successfully transmitted and shortens the time spent on the network device side. The transmission process improves the transmission efficiency.
  • Step 504 In response to determining that the network device does not implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device, implement transmission of information and/or data in the currently triggered RA process based on beam scanning.
  • the above-mentioned transmission of information and/or data in the currently triggered RA process based on beam scanning may include:
  • the network device since the network device has determined that the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity, that is, the transmitting beam of the terminal device and the receiving beam of the terminal device The beams are the same beam, and since the transmit beam of the network device is essentially the transmit beam of the SSB associated with the RO and/or preamble corresponding to the currently triggered RA process, it also exists with the transmit beam of the terminal device and the receive beam of the terminal device.
  • Beam reciprocity therefore, when the network device performs the above-mentioned uplink beam scanning, it only needs to perform a small-scale uplink beam scan near the transmit beam of the network device based on the transmit beam of the network device to receive the current signal sent by the terminal device. If the information and/or data in the RA process are triggered, the beam scanning range in the present disclosure is smaller, which improves the efficiency of beam scanning and ensures the transmission efficiency of information and/or data.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • FIG. 6 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 6, the random access method may include the following steps:
  • Step 601 In response to the terminal device triggering the RA process, determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity based on the RO and/or preamble corresponding to the RA process triggered by the terminal device.
  • Step 602 In response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device.
  • Step 603 In response to determining that the network device wants to implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device, implement the information and/or data in the currently triggered RA process based on the beam reciprocity of the terminal device. transmission.
  • steps 601-603 please refer to the above embodiment description.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • FIG. 7 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 7, the random access method may include the following steps:
  • Step 701 In response to the terminal device triggering the RA process, determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity based on the RO and/or preamble corresponding to the RA process triggered by the terminal device.
  • Step 702 In response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device.
  • Step 703 In response to determining that the network device does not implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device, implement transmission of information and/or data in the currently triggered RA process based on beam scanning.
  • steps 701-703 please refer to the above embodiment description.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • FIG 8 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 8, the random access method may include the following steps:
  • Step 801 Receive capability information reported by the terminal device, where the capability information is used to indicate whether the terminal device supports beam reciprocity during the RA process.
  • Step 802 In response to the terminal device triggering the RA process, determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity based on the capability information.
  • Step 803 In response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device.
  • Step 804 In response to determining that the network device wants to implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device, implement the information and/or data in the currently triggered RA process based on the beam reciprocity of the terminal device. transmission.
  • steps 801-804 please refer to the above embodiment description.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • FIG 9 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 9, the random access method may include the following steps:
  • Step 901 Receive capability information reported by the terminal device, where the capability information is used to indicate whether the terminal device supports beam reciprocity during the RA process.
  • Step 902 In response to the terminal device triggering the RA process, determine whether the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity based on the capability information.
  • Step 903 In response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device.
  • Step 904 In response to determining that the network device does not implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device, implement transmission of information and/or data in the currently triggered RA process based on beam scanning.
  • steps 901-904 please refer to the above embodiment description.
  • the terminal device supporting beam reciprocity determines the terminal based on the beam reciprocity.
  • the device's transmitting and/or receiving beams; then, the terminal device supporting beam reciprocity will transmit the information and/or data in the currently triggered RA process based on the terminal device's transmitting and/or receiving beams. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 10, the device may include:
  • a processing module configured to determine the transmitting and/or receiving beams of the terminal device based on the beam reciprocity in response to the terminal device supporting beam reciprocity triggering an RA process
  • a transceiver module configured to transmit information and/or data in the currently triggered RA process based on the transmitting and/or receiving beams of the terminal device.
  • the terminal device supporting beam reciprocity determines the terminal device based on the beam reciprocity. Send and/or receive beams; then, the terminal device supporting beam reciprocity will transmit information and/or data in the currently triggered RA process based on the sending and/or receiving beams of the terminal device. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • the RA process includes any of the following:
  • the device is also used for:
  • the first mapping relationship includes: the first random access channel opportunity RO corresponding to the RA-SDT process and/or the first preamble code preamble, and the first RO is used for: if the RA-SDT process is triggered corresponding to RO is the first RO, indicating that the terminal equipment will implement transmission in the triggered RA-SDT process based on beam reciprocity; the first preamble is used: if the preamble corresponding to the triggered RA-SDT process is The first preamble indicates that the terminal equipment will implement transmission in the RA-SDT process triggered this time based on beam reciprocity;
  • the second mapping relationship includes: a second RO corresponding to the RA-non-SDT process and/or a second preamble, wherein the second RO is used: if the RO corresponding to the triggered RA-non-SDT process is the The second RO indicates that the terminal equipment will implement the transmission in the triggered RA-non-SDT process based on beam reciprocity; the second preamble is used for: if the preamble corresponding to the triggered RA-non-SDT process is the second preamble, indicating that the terminal equipment will implement transmission in the RA-non-SDT process triggered this time based on beam reciprocity.
  • the device is also used for:
  • a second RO and/or a second preamble are determined based on the second mapping relationship, and the RA-non-SDT process is triggered based on the second RO and/or the second preamble.
  • the device is also used for:
  • the processing module is also used to:
  • the transmit beam of the terminal device is determined based on beam reciprocity and the receive beam of the terminal device.
  • the transceiver module is also used to:
  • information and data are sent to the network device based on the transmitting beam of the terminal device, and the information and data sent by the network device are received based on the receiving beam of the terminal device.
  • information is sent to the network device based on the transmit beam of the terminal device, and the information sent by the network device is received based on the receive beam of the terminal device.
  • the beam reciprocity is beam reciprocity that does not require beam scanning.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 11, the device may include:
  • a processing module configured to, in response to the terminal device triggering the RA process, determine whether the terminal device implements transmission in the currently triggered RA process based on beam reciprocity
  • the processing module is further configured to, in response to determining that the terminal device implements transmission in the currently triggered RA process based on beam reciprocity, determine whether the network device wants to implement the currently triggered RA process based on beam reciprocity of the terminal device. Transmission during RA;
  • a transceiver module configured to respond to determining that the network device is to implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device, and to implement information in the currently triggered RA process based on the beam reciprocity of the terminal device and/ or transmission of data;
  • the transceiver module is further configured to respond to determining that the network device does not implement transmission in the currently triggered RA process based on beam reciprocity of the terminal device, and implement information and/or data in the currently triggered RA process based on beam scanning. transmission.
  • the terminal device supporting beam reciprocity determines the terminal device based on the beam reciprocity. Send and/or receive beams; then, the terminal device supporting beam reciprocity will transmit information and/or data in the currently triggered RA process based on the sending and/or receiving beams of the terminal device. That is to say, in the embodiments of the present disclosure, for terminal equipment that supports beam reciprocity, it will transmit information and/or data based on beam reciprocity during the RA process, thereby reducing the overhead of beam management. (overhead), and the terminal equipment side does not need to perform beam scanning, on the basis of ensuring that information and/or data can be successfully transmitted, the transmission process on the terminal equipment side is shortened and the transmission efficiency is improved.
  • the RA process includes any of the following:
  • the device is also used for:
  • the first mapping relationship includes: the first RO corresponding to the RA-SDT process and/or the first preamble, and the first RO is used: if the RO corresponding to the triggered RA-SDT process is the first RO , indicating that the terminal equipment implements transmission in the triggered RA-SDT process based on beam reciprocity; the first preamble is used: if the preamble corresponding to the triggered RA-SDT process is the first preamble, then Indicates that the terminal equipment implements the transmission during the triggered RA-SDT process based on beam reciprocity;
  • the second mapping relationship includes: a second RO corresponding to the RA-non-SDT process and/or a second preamble, wherein the second RO is used: if the RO corresponding to the triggered RA-non-SDT process is the The second RO indicates that the terminal equipment implements the transmission in the triggered RA-non-SDT process based on beam reciprocity; the second preamble is used for: if the preamble corresponding to the triggered RA-non-SDT process is the second preamble, indicating that the terminal equipment implements transmission in the RA-non-SDT process triggered this time based on beam reciprocity.
  • the processing module is also used to:
  • the RO and/or preamble corresponding to the currently triggered RA process is the first RO and/or the first preamble, determine the RA process triggered by the terminal device. It is an RA process that realizes transmission based on beam reciprocity;
  • the RA process is an RA process that implements transmission based on beam reciprocity.
  • the device is also used for:
  • the processing module is also used to:
  • the RA process triggered by the terminal device is an RA process that implements transmission based on beam reciprocity.
  • the processing module is also used to:
  • the network device In response to the network device not supporting beam reciprocity, it is determined that the network device does not implement transmission in the currently triggered RA process based on the beam reciprocity of the terminal device.
  • the transceiver module is also used to:
  • the information and/or data in the currently triggered RA process is sent to the terminal device based on the transmission beam of the network device.
  • the transceiver module is also used to:
  • Uplink beam scanning is performed based on the transmission beam of the network device to receive the information and/or data in the currently triggered RA process sent by the terminal device.
  • the transceiver module is also used to:
  • the transceiver module is also used for:
  • the beam reciprocity is beam reciprocity that does not require beam scanning.
  • FIG 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1200 may include one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1200 may also include one or more memories 1202, on which a computer program 1204 may be stored.
  • the processor 1201 executes the computer program 1204, so that the communication device 1200 performs the steps described in the above method embodiments. method.
  • the memory 1202 may also store data.
  • the communication device 1200 and the memory 1202 can be provided separately or integrated together.
  • the communication device 1200 may also include a transceiver 1205 and an antenna 1206.
  • the transceiver 1205 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1205 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1200 may also include one or more interface circuits 1207.
  • the interface circuit 1207 is used to receive code instructions and transmit them to the processor 1201 .
  • the processor 1201 executes the code instructions to cause the communication device 1200 to perform the method described in the above method embodiment.
  • the processor 1201 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1201 may store a computer program 1203, and the computer program 1203 runs on the processor 1201, causing the communication device 1200 to perform the method described in the above method embodiment.
  • the computer program 1203 may be solidified in the processor 1201, in which case the processor 1201 may be implemented by hardware.
  • the communication device 1200 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 12 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 13 refer to the schematic structural diagram of the chip shown in FIG. 13 .
  • the chip shown in Figure 13 includes a processor 1301 and an interface 1302.
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be multiple.
  • the chip also includes a memory 1303, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种随机接入方法/装置/设备及存储介质,该方法包括:响应于支持波束互易性的终端设备触发随机接入RA过程,基于波束互易性确定该终端设备的发送和/或接收波束(201);基于该终端设备的发送和/或接收波束传输当前触发的RA 过程中的信息和/或数据(202)。本公开的方法可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。

Description

一种随机接入方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及随机接入方法/装置/设备及存储介质。
背景技术
在通信系统中,非连接态的终端设备若需要与网络设备进行通信业务,通常需要先发起随机接入(Random Access,RA)流程接入至网络设备后,再与网络设备进行通信业务。
相关技术,在RA过程中,终端设备和网络设备会进行信令交互,如2步随机接入过程中,终端设备会向网络设备发送msgA,并接收网络设备发送的msgB;4步随机接入过程中,终端设备会向网络设备发送msg1和msg3,并接收网络设备发送的msg2和msg4。
其中,RA过程中,终端设备如何选择用于收发信令的发送和/或接收波束是亟需解决的技术问题。
发明内容
本公开提出的随机接入方法/装置/设备及存储介质,用于确定随机接入过程中所要使用的发送和/或接收波束。
第一方面,本公开实施例提供一种随机接入方法,该方法被网络设备执行,包括:
响应于支持波束互易性的终端设备触发随机接入RA过程,基于波束互易性确定所述终端设备的发送和/或接收波束;
基于所述终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
由此可知,本公开中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
第二方面,本公开实施例提供一种随机接入方法,该方法被终端设备执行,包括:
响应于终端设备触发RA过程,确定所述终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程;
响应于确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程,确定所述网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输;
响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
第三方面,本公开实施例提供一种通信装置,该装置被网络设备中,包括:
处理模块,用于响应于支持波束互易性的终端设备触发RA过程,基于波束互易性确定所述终端设备的发送和/或接收波束;
收发模块,用于基于所述终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
第四方面,本公开实施例提供一种通信装置,该装置被配置在终端设备中,包括:
处理模块,用于响应于终端设备触发RA过程,确定所述终端设备是否是基于波束互易性实现当前触发的RA过程中的传输;
所述处理模块,还用于响应于确定所述终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定所述网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
收发模块,用于响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输;
所述收发模块,还用于响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置至第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置至第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置至第八方面所述的通信装置,或者,该系统包括第十方面所述的通信装置至第十一方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面至第二方面的任一方面所述的方法。
第十三方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
第十四方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第一方面至第二方面的任一方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开另一个实施例所提供的随机接入方法的流程示意图;
图3为本公开再一个实施例所提供的随机接入方法的流程示意图;
图4为本公开又一个实施例所提供的随机接入方法的流程示意图;
图5为本公开另一个实施例所提供的随机接入方法的流程示意图;
图6为本公开再一个实施例所提供的随机接入方法的流程示意图;
图7为本公开又一个实施例所提供的随机接入方法的流程示意图;
图8为本公开一个实施例所提供的随机接入方法的流程示意图;
图9为本公开另一个实施例所提供的随机接入方法的流程示意图;
图10为本公开一个实施例所提供的通信装置的结构示意图;
图11为本公开另一个实施例所提供的通信装置的结构示意图;
图12是本公开一个实施例所提供的一种通信装置的结构示意图;
图13为本公开一个实施例所提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、波束互易性(beam correspondence)
终端设备可以根据下行接收波束来确定自己的上行发送波束或根据上行发送波束来确定自己的下行接收波束。
2、小数据传输(Small Data Transmission,SDT)
在小数据传输SDT的场景中,根据网络设备侧配置的资源,终端设备能够在处于无线资源控制(Radio Resource Control,RRC)IDLE(空闲)/INACTIVE(非激活)状态时,将小数据直接发送给网络设备侧。
例如,空闲态或非激活态的终端设备可以在以下过程中将数据直接发送给网络设备:
初始接入的随机接入过程,即通过Msg3 or MsgA发送小数据;
初始接入的4步随机接入过程(或,称为4-step RACH SDT),即通过Msg3发送小数据。
初始接入的2步随机接入过程(或,称为2-step RACH SDT),即通过MsgA发送小数据。
CG(Configure Grant,配置授予)SDT业务过程,即通过网络设备配置的专属上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源(如配置授权(Configured Grant,CG)资源;或,预配置上行链路资源(Preallocated Uplink Resource,PUR))发送小数据。
3、随机接入信道时机(Random access channel Occasion,RO)
某个随机接入信道(Random Access Channel,RACH)格式所占用的时频域资源。
为了更好的理解本公开实施例公开的一种随机接入方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11 可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面参考附图对本公开实施例所提供的随机接入方法/装置/设备及存储介质进行详细描述。
图2为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由终端设备执行,如图2所示,该随机接入方法可以包括以下步骤:
步骤201、响应于支持波束互易性的终端设备触发RA过程,基于波束互易性确定终端设备的发送和/或接收波束。
在本公开的一个实施例之中,该RA过程可以包括以下任一种:
与SDT相关的RA过程(后续简称为RA-SDT过程);
非SDT相关的RA过程(后续简称为RA-non-SDT过程)。
以及,在本公开的一个实施例之中,上述的波束互易性为不需要波束扫描的波束互易性,即不需要下行波束扫描和/或上行波束扫描的波束互易性。
此外,在本公开的一个实施例之中,可以预先基于协议约定,针对于支持波束互易性的终端设备,其必须要基于波束互易性实现RA过程中的传输。
进一步地,在本公开的一个实施例之中,当支持波束互易性的终端触发了RA过程后,该终端设备通常需要向网络设备指示该终端设备触发的RA过程是否是基于波束互易性来实现传输的RA过程,以便当该RA过程是基于波束互易性来实现传输的RA过程时,网络设备后续可以进一步确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输。
其中,在本公开的一个实施例之中,终端设备向网络设备指示RA过程是否是基于波束互易性来实现传输的RA过程的方法可以为以下任一种:
第一种:终端设备通过基于某些特定的RO和/或前导码preamble触发RA过程以向网络设备隐式指示该终端设备触发的RA过程是否是基于波束互易性来实现传输的RA过程。
具体的,在本公开的一个实施例之中,支持波束互易性的终端设备会先确定出第一映射关系和/或第二映射关系。其中,该第一映射关系可以包括:RA-SDT过程对应的第一RO和/或第一preamble,该第一RO用于:若触发的RA-SDT过程对应的RO为第一RO,则指示终端设备会基于波束互易性实现此次触发的RA-SDT过程中的传输;该第一preamble用于:若触发的RA-SDT过程对应的preamble为第一preamble,则指示终端设备会基于波束互易性实现此次触发的RA-SDT过程中的传输。
该第二映射关系可以包括:RA-non-SDT过程对应的第二RO和/或第二preamble,其中,该第二RO用于:若触发的RA-non-SDT过程对应的RO为第二RO,则指示终端设备会基于波束互易性实现此次触发的RA-non-SDT过程中的传输;该第二preamble用于:若触发的RA-non-SDT过程对应的preamble为第二preamble,则指示终端设备会基于波束互易性实现此次触发的RA-non-SDT过程中的传 输。
以及,当支持波束互易性的终端设备确定出第一映射关系和/或第二映射关系后,若其要触发RA-SDT过程,则会基于第一映射关系确定出第一RO和/或第一preamble,并基于第一RO和/或第一preamble触发RA-SDT过程;若其要触发(或发起)RA-non-SDT过程,则会基于第二映射关系确定出第二RO和/或第二preamble,并基于第二RO和/或第二preamble触发RA-non-SDT过程。
则由上述内容可知,网络设备仅需通过确定终端设备触发的RA过程对应的RO是否为上述的第一RO或第二RO,和/或,确定终端设备触发的RA过程对应的preamble是否为上述的第一preamble或第二preamble,即可确定出终端设备当前触发的RA过程是否是基于波束互易性来实现传输的RA过程。
第二种:终端设备通过向网络设备上报能力信息来指示其触发的RA过程是否是基于波束互易性来实现传输的RA过程。
具体的,在本公开的一个实施例之中,终端设备可以向网络设备上报能力信息,该能力信息用于指示终端设备在RA过程中是否支持波束互易性。其中,当网络设备接收到的终端设备上报的该能力信息指示终端设备在RA过程中支持波束互易性时,由于协议约定了,针对于支持波束互易性的终端设备,其必须要基于波束互易性实现RA过程中的传输,因此,网络设备可以直接知晓该终端设备触发的RA过程应当均是基于波束互易性来实现传输的RA过程。
以及,需要说明的是,在本公开的一个实施例之中,当终端设备通过向网络设备上报能力信息来指示其触发的RA过程是否是基于波束互易性来实现传输的RA过程时,由于网络设备基于终端设备上报的能力信息可直接知晓该终端设备触发的RA过程是否是基于波束互易性来实现传输的RA过程,因此终端设备就无需再通过基于某些特定的RO和/或preamble(如上述的第一RO、第二RO、第一preamble、或第二preamble)来触发RA过程以向网络设备指示其触发的RA过程是否是基于波束互易性来实现传输的RA过程,从而终端设备可以基于任一RO和/或任一preamble来触发RA过程。
此外,在本公开的一个实施例之中,上述能力信息可以承载于信息域中,如可以承载于信息域IE beamcorrespondence-ra-SDT-r18ENUMERATED{supported}。
再进一步地,在本公开的一个实施例之中,上述的基于波束互易性确定所述终端设备的发送和/或接收波束的方法可以包括:
将终端设备接收与当前触发的RA过程对应的RO和/或preamble所关联的同步信号块(Synchronization Signal Block,SSB)时使用的接收波束确定为终端设备的接收波束;再基于波束互易性和终端设备的接收波束确定终端设备的发送波束,也即是,基于波束互易性将该终端设备的接收波束同时确定为终端设备的发送波束,换言之,终端设备会在其接收波束上同时还会进行上行发送。
步骤202、基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
具体的,在本公开的一个实施例之中,响应于当前触发的RA过程为RA-SDT过程,则可以基于终端设备的发送波束向网络设备发送信息和数据,以及基于终端设备的接收波束接收网络设备发送的信息和数据;
以及,响应于当前触发的RA过程为RA-non-SDT过程,可以基于终端设备的发送波束向网络设备发送信息,以及基于终端设备的接收波束接收网络设备发送的信息。
如终端设备可以使用终端设备的发送波束来向网络设备发送msg1/msg3/msgA/RA-SDT过程中的小数据,以及,使用终端设备的接收波束接收网络设备发送的msg2/msg4/msgB/RA-SDT过程中的小数据。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图3为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由终端设备执行,如图3 所示,该随机接入方法可以包括以下步骤:
步骤301、响应于终端设备支持波束互易性,确定第一映射关系和/或第二映射关系。
步骤302、响应于支持波束互易性的终端设备需要触发(或发起)RA过程,基于第一映射关系和/或第二映射关系触发RA过程。
步骤303、基于波束互易性确定终端设备的发送和/或接收波束。
步骤304、基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
其中,关于步骤301-304的详细介绍可以参考上述实施例描述。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图4为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由终端设备执行,如图4所示,该随机接入方法可以包括以下步骤:
步骤401、响应于终端设备支持波束互易性,向网络设备上报能力信息,该能力信息指示终端设备支持波束互易性。
步骤402、响应于支持波束互易性的终端设备需要触发(或发起)RA过程,触发RA过程。
其中,在本公开的一个实施例之中,当支持波束互易性的终端设备向网络设备上报了能力信息,且该能力信息指示终端设备支持波束互易性时,则该终端设备触发RA过程时,可以无需基于某些特定的RO和/或preamble(如上述的第一RO、第二RO、第一preamble、或第二preamble)来触发RA过程,而是可以基于任一RO和/或任一preamble来触发RA过程。
步骤403、基于波束互易性确定终端设备的发送和/或接收波束。
步骤404、基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
其中,关于步骤401-404的详细介绍可以参考上述实施例描述。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图5为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由网络设备执行,如图5所示,该随机接入方法可以包括以下步骤:
步骤501、响应于终端设备触发RA过程,确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程。
在本公开的一个实施例之中,该RA过程包括以下任一种:
RA-SDT过程;
RA-non-SDT过程。
以及,在本公开的一个实施例之中,该波束互易性为不需要波束扫描(如上行波束扫描和/或下行波束扫描)的波束互易性。
此外,在本公开的一个实施例之中,网络设备确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程的方法可以包括以下任一种:
方法一、基于终端设备触发的RA过程对应的RO和/或preamble确定终端设备触发的RA过程是 否是基于波束互易性实现传输的RA过程。
具体的,网络设备可以先确定第一映射关系和/或第二映射关系。其中,所述第一映射关系包括:RA-SDT过程对应的第一RO和/或第一preamble,所述第一RO用于:若触发的RA-SDT过程对应的RO为所述第一RO,则指示终端设备是基于波束互易性实现此次触发的RA-SDT过程中的传输;所述第一preamble用于:若触发的RA-SDT过程对应的preamble为所述第一preamble,则指示终端设备是基于波束互易性实现此次触发的RA-SDT过程中的传输;
所述第二映射关系包括:RA-non-SDT过程对应的第二RO和/或第二preamble,其中,所述第二RO用于:若触发的RA-non-SDT过程对应的RO为所述第二RO,则指示终端设备是基于波束互易性实现此次触发的RA-non-SDT过程中的传输;所述第二preamble用于:若触发的RA-non-SDT过程对应的preamble为所述第二preamble,则指示终端设备是基于波束互易性实现此次触发的RA-non-SDT过程中的传输。
以及,当确定了第一映射关系和/或第二映射关系后,再确定当前触发的RA过程的类型,其中,响应于所述当前触发的RA过程为RA-SDT过程,若所述当前触发的RA过程对应的RO和/或preamble为第一RO和/或第一preamble,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程;响应于所述当前触发的RA过程为RA-non-SDT过程,若所述当前触发的RA过程对应的RO和/或preamble为第二RO和/或第二preamble,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程。
方法二、基于终端设备上报的能力信息确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程。
具体的,在本公开的一个实施例之中,由于协议已预先约定了,针对于支持波束互易性的终端设备,其必须要基于波束互易性实现RA过程中的传输。因此,若终端设备上报的能力信息指示所述终端设备在RA过程中支持波束互易性,则网络设备可直接确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程。
步骤502、响应于确定终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输。
其中,在本公开的一个实施例之中,上述的确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输的方法可以包括:
确定网络设备是否支持波束互易性;其中,响应于所述网络设备支持波束互易性,确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输;响应于所述网络设备不支持波束互易性,确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输。
步骤503、响应于确定网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输。
其中,在本公开的一个实施例之中,该基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输的方法可以包括以下步骤:
将所述当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束确定为所述网络设备的发送波束;基于终端设备的波束互易性和所述网络设备的发送波束确定所述网络设备的接收波束,即基于波束互易性将网络设备的发送波束也确定为网络设备的接收波束,换言之,在网络设备的发送波束上也来接收终端设备发送的信息和/或数据。之后,基于所述网络设备的接收波束接收所述终端设备发送的当前触发的RA过程中的信息和/或数据;基于所述网络设备的发送波束向所述终端设备发送当前触发的RA过程中的信息和/或数据。
其中,在本公开的一个实施例之中,响应于所述当前触发的RA过程为RA-SDT过程,接收所述终端设备发送的当前触发的RA过程中的信息和数据;响应于所述当前触发的RA过程为RA-non-SDT过程,接收所述终端设备发送的当前触发的RA过程中的信息。以及,响应于所述当前触发的RA过程为RA-SDT过程,向所述终端设备发送当前触发的RA过程中的信息和数据;响应于所述当前触发的RA过程为RA-non-SDT过程,向所述终端设备发送当前触发的RA过程中的信息。
如网络设备可以使用网络设备的接收波束来接收终端设备发送的msg1/msg3/msgA/RA-SDT过程中的小数据,以及,网络设备可以使用网络设备的发送波束来向终端设备发送msg2/msg4/msgB/RA-SDT过程中的小数据。
由此可知,本公开实施例之中,当终端设备基于波束互易性传输触发的RA过程中的信息和/或数据时,网络设备也会基于波束互易性来传输终端设备触发的RA过程中的信息和/或数据,从而可以进一步减少波束管理的开销(overhead),且网络设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了网络设备侧的传输流程,提高了传输效率。
步骤504、响应于确定网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
其中,在本公开的一个实施例之中,上述的基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输可以包括:
将所述当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束确定为所述网络设备的发送波束;利用所述网络设备的发送波束向所述终端设备发送当前触发的RA过程中的信息和/或数据;基于所述网络设备的发送波束进行上行波束扫描以接收所述终端设备发送的当前触发的RA过程中的信息和/或数据。
其中,在本公开的一个实施例之中,由于网络设备已经确定了终端设备触发的RA过程是基于波束互易性实现传输的RA过程,也即是,终端设备的发送波束和终端设备的接收波束为同一波束,并且,由于网络设备的发送波束实质为当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束,其与终端设备的发送波束和终端设备的接收波束也存在波束互易性,因此,网络设备在进行上述的上行波束扫描时,只需基于网络设备的发送波束在该网络设备的发送波束附近做小范围的上行波束扫描即可接收到终端设备发送的当前触发的RA过程中的信息和/或数据,则本公开中的波束扫描范围较小,提高了波束扫描的效率,确保了信息和/或数据的传输效率。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图6为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由网络设备执行,如图6所示,该随机接入方法可以包括以下步骤:
步骤601、响应于终端设备触发RA过程,基于终端设备触发的RA过程对应的RO和/或preamble确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程。
步骤602、响应于确定终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输。
步骤603、响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输。
其中,关于步骤601-603的详细介绍可以参考上述实施例描述。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图7为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由网络设备执行,如图7所示,该随机接入方法可以包括以下步骤:
步骤701、响应于终端设备触发RA过程,基于终端设备触发的RA过程对应的RO和/或preamble确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程。
步骤702、响应于确定终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输。
步骤703、响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
其中,关于步骤701-703的详细介绍可以参考上述实施例描述。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图8为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由网络设备执行,如图8所示,该随机接入方法可以包括以下步骤:
步骤801、接收所述终端设备上报的能力信息,所述能力信息用于指示所述终端设备在RA过程中是否支持波束互易性。
步骤802、响应于终端设备触发RA过程,基于能力信息确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程。
步骤803、响应于确定终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输。
步骤804、响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输。
其中,关于步骤801-804的详细介绍可以参考上述实施例描述。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图9为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由网络设备执行,如图9所示,该随机接入方法可以包括以下步骤:
步骤901、接收所述终端设备上报的能力信息,所述能力信息用于指示所述终端设备在RA过程中是否支持波束互易性。
步骤902、响应于终端设备触发RA过程,基于能力信息确定终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程。
步骤903、响应于确定终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输。
步骤904、响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
其中,关于步骤901-904的详细介绍可以参考上述实施例描述。
综上所述,在本公开实施例提供的随机接入方法之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
图10为本公开实施例所提供的一种通信装置的结构示意图,如图10所示,装置可以包括:
处理模块,用于响应于支持波束互易性的终端设备触发RA过程,基于波束互易性确定所述终端设备的发送和/或接收波束;
收发模块,用于基于所述终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
综上所述,在本公开实施例提供的通信装置之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
可选的,在本公开的一个实施例之中,所述RA过程包括以下任一种:
与小数据传输SDT相关的随机接入RA过程;
非小数据传输相关的随机接入过程。
可选的,在本公开的一个实施例之中,所述装置还用于:
确定第一映射关系和/或第二映射关系;
其中,所述第一映射关系包括:RA-SDT过程对应的第一随机接入信道时机RO和/或第一前导码preamble,所述第一RO用于:若触发的RA-SDT过程对应的RO为所述第一RO,则指示终端设备会基于波束互易性实现此次触发的RA-SDT过程中的传输;所述第一preamble用于:若触发的RA-SDT过程对应的preamble为所述第一preamble,则指示终端设备会基于波束互易性实现此次触发的RA-SDT过程中的传输;
所述第二映射关系包括:RA-non-SDT过程对应的第二RO和/或第二preamble,其中,所述第二RO用于:若触发的RA-non-SDT过程对应的RO为所述第二RO,则指示终端设备会基于波束互易性实现此次触发的RA-non-SDT过程中的传输;所述第二preamble用于:若触发的RA-non-SDT过程对应的preamble为所述第二preamble,则指示终端设备会基于波束互易性实现此次触发的RA-non-SDT过程中的传输。
可选的,在本公开的一个实施例之中,所述装置还用于:
响应于发起RA-SDT过程,基于所述第一映射关系确定第一RO和/或第一preamble,基于所述第一RO和/或第一preamble触发所述RA-SDT过程;
响应于发起RA-non-SDT过程,基于所述第二映射关系确定第二RO和/或第二preamble,基于所述第二RO和/或第二preamble触发所述RA-non-SDT过程。
可选的,在本公开的一个实施例之中,所述装置还用于:
向所述网络设备上报能力信息,所述能力信息用于指示所述终端设备在RA过程中是否支持波束互易性。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
将所述终端设备接收当前触发的RA过程对应的RO和/或preamble所关联的同步信号块SSB时使用的接收波束确定为所述终端设备的接收波束;
基于波束互易性和所述终端设备的接收波束确定所述终端设备的发送波束。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
响应于所述当前触发的RA过程为RA-SDT过程,基于所述终端设备的发送波束向所述网络设备发送信息和数据,基于所述终端设备的接收波束接收所述网络设备发送的信息和数据;
响应于所述当前触发的RA过程为RA-non-SDT过程,基于所述终端设备的发送波束向所述网络设备发送信息,基于所述终端设备的接收波束接收所述网络设备发送的信息。
可选的,在本公开的一个实施例之中,所述波束互易性为不需要波束扫描的波束互易性。
图11为本公开实施例所提供的一种通信装置的结构示意图,如图11所示,装置可以包括:
处理模块,用于响应于终端设备触发RA过程,确定所述终端设备是否是基于波束互易性实现当前触发的RA过程中的传输;
所述处理模块,还用于响应于确定所述终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定所述网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
收发模块,用于响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输;
所述收发模块,还用于响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
综上所述,在本公开实施例提供的通信装置之中,响应于支持波束互易性的终端设备触发RA过程,该支持波束互易性的终端设备会基于波束互易性确定终端设备的发送和/或接收波束;之后,该支持波束互易性的终端设备会基于终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。也即是,本公开实施例之中,针对于支持波束互易性的终端设备而言,其在RA过程中会基于波束互易性来传输信息和/或数据,从而可以减少波束管理的开销(overhead),且终端设备侧无需进行波束扫描,则在确保了信息和/或数据能够成功传输的基础上,缩短了终端设备侧的传输流程,提高了传输效率。
可选的,在本公开的一个实施例之中,所述RA过程包括以下任一种:
与小数据传输SDT相关的随机接入RA过程;
非小数据传输相关的随机接入过程。
可选的,在本公开的一个实施例之中,所述装置还用于:
确定第一映射关系和/或第二映射关系;
其中,所述第一映射关系包括:RA-SDT过程对应的第一RO和/或第一preamble,所述第一RO用于:若触发的RA-SDT过程对应的RO为所述第一RO,则指示终端设备是基于波束互易性实现此次触发的RA-SDT过程中的传输;所述第一preamble用于:若触发的RA-SDT过程对应的preamble为所述第一preamble,则指示终端设备是基于波束互易性实现此次触发的RA-SDT过程中的传输;
所述第二映射关系包括:RA-non-SDT过程对应的第二RO和/或第二preamble,其中,所述第二RO用于:若触发的RA-non-SDT过程对应的RO为所述第二RO,则指示终端设备是基于波束互易性实现此次触发的RA-non-SDT过程中的传输;所述第二preamble用于:若触发的RA-non-SDT过程对应的preamble为所述第二preamble,则指示终端设备是基于波束互易性实现此次触发的RA-non-SDT过程中的传输。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
响应于所述当前触发的RA过程为RA-SDT过程,若所述当前触发的RA过程对应的RO和/或preamble为第一RO和/或第一preamble,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程;
响应于所述当前触发的RA过程为RA-non-SDT过程,若所述当前触发的RA过程对应的RO和/或preamble为第二RO和/或第二preamble,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收所述终端设备上报的能力信息,所述能力信息用于指示所述终端设备在RA过程中是否支持波束互易性。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
响应于所述能力信息指示所述终端设备在RA过程中支持波束互易性,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
响应于所述网络设备支持波束互易性,确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
响应于所述网络设备不支持波束互易性,确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
将所述当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束确定为所述网络设备的发送波束;
基于终端设备的波束互易性和所述网络设备的发送波束确定所述网络设备的接收波束;
基于所述网络设备的接收波束接收所述终端设备发送的当前触发的RA过程中的信息和/或数据;
基于所述网络设备的发送波束向所述终端设备发送当前触发的RA过程中的信息和/或数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
将所述当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束确定为所述网络设备的发送波束;
利用所述网络设备的发送波束向所述终端设备发送当前触发的RA过程中的信息和/或数据;
基于所述网络设备的发送波束进行上行波束扫描以接收所述终端设备发送的当前触发的RA过程中的信息和/或数据。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
响应于所述当前触发的RA过程为RA-SDT过程,接收所述终端设备发送的当前触发的RA过程中的信息和数据;
响应于所述当前触发的RA过程为RA-non-SDT过程,接收所述终端设备发送的当前触发的RA过程中的信息;
所述收发模块还用于:
响应于所述当前触发的RA过程为RA-SDT过程,向所述终端设备发送当前触发的RA过程中的信息和数据;
响应于所述当前触发的RA过程为RA-non-SDT过程,向所述终端设备发送当前触发的RA过程中的信息。
可选的,在本公开的一个实施例之中,所述波束互易性为不需要波束扫描的波束互易性。
请参见图12,图12是本申请实施例提供的一种通信装置1200的结构示意图。通信装置1200可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1200可以包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1200中还可以包括一个或多个存储器1202,其上可以存有计算机程序1204,处理器1201执行所述计算机程序1204,以使得通信装置1200执行上述方法实施例中描述的方法。可选的,所述存储器1202中还可以存储有数据。通信装置1200和存储器1202可以单独设置,也可以集成在一起。
可选的,通信装置1200还可以包括收发器1205、天线1206。收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接 收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1200中还可以包括一个或多个接口电路1207。接口电路1207用于接收代码指令并传输至处理器1201。处理器1201运行所述代码指令以使通信装置1200执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1201可以存有计算机程序1203,计算机程序1203在处理器1201上运行,可使得通信装置1200执行上述方法实施例中描述的方法。计算机程序1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
在一种实现方式中,通信装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301和接口1302。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
可选的,芯片还包括存储器1303,存储器1303用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。 所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种随机接入方法,其特征在于,所述方法被终端设备执行,所述方法包括:
    响应于支持波束互易性的终端设备触发随机接入RA过程,基于所述波束互易性确定所述终端设备的发送和/或接收波束;
    基于所述终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
  2. 如权利要求1所述的方法,其特征在于,所述RA过程包括以下任一种:
    与小数据传输SDT相关的随机接入RA过程;
    非小数据传输相关的随机接入过程。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定第一映射关系和/或第二映射关系;
    其中,所述第一映射关系包括:与SDT相关的RA过程对应的第一随机接入信道时机RO和/或第一前导码preamble,所述第一RO用于:若触发的与SDT相关的RA过程对应的RO为所述第一RO,则指示终端设备会基于波束互易性实现此次触发的与SDT相关的RA过程中的传输;所述第一preamble用于:若触发的与SDT相关的RA过程对应的preamble为所述第一preamble,则指示终端设备会基于波束互易性实现此次触发的与SDT相关的RA过程中的传输;
    所述第二映射关系包括:非SDT相关的RA过程对应的第二RO和/或第二preamble,其中,所述第二RO用于:若触发的非SDT相关的RA过程对应的RO为所述第二RO,则指示终端设备会基于波束互易性实现此次触发的非SDT相关的RA过程中的传输;所述第二preamble用于:若触发的非SDT相关的RA过程对应的preamble为所述第二preamble,则指示终端设备会基于波束互易性实现此次触发的非SDT相关的RA过程中的传输。
  4. 如权利要求3所述的方法,其特征在于,所述支持波束互易性的终端设备触发RA过程,包括:
    响应于发起与SDT相关的RA过程,基于所述第一映射关系确定第一RO和/或第一preamble,基于所述第一RO和/或第一preamble触发所述与SDT相关的RA过程;
    响应于发起非SDT相关的RA过程,基于所述第二映射关系确定第二RO和/或第二preamble,基于所述第二RO和/或第二preamble触发所述非SDT相关的RA过程。
  5. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述网络设备上报能力信息,所述能力信息用于指示所述终端设备在RA过程中是否支持波束互易性。
  6. 如权利要求1所述的方法,其特征在于,所述基于波束互易性确定所述终端设备的发送和/或接收波束,包括:
    将所述终端设备接收当前触发的RA过程对应的RO和/或preamble所关联的同步信号块SSB时使用的接收波束确定为所述终端设备的接收波束;
    基于波束互易性和所述终端设备的接收波束确定所述终端设备的发送波束。
  7. 如权利要求6所述的方法,其特征在于,所述基于所述终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据,包括:
    响应于所述当前触发的RA过程为与SDT相关的RA过程,基于所述终端设备的发送波束向所述网络设备发送信息和数据,基于所述终端设备的接收波束接收所述网络设备发送的信息和数据;
    响应于所述当前触发的RA过程为非SDT相关的RA过程,基于所述终端设备的发送波束向所述网络设备发送信息,基于所述终端设备的接收波束接收所述网络设备发送的信息。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述波束互易性为不需要波束扫描的波束互易性。
  9. 一种随机接入方法,其特征在于,所述方法被网络设备执行,所述方法包括:
    响应于终端设备触发RA过程,确定所述终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程;
    响应于确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程,确定所述网络设 备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
    响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输;
    响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
  10. 如权利要求9所述的方法,其特征在于,所述RA过程包括以下任一种:
    与SDT相关的RA过程;
    非SDT相关的RA过程。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    确定第一映射关系和/或第二映射关系;
    其中,所述第一映射关系包括:与SDT相关的RA过程对应的第一RO和/或第一preamble,所述第一RO用于:若触发的与SDT相关的RA过程对应的RO为所述第一RO,则指示终端设备是基于波束互易性实现此次触发的与SDT相关的RA过程中的传输;所述第一preamble用于:若触发的与SDT相关的RA过程对应的preamble为所述第一preamble,则指示终端设备是基于波束互易性实现此次触发的与SDT相关的RA过程中的传输;
    所述第二映射关系包括:非SDT相关的RA过程对应的第二RO和/或第二preamble,其中,所述第二RO用于:若触发的非SDT相关的RA过程对应的RO为所述第二RO,则指示终端设备是基于波束互易性实现此次触发的非SDT相关的RA过程中的传输;所述第二preamble用于:若触发的非SDT相关的RA过程对应的preamble为所述第二preamble,则指示终端设备是基于波束互易性实现此次触发的非SDT相关的RA过程中的传输。
  12. 如权利要求11所述的方法,其特征在于,所述确定所述终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程,包括:
    响应于所述当前触发的RA过程为与SDT相关的RA过程,若所述当前触发的RA过程对应的RO和/或preamble为第一RO和/或第一preamble,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程;
    响应于所述当前触发的RA过程为非SDT相关的RA过程,若所述当前触发的RA过程对应的RO和/或preamble为第二RO和/或第二preamble,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程。
  13. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备上报的能力信息,所述能力信息用于指示所述终端设备在RA过程中是否支持波束互易性。
  14. 如权利要求13所述的方法,其特征在于,所述确定所述终端设备触发的RA过程是否是基于波束互易性实现传输的RA过程,包括:
    响应于所述能力信息指示所述终端设备在RA过程中支持波束互易性,确定所述终端设备触发的RA过程是基于波束互易性实现传输的RA过程。
  15. 如权利要求14所述的方法,其特征在于,所述确定所述网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输,包括:
    响应于所述网络设备支持波束互易性,确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
    响应于所述网络设备不支持波束互易性,确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输。
  16. 如权利要求9所述的方法,其特征在于,所述基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输,包括:
    将所述当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束确定为所述网络设备的发送波束;
    基于终端设备的波束互易性和所述网络设备的发送波束确定所述网络设备的接收波束;
    基于所述网络设备的接收波束接收所述终端设备发送的当前触发的RA过程中的信息和/或数据;
    基于所述网络设备的发送波束向所述终端设备发送当前触发的RA过程中的信息和/或数据。
  17. 如权利要求9所述的方法,其特征在于,所述基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输,包括:
    将所述当前触发的RA过程对应的RO和/或preamble所关联的SSB的发送波束确定为所述网络设备的发送波束;
    利用所述网络设备的发送波束向所述终端设备发送当前触发的RA过程中的信息和/或数据;
    基于所述网络设备的发送波束进行上行波束扫描以接收所述终端设备发送的当前触发的RA过程中的信息和/或数据。
  18. 如权利要求16或17所述的方法,其特征在于,所述接收所述终端设备发送的当前触发的RA过程中的信息和/或数据,包括:
    响应于所述当前触发的RA过程为与SDT相关的RA过程,接收所述终端设备发送的当前触发的RA过程中的信息和数据;
    响应于所述当前触发的RA过程为非SDT相关的RA过程,接收所述终端设备发送的当前触发的RA过程中的信息;
    所述向所述终端设备发送当前触发的RA过程中的信息和/或数据,包括:
    响应于所述当前触发的RA过程为与SDT相关的RA过程,向所述终端设备发送当前触发的RA过程中的信息和数据;
    响应于所述当前触发的RA过程为非SDT相关的RA过程,向所述终端设备发送当前触发的RA过程中的信息。
  19. 如权利要求9-18任一所述的方法,其特征在于,所述波束互易性为不需要波束扫描的波束互易性。
  20. 一种通信装置,被配置在网络设备中,包括:
    处理模块,用于响应于支持波束互易性的终端设备触发RA过程,基于波束互易性确定所述终端设备的发送和/或接收波束;
    收发模块,用于基于所述终端设备的发送和/或接收波束传输当前触发的RA过程中的信息和/或数据。
  21. 一种通信装置,被配置在UE中,包括:
    处理模块,用于响应于终端设备触发RA过程,确定所述终端设备是否是基于波束互易性实现当前触发的RA过程中的传输;
    所述处理模块,还用于响应于确定所述终端设备是基于波束互易性实现当前触发的RA过程中的传输,确定所述网络设备是否要基于终端设备的波束互易性实现当前触发的RA过程中的传输;
    收发模块,用于响应于确定所述网络设备要基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于终端设备的波束互易性实现当前触发的RA过程中的信息和/或数据的传输;
    所述收发模块,还用于响应于确定所述网络设备不基于终端设备的波束互易性实现当前触发的RA过程中的传输,基于波束扫描实现当前触发的RA过程中的信息和/或数据的传输。
  22. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至8中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求9至19中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至8中任一项所述的方法,或用于运行所述代码指令以执行如权利要求9至19中任一项所述的方法。
  24. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至8中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求9至19中任一项所述的方法被实现。
PCT/CN2022/107532 2022-07-22 2022-07-22 一种随机接入方法/装置/设备及存储介质 WO2024016360A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/107532 WO2024016360A1 (zh) 2022-07-22 2022-07-22 一种随机接入方法/装置/设备及存储介质
CN202280002574.5A CN115486197A (zh) 2022-07-22 2022-07-22 一种随机接入方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107532 WO2024016360A1 (zh) 2022-07-22 2022-07-22 一种随机接入方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024016360A1 true WO2024016360A1 (zh) 2024-01-25

Family

ID=84396201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107532 WO2024016360A1 (zh) 2022-07-22 2022-07-22 一种随机接入方法/装置/设备及存储介质

Country Status (2)

Country Link
CN (1) CN115486197A (zh)
WO (1) WO2024016360A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645322A (zh) * 2016-07-21 2018-01-30 上海诺基亚贝尔股份有限公司 基于波束赋形的随机接入的方法和设备
CN107919897A (zh) * 2016-10-09 2018-04-17 株式会社Ntt都科摩 上行随机接入时执行的波束确定方法、用户设备和基站
CN108401297A (zh) * 2017-02-06 2018-08-14 北京三星通信技术研究有限公司 随机接入方法及终端设备
CN109560839A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种确定波束互易性能力当前状态的方法及终端
CN111294183A (zh) * 2019-04-19 2020-06-16 展讯通信(上海)有限公司 发送波束确定方法、用户设备、基站
US20200236704A1 (en) * 2019-01-17 2020-07-23 Qualcomm Incorporated Random access channel (rach) message partitioning for beam correspondence indication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645322A (zh) * 2016-07-21 2018-01-30 上海诺基亚贝尔股份有限公司 基于波束赋形的随机接入的方法和设备
CN107919897A (zh) * 2016-10-09 2018-04-17 株式会社Ntt都科摩 上行随机接入时执行的波束确定方法、用户设备和基站
CN108401297A (zh) * 2017-02-06 2018-08-14 北京三星通信技术研究有限公司 随机接入方法及终端设备
CN109560839A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种确定波束互易性能力当前状态的方法及终端
US20200236704A1 (en) * 2019-01-17 2020-07-23 Qualcomm Incorporated Random access channel (rach) message partitioning for beam correspondence indication
CN111294183A (zh) * 2019-04-19 2020-06-16 展讯通信(上海)有限公司 发送波束确定方法、用户设备、基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM [RAN1]: "[Draft] Reply to RAN2 LS on Physical Layer Aspects of SDT", 3GPP TSG-RAN WG1 MEETING #106E R1-2107309, 7 August 2021 (2021-08-07), XP052038263 *
SAMSUNG: "Impact of beam/channel reciprocity for NR", 3GPP TSG RAN WG1 #86 BIS R1-1609082, 9 October 2016 (2016-10-09), XP051149133 *

Also Published As

Publication number Publication date
CN115486197A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023201754A1 (zh) 一种终端设备的移动性管理方法及装置
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2024016360A1 (zh) 一种随机接入方法/装置/设备及存储介质
WO2023173257A1 (zh) 一种请求系统信息的方法及其装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2024026799A1 (zh) 数据传输方法和装置
WO2023230971A1 (zh) 一种多prach传输方法及其装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024031485A1 (zh) 一种传输方法及其装置
CN114026907B (zh) 一种上行波束的测量方法及其装置
WO2023115279A1 (zh) 数据传输方法及装置
WO2024026801A1 (zh) 一种侧行链路sl波束配置方法、装置、设备及存储介质
WO2024000330A1 (zh) 一种资源的激活或去激活的方法及其装置
WO2024016359A1 (zh) 能力上报方法和装置
WO2023230972A1 (zh) 资源配置方法及装置
WO2023193271A1 (zh) 一种双连接中终端设备小区组的更新方法及装置
WO2023236123A1 (zh) 一种系统消息传输方法/装置/设备及存储介质
WO2023225876A1 (zh) 波束确定方法和装置
WO2024000208A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质
WO2023206033A1 (zh) 混合自动重传请求harq反馈的处理方法及其装置
WO2024011432A1 (zh) 一种信息传输方法及其装置
EP4362564A1 (en) Timing relationship adjustment method and apparatus
WO2024031374A1 (zh) 基于侧行链路的设备间协作方法、装置、设备及存储介质
WO2024031373A1 (zh) 一种确定触发连续lbt失败的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951629

Country of ref document: EP

Kind code of ref document: A1