WO2024016275A1 - 电池单体、电池及用电设备 - Google Patents
电池单体、电池及用电设备 Download PDFInfo
- Publication number
- WO2024016275A1 WO2024016275A1 PCT/CN2022/107142 CN2022107142W WO2024016275A1 WO 2024016275 A1 WO2024016275 A1 WO 2024016275A1 CN 2022107142 W CN2022107142 W CN 2022107142W WO 2024016275 A1 WO2024016275 A1 WO 2024016275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cover plate
- spacer
- main body
- battery cell
- isolation member
- Prior art date
Links
- 238000002955 isolation Methods 0.000 claims abstract description 74
- 125000006850 spacer group Chemical group 0.000 claims description 83
- 230000000670 limiting effect Effects 0.000 claims description 36
- 238000010586 diagram Methods 0.000 description 20
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 238000011900 installation process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
- H01M50/593—Spacers; Insulating plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
- Secondary batteries especially lithium-ion batteries, have the advantages of high voltage, large specific energy, long cycle life, green and pollution-free, wide operating temperature range and small self-discharge. They are widely used in portable electronic equipment and power equipment of large new energy electric vehicles. It is widely used and is of great significance to solving human environmental pollution and energy crisis. With the widespread application of lithium-ion batteries, the reliability of batteries has become a matter of close concern to users.
- a battery cell including:
- An end cover assembly including a cover plate and a second isolation member provided on the cover plate;
- An electrode assembly including a body portion
- the first spacer is located between the end cap assembly and the main body part, and is configured to limit the main body part
- the second isolation member is configured to limit the first isolation member.
- the first isolator located between the end cover assembly and the main body of the electrode assembly can separate the main body and the end cover assembly to prevent damage to the electrode assembly caused by collision between the main body and the end cover assembly.
- the first isolation limits the relative position of the main body relative to the first isolator by limiting the position of the main body, and cooperates with the limiting effect of the second isolator provided on the cover on the first isolator, which can effectively limit the connection between the electrode assembly and the terminal.
- the relative position between the cover components reduces the risk of the electrode components moving due to vibration and other reasons when the battery cells are in use, thereby causing damage to the electrode components or even a short circuit.
- the second spacer is configured to limit the first spacer in at least one of the first direction and the second direction, and to limit the position of the first spacer in the first direction and the second direction. At least one of the directions has a clearance fit with the first isolator, and the first direction and the second direction are perpendicular to each other and both are perpendicular to the thickness direction of the cover plate.
- the limiting direction of the second isolation member to the first isolation member may be the first direction, the second direction, or may include both the first direction and the second direction.
- the first direction and the second direction are two mutually orthogonal directions that are perpendicular to the thickness direction of the cover plate.
- the second isolator can limit the second isolator and the first isolator in the corresponding limiting direction by limiting the first isolator in the first direction or the second direction, or at the same time in the first direction and the second direction.
- the relative position between the isolators prevents unwanted relative displacement between the two.
- the above-mentioned limit direction can be selected according to the placement method of the battery cell, the use environment and other factors, so as to more specifically meet the risks of electrode assembly damage or short circuit during the use of the battery cell, and further Improve the reliability of battery cells.
- the limiting effect of the second isolator on the first isolator in at least one of the first direction and the second direction is achieved through clearance fit, which can effectively reduce interference between the second isolator and the first isolator during assembly. possibility, reduce the difficulty of assembly, and avoid the problem of difficult or unsuccessful assembly caused by manufacturing errors of components or errors in the operation of assembly tools.
- the distance g1 between the first isolator and the second isolator is 0.1 to 1 mm, and/or in the second direction, the distance g1 between the first isolator and the second isolator is 0.1 to 1 mm.
- the distance g2 between a spacer and the second spacer is 0.1 to 1 mm.
- a gap of 0.1 to 1 mm can be set between the second isolator and the first isolator in the first direction and/or the second direction, which can achieve both a reliable limiting effect and a reduction in assembly difficulty.
- the main body part is flat, and the first direction is the thickness direction of the main body part.
- the first direction and the second direction may be the thickness direction and the width direction of the main body, respectively.
- the main part can be effectively placed relative to the end cap in its thickness direction or width direction. Unwanted movement of components occurs, thereby reducing the risk of damage to the main body during movement.
- the second spacer is configured to limit the first spacer in the thickness direction of the cover plate and to be in contact with the first spacer in the thickness direction of the cover plate. Spacer clearance fit.
- the first isolator limits the position of the second isolator in the thickness direction of the cover plate, so that the displacement of the main body part relative to the end cap assembly can also be limited in the thickness direction of the cover plate, preventing the electrode assembly from being moved around the cover plate. movement in the thickness direction, thereby further improving the reliability of the battery cells.
- the limiting effect of the second spacer on the first spacer in the thickness direction of the cover plate is achieved through clearance fit, which can effectively reduce the possibility of interference between the second spacer and the first spacer during assembly and reduce the difficulty of assembly. Avoid assembly difficulties or failure due to manufacturing errors of components or errors in assembly tool operation.
- the distance g3 between the first isolator and the second isolator is 0.1 to 1 mm.
- a gap of 0.1 to 1 mm can be set between the second isolator and the first isolator in the thickness direction of the cover plate, which can achieve both a reliable limiting effect and a reduction in assembly difficulty.
- the first spacer abuts on a surface of the cover adjacent to the main body and encloses a cavity with the cover, and the second spacer is at least partially located on the inside the cavity.
- the first spacer is in contact with the surface of the cover plate adjacent to the main body, so that the first spacer can support the cover plate and the main body, and limit the distance between the cover plate and the main body in the thickness direction of the cover plate. relative position.
- the second isolator can usually be used to set components such as poles on the cover plate. The second isolator can be accommodated with other components in the cavity surrounded by the first isolator and the cover plate, and is performed by the first isolator. Protection and limiting.
- the end cap assembly further includes a pole provided on the cover plate
- the electrode assembly further includes a pole located at one end of the main body portion adjacent to the end cap assembly, and the pole tab A passage passing through the first separator is electrically connected to the pole, and at least part of the pole and the tab are located in the cavity.
- the tabs on the main body pass through the first separator and are electrically connected to the poles on the cover plate through connectors or directly, and the cavity formed by the cover plate and the first separator accommodates at least part of the pole posts and the pole tabs. , providing sufficient space for the bent tabs to be electrically connected to the poles, thereby ensuring the reliability of the electrical connection and improving the use stability of the battery cells.
- the first isolator also effectively limits the movement of the main body relative to the end cover assembly in the thickness direction of the cover by holding the passed tabs and supporting the main body and the cover, preventing The tabs may tear due to tension, causing the risk of circuit breakage or short circuit.
- the pole tab is bent on one side adjacent to the cover plate, and the bent portion of the pole tab is fixedly connected to the end of the pole adjacent to the main body portion, and the pole tab is bent on the side adjacent to the cover plate.
- the minimum distance D from the channel to the end of the pole adjacent to the main body satisfies:
- t is the thickness of the tab.
- the pole tab In order to increase the electrical connection area between the pole tab and the pole post, the pole tab can be bent, and the bent part is in contact with the end surface of the pole post and fixedly connected, thereby achieving a reliable electrical connection.
- the minimum distance from the channel to the end of the pole reflects the size of the space used to accommodate the bent tabs. If the size is too large, it will occupy more space in the main body and reduce the power of the battery cell. If the size is too small, there will be insufficient space for the bending of the pole tab, which may easily cause the pole tab to be pulled when the main body moves relative to the end cap assembly after the pole tab is connected to the pole, causing the pole tab to tear and other problems.
- the distance D no less than 2 times the thickness of the tab and no more than 6 times the thickness of the tab, it is possible to ensure that the tab can be fully bent to achieve reliable electrical connection with the pole. It is not easy to tear, and can use a larger main body to maximize the power of the battery cell.
- the inner wall surface of the cavity includes a step surface, the step surface is in clearance fit with the second isolation member in the thickness direction of the cover plate, and the second isolation member is configured to The step surface is limited in the thickness direction of the cover plate.
- a step surface is provided on the inner wall surface of the cavity surrounded by the first isolator and the cover plate. Through the clearance between the step surface and the end surface of the second isolator in the thickness direction, the second isolator can be easily positioned on the cover plate. The limiting effect and clearance fit relationship of the first isolation member in the thickness direction.
- the inner wall surface of the cavity further includes a first inner wall segment and a second inner wall segment divided by the step surface along the thickness direction of the cover plate, and the first inner wall segment is located at The second inner wall segment is on a side away from the cover plate, and the second inner wall segment is in clearance fit with the second isolation member in at least one of the first direction and the second direction.
- the second isolation member The component is configured to limit the second inner wall segment in at least one of the first direction and the second direction, the first direction and the second direction being perpendicular to each other and both being aligned with the The thickness direction of the cover plate is vertical.
- the second inner wall segment can achieve a limiting function and a clearance fit in at least one of the first direction and the second direction, and the first inner wall segment can accommodate the pole tab that is bent and connected to the pole.
- the space width w1 corresponding to the first inner wall segment is smaller than the space width w2 corresponding to the second inner wall segment; and/or, in the second direction Above, the space width w1 corresponding to the first inner side wall section is smaller than the space width w2 corresponding to the second inner side wall section.
- the second inner wall section adopts a larger space width w2, which allows the use of a larger second spacer, thereby facilitating the arrangement of other components on the cover plate and the second spacer;
- the first inner wall section adopts The smaller space width w1 to accommodate the tab allows a thicker structure to be used in the first inner wall section to enhance the strength and rigidity of the first isolator and improve the stability of its support between the end cap assembly and the main body. sex.
- the thickness t1 of the portion of the first isolation member corresponding to the first inner wall segment is greater than the thickness t1 of the first isolation member corresponding to the second inner wall segment. and/or, in the second direction, the thickness t1 of the portion of the first isolation member corresponding to the first inner wall segment is greater than the thickness t1 of the portion of the first isolation member corresponding to the first inner wall segment The thickness t2 of the portion of the second inner wall section.
- the thickness t2 of the first spacer corresponding to the second inner wall segment smaller than the thickness t1 corresponding to the first inner wall segment, the size of the space enclosed by the second inner segment can be increased, allowing the use of larger
- the size of the second spacer is convenient, so as to facilitate the arrangement of other components on the cover plate and the second spacer; and since the first inner wall section usually only needs to accommodate the tab, the space requirement is not large, and accordingly the second spacer is A spacer with a greater thickness corresponding to the first inner wall section can effectively increase the strength and rigidity of the first spacer, thereby improving the stability of the first spacer supported between the end cap assembly and the main body.
- the first isolator has an outer surface adjacent to the main body part along the thickness direction of the cover plate and in contact with a part of the pole lug, and the outer surface is provided with a hole for the pole to The ear passes through and communicates with the cavity; in the thickness direction of the cover plate, the distance H1 from the end of the outer surface away from the channel to the cover plate is greater than the distance H1 of the outer surface adjacent to the channel The distance H2 from one end to the cover plate.
- the first separator adopts an inclined outer surface to contact the pole tab and provide a passage for the pole tab so that the pole tab enters the cavity through the passage.
- the first isolation member includes at least two detachable brackets. When combined with the cover plate, the at least two brackets enclose the cavity and all components connected to the cavity. Describe the channel.
- the tabs when assembling at least two brackets, the tabs can be extended from one end of the main body first, so that after the first isolator is assembled, the first isolator can be The gap above holds the tab passing through the gap.
- This structure can effectively reduce the assembly difficulty between the electrode assembly and the first separator and improve the assembly efficiency.
- the end cap assembly includes a cover plate, and in the thickness direction of the cover plate, the projection of the first isolation member on the surface of the cover plate is located on the main body portion on the surface of the cover plate. within the projection of the surface.
- the projection of the first isolator on the surface of the cover plate along the thickness direction of the cover plate can be located along the edge of the main body part.
- the thickness direction of the cover plate is within the projection of the surface of the cover plate, which is equivalent to the first isolator being concave relative to the surface of the main body, thereby not interfering with the installation process and reducing the difficulty of assembling the battery cells. Improve the assembly efficiency of battery cells.
- a battery including the aforementioned battery cell. Batteries using the aforementioned battery cells can effectively improve reliability.
- an electrical device including the aforementioned battery. Electrical equipment using the aforementioned batteries can effectively improve reliability.
- Figure 1 is a schematic structural diagram of some embodiments of electrical equipment according to the present disclosure
- Figure 2 is an exploded schematic diagram of some embodiments of a battery according to the present disclosure
- Figure 3 is an exploded schematic diagram of some embodiments of battery cells according to the present disclosure.
- Figure 4 is an enlarged schematic diagram of the area corresponding to circle A in Figure 3;
- Figure 5 is a partial schematic view of the mounting structure of the end cap assembly, the electrode assembly and the first separator in some embodiments of the battery cell according to the present disclosure from the perspective of the first direction x;
- Figure 6 is a right view of Figure 5;
- Figure 7 is a structural schematic diagram of the AA section in Figure 5;
- Figure 8 is a schematic diagram of some structural dimensions in Figure 7;
- Figure 9 is a schematic diagram of some structural dimensions of the installation structure of the cover plate, the second isolator and the first isolator in Figure 7;
- Figure 10 is a schematic diagram of some structural dimensions of the installation structure after removing the second isolator in Figure 9;
- Figure 11 is a structural schematic diagram of the BB section in Figure 6;
- FIG. 12 is an enlarged schematic diagram of the area surrounded by circle C in FIG. 11 .
- 40 First isolator; 40a, 40b: Bracket; 41: First inner wall section; 42: Second inner wall section; 43: Step structure; 44: Hot melt column; 45: Installation boss; 46: Channel; 47: Outer surface;
- 60 Vehicle; 61: Controller; 62: Motor.
- connection should be understood in a broad sense.
- it can be a fixed connection or a removable connection.
- the electrode assembly may move within the case due to changes in the movement state of the battery or external force when the battery cell is in use.
- the movement of the electrode assembly in the housing may cause the connection between the tab and the pole to be pulled, causing the risk of the electrical connection becoming loose or the tab being torn, thereby leading to the risk of damage to the electrode assembly or even a short circuit.
- embodiments of the present disclosure provide a battery cell, a battery and an electrical device, which can improve the reliability of the battery.
- the battery cells in the embodiments of the disclosure may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the disclosure.
- the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present disclosure.
- the battery cells of the embodiments of the present disclosure can be applied to various types of batteries. Batteries can be used to power electrical equipment such as vehicles, such as providing power for vehicle control or power for driving.
- the battery may include a casing and a battery module.
- the casing is used to provide a receiving space for the battery module.
- the battery module is installed in the casing.
- the shell can be made of metal.
- the battery module may include multiple battery cells connected in series, parallel or mixed.
- the battery cell is the smallest unit that makes up the battery. Battery cells include electrode components that enable electrochemical reactions to occur.
- the battery according to the embodiment of the present disclosure can be applied to various types of electrical equipment using batteries.
- Electrical equipment can be mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
- spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
- electric toys include Fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
- Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as , electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
- the embodiments of the present disclosure do not impose special restrictions on the above electrical equipment.
- FIG. 1 is a schematic structural diagram of some embodiments of electrical equipment according to the present disclosure.
- the vehicle 60 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle or a hybrid vehicle.
- the battery 50 may be disposed at the bottom, front or rear of the vehicle 60 .
- the battery 50 may be used to supply power to the vehicle 60 .
- the battery 50 may be used as an operating power source for the vehicle 60 and for the circuit system of the vehicle 60 , such as for starting, navigating, and operating power requirements of the vehicle 60 .
- the battery 50 can not only be used as an operating power source for the vehicle 60 , but can also be used as a driving power source for the vehicle 60 , replacing or partially replacing fuel or natural gas to provide driving force for the vehicle 60 .
- the interior of the vehicle 60 may also be provided with axles, wheels, motors 62 and a controller 61 .
- the controller 61 is used to control the battery 50 to power the motor 62 .
- the controller 61 It can provide the motor 62 with the power required for constant speed and acceleration.
- the motor 62 is used to drive the axle to rotate to drive the wheels to rotate.
- Figure 2 is a schematic structural diagram of some embodiments of a battery according to the present disclosure.
- Figure 3 is an exploded schematic diagram of some embodiments of a battery cell according to the present disclosure.
- Figure 4 is an enlarged schematic diagram of the area corresponding to circle A in Figure 3.
- the battery 50 includes a case 51 and one or more battery cells 10 disposed in the case 51.
- the box 51 can provide the battery cell 10 with functions such as cooling, sealing, and anti-impact, and can also prevent liquid or other foreign matter from adversely affecting the charging, discharging, or safety of the battery cell.
- each battery cell 10 is electrically connected, such as in series, parallel or mixed connection, to achieve the required electrical performance parameters of the battery 50 .
- a plurality of battery cells 10 are arranged in rows, and one or more rows of battery cells 10 can be arranged in the box as needed.
- the battery cells 10 of the battery 50 may be arranged along at least one of the length direction and the width direction of the box. At least one row or column of battery cells 50 can be provided according to actual needs. If necessary, one or more layers of battery cells 10 may also be provided in the height direction of the battery 50 .
- multiple battery cells 10 may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the box 51 .
- all the battery cells 10 are directly connected in series or in parallel or mixed together, and then the entire battery cell 10 is accommodated in the box.
- the battery cell 10 includes: an end cap assembly 20 , an electrode assembly 30 and a first separator 40 .
- the battery cell 10 may also include a case 11 and other structures (not shown in the figure), such as an insulating film placed outside the electrode assembly 30 and used to separate the electrode assembly 30 and the case 11 .
- the housing 11 may have a cavity and an end opening 12 communicating with the cavity.
- the cavity of the housing 11 can be used to accommodate the electrode assembly 30 and can accommodate electrolyte.
- the end opening 12 is used to allow the electrode assembly 30 to enter the cavity through the end opening 12 when the battery cell is installed.
- the shape of the housing 11 can be determined according to the shape of one or more electrode assemblies 30 accommodated in the cavity.
- the shape of the housing 11 is a hollow rectangular parallelepiped, a hollow cube, or a hollow cylinder.
- the housing 11 can be made of metal (such as aluminum, aluminum alloy, etc.) or non-metal material (plastic) with certain hardness and strength.
- the end cap assembly 20 can be disposed on the end opening 12 on at least one side of the housing 11 to close the end opening 12 and form a sealed cavity with the housing 11 to accommodate the electrode assembly 30 .
- one end of the housing 11 is provided with an end opening 12
- an end cover assembly 20 is provided at the end opening 12 for closing the end opening 12 on that side.
- both ends of the housing 11 are provided with end openings 12.
- the battery cell 10 includes two end cover assemblies 20, respectively disposed at the end openings 12 on both sides of the housing.
- the electrode assembly 30 includes a main body portion 31 .
- the electrode assembly 30 may further include a tab 32 located at at least one end of the main body 31 and extending in a direction away from the main body.
- the pole tabs 32 can be electrically connected to the pole posts 23 on the cover plate 21 through conductive connectors or directly.
- the tab 32 may include a plurality of tab layers, and the plurality of tab layers may be gathered together, overlapped, and bent to be connected to the pole.
- the main body part 31 may include a positive electrode piece, a negative electrode piece, and a separator located between the positive electrode piece and the negative electrode piece.
- the work of the battery cell is achieved by the movement of internal metal ions between the positive and negative electrodes.
- the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
- the positive tab refers to the metal conductor drawn from the positive electrode piece, which is connected or formed on the positive current collector and is used to connect other parts of the battery cell in series or in parallel.
- the material of the cathode current collector can be aluminum
- the cathode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, which can provide lithium ions.
- the binding substance may be PVDF (Polyvinylidene Fluoride, polyvinylidene fluoride), etc.
- the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
- the negative electrode tab refers to the metal conductor drawn from the negative electrode piece, which is connected or formed on the negative electrode current collector and is used to connect other parts of the battery cell in series or in parallel.
- the material of the negative electrode current collector can be copper
- the negative electrode active material can be graphite, silicon, lithium titanate and other substances that can store lithium ions.
- the binding material may be carboxymethylcellulose, epoxy resin, styrene-butadiene rubber, etc.
- the material of the separator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
- the electrolyte includes electrolytes and solvents.
- the electrolytes are organic metal salts, inorganic salts, etc., which can provide metal ions that shuttle between the positive electrode piece and the negative electrode piece.
- the number of positive electrode tabs may be multiple and stacked together, and the number of negative electrode tabs may be multiple and stacked together.
- the electrode assembly may be a rolled structure or a laminated structure, and the embodiments of the present disclosure are not limited thereto.
- the first spacer 40 is located between the end cap assembly 20 and the main body part 31 and is configured to limit the main body part 31 .
- the limiting position here can be used to limit no relative movement between the main body 31 and the first isolation member 40 , or can also be used to limit only limited relative displacement between the main body 31 and the first isolation member 40 .
- the limiting direction may be a single direction, or may include multiple mutually orthogonal directions.
- the first isolation member 40 can be made of insulating materials such as plastic.
- the first isolation member 40 may adopt an integral structure, or may adopt a split structure that can be detached and assembled.
- the tabs 32 of the electrode assembly 30 may be electrically connected to the pole posts 23 through the first isolation member 40 .
- the first isolator 40 can be fixedly connected to the components in the battery cell 10 , for example, it can be fixed to the side support plate fixedly provided on the side of the main body through hot melting. Correspondingly, it can be provided on the first isolator 40 Hot melt column 44.
- the first spacer 40 located between the end cap assembly 20 and the main body portion 31 of the electrode assembly 30 can separate the main body portion 31 and the end cap assembly 20 to prevent collision between the main body portion 31 and the end cap assembly 20.
- the electrode assembly 30 is damaged, and the first separator 40 also limits the relative position of the main body 31 with respect to the first separator 40 by limiting the position of the main body 31 to prevent the main body 31 from being damaged when the battery cell is in use. Movement occurs due to vibration or other reasons, thereby causing damage to the electrode assembly 30 or even the risk of short circuit.
- the end cover assembly 20 includes a cover plate 21 and a second spacer 22 disposed on the cover plate 21 .
- the cover plate 21 of the end cover assembly 20 can be made of metal (such as aluminum, aluminum alloy, etc.) or non-metal material (plastic) with certain hardness and strength.
- the cover 21 and the housing 11 can be fixedly connected by welding, bonding or connecting through connectors.
- Some functional components may be provided on the cover plate 21, such as poles, sealing structures, liquid injection mechanisms, pressure relief mechanisms, etc. for electrical connection with the electrode assembly 30.
- the second spacer 22 may be fixedly connected to the surface of the cover plate 21 adjacent to the electrode assembly 30 .
- the pole posts 23 on the cover plate 21 can be inserted into the area surrounded by the second isolation member 22 and be electrically connected to the electrode assembly 30 .
- the second isolation member 22 may be made of insulating material, for example, a plastic part may be used as the second isolation member 22 .
- the third direction z is the thickness direction of the cover plate 21
- the first direction x and the second direction y are both perpendicular to the third direction z
- the first direction x and the second direction y are perpendicular.
- the first direction x may be the thickness direction of the main body 31
- the second direction y may be the width direction of the main body 31
- the third direction z is also the length direction of the main body 31 .
- FIG. 5 is a partial schematic view of the mounting structure of the end cap assembly, the electrode assembly and the first separator in some embodiments of the battery cell according to the present disclosure from the perspective of the first direction x.
- FIG. 6 is a right side view of FIG. 5 .
- Figure 7 is a structural schematic diagram of the AA section in Figure 5.
- Figure 8 is a schematic diagram of some structural dimensions in Figure 7.
- FIG. 9 is a schematic diagram of some structural dimensions of the installation structure of the cover plate, the second isolation member and the first isolation member in FIG. 7 .
- FIG. 10 is a schematic diagram of some structural dimensions of the installation structure in FIG. 9 after removing the second isolation member.
- Figure 11 is a schematic structural diagram of the BB section in Figure 6.
- FIG. 12 is an enlarged schematic diagram of the area surrounded by circle C in FIG. 11 .
- the second isolation member 22 is configured to limit the first isolation member 40 .
- the limiting effect of the second spacer 22 provided on the cover plate 21 on the first spacer 40, combined with the limiting effect of the first spacer 40 on the main body part 31, can effectively limit the connection between the electrode assembly 30 and the end cap assembly 20.
- the relative position between the battery cells reduces the risk of the electrode assembly 30 moving due to vibration or other reasons when the battery cell is in use, thereby causing damage to the electrode assembly 30 or even a short circuit.
- the second spacer 22 can also assist the first spacer 40 to more effectively maintain the support and limitation of the main body by limiting the position of the first spacer 40 .
- the second isolation member 22 is configured to limit the first isolation member 40 in at least one of the first direction x and the second direction y, and and a clearance fit with the first isolator 40 in at least one of the first direction x and the second direction y, where the first direction x and the second direction y are perpendicular to each other and both are aligned with the cover plate.
- the thickness direction of 21 is vertical.
- the limiting direction of the second isolation member 22 to the first isolation member 40 may be the first direction x or the second direction y, and may include both the first direction x and the second direction y.
- the first direction x and the second direction y are two mutually orthogonal directions that are perpendicular to the thickness direction of the cover plate 21 .
- the second spacer 22 can limit the first spacer 40 in the corresponding limiting direction by limiting the first spacer 40 in the first direction x or the second direction y, or in the first direction x and the second direction y simultaneously.
- the relative position between the second isolation member 22 and the first isolation member 40 prevents unnecessary relative displacement between the two.
- the above-mentioned limiting direction can be selected according to factors such as the placement method of the battery cell 10 and the use environment, so as to more specifically meet the problems of the electrode assembly 30 during the use of the battery cell 10, such as the electrode assembly 30 being damaged or short-circuited. risk, further improving the reliability of the battery cell 10.
- the limiting effect of the second isolator 22 on the first isolator 40 in at least one of the first direction x and the second direction y is achieved through clearance fit, which can effectively reduce the friction between the second isolator 22 and the first isolator 40 during assembly.
- the possibility of interference of a spacer 40 reduces the difficulty of assembly and avoids the problem of difficulty or failure in assembly due to manufacturing errors of components or errors in the operation of assembly tools.
- the distance g1 between the first isolator and the second isolator is 0.1 to 1 mm, such as 0.3 mm, 0.5 mm, 0.8 mm, etc.
- the distance g2 between the first isolator and the second isolator is 0.1 ⁇ 1mm, such as 0.3mm, 0.5mm, 0.8mm, etc.
- the main body part 31 is flat, and the first direction x or the second direction y is the thickness direction of the main body part 31 .
- the first direction x and the second direction y may be the thickness direction and the width direction of the main body part 31, respectively.
- the main body part 31 can be effectively placed in its thickness direction or width direction. Unnecessary displacement occurs on the main body 31 relative to the end cover assembly 20, thereby reducing the risk of damage to the main body 31 when moving.
- the second spacer 22 can also limit the position of the first spacer 40 in the thickness direction of the cover plate 21 .
- the second spacer 22 is further configured to limit the first spacer 40 in the thickness direction of the cover plate 21 and to limit the position of the first spacer 40 in the thickness direction of the cover plate 21 . It has a clearance fit with the first isolation member 40 . In this way, the relative position between the main body 31 and the end cap assembly 20 in the thickness direction of the cover plate 21 is restricted, thereby preventing the electrode assembly 30 from moving in the thickness direction of the cover plate 21 and further improving the battery cell 10 reliability of use.
- the limiting effect of the second isolator 22 on the first isolator 40 in the thickness direction of the cover plate 31 is achieved through clearance fit, which can effectively reduce the possibility of interference between the second isolator 22 and the first isolator 40 during assembly. , reduce the difficulty of assembly and avoid the problem of difficult or unsuccessful assembly caused by manufacturing errors of components or errors in the operation of assembly tools.
- the distance g3 between the first isolator 40 and the second isolator 22 is 0.1 to 1 mm, for example, 0.3 mm, 0.5 mm, 0.8mm, etc. This can take into account both the reliable limiting effect and the reduction of assembly difficulty.
- the first isolation member 40 abuts on the surface of the cover plate 21 adjacent to the main body portion 31 , and encloses a cavity S with the cover plate 21 .
- the second spacer 22 is at least partially located within the cavity S.
- the first isolator 40 is in contact with the surface of the cover plate 21 adjacent to the main body portion 31, so that the first isolator 40 can support the cover plate 21 and the main body portion 31, and limit the interaction between the cover plate 21 and the main body portion 31. relative positions in the thickness direction of the cover plate 21 .
- the second spacer 22 can generally be used to set components such as the pole posts 23 on the cover 21.
- the second spacer 22 can be accommodated with other components in the cavity surrounded by the first spacer 40 and the cover 21.
- a spacer 40 is used for protection and limitation.
- the first isolation member 40 and the second isolation member 22 can share a part of the space size, thereby reducing the space between the first isolation member 40 and the second isolation member 22.
- the size of the space occupied by the component 22 in the battery cell is conducive to increasing the size of the electrode assembly to obtain more power.
- the end cover assembly 20 may further include pole posts 23 provided on the cover plate 21 .
- the pole 23 can be sealed by the seal 24 provided on the cover plate 21 to realize the sealed connection of the pole 23 on the cover plate 21 .
- a terminal board 25 may also be provided on the side of the cover 21 away from the main body 31.
- the terminal board 25 is fixedly connected to the pole 23 and may be made of conductive metal material, such as aluminum.
- the end cover assembly 20 may include a liquid injection mechanism 26 provided on the cover plate 21 for injecting electrolyte into the housing.
- the electrode assembly 30 may further include a tab 32 located at one end of the main body 31 adjacent to the end cap assembly 20 , and the tab 32 passes through the channel 46 of the first isolation member 40 and is electrically connected to the pole post 23 , at least part of the pole post 23 and the pole tab 32 are located in the cavity S.
- the tabs 32 on the main body 31 pass through the first isolator 40 and are connected to the poles 23 on the cover 21 through connectors or direct electrical connections, and the cavity formed by the cover 21 and the first isolator 40 accommodates the poles. At least part of the post 23 and the tab 32 provide enough space for the tab 32 to be electrically connected to the post 23 after bending, thereby ensuring the reliability of the electrical connection and improving the use stability of the battery cell 10 .
- the first isolator 40 also effectively limits the position of the main body 31 relative to the end cap assembly 20 by retaining the passed tabs 32 and supporting the main body 31 and the cover 21 .
- the movement in the thickness direction prevents the pole lug 32 from being torn due to being pulled, causing the risk of open circuit or short circuit.
- the pole tab 32 can be bent, and the bent portion is in contact with the end surface of the pole post 23 and fixedly connected, thereby achieving a reliable electrical connection.
- the pole tab 32 may include multiple tab layers. The multiple tab layers may be gathered to the midline position of the main body 21 and then pass through the first isolator 40 . After being bent, they can be connected to the pole post. 23 connections.
- the pole tab 32 is bent on one side adjacent to the cover plate 21 , and the bent portion of the pole tab 32 and the pole post 23 are adjacent to the main body portion 31 The ends are fixedly connected.
- the minimum distance D from the channel 46 to the end of the pole 23 adjacent to the main body 31 satisfies: 2*t ⁇ D ⁇ 6*t , for example, D may be equal to 2*t, 3.5*t, 4.8*t, 5.6*t, etc., where t is the thickness of the tab 32 .
- the thickness of the tab 32 is the sum of the thicknesses of the multiple tab layers.
- D represents the size of the space used to accommodate the bent tabs 32. If the size is too large, it will occupy more space of the main body 31 and reduce the power of the battery cell 10. If the size is too small, Therefore, the bending space of the pole tab 32 is insufficient, which may easily cause the pole tab 32 to be pulled when the body part 31 moves relative to the end cover assembly 20 after the pole tab 32 is connected to the pole post 23 , causing the pole tab 32 to tear and other problems.
- the inner wall surface of the cavity S includes a step surface 43 .
- the step surface 43 may be continuously arranged or segmented in the circumferential direction of the cavity S.
- the step surface 43 may be in clearance fit with the second isolation member 22 in the thickness direction of the cover plate 21 .
- the second spacer 22 is configured to limit the step surface 43 in the thickness direction of the cover plate 21 , so that the second spacer 22 can easily control the first spacer 40 in the thickness direction of the cover plate 21 . The limiting effect and clearance fit relationship in the direction.
- the step surface 43 can divide the inner wall surface of the cavity S into a first inner wall section 41 and a second inner wall section 42 .
- the first inner wall section 41 is located at a side of the second inner wall section 42 away from the cover plate 21 The side can be used to accommodate the pole tab 32 that is connected to the pole post 23 after being bent.
- the second inner wall section 42 has a clearance fit with the second isolation member 22 in at least one of the first direction x and the second direction y.
- the second spacer 22 is configured to limit the second inner wall section 42 in at least one of the first direction x and the second direction y.
- the space width w1 corresponding to the first inner wall section 41 is smaller than the space width w2 corresponding to the second inner wall section 42; and/or , in the second direction y, the space width w1 corresponding to the first inner wall section 41 is smaller than the space width w2 corresponding to the second inner wall section 42 .
- Figure 10 shows the corresponding space widths w1 and w2 of the first inner wall section 41 and the second inner wall section 42 in the first direction x, and it can be seen that w1 is smaller than w2.
- the space width corresponding to the first inner wall section 41 may also be smaller than the space width corresponding to the second inner wall section 42 .
- the second inner wall section 42 adopts a larger space width w2, which allows the use of a larger second spacer 22, thereby facilitating the arrangement of other components on the cover plate 21 on the cover plate and the second spacer.
- the first inner wall section 41 uses a smaller space width to accommodate the pole lug 32 , allowing a thicker structure to be used in the first inner wall section 41 to improve the strength and rigidity of the first isolator 40 and improve its performance on the end cover. Stability of support between assembly 20 and body portion 31.
- the thickness t1 of the portion of the first isolation member 40 corresponding to the first inner wall section 41 is greater than that of The thickness t2 of the portion of the second inner wall section 42; and/or, in the second direction y, the thickness t1 of the portion of the first isolation member 40 corresponding to the first inner wall section 41 It is greater than the thickness t2 of the portion of the first isolation member 40 corresponding to the second inner wall section 42 . It is shown in FIG. 10 that in the first direction x, the thickness t1 is greater than the thickness t2.
- the thickness t1 of the first spacer 40 in the second direction y may also be greater than the thickness t2.
- the thickness t2 of the first spacer 40 corresponding to the second inner wall section 42 smaller than the thickness t1 corresponding to the first inner wall section 42, the size of the so-called space of the second inner section can be increased, allowing the use of The larger size of the second spacer 22 facilitates the arrangement of other components on the cover 21 on the cover 21 and the second spacer 22 .
- first inner wall section 41 usually only needs to accommodate the tabs 32 and does not require much space, correspondingly making the thickness of the first separator corresponding to the first inner wall section 41 larger can effectively lift the first separator 40
- the strength and rigidity of the first isolator 40 between the end cover assembly 20 and the main body 31 are improved.
- the first isolator 40 has an outer surface 47 adjacent to the main body portion 31 along the thickness direction of the cover plate 21 and in contact with a portion of the tab 32 , so The outer surface 47 is provided with a channel 46 for the pole lug 32 to pass through and communicate with the cavity S; in the thickness direction of the cover plate 21, one end of the outer surface 47 away from the channel 46 reaches The distance H1 of the cover plate 21 is greater than the distance H2 from the end of the outer surface 47 adjacent to the channel 46 to the cover plate 21 .
- the first isolator 40 uses an inclined outer surface 47 to contact the tab 32 formed by a plurality of tab layers, and provides a channel 46 to the tab 32 so that the tab 32 passes through the channel. 46 enters cavity S.
- the distance H1 from the end of the inclined outer surface 47 away from the channel 46 to the cover plate 21 greater than the distance H2 from the end of the outer surface 47 adjacent to the channel 46 to the cover plate 21 .
- the gathered shape achieves a more stable and reliable limiting function between the tab 32 and the first isolator 40 , and accordingly limits the relative position of the main body 31 in the first direction x.
- the first isolation member 40 and the main body part 31 into the housing of the battery cell 10, with reference to Figure 5, in some embodiments, in the thickness direction of the cover plate 21, the first isolation member The projection of 40 on the surface of the cover plate 21 is located within the projection of the main body portion 31 on the surface of the cover plate 21 .
- FIG. 8 it can be seen that the surface of the first spacer 40 is concave relative to the surface of the main body 31 by a certain size r, so that it will not It causes interference in the installation process, reduces the assembly difficulty of the battery cell 10 and improves the assembly efficiency of the battery cell 10 .
- the first spacer 40 may include at least two detachable brackets 40 a and 40 b. At least two brackets 40a and 40b are combined with the cover plate to enclose the cavity S and the channel 46 communicating with the cavity S.
- the first isolator 40 with a split structure for example, at least two brackets 40a and 40b are detachable.
- the tab 32 can first be extended from one end of the main body 31 Then, the mounting boss 45 is provided on the end surface of the bracket 40b adjacent to the bracket 40a, and can snap-fit with the mounting hole provided on the end surface of the bracket 40a adjacent to the bracket 40b, thereby being assembled into the first isolator 40.
- the tab 32 passing through the channel 45 can be retained through the channel 46 on the first isolator 40 .
- This structure can effectively reduce the assembly difficulty between the electrode assembly 30 and the first isolation member 40 and improve the assembly efficiency.
- the present disclosure also provides embodiments of batteries employing the foregoing battery cell embodiments.
- the battery includes the battery cell of any of the aforementioned embodiments. Batteries using the foregoing battery cell embodiments can achieve better reliability in use.
- an electrical device including the aforementioned battery. Electrical equipment using the aforementioned batteries can achieve better reliability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
一种电池单体、电池及用电设备。电池单体(10)包括:端盖组件(20),包括盖板(21)和设置在所述盖板(21)上的第二隔离件(22);电极组件(30),包括主体部(31);和第一隔离件(40),位于所述端盖组件(20)与所述主体部(31)之间,被配置为对所述主体部(31)进行限位,其中,所述第二隔离件(22)被配置为对所述第一隔离件(40)进行限位。
Description
本公开涉及电池技术领域,特别涉及一种电池单体、电池及用电设备。
二次电池尤其是锂离子电池具有电压高、比能量大、循环寿命长、绿色无污染、工作温度范围宽及自放电小等优点,在便携式电子设备及大型新能源电动汽车的动力设备方面得到广泛应用,对解决人类环境污染和能源危机有着重大意义。随着锂离子电池的广泛应用,电池的使用可靠性成为使用者密切关注的问题。
发明内容
在本公开的一个方面,提供一种电池单体,包括:
端盖组件,包括盖板和设置在所述盖板上的第二隔离件;
电极组件,包括主体部;和
第一隔离件,位于所述端盖组件与所述主体部之间,被配置为对所述主体部进行限位,
其中,所述第二隔离件被配置为对所述第一隔离件进行限位。
位于端盖组件和电极组件的主体部之间的第一隔离件能够分隔开主体部和端盖组件,以防止主体部与端盖组件之间发生碰撞而导致电极组件的损伤,第一隔离件通过对主体部的限位作用限制主体部相对于第一隔离件的相对位置,配合盖板上设置的第二隔离件对第一隔离件的限位作用,可以有效地限制电极组件与端盖组件之间的相对位置,降低电极组件在电池单体使用状态下因振动等原因发生窜动,从而导致电极组件的损伤甚至发生短路的风险。
在一些实施例中,所述第二隔离件被配置为在第一方向和第二方向的至少一个上对所述第一隔离件进行限位,并在所述第一方向和所述第二方向的至少一个上与所述第一隔离件间隙配合,所述第一方向和所述第二方向相互垂直,并均与所述盖板的厚度方向垂直。
第二隔离件对于第一隔离件的限位方向可以为第一方向,也可以为第二方向,也可以既包括第一方向,也包括第二方向。第一方向和第二方向分别是与盖板的厚度方 向均垂直的相互正交的两个方向。第二隔离件通过在第一方向或第二方向,或者同时在第一方向和第二方向上对第一隔离件进行限位,可以在对应的限位方向上限制第二隔离件和第一隔离件之间的相对位置,防止两者之间发生不需要的相对位移。而上述限位方向可根据电池单体的放置方式、使用环境等因素进行选择,从而更有针对性地满足电极组件在电池单体使用过程中存在的例如电极组件损伤或发生短路的风险,进一步提高电池单体的使用可靠性。
第二隔离件对第一隔离件在第一方向和所述第二方向中的至少一个上的限位作用通过间隙配合实现,可以有效地降低装配时第二隔离件与第一隔离件发生干涉的可能性,降低装配难度,避免因部件的制造误差或装配工具操作时的误差造成装配困难或无法成功装配的问题。
在一些实施例中,在所述第一方向上,所述第一隔离件与所述第二隔离件的间距g1为0.1~1mm,和/或,在所述第二方向上,所述第一隔离件与所述第二隔离件的间距g2为0.1~1mm。
对于间隙配合来说,过大的配合间隙不能有效地限制第二隔离件和第一隔离件之间的相对位置,而过小的配合间隙则会增加装配难度,因此为了有效地降低装配难度,可使得第二隔离件与第一隔离件在第一方向和/或第二方向上设置0.1~1mm的间隙,这样可以兼顾可靠的限位作用和装配难度的降低。
在一些实施例中,所述主体部呈扁平状,所述第一方向为所述主体部的厚度方向。
对于具有扁平状主体部的电极组件来说,第一方向和第二方向可以分别是主体部的厚度方向和宽度方向。相应地,通过第二隔离件对第一隔离件的限位作用,配合着第一隔离件对主体部的限位作用,可以有效地放置主体部在其厚度方向或宽度方向上相对于端盖组件发生不需要的位移,从而降低主体部在移动时发生损伤的风险。
在一些实施例中,所述第二隔离件被配置为在所述盖板的厚度方向上对所述第一隔离件进行限位,并在所述盖板的厚度方向上与所述第一隔离件间隙配合。
第一隔离件在盖板的厚度方向上对第二隔离件进行限位,这样就使得主体部在盖板的厚度方向上也能够被限制相对于端盖组件的位移,防止电极组件在盖板的厚度方向上窜动,从而进一步地提高电池单体的使用可靠性。
第二隔离件对第一隔离件在盖板的厚度方向上的限位作用通过间隙配合实现,可以有效地降低装配时第二隔离件与第一隔离件发生干涉的可能性,降低装配难度,避免因部件的制造误差或装配工具操作时的误差造成装配困难或无法成功装配的问题。
在一些实施例中,在所述盖板的厚度方向上,所述第一隔离件与所述第二隔离件的间距g3为0.1~1mm。
对于间隙配合来说,过大的配合间隙不能有效地限制第二隔离件和第一隔离件之间的相对位置,而过小的配合间隙则会增加装配难度,因此为了有效地降低装配难度,可使得第二隔离件与第一隔离件在盖板的厚度方向上设置0.1~1mm的间隙,这样可以兼顾可靠的限位作用和装配难度的降低。
在一些实施例中,所述第一隔离件抵接在所述盖板邻近所述主体部的表面,并与所述盖板围出空腔,所述第二隔离件至少部分地位于所述空腔内。
本实施例通过第一隔离件与盖板邻近主体部的表面抵接,可实现第一隔离件对盖板与主体部的支撑作用,限制盖板与主体部之间在盖板的厚度方向上的相对位置。而且,第二隔离件通常可用于设置盖板上的极柱等元件,第二隔离件可以与其他元件容纳在第一隔离件与盖板所围出的空腔中,由第一隔离件进行保护和限位。
在一些实施例中,所述端盖组件还包括设置在所述盖板上的极柱,所述电极组件还包括位于所述主体部邻近所述端盖组件一端的极耳,所述极耳穿过所述第一隔离件的通道与所述极柱电连接,所述极柱的至少部分和所述极耳均位于所述空腔内。
主体部上的极耳穿过第一隔离件与盖板上的极柱通过连接件或直接电连接,而盖板与第一隔离件所形成的空腔容纳了极柱的至少部分和极耳,给极耳折弯后与极柱电连接的充分空间,从而确保电连接的可靠性,提高电池单体的使用稳定性。而且第一隔离件还通过对穿过的极耳的保持作用和对主体部和盖板的支撑作用,有效地限制了主体部相对于端盖组件在盖板的厚度方向上的窜动,防止极耳因受拉扯而撕裂,造成断路或短路的风险。
在一些实施例中,所述极耳在邻近所述盖板的一侧折弯,所述极耳的折弯部分与所述极柱邻近所述主体部的端部固定连接,在所述盖板的厚度方向上,所述通道到所述极柱邻近所述主体部的端部的最小距离D满足:
2*t≤D≤6*t;
其中,t为所述极耳的厚度。
为了增加极耳与极柱的电连接面积,可将极耳折弯,并使折弯部分与极柱的端部面接触并固定连接,从而实现可靠的电连接。而通道到极柱的端部的最小距离体现了用于容纳折弯的极耳的空间的尺寸,如果该尺寸过大,则会较多地占用主体部的空间,减少电池单体的电量,而如果该尺寸过小,则极耳折弯的容纳空间不足,容易导致极 耳与极柱连接后容易被主体部相对于端盖组件窜动时拉扯极耳,导致极耳撕裂等问题。
在盖板的厚度方向上,通过使距离D不小于2倍的极耳厚度,且不大于6倍的极耳厚度,可既确保极耳能够充分折弯后与极柱实现可靠的电连接,且不容易撕裂,又可以采用更大尺寸的主体部,从而尽量实现更大的电池单体的电量。
在一些实施例中,所述空腔的内壁面包括台阶面,所述台阶面在所述盖板的厚度方向上与所述第二隔离件间隙配合,所述第二隔离件被配置为在所述盖板的厚度方向上对所述台阶面进行限位。
在第一隔离件与盖板围出的空腔的内壁面设置台阶面,通过台阶面与第二隔离件在厚度方向上的端面的间隙配合,能够方便地实现第二隔离件在盖板的厚度方向上对第一隔离件的限位作用及间隙配合关系。
在一些实施例中,所述空腔的内壁面还包括沿所述盖板的厚度方向通过所述台阶面划分的第一内侧壁段和第二内侧壁段,所述第一内侧壁段位于所述第二内侧壁段远离所述盖板的一侧,所述第二内侧壁段在第一方向和第二方向的至少一个上与所述第二隔离件间隙配合,所述第二隔离件被配置为在所述第一方向和所述第二方向的至少一个上对所述第二内侧壁段进行限位,所述第一方向和所述第二方向相互垂直,并均与所述盖板的厚度方向垂直。
在第一隔离件与端盖组件所围出的空腔中,通过由台阶面划分的第一内侧壁段和第二内侧壁段分别围出的空间来实现不同的作用,其中第二隔离件能够在第一方向和第二方向的至少一个上对第二内侧壁段实现限位作用和间隙配合,第一内侧壁段则能够容纳折弯后与极柱连接的极耳。
在一些实施例中,在所述第一方向上,所述第一内侧壁段对应的空间宽度w1小于所述第二内侧壁段对应的空间宽度w2;和/或,在所述第二方向上,所述第一内侧壁段对应的空间宽度w1小于所述第二内侧壁段对应的空间宽度w2。
第二内侧壁段采用较大的空间宽度w2,可允许采用更大尺寸的第二隔离件,从而方便盖板上其他元件在盖板和第二隔离件上的布置;第一内侧壁段采用较小的空间宽度w1来容纳极耳,允许在该第一内侧壁段采用更厚的结构,以提升第一隔离件的强度和刚度,提高其在端盖组件和主体部之间支撑的稳定性。
在一些实施例中,在所述第一方向上,所述第一隔离件对应于所述第一内侧壁段的部分的厚度t1大于所述第一隔离件对应于所述第二内侧壁段的部分的厚度t2;和/ 或,在所述第二方向上,所述第一隔离件对应于所述第一内侧壁段的部分的厚度t1大于所述第一隔离件对应于所述第二内侧壁段的部分的厚度t2。
本实施例通过使第一隔离件对应于第二内侧壁段的厚度t2比对应于第一内侧壁段的厚度t1更小,可以增加第二内部段所围的空间的尺寸,允许采用更大尺寸的第二隔离件,从而方便盖板上其他元件在盖板和第二隔离件上的布置;而由于第一内侧壁段通常只需要容纳极耳,对空间要求不大,相应地使第一隔离件对应于第一内侧壁段的厚度更大,可以有效地提升第一隔离件的强度和刚度,从而提高第一隔离件在端盖组件和主体部之间支撑的稳定性。
在一些实施例中,所述第一隔离件具有沿所述盖板的厚度方向邻近所述主体部、且与所述极耳的一部分接触的外表面,所述外表面开设有供所述极耳穿过并与所述空腔连通的通道;在所述盖板的厚度方向上,所述外表面远离所述通道的一端到所述盖板的距离H1大于所述外表面邻近所述通道的一端到所述盖板的距离H2。
第一隔离件采用倾斜的外表面与极耳进行接触,并向极耳提供通道,以便极耳经该通道进入空腔。通过使倾斜的外表面远离通道的一端到盖板的距离H1大于外表面邻近通道的一端到盖板的距离H2,可实现能够配合主体部一端的多个极耳层收拢后的形状,实现极耳与第一隔离件之间更稳定可靠的限位作用,相应地也限制了主体部在第一方向上的相对位置。
在一些实施例中,所述第一隔离件包括可拆分的至少两个支架,所述至少两个支架组合后与所述盖板围出所述空腔和与所述空腔连通的所述通道。
对于分体式结构的第一隔离件来说,在组合至少两个支架时,可先将极耳从主体部的一端延伸出来,这样在组合成第一隔离件后,就可以通过第一隔离件上的间隙对穿过该间隙的极耳进行保持。这种结构可以有效地降低电极组件与第一隔离件之间的装配难度,提高装配效率。
在一些实施例中,所述端盖组件包括盖板,在所述盖板的厚度方向上,所述第一隔离件在所述盖板的表面的投影位于所述主体部在所述盖板的表面的投影内。
为了使第一隔离件和主体部更容易安装到电池单体的壳体内,可使得第一隔离件沿所述盖板的厚度方向在所述盖板的表面的投影位于所述主体部沿所述盖板的厚度方向在所述盖板的表面的投影内,这相当于第一隔离件相对于主体部的表面下凹,从而不会对安装过程造成干涉,降低电池单体的装配难度,提高电池单体的装配效率。
在本公开的一个方面,提供一种电池,包括前述的电池单体。采用前述电池单体 的电池可有效地提升使用可靠性。
在本公开的一个方面,提供一种用电设备,包括前述的电池。采用前述电池的用电设备可有效地提升使用可靠性。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开用电设备的一些实施例的结构示意图;
图2是根据本公开电池的一些实施例的分解示意图;
图3是根据本公开电池单体的一些实施例的分解示意图;
图4是图3中圆圈A对应区域的放大示意图;
图5是根据本公开电池单体的一些实施例中的端盖组件、电极组件和第一隔离件的安装结构在第一方向x的视角下的局部示意图;
图6是图5的右视图;
图7是图5中AA截面的结构示意图;
图8是图7中一些结构尺寸的示意图;
图9是图7中盖板、第二隔离件和第一隔离件的安装结构中一些结构尺寸的示意图;
图10是图9中去掉第二隔离件后的安装结构中一些结构尺寸的示意图;
图11是图6中BB截面的结构示意图;
图12是图11中圆圈C所围区域的放大示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
附图标记说明:
10:电池单体;11:壳体;12:端部开口;
20:端盖组件;21:盖板;22:第二隔离件;23:极柱;24:密封件;25:端子板;26:注液机构;
30:电极组件;31:主体部;32:极耳;
40:第一隔离件;40a、40b:支架;41:第一内侧壁段;42:第二内侧壁段;43:台阶结构;44:热熔柱;45:安装凸台;46:通道;47:外表面;
50:电池;51:箱体;
60:车辆;61:控制器;62:马达。
下面结合附图和实施例对本公开的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本公开的原理,但不能用来限制本公开的范围,即本公开不限于所描述的实施例。
在本公开的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本公开的具体结构进行限定。在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本公开中的具体含义。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
在一些相关技术的电池单体中,电极组件在电池单体使用状态下可能基于电池的运动状态变化或承受外力等原因而在壳体内发生窜动。电极组件在壳体内的窜动可能造成极耳与极柱之间连接的拉扯,造成电连接松动或者极耳被撕裂的风险,从而导致电极组件损伤甚至发生短路的风险。
有鉴于此,本公开实施例提供一种电池单体、电池及用电设备,能够改善电池的使用可靠性。
本公开实施例的电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本公开实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本公开实施例对此并不限定。
本公开实施例的电池单体可适用于各类电池。电池可用于车辆等用电设备的供电,例如给车辆提供操控用的电源或者驱动行驶用的电源。电池可包括壳体和电池模组,壳体用于为电池模组提供容纳空间,电池模组安装在壳体内。壳体可采用金属材质。电池模组可包括串联、并联或混联的多个电池单体。电池单体为组成电池的最小单元。电池单体包括能够发生电化学反应的电极组件。
本公开实施例的电池可适用于各类使用电池的用电设备。用电设备可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。本公开实施例对上述用电设备不做特别限制。
图1是根据本公开用电设备的一些实施例的结构示意图。为了方便,以用电装置为车辆为例进行说明。车辆60可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车或混合动力汽车等。在车辆60的底部或车头或车尾可以设置电池50。
电池50可以用于车辆60的供电,例如,电池50可以作为车辆60的操作电源,用于车辆60的电路系统,例如用于车辆60的启动、导航和运行时的工作用电需求。电池50不仅仅可以作为车辆60的操作电源,还可以作为车辆60的驱动电源,替代或部分替代燃油或天然气为车辆60提供驱动力。
车辆60的内部还可以设置车桥、车轮、马达62以及控制器61,控制器61用来控制电池50为马达62的供电,例如,用于车辆60以电池50作为驱动电源时,控制器61可以为马达62提供匀速、加速的所需要的动力。马达62用于驱动车桥转动,以带动车轮转动。
图2是根据本公开电池的一些实施例的结构示意图。图3是根据本公开电池单体的一些实施例的分解示意图。图4是图3中圆圈A对应区域的放大示意图。
参考图2,在一些实施例中,电池50包括箱体51以及设置于箱体51中的一个或 者多个电池单体10。箱体51可给电池单体10提供冷却、密封及防撞击等功能,还能够避免液体或其他异物对电池单体的充放电或安全的不利影响。
参考图2,各个电池单体10之间电连接,比如串联、并联或者混联,以实现所需要的电池50的电性能参数。多个电池单体10成排设置,根据需要可以在箱体内设置一排或者多排电池单体10。
在一些实施例中,电池50的各电池单体10可以沿着箱体的长度方向和宽度方向中的至少一个排列。根据实际需要可设置至少一行或一列电池单体50。根据需要,还可以在电池50的高度方向,也可设置一层或者多层电池单体10。
在一些实施例中,多个电池单体10可先串联或并联或混联组成电池模块,然后多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体51内。在另一些实施例中,所有电池单体10直接串联或并联或混联在一起,再将所有电池单体10构成的整体容纳于箱体内。
参考图3,在本公开实施例中,电池单体10包括:端盖组件20、电极组件30和第一隔离件40。电池单体10还可以包括壳体11以及其他结构(图中未示出),例如套在电极组件30之外,用于隔开电极组件30和壳体11的绝缘膜等。
壳体11可具有空腔和与所述空腔连通的端部开口12。壳体11的空腔可用于容纳电极组件30,并可容纳电解液。端部开口12用于电池单体安装时使电极组件30经该端部开口12进入空腔。壳体11的形状可根据空腔中容纳的一个或多个电极组件30的形状而定,例如壳体11的形状为中空长方体或中空正方体或中空圆柱体。壳体11可由具有一定硬度和强度的金属(例如铝、铝合金等)或非金属材料(塑料)制成。
端盖组件20可设置在壳体11至少一侧的端部开口12上,用于封闭端部开口12,并与壳体11形成容纳电极组件30的密闭腔体。在一些实施例中,壳体11的一端设有端部开口12,相应地,在该端部开口12设置端盖组件20,用于封闭该侧的端部开口12。在另一些实施例中,壳体11的两端均设有端部开口12,相应地,电池单体10包括两个端盖组件20,分别设置在壳体两侧的端部开口12。
电极组件30包括主体部31。电极组件30还可包括位于主体部31的至少一端并朝远离主体部的方向延伸的极耳32。极耳32可以通过可导电的连接件或直接与盖板21上的极柱23电连接。极耳32可包括多个极耳层,多个极耳层可收拢重叠在一起并折弯后与极柱连接。
主体部31可包括正极极片、负极极片和位于正极极片和负极极片之间的隔膜。 电池单体的工作是通过内部的金属离子在正极极片和负极极片之间移动实现的。
正极极片包括正极集流体和正极活性物质层。正极极耳是指从正极极片引出来的金属导体,其连接或形成在正极集流体上,用于串联连接或并联连接电池单体的其它部分。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等可以提供锂离子的锂化物质。对于采用粘结物质粘接正极集流体和正极活性物质层的情况,该粘结物质可以是PVDF(Polyvinylidene Fluoride,聚偏氟乙烯)等。
负极极片包括负极集流体和负极活性物质层。负极极耳是指从负极极片引出来的金属导体,其连接或形成在负极集流体上,用于串联连接或并联连接电池单体的其它部分。以锂离子电池为例,负极集流体的材料可以为铜,负极活性物质可以为石墨、硅、钛酸锂等可以储存锂离子的物质。对于采用粘结物质粘接负极集流体和负极活性物质层的情况,该粘结物质可以是羧甲基纤维素、环氧树脂、丁苯橡胶等。
隔膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。电解液包括电解质及溶剂,电解质为有机金属盐、无机盐等,可以提供在正极极片和负极极片之间穿梭的金属离子。为了保证具有足够的过电流能力,正极极耳的数量可以为多个且层叠在一起,负极极耳的数量可以为多个且层叠在一起。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本公开实施例并不限于此。
第一隔离件40位于所述端盖组件20与所述主体部31之间,被配置为对所述主体部31进行限位。这里的限位可以用于限制主体部31和第一隔离件40之间无相对运动,也可用于限制主体部31和第一隔离件40之间只允许有限的相对位移。限位的方向可以为单一方向,也可以包括多个相互正交的方向。
第一隔离件40可以采用塑胶等绝缘材料制成。第一隔离件40可采用整体式结构,也可以采用可分拆组合的分体式结构。电极组件30的极耳32可以穿过第一隔离件40与极柱23电连接。第一隔离件40可以与电池单体10内的部件进行固定连接,例如与固定设置在主体部侧边的侧托板通过热熔方式进行固定,相应地,可在第一隔离件40上设置热熔柱44。
位于端盖组件20和电极组件30的主体部31之间的第一隔离件40能够分隔开主体部31和端盖组件20,以防止主体部31与端盖组件20之间发生碰撞而导致电极组件30的损伤,而第一隔离件40还通过对主体部31的限位作用限制主体部31相对于第一隔离件40的相对位置,以避免主体部31在电池单体使用状态下因振动等原因发 生窜动,从而导致电极组件30的损伤甚至发生短路的风险。
参考图3,端盖组件20包括盖板21和设置在所述盖板21上的第二隔离件22。端盖组件20的盖板21可由具有一定硬度和强度的金属(例如铝、铝合金等)或非金属材料(塑料)制成。盖板21与壳体11可通过焊接、粘接或通过连接件连接等方式实现固定连接。盖板21上可设置一些功能部件,例如用于与电极组件30电连接的极柱、密封结构、注液机构、泄压机构等。
第二隔离件22可以固定连接在盖板21邻近电极组件30的表面上。盖板21上的极柱23可以穿设在第二隔离件22所围的区域内,并与电极组件30电连接。第二隔离件22可采用绝缘材料制成,例如采用塑胶件作为第二隔离件22。
在图3和图4中,第三方向z为盖板21的厚度方向,第一方向x和第二方向y均与第三方向z垂直,且第一方向x和第二方向y垂直。参考图3和图4,对于主体部31呈扁平状的电池单体实施例来说,第一方向x可以为主体部31的厚度方向,相应地,第二方向y为主体部31的宽度方向,而第三方向z也为主体部31的长度方向。
图5是根据本公开电池单体的一些实施例中的端盖组件、电极组件和第一隔离件的安装结构在第一方向x的视角下的局部示意图。图6是图5的右视图。图7是图5中AA截面的结构示意图。图8是图7中一些结构尺寸的示意图。图9是图7中盖板、第二隔离件和第一隔离件的安装结构中一些结构尺寸的示意图。图10是图9中去掉第二隔离件后的安装结构中一些结构尺寸的示意图。图11是图6中BB截面的结构示意图。图12是图11中圆圈C所围区域的放大示意图。
参考图5-图12,第二隔离件22被配置为对所述第一隔离件40进行限位。盖板21上设置的第二隔离件22对第一隔离件40的限位作用,配合第一隔离件40对主体部31的限位作用,可以有效地限制电极组件30与端盖组件20之间的相对位置,降低电极组件30在电池单体使用状态下因振动等原因发生窜动,从而导致电极组件30的损伤甚至发生短路的风险。并且,第二隔离件22还能够通过限位第一隔离件40来辅助第一隔离件40更有效地保持对主体部的支撑和限位。
参考图3-图7,在一些实施例中,所述第二隔离件22被配置为在第一方向x和第二方向y中的至少一个对所述第一隔离件40进行限位,并在所述第一方向x和所述第二方向y的至少一个上与所述第一隔离件40间隙配合,这里的第一方向x和第二方向y相互垂直,并均与所述盖板21的厚度方向垂直。
第二隔离件22对于第一隔离件40的限位方向可以为第一方向x,也可以为第二 方向y,可以既包括第一方向x,也包括第二方向y。而第一方向x和第二方向y分别是与盖板21的厚度方向均垂直的相互正交的两个方向。
第二隔离件22通过在第一方向x或第二方向y,或者同时在第一方向x和第二方向y上对第一隔离件40进行限位,可以在对应的限位方向上限制第二隔离件22和第一隔离件40之间的相对位置,防止两者之间发生不需要的相对位移。
上述限位方向可根据电池单体10的放置方式、使用环境等因素进行选择,从而更有针对性地满足电极组件30在电池单体10使用过程中存在的例如电极组件30损伤或发生短路的风险,进一步提高电池单体10的使用可靠性。
第二隔离件22对第一隔离件40在第一方向x和所述第二方向y中的至少一个上的限位作用通过间隙配合实现,可以有效地降低装配时第二隔离件22与第一隔离件40发生干涉的可能性,降低装配难度,避免因部件的制造误差或装配工具操作时的误差造成装配困难或无法成功装配的问题。
对于间隙配合来说,过大的配合间隙不能有效地限制第二隔离件22和第一隔离件40之间的相对位置,而过小的配合间隙则会增加装配难度,因此为了有效地降低装配难度。参考图9,在所述第一方向x上,所述第一隔离件与所述第二隔离件的间距g1为0.1~1mm,例如0.3mm,0.5mm,0.8mm等。参考图10,在所述第二方向上,所述第一隔离件与所述第二隔离件的间距g2为0.1~1mm,例如0.3mm,0.5mm,0.8mm等。通过使第二隔离件22与第一隔离件40在第一方向x和/或第二方向y上设置0.1~1mm的间隙,这样可以兼顾可靠的限位作用和装配难度的降低。
参考图3和图4,在一些实施例中,所述主体部31呈扁平状,所述第一方向x或所述第二方向y为所述主体部31的厚度方向。对于具有扁平状主体部31的电极组件30来说,第一方向x和第二方向y可以分别是主体部31的厚度方向和宽度方向。相应地,通过第二隔离件22对第一隔离件40的限位作用,配合着第一隔离件40对主体部31的限位作用,可以有效地放置主体部31在其厚度方向或宽度方向上相对于端盖组件20发生不需要的位移,从而降低主体部31在移动时发生损伤的风险。
第二隔离件22除了可以在与盖板21的厚度方向垂直的方向上限制第一隔离件40的相对位置,还可以在盖板21的厚度方向上对第一隔离件40进行限位。在一些实施例中,所述第二隔离件22还被配置为在所述盖板21的厚度方向上对所述第一隔离件40进行限位,并在所述盖板21的厚度方向上与所述第一隔离件40间隙配合。这样就使得主体部31在盖板21的厚度方向上与端盖组件20之间的相对位置受到限制,从 而防止电极组件30在盖板21的厚度方向上窜动,进一步地提高电池单体10的使用可靠性。
第二隔离件22对第一隔离件40在盖板31的厚度方向上的限位作用通过间隙配合实现,可以有效地降低装配时第二隔离件22与第一隔离件40发生干涉的可能性,降低装配难度,避免因部件的制造误差或装配工具操作时的误差造成装配困难或无法成功装配的问题。
对于间隙配合来说,过大的配合间隙不能有效地限制第二隔离件22和第一隔离件40之间的相对位置,而过小的配合间隙则会增加装配难度。为了有效地降低装配难度,参考图9,在所述盖板31的厚度方向上,所述第一隔离件40与所述第二隔离件22的间距g3为0.1~1mm,例如0.3mm,0.5mm,0.8mm等。这样可以兼顾可靠的限位作用和装配难度的降低。
参考图5,在一些实施例中,所述第一隔离件40抵接在所述盖板21邻近所述主体部31的表面,并与所述盖板21围出空腔S。所述第二隔离件22至少部分地位于所述空腔S内。本实施例通过第一隔离件40与盖板21邻近主体部31的表面抵接,可实现第一隔离件40对盖板21与主体部31的支撑作用,限制盖板21与主体部31之间在盖板21的厚度方向上的相对位置。
第二隔离件22通常可用于设置盖板21上的极柱23等元件,第二隔离件22可以与其他元件容纳在第一隔离件40与盖板21所围出的空腔中,由第一隔离件40进行保护和限位。另外,通过使所述第二隔离件22至少部分地位于所述空腔S内,可以使第一隔离件40和第二隔离件22共用一部分空间尺寸,减少第一隔离件40和第二隔离件22在电池单体中占用的空间尺寸,有利于增加电极组件的尺寸,来获得更多电量。
在图4、图5和图11中,所述端盖组件20还可包括设置在所述盖板21上的极柱23。极柱23可通过设置在盖板21上的密封件24进行密封,实现极柱23在盖板21上的密封连接。在盖板21远离主体部31一侧还可以设置端子板25,端子板25与极柱23固定连接,且可选用金属导电材质,比如铝等。端盖组件20可以包括设置在盖板21上的注液机构26,用于向壳体内注入电解液。
电极组件30还可包括位于所述主体部31邻近所述端盖组件20一端的极耳32,所述极耳32穿过所述第一隔离件40的通道46与所述极柱23电连接,所述极柱23的至少部分和所述极耳32均位于所述空腔S内。
主体部31上的极耳32穿过第一隔离件40与盖板21上的极柱23通过连接件或直接电连接,而盖板21与第一隔离件40所形成的空腔容纳了极柱23的至少部分和极耳32,给极耳32折弯后与极柱23电连接的充分空间,从而确保电连接的可靠性,提高电池单体10的使用稳定性。
而且,第一隔离件40还通过对穿过的极耳32的保持作用和对主体部31和盖板21的支撑作用,有效地限制了主体部31相对于端盖组件20在盖板21的厚度方向上的窜动,防止极耳32因受拉扯而撕裂,造成断路或短路的风险。
为了增加极耳32与极柱23的电连接面积,可将极耳32折弯,并使折弯部分与极柱23的端部面接触并固定连接,从而实现可靠的电连接。在图7和图8中,极耳32可包括多个极耳层,多个极耳层可收拢到主体部21的中线位置后穿过第一隔离件40,并在折弯后与极柱23连接。
参考图8,在一些实施例中,所述极耳32在邻近所述盖板21的一侧折弯,所述极耳32的折弯部分与所述极柱23邻近所述主体部31的端部固定连接,在所述盖板21的厚度方向上,所述通道46到所述极柱23邻近所述主体部31的端部的最小距离D满足:2*t≤D≤6*t,例如D可以等于2*t、3.5*t、4.8*t、5.6*t等,其中,t为所述极耳32的厚度。对于多个极耳层收拢的极耳结构,极耳32的厚度为多个极耳层厚度之和。
D体现了用于容纳折弯的极耳32的空间的尺寸,如果该尺寸过大,则会较多地占用主体部31的空间,减少电池单体10的电量,而如果该尺寸过小,则极耳32折弯的容纳空间不足,容易导致极耳32与极柱23连接后容易被主体部31相对于端盖组件20窜动时拉扯极耳32,导致极耳32撕裂等问题。
在盖板21的厚度方向上,通过使D不小于2倍的极耳32厚度,且不大于6倍的极耳32厚度,可既确保极耳32能够充分折弯后与极柱23实现可靠的电连接,且不容易撕裂,又可以采用更大尺寸的主体部31,从而尽量实现更大的电池单体10的电量。
参考图7-图10,在一些实施例中,所述空腔S的内壁面包括台阶面43。台阶面43可以在空腔S的周向上连续设置或分段设置。台阶面43可以在所述盖板21的厚度方向上与所述第二隔离件22间隙配合。第二隔离件22被配置为在所述盖板21的厚度方向上对所述台阶面43进行限位,这样就方便地实现第二隔离件22对第一隔离件40在盖板21的厚度方向上的限位作用及间隙配合关系。
台阶面43可以将空腔S的内壁面划分程第一内侧壁段41和第二内侧壁段42。对于通过所述台阶面43划分的第一内侧壁段41和第二内侧壁段42来说,所述第一内侧壁段41位于所述第二内侧壁段42远离所述盖板21的一侧,可用于容纳折弯后与极柱23连接的极耳32。
所述第二内侧壁段42在第一方向x和第二方向y的至少一个上与所述第二隔离件22间隙配合。第二隔离件22被配置为在所述第一方向x和所述第二方向y的至少一个上对所述第二内侧壁段42进行限位。
参考图10,在一些实施例中,在所述第一方向x上,所述第一内侧壁段41对应的空间宽度w1小于所述第二内侧壁段42对应的空间宽度w2;和/或,在所述第二方向y上,所述第一内侧壁段41对应的空间宽度w1小于所述第二内侧壁段42对应的空间宽度w2。图10中示出了第一方向x上第一内侧壁段41和第二内侧壁段42分别对应的空间宽度w1和w2,且可看出w1小于w2。而在第二方向y上,第一内侧壁段41对应的空间宽度也可以小于第二内侧壁段42对应的空间宽度。
第二内侧壁段42采用较大的空间宽度w2,可允许采用更大尺寸的第二隔离件22,从而方便盖板21上其他元件在盖板和第二隔离件上的布置。第一内侧壁段41采用较小的空间宽度来容纳极耳32,允许在该第一内侧壁段41采用更厚的结构,以提升第一隔离件40的强度和刚度,提高其在端盖组件20和主体部31之间支撑的稳定性。
参考图10,在一些实施例中,在所述第一方向x上,所述第一隔离件40对应于所述第一内侧壁段41的部分的厚度t1大于所述第一隔离件40对应于所述第二内侧壁段42的部分的厚度t2;和/或,在所述第二方向y上,所述第一隔离件40对应于所述第一内侧壁段41的部分的厚度t1大于所述第一隔离件40对应于所述第二内侧壁段42的部分的厚度t2。图10中示出了在第一方向x上,厚度t1大于厚度t2。第一隔离件40在第二方向y上的厚度t1也可以大于厚度t2。
本实施例通过使第一隔离件40对应于第二内侧壁段42的厚度t2比对应于第一内侧壁段42的厚度t1更小,可以增加第二内部段所谓的空间的尺寸,允许采用更大尺寸的第二隔离件22,从而方便盖板21上其他元件在盖板21和第二隔离件22上的布置。
由于第一内侧壁段41通常只需要容纳极耳32,对空间要求不大,相应地使第一隔离件对应于第一内侧壁段41的厚度更大,可以有效地提升第一隔离件40的强度和刚度,从而提高第一隔离件40在端盖组件20和主体部31之间支撑的稳定性。
参考图9,在一些实施例中,所述第一隔离件40具有沿所述盖板21的厚度方向邻近所述主体部31、且与所述极耳32的一部分接触的外表面47,所述外表面47开设有供所述极耳32穿过并与所述空腔S连通的通道46;在所述盖板21的厚度方向上,所述外表面47远离所述通道46的一端到所述盖板21的距离H1大于所述外表面47邻近所述通道46的一端到所述盖板21的距离H2。
在图8和图9中,第一隔离件40采用倾斜的外表面47与多个极耳层收拢形成的极耳32进行接触,并向极耳32提供通道46,以便极耳32经该通道46进入空腔S。通过使倾斜的外表面47远离通道46的一端到盖板21的距离H1大于外表面47邻近通道46的一端到盖板21的距离H2,可实现能够配合主体部31一端的多个极耳层收拢后的形状,实现极耳32与第一隔离件40之间更稳定可靠的限位作用,相应地也限制了主体部31在第一方向x上的相对位置。
为了使第一隔离件40和主体部31更容易安装到电池单体10的壳体内,参考图5,在一些实施例中,在所述盖板21的厚度方向上,所述第一隔离件40在所述盖板21的表面的投影位于所述主体部31在所述盖板21的表面的投影内。这相当于第一隔离件40相对于主体部31的表面下凹,在图8中,可以看到第一隔离件40的表面相对于主体部31的表面下凹一定的尺寸r,从而不会对安装过程造成干涉,降低电池单体10的装配难度,提高电池单体10的装配效率。
参考图4、图9和图10,在前述电池单体的实施例中,所述第一隔离件40可以包括可拆分的至少两个支架40a、40b。至少两个支架40a、40b组合后与所述盖板围出所述空腔S和与所述空腔S连通的所述通道46。
对于分体式结构的第一隔离件40来说,例如可拆分的至少两个支架40a、40b,在组合至少两个支架40a、40b时,可先将极耳32从主体部31的一端延伸出来,然后通过支架40b上邻近支架40a的端面设有安装凸台45,能够与支架40a邻近支架40b的端面上设置的安装孔进行卡扣配合,从而组合成第一隔离件40。
在组合成第一隔离件40后,就可以通过第一隔离件40上的通道46对穿过该通道45的极耳32进行保持。这种结构可以有效地降低电极组件30与第一隔离件40之间的装配难度,提高装配效率。
基于本公开的前述电池单体的各个实施例,本公开还提供了采用前述电池单体实施例的电池的实施例。该电池包括前述任一种实施例的电池单体。采用前述电池单体实施例的电池可获得更优的使用可靠性。
在本公开的一个方面,提供一种用电设备,包括前述的电池。采用前述电池的用电设备可获得更优的使用可靠性。
虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (18)
- 一种电池单体(10),包括:端盖组件(20),包括盖板(21)和设置在所述盖板(21)上的第二隔离件(22);电极组件(30),包括主体部(31);和第一隔离件(40),位于所述端盖组件(20)与所述主体部(31)之间,被配置为对所述主体部(31)进行限位,其中,所述第二隔离件(22)被配置为对所述第一隔离件(40)进行限位。
- 根据权利要求1所述的电池单体(10),其中,所述第二隔离件(22)被配置为在第一方向(x)和第二方向(y)的至少一个上对所述第一隔离件(40)进行限位,并在所述第一方向(x)和所述第二方向(y)的至少一个上与所述第一隔离件(40)间隙配合,所述第一方向(x)和所述第二方向(y)相互垂直,并均与所述盖板(21)的厚度方向垂直。
- 根据权利要求2所述的电池单体(10),其中,在所述第一方向(x)上,所述第一隔离件(40)与所述第二隔离件(22)的间距g1为0.1~1mm,和/或,在所述第二方向(y)上,所述第一隔离件(40)与所述第二隔离件(22)的间距g2为0.1~1mm。
- 根据权利要求2或3所述的电池单体(10),其中,所述主体部(31)呈扁平状,所述第一方向(x)为所述主体部(31)的厚度方向。
- 根据权利要求1~4任一所述的电池单体(10),其中,所述第二隔离件(22)被配置为在所述盖板(21)的厚度方向上对所述第一隔离件(40)进行限位,并在所述盖板(21)的厚度方向上与所述第一隔离件(40)间隙配合。
- 根据权利要求5所述的电池单体(10),其中,在所述盖板(21)的厚度方向上,所述第一隔离件(40)与所述第二隔离件(22)的间距g3为0.1~1mm。
- 根据权利要求1~6任一所述的电池单体(10),其中,所述第一隔离件(40)抵接在所述盖板(21)邻近所述主体部(31)的表面,并与所述盖板(21)围出空腔(S),所述第二隔离件(22)至少部分地位于所述空腔(S)内。
- 根据权利要求7所述的电池单体(10),其中,所述端盖组件(20)还包括设置在所述盖板(21)上的极柱(23),所述电极组件(30)还包括位于所述主体部(31)邻近所述端盖组件(20)一端的极耳(32),所述极耳(32)穿过所述第一隔离件(40)的通道(46)与所述极柱(23)电连接,所述极柱(23)的至少部分和所述极耳(32) 均位于所述空腔(S)内。
- 根据权利要求8所述的电池单体(10),其中,所述极耳(32)在邻近所述盖板(21)的一侧折弯,所述极耳(32)的折弯部分与所述极柱(23)邻近所述主体部(31)的端部固定连接,在所述盖板(21)的厚度方向上,所述通道(46)到所述极柱(23)邻近所述主体部(31)的端部的最小距离D满足:2*t≤D≤6*t;其中,t为所述极耳(32)的厚度。
- 根据权利要求7~9任一所述的电池单体(10),其中,所述空腔(S)的内壁面包括台阶面(43),所述台阶面(43)在所述盖板(21)的厚度方向上与所述第二隔离件(22)间隙配合,所述第二隔离件(22)被配置为在所述盖板(21)的厚度方向上对所述台阶面(43)进行限位。
- 根据权利要求10所述的电池单体(10),其中,所述空腔(S)的内壁面还包括沿所述盖板(21)的厚度方向通过所述台阶面(43)划分的第一内侧壁段(41)和第二内侧壁段(42),所述第一内侧壁段(41)位于所述第二内侧壁段(42)远离所述盖板(21)的一侧,所述第二内侧壁段(42)在第一方向(x)和第二方向(y)的至少一个上与所述第二隔离件(22)间隙配合,所述第二隔离件(22)被配置为在所述第一方向(x)和所述第二方向(y)的至少一个上对所述第二内侧壁段(42)进行限位,所述第一方向(x)和所述第二方向(y)相互垂直,并均与所述盖板(21)的厚度方向垂直。
- 根据权利要求11所述的电池单体(10),其中,在所述第一方向(x)上,所述第一内侧壁段(41)对应的空间宽度w1小于所述第二内侧壁段(42)对应的空间宽度w2;和/或,在所述第二方向(y)上,所述第一内侧壁段(41)对应的空间宽度w1小于所述第二内侧壁段(42)对应的空间宽度w2。
- 根据权利要求11所述的电池单体(10),其中,在所述第一方向(x)上,所述第一隔离件(40)对应于所述第一内侧壁段(41)的部分的厚度t1大于所述第一隔离件(40)对应于所述第二内侧壁段(42)的部分的厚度t2;和/或,在所述第二方向(y)上,所述第一隔离件(40)对应于所述第一内侧壁段(41)的部分的厚度t1大于所述第一隔离件(40)对应于所述第二内侧壁段(42)的部分的厚度t2。
- 根据权利要求8或9所述的电池单体(10),其中,所述第一隔离件(40)具有沿所述盖板(21)的厚度方向邻近所述主体部(31)、且与所述极耳(32)的一 部分接触的外表面(47),所述外表面(47)开设有供所述极耳(32)穿过并与所述空腔(S)连通的通道(46);在所述盖板(21)的厚度方向上,所述外表面(47)远离所述通道(46)的一端到所述盖板(21)的距离H1大于所述外表面(47)邻近所述通道(46)的一端到所述盖板(21)的距离H2。
- 根据权利要求14所述的电池单体(10),其中,所述第一隔离件(40)包括可拆分的至少两个支架(40a,40b),所述至少两个支架(40a,40b)组合后与所述盖板(21)围出所述空腔(S)和与所述空腔(S)连通的所述通道(46)。
- 根据权利要求1~15任一所述的电池单体(10),其中,所述端盖组件(20)包括盖板(21),在所述盖板(21)的厚度方向上,所述第一隔离件(40)在所述盖板(21)的表面的投影位于所述主体部(31)在所述盖板(21)的表面的投影内。
- 一种电池(50),包括:权利要求1~16任一所述的电池单体(10)。
- 一种用电设备,包括:权利要求17所述的电池(50)。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280068132.0A CN118104032A (zh) | 2022-07-21 | 2022-07-21 | 电池单体、电池及用电设备 |
PCT/CN2022/107142 WO2024016275A1 (zh) | 2022-07-21 | 2022-07-21 | 电池单体、电池及用电设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/107142 WO2024016275A1 (zh) | 2022-07-21 | 2022-07-21 | 电池单体、电池及用电设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024016275A1 true WO2024016275A1 (zh) | 2024-01-25 |
Family
ID=89616711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/107142 WO2024016275A1 (zh) | 2022-07-21 | 2022-07-21 | 电池单体、电池及用电设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118104032A (zh) |
WO (1) | WO2024016275A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140707A (ja) * | 2007-12-05 | 2009-06-25 | Dainippon Printing Co Ltd | 角形電池用極板群の製造方法および装置 |
CN215266598U (zh) * | 2021-07-30 | 2021-12-21 | 宁德时代新能源科技股份有限公司 | 电池单体、电池以及用电装置 |
CN216085077U (zh) * | 2021-10-25 | 2022-03-18 | 宁德时代新能源科技股份有限公司 | 用于电池单体的端盖组件、电池单体、电池和用电装置 |
CN216872217U (zh) * | 2022-02-14 | 2022-07-01 | 宁德时代新能源科技股份有限公司 | 电池单体、电池及用电装置 |
-
2022
- 2022-07-21 WO PCT/CN2022/107142 patent/WO2024016275A1/zh active Application Filing
- 2022-07-21 CN CN202280068132.0A patent/CN118104032A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140707A (ja) * | 2007-12-05 | 2009-06-25 | Dainippon Printing Co Ltd | 角形電池用極板群の製造方法および装置 |
CN215266598U (zh) * | 2021-07-30 | 2021-12-21 | 宁德时代新能源科技股份有限公司 | 电池单体、电池以及用电装置 |
CN216085077U (zh) * | 2021-10-25 | 2022-03-18 | 宁德时代新能源科技股份有限公司 | 用于电池单体的端盖组件、电池单体、电池和用电装置 |
CN216872217U (zh) * | 2022-02-14 | 2022-07-01 | 宁德时代新能源科技股份有限公司 | 电池单体、电池及用电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118104032A (zh) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN218215411U (zh) | 电池单体、电池及用电设备 | |
WO2022170492A1 (zh) | 电池、用电装置、制备电池的方法和设备 | |
US20240283099A1 (en) | Battery cell, battery, power consumption device, and method and device for producing battery cell | |
US20230387558A1 (en) | Battery cell, battery, and electrical apparatus | |
WO2023186034A1 (zh) | 端盖、电池单体、电池及用电设备 | |
US20240283059A1 (en) | Battery cell, method and system for manufacturing battery cell, battery, and electrical device | |
US20240283109A1 (en) | Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus | |
CN219937323U (zh) | 电池单体、电池及用电装置 | |
WO2023197905A1 (zh) | 端盖组件、电池单体、电池和用电设备 | |
CN219937332U (zh) | 电池单体、电池及用电装置 | |
WO2024016275A1 (zh) | 电池单体、电池及用电设备 | |
CN116941075A (zh) | 集流构件、电池单体、电池及用电设备 | |
WO2024016273A1 (zh) | 电池单体、电池及用电设备 | |
WO2024016274A1 (zh) | 电池单体、电池及用电设备 | |
CN218677359U (zh) | 电池单体、电池及用电设备 | |
WO2023082151A1 (zh) | 电池单体及其制造方法和制造系统、电池以及用电装置 | |
WO2024020910A1 (zh) | 电池单体、电池以及用电装置 | |
EP4106087A1 (en) | Battery cell, battery, power-consuming device, and manufacturing method and device for battery | |
WO2024193237A1 (zh) | 电池单体、电池及用电装置 | |
CN221102351U (zh) | 电池单体、电池及用电设备 | |
CN117199736B (zh) | 电池单体、电池以及用电装置 | |
WO2023133788A1 (zh) | 电池单体、电池、用电设备、制备电池单体的方法和装置 | |
WO2023092300A1 (zh) | 电极组件、电池单体、电池以及用电装置 | |
WO2024077630A1 (zh) | 电池单体、电池及用电设备 | |
WO2024007194A1 (zh) | 电池单体及其组装方法、电池、用电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22951549 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280068132.0 Country of ref document: CN |