WO2024016254A1 - 平衡检测的方法、装置和站控系统 - Google Patents

平衡检测的方法、装置和站控系统 Download PDF

Info

Publication number
WO2024016254A1
WO2024016254A1 PCT/CN2022/106992 CN2022106992W WO2024016254A1 WO 2024016254 A1 WO2024016254 A1 WO 2024016254A1 CN 2022106992 W CN2022106992 W CN 2022106992W WO 2024016254 A1 WO2024016254 A1 WO 2024016254A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
disassembly
data
state
sensor
Prior art date
Application number
PCT/CN2022/106992
Other languages
English (en)
French (fr)
Inventor
陈伟峰
阙仕标
王康玉
陈德威
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/106992 priority Critical patent/WO2024016254A1/zh
Priority to CN202280062817.4A priority patent/CN118076512A/zh
Publication of WO2024016254A1 publication Critical patent/WO2024016254A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/12Slings comprising chains, wires, ropes, or bands; Nets

Definitions

  • the present application relates to the field of battery technology, and in particular to a method, device and station control system for balance detection.
  • the batteries in electric vehicles can also be replaced through battery swap stations, which can quickly replenish energy for electric vehicles with insufficient energy, thereby avoiding Long term charging of the battery.
  • battery swap stations which can quickly replenish energy for electric vehicles with insufficient energy, thereby avoiding Long term charging of the battery.
  • Embodiments of the present application provide a balance detection method, device and station control system, which can effectively improve the safety performance of electrical equipment during the power replacement process.
  • a method of balance detection includes: obtaining the first data output by the first sensor during the process of exchanging power for the electrical equipment; and determining the disassembly and assembly according to the first data. Whether the device is in a balanced state, the disassembly and assembly device is used to disassemble the battery to be removed from the electrical equipment and install the battery to be installed on the electrical equipment.
  • the data output by the sensor is used to determine whether the disassembly and assembly device is in a balanced state.
  • This is not only simple to implement, but also reduces the complexity of the balance detection of the disassembly and assembly device, and is also certain.
  • the accuracy of whether the disassembly and assembly device is in a balanced state is relatively high. In this way, if it is determined that the disassembly and assembly device is in an unbalanced state, a series of measures can be taken to avoid dangerous accidents, thereby effectively improving the safety performance of electrical equipment during the power replacement process.
  • the first sensor is a load sensor.
  • the price of weighing sensors is relatively cheap, usually, the price of a weighing sensor is about more than two hundred yuan. Therefore, setting the first sensor as a load sensor can effectively detect the balance state of the disassembly and assembly device at a lower detection cost.
  • the load sensor is disposed on a first surface of a connector used to connect the disassembly and assembly device.
  • the first surface is a portion of the connector close to the to-be-deployed device. Remove the battery or the side of the battery to be installed; wherein the first data is the weight borne by the connecting piece.
  • the load sensor is arranged on the first side of the connector. In this way, after the disassembly and assembly device captures the battery to be installed or the battery to be disassembled, the load sensor can relatively easily and accurately measure the load of the connector. The weight further improves the detection of the balance state of the disassembly and assembly device.
  • the load sensor is provided on each connector, and the first data is the weight borne by each connector. .
  • the number of connectors is set to multiple.
  • the disassembly and assembly device can be connected more firmly; on the other hand, from a safety perspective, even if some of the multiple connectors are broken, some of the connectors are not broken. It is still possible to partially catch the battery to be installed or the battery to be removed, thereby improving safety during the battery replacement process to a certain extent.
  • providing a weighing sensor on each connecting piece can further improve the accuracy of determining the equilibrium state of the disassembly and assembly device.
  • determining whether the disassembly and assembly device is in a balanced state based on the first data includes: obtaining preset data; and based on the deviation value between the first data and the preset data. , determine whether the disassembly and assembly device is in a balanced state.
  • the above technical solution compares the data output by the sensor with the preset data to determine whether the disassembly and assembly device is in a balanced state. This solution does not require complex calculations, greatly reduces the processing time, and improves the processing speed.
  • the disassembly and assembly device when the deviation value is less than or equal to the first threshold, the disassembly and assembly device is in a balanced state; when the deviation value is greater than the first threshold, the disassembly and assembly device in a non-equilibrium state.
  • the first threshold ranges from 0.1 to 0.2.
  • obtaining the preset data includes: receiving battery information sent by the electrical device, where the battery information includes specification parameters of the battery to be disassembled; and determining the battery information based on the specification parameters. Describe the default data.
  • the preset data used to determine whether the disassembly and assembly device is balanced uses the same value during the process of replacing different types of batteries, certain disassembly and assembly may occur.
  • the equilibrium state of the device is opposite to the actual equilibrium state. Therefore, the above technical solution determines the preset data through the battery specifications included in the battery information sent by the electrical equipment, so that the determined preset data can match the battery of the electrical equipment, thereby greatly improving the determined disassembly.
  • the accuracy of the equilibrium state of the installation device is very fineness of the battery of the installation device.
  • the method further includes: obtaining second data output by the second sensor;
  • the above technical solution is to determine whether the disassembly and assembly device is in a balanced state based on the first data output by the first sensor, and then determine whether the disassembly and assembly device is in a balanced state based on the second data output by the second sensor, that is, based on multiple parameters. Determining the equilibrium state of the disassembly and assembly device can further improve the accuracy of determining whether the disassembly and assembly device is in a balanced state, thereby further improving the safety performance of electrical equipment during the power replacement process.
  • the second sensor is a balance sensor
  • the second data is an inclination angle of the disassembly and assembly device.
  • the second sensor is set as a balance sensor, so that the second data is the inclination angle of the detachable device, so that it can be relatively easily determined whether the detachable device is in a balanced state, and the detection complexity is reduced.
  • the balance sensor is disposed on a second surface of the disassembly and assembly device, wherein, in the direction opposite to gravity, the second surface is a side of the disassembly and assembly device away from the to-be-disassembled device. battery or the side of the battery to be installed.
  • the balance sensor is arranged on the second side of the disassembly and assembly device, which facilitates the balance sensor to collect the inclination angle of the disassembly and assembly device, which greatly improves the detection efficiency.
  • the disassembly and assembly device when the second data is less than or equal to the second threshold, the disassembly and assembly device is in a balanced state; when the second data is greater than the second threshold, the disassembly and assembly device is in a balanced state; The installation is in an unbalanced state.
  • the second data such as a small tilt angle
  • the second data when the disassembly and assembly device is in an unbalanced state, the second data, such as a large tilt angle . Therefore, the above technical solution compares the second data with the threshold. When the second data is less than or equal to the second threshold, it is determined that the disassembly and assembly device is in a balanced state. When the second data is greater than the second threshold, it is determined that the disassembly and assembly device is in a non-balanced state. The equilibrium state is determined in a manner consistent with the actual situation, which is not only simple to implement, but also has high accuracy.
  • the disassembly and assembly device includes a plurality of claw arms, and the plurality of claw arms are used to grab the battery to be disassembled and the battery to be installed, and the method further includes: in the Before the plurality of claw arms grab the battery to be disassembled and the battery to be installed, determine the telescopic state of the plurality of claw arms; and/or after the plurality of claw arms have grasped the battery to be disassembled and the battery to be installed. After the battery is to be installed, the telescopic state of the plurality of claw arms is determined.
  • the disassembly and assembly device may not be able to grasp the battery to be removed or the battery to be installed, thus affecting the Battery replacement proceeds normally.
  • the above technical solution determines the telescopic state of multiple claw arms during the battery swapping process, and then determines the next operation based on the telescopic status of the multiple claw arms, ensuring the normal progress of battery swapping.
  • determining the telescopic state of the plurality of claw arms includes: obtaining third data output by the second sensor; if the third data is less than or equal to a second threshold, determining the The telescopic state of the plurality of claw arms is a normal state; if the third data is greater than the second threshold, it is determined that the telescopic state of the plurality of claw arms is an abnormal state.
  • the third data such as the tilt angle is small, such as zero; when multiple claw arms When the telescopic state is normal, the disassembly and assembly device may tilt, so the third data, such as the tilt angle, is larger. Therefore, the above technical solution compares the third data with the threshold. When the third data is less than or equal to the threshold, the telescopic state of the multiple claw arms is determined to be the normal state. When the third data is greater than the threshold, the telescopic state is determined to be the normal state. , which is not only simple to implement, but also has high accuracy.
  • the method further includes: receiving status information sent by the electrical device, where the status information includes the telescopic status of the plurality of claw arms.
  • the telescopic status of the plurality of claw arms is also determined based on the status information sent by the electrical equipment, that is, the telescopic status of the plurality of claw arms is determined based on multiple parameters. Therefore, the telescopic state of multiple claw arms can be determined with higher accuracy.
  • the second threshold is 1.3°.
  • the method further includes: determining the locking state of the locking portion of the battery to be removed or the battery to be installed.
  • the locking mechanism may not unlock the locking portion of the battery to be removed before removing the battery to be removed, or the locking mechanism may not lock the locking portion of the battery to be installed after the battery to be installed is installed. This will not only affect the normal progress of battery replacement, but may also cause serious safety accidents. Therefore, the above technical solution also determines the locking state of the locking part of the battery to be removed or the battery to be installed, which can ensure the normal progress of power exchange and avoid the occurrence of safety accidents, thereby improving the safety of the entire power exchange process.
  • determining the locking state of the battery to be disassembled or the locking portion of the battery to be installed includes: obtaining the battery after the disassembly and assembly device disassembles the battery to be disassembled.
  • the fourth data output by the first sensor; if the difference between the fourth data and the target weight is less than or equal to the third threshold, it is determined that the locking part is in an unlocked state; if the difference between the fourth data and the target weight If the difference between the weights is greater than the third threshold, it is determined that the locking part is in an unlocked state; where the target weight is the sum of the weight of the disassembly device and the weight of the battery to be disassembled.
  • the method further includes: receiving locking information sent by the electrical device, where the locking information includes the locking state of the locking part.
  • the locking state of the locking part is also determined based on the locking information sent by the electrical equipment, that is, based on multiple parameters.
  • the telescopic state of the plurality of claw arms can thereby determine the locking state of the locking portion with higher accuracy.
  • a second aspect provides a balance detection device for performing the method in the above-mentioned first aspect or its respective implementations.
  • the device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • a station control system which is applied to a battery swapping station.
  • the station control system includes: a memory for storing programs; a processor for executing the program stored in the memory.
  • the processor is configured to execute the method in the above first aspect or its respective implementations.
  • a fourth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in the above-mentioned first aspect or its respective implementations.
  • Figure 1 is a schematic structural diagram of a power swap system according to an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a balance detection method according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of the steps of a balance detection according to an embodiment of the present application.
  • Figure 4 is a schematic block diagram of a balance detection device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of the station control system according to the embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • batteries can be used as a power source to provide power for electrical equipment and reduce the use of non-renewable resources.
  • charging equipment such as charging piles can be used to charge the electrical equipment, that is, to charge the battery in the electrical equipment to achieve battery charging. , discharge cycle use.
  • battery charging takes a long time, which limits the battery life of electrical equipment.
  • Battery swapping technology adopts the method of "vehicle and battery separation", which can provide battery replacement services for electrical equipment through battery swapping stations, that is, the battery can be quickly removed or installed from the electrical equipment.
  • the batteries removed from the power-consuming equipment can be placed in the power-swapping cabinet of the power-swapping station for charging in preparation for power-swapping of the power-consuming equipment that subsequently enters the power-swapping station.
  • the electrical equipment is a heavy-duty truck
  • battery replacement is usually completed by driving.
  • the spreader on the traveling truck grabs the battery to be disassembled from above the heavy-duty truck and places the battery to be disassembled Place the battery into the battery storage mechanism.
  • the spreader grabs the battery to be installed from above the battery storage mechanism, lifts the battery to be installed and places it on the heavy-duty truck, and the locking mechanism locks the locking part to realize the replacement of the battery of the heavy-duty truck.
  • the spreader may be unbalanced during work.
  • the wire rope used to connect the crane and the spreader may break, causing the spreader to become unbalanced.
  • the battery of a heavy-duty truck usually weighs several tons, if the spreader is transporting the battery to be disassembled to the battery storage facility, or transporting the battery to be installed from the battery storage facility to the heavy-duty truck, a problem may occur. If the battery is unbalanced, the battery grabbed by the spreader may fall and hit someone (such as a staff member at a battery swapping station or a driver of a heavy truck, etc.), resulting in extremely serious safety accidents.
  • embodiments of the present application provide a method of balance detection.
  • the data output by the sensor is used to determine whether the disassembly and assembly device is in a balanced state. It is not only simple to implement, but also reduces the cost of disassembly and assembly.
  • the complexity of the balance detection of the installation device is reduced, and the accuracy of determining whether the disassembly and installation device is in a balanced state is relatively high, which can effectively improve the safety performance of electrical equipment during the power replacement process.
  • Figure 1 shows a schematic diagram of an application scenario of the balance detection method according to the embodiment of the present application.
  • the application scenarios of this balance detection method may involve battery swap stations 11 , electrical equipment 12 and batteries.
  • the power swap station 11 may refer to a place that provides power swap services for electrical equipment.
  • the power swap station 11 may be a fixed place, or the power swap station 11 may be a movable place such as a mobile battery swap vehicle, which is not limited here.
  • the electrical device 12 can be detachably connected to the battery.
  • the electrical device 12 may be a car, a heavy truck, or other vehicle that uses a power battery as a power source.
  • the battery may include a battery disposed in the electrical device 12 and a battery located in the power swap station 11 for power swapping.
  • the battery to be disassembled in the electrical equipment 12 is denoted as battery 141
  • the battery used for power swapping in the battery swapping station is denoted as battery 142 .
  • the battery can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery or a sodium-ion battery.
  • the battery can be a battery pack, a cell/battery cell, or a battery module.
  • batteries can also power other electrical devices in electrical equipment.
  • the battery can also power in-car air conditioners, car players, etc.
  • the power swap station 11 When the electrical equipment 12 installed with the battery 141 drives into the power swap station 11, the power swap station 11 removes the battery 141 from the electrical equipment 12 through the power swap device, takes out the battery 142 from the power swap station 11, and then installs the battery 142 Go to the electrical equipment vehicle 12. Afterwards, the electrical equipment 12 with the battery 142 installed can drive away from the power swap station 11 .
  • power-consuming equipment can be quickly replenished with energy within a few minutes or even tens of seconds, improving the user experience.
  • a power swap cabinet 13 may be provided in the power swap station 11 .
  • the power swap cabinet 13 includes a battery management unit (battery management unit, BMU) 131.
  • BMU battery management unit
  • the power swapping cabinet 13 may also be provided with multiple charging compartments 132, and batteries used for power swapping may be placed in the charging compartments 132.
  • the power swap station 11 may also be provided with a corresponding management device.
  • the management device may have a centralized structure or a distributed structure, which is not limited here.
  • the management device can be installed inside the power swap station 11 or outside the power swap station 11 .
  • the management device may also be partially installed inside the power swap station 11 and partially outside the power swap station 11 .
  • the management device may include a station control system 151 within the power swap station 11 and a cloud server 152 outside the power swap station 11 , which is not limited here.
  • the BMU 131 can communicate and interact with other units, modules, devices, etc. through wired or wireless methods.
  • the station control system 151 can communicate and interact with other units, modules, devices, etc. through wired or wireless methods.
  • the wired communication method may include, for example, a control area network (CAN) communication method and a daisy chain (daisy chain) communication method.
  • Wireless communication methods may include, for example, Bluetooth communication, wireless fidelity (WIFI) communication, ZigBee communication, and other various methods, which are not limited here.
  • the station control system 151 can communicate with the BMU 131 to obtain relevant information about the battery 141 on the electrical device 12 or the battery 142 in the charging compartment 133.
  • the station control system 151 can also communicate with the cloud server 152 to obtain relevant information about the battery 141 on the electrical device 12 or the battery 142 in the charging compartment 133 .
  • Figure 2 shows a schematic flow chart of a balance detection method 200 according to an embodiment of the present application.
  • Method 200 may include at least some of the following.
  • S220 determine whether the disassembly and assembly device is in a balanced state.
  • the disassembly and assembly device is used to disassemble the battery to be disassembled from the electrical equipment and install the battery to be installed on the electrical equipment.
  • Method 200 can be applied in a battery swap station.
  • the battery swap station can be a fixed place or a movable place.
  • Method 200 may be executed by a management device in a battery swap station, for example, by a station control system, such as the station control system 151 in Figure 1 .
  • a station control system such as the station control system 151 in Figure 1 .
  • the station control system may execute method 200.
  • the battery to be removed can be a depleted battery
  • the battery to be installed can be a fully charged battery
  • the battery to be disassembled may be an abnormal battery, such as a battery that has experienced thermal runaway, or a battery that is deformed in shape.
  • the battery to be installed can also be a fully charged battery, or it can also be a battery with the same power as the battery to be removed, but without thermal runaway or shape deformation.
  • the electrical equipment can be an electric vehicle, a ship or a spacecraft, etc.
  • the electric vehicle may be, for example, a heavy-duty truck, such as a sprinkler truck, a fire truck, an earth-moving truck, a truck, etc.
  • the overall heavy-duty truck market has about 7 million units, and more than 70% of heavy-duty trucks operate 24 hours a day (two or three shifts).
  • the electrical equipment is a heavy-duty truck, which can improve the use experience of heavy-duty trucks.
  • the battery swap mode can effectively solve the pain points of scarcity of charging parking spaces, large battery capacity, and long charging time.
  • the disassembly and assembly device can be a spreader.
  • the disassembly and assembly device can be a rail guided vehicle (RGV), or it can also be an automated guided vehicle (AGV).
  • the first sensor can collect the first data in real time and output the first data in real time.
  • the first sensor may collect the first data every preset time period and output the first data every preset time period.
  • the preset time period can be 10ms.
  • the data output by the sensor is used to determine whether the disassembly and assembly device is in a balanced state.
  • This is not only simple to implement, but also reduces the complexity of the balance detection of the disassembly and assembly device, and is also certain.
  • the accuracy of whether the disassembly and assembly device is in a balanced state is relatively high. In this way, if it is determined that the disassembly and assembly device is in an unbalanced state, a series of measures can be taken to avoid the occurrence of dangerous accidents, which can effectively improve the safety of electrical equipment during the power replacement process. Safety performance.
  • the first sensor is a load cell.
  • the first data is a weight value.
  • the price of weighing sensors is relatively cheap, usually, the price of a weighing sensor is about more than two hundred yuan. Therefore, setting the first sensor as a load sensor can effectively detect the balance state of the disassembly and assembly device at a lower detection cost.
  • the load sensor may be disposed on the first side of the connecting piece used to connect the disassembly and assembly device, where the first side is the side of the connecting piece close to the battery to be installed or the battery to be disassembled in the direction of gravity.
  • the load cell is placed underneath the connector.
  • the connecting piece is forced to exert pressure on the load cell, so the first data is the weight borne by the connecting piece.
  • the weight borne by the connecting member may be the sum of the weight of the battery to be disassembled, the battery to be installed, and the weight of the disassembly and assembly device.
  • the connecting member may be a wire rope used to connect the spreader and the traveling vehicle.
  • the load sensor is arranged on the first side of the connector. In this way, after the disassembly and assembly device grabs the battery to be installed or the battery to be disassembled, the load sensor can relatively easily and accurately measure the load of the connector. The weight further improves the detection of the balance state of the disassembly and assembly device.
  • the connector may be provided as one.
  • the number of connecting pieces may be multiple. For example, it could be three or four. In this way, even if parts of the multiple connectors are broken, the unbroken parts may still catch the battery to be installed or the battery to be removed, thereby improving safety during the battery replacement process to a certain extent.
  • the disassembly and assembly device can maintain a balanced state relatively easily.
  • each connector When there are multiple connectors, each connector may be provided with a load cell.
  • the number of connectors is set to multiple.
  • the disassembly and assembly device can be connected more firmly; on the other hand, from a safety perspective, even if some of the multiple connectors are broken, some of the connectors are not broken. It is still possible to partially catch the battery to be installed or the battery to be removed, thereby improving safety during the battery replacement process to a certain extent.
  • providing a weighing sensor on each connecting piece can further improve the accuracy of determining the equilibrium state of the disassembly and assembly device.
  • the first sensor may be a balanced sensor.
  • the first data may be the inclination angle of the disassembly and assembly device.
  • the balance sensor may be disposed on the second side of the disassembly and assembly device, where the second side is the side where the battery is to be disassembled or the battery is to be installed in the direction opposite to gravity.
  • the balance sensor is placed at the top of the detachable device.
  • the number of balancing sensors may be one.
  • the first sensor as a load sensor and the number of load sensors as four as an example.
  • the embodiments of the present application are not limited to this.
  • S220 may specifically include: obtaining preset data, and determining whether the disassembly and assembly device is in a balanced state based on the deviation value between the first data and the preset data.
  • the preset data may be the sum of the weight of the battery to be disassembled (or the battery to be installed) and the weight of the disassembly and assembly device. Continuing to refer to the above example, assuming that the weight of the battery to be disassembled is 2.9 tons and the weight of the disassembly and assembly device is 1.1 tons, the default data is 1 ton.
  • the preset data can be a fixed value.
  • the preset data may differ depending on the battery to be removed or the battery to be installed. That is, different batteries to be removed or batteries to be installed correspond to different preset data.
  • obtaining the preset data may include: receiving battery information sent by the electrical device.
  • the battery information may include specifications of the battery to be disassembled, and then determining the preset data based on the specifications.
  • the specification parameters may include a battery model, and the weight of the battery may be determined according to the battery model, and then the preset data may be determined.
  • the battery information sent by the electrical equipment can be received.
  • the battery information sent by the powered device can be received through wireless communication.
  • battery information is received through Bluetooth communication.
  • the above technical solution determines the preset data through the battery specifications and parameters included in the battery information sent by the electrical equipment, so that the determined preset data can match the battery of the electrical equipment, thereby greatly improving the determined disassembly and assembly process.
  • the accuracy of the device's equilibrium state is greatly improving the accuracy of the device's equilibrium state.
  • the deviation value between the first data and the preset data may be a difference between the first data and the preset data, or may be a quotient between the first data and the preset data.
  • the assembly and disassembly device When the deviation value is less than or equal to the first threshold, the assembly and disassembly device is in a balanced state; when the deviation value is greater than the first threshold, the assembly and disassembly device is in an unbalanced state.
  • the first threshold may range between 0.1 ton and 0.2 ton.
  • the deviation value between part of the first data and the preset data is greater than the first threshold, it can be determined that the disassembly and assembly device is in an unbalanced state.
  • the disassembly and assembly device can be controlled to stop working and output an alarm signal.
  • an error signal is output on the display screen of the battery swap station.
  • Another example is controlling the battery swapping station to emit an alarm sound, such as a buzzer, etc.; another example is controlling a voice broadcast alarm signal, etc.
  • the battery base of the electrical equipment includes a guide post.
  • the guide post may remove part of the weight of the battery to be removed or the battery to be installed.
  • the first sensor is a load sensor
  • the first data output by the load sensor may be inaccurate, which may lead to an inaccurate problem of determining the balance state of the disassembly and assembly device.
  • the wire rope actually breaks, but the certain spreader is in a balanced state, thereby controlling the spreader to continue working. In this way, it is easy for the battery grabbed by the spreader to fall.
  • the method 200 further includes: acquiring second data output by the second sensor, and after determining whether the disassembly and assembly device is in a balanced state according to the first data, according to the second data , determine whether the disassembly and assembly device is in a balanced state.
  • the disassembly and assembly device is in a balanced state based on the first data and the second data at the same time; or, first determine whether the disassembly and assembly device is in a balanced state based on the second data, and then determine whether the disassembly and assembly device is in a balanced state based on the first data. state.
  • the second sensor can collect the second data in real time and output the second data in real time.
  • the second sensor may collect the second data every preset time period and output the second data every preset time period.
  • the preset time period can be 10ms.
  • the first sensor and the second sensor can collect data at the same time or at different times, which is not specifically limited in the embodiments of the present application.
  • This technical solution is to determine whether the disassembly and assembly device is in a balanced state based on the first data output by the first sensor, and then determine whether the disassembly and assembly device is in a balanced state based on the second data output by the second sensor, that is, based on multiple parameters. Determining the equilibrium state of the disassembly and assembly device can further improve the accuracy of determining whether the disassembly and assembly device is in a balanced state, thereby further improving the safety performance of electrical equipment during the power replacement process.
  • the second sensor is a balanced sensor.
  • the second data may be the inclination angle of the disassembly and assembly device.
  • the second sensor is set as a balance sensor, so that the second data is the inclination angle of the detachable device, so that it can be relatively easily determined whether the detachable device is in a balanced state, and the detection complexity is reduced.
  • the balance sensor may be disposed on the second side of the disassembly and assembly device, where the second side is the side of the disassembly and assembly device away from the battery to be disassembled or the battery to be installed in the direction opposite to gravity.
  • the balance sensor is arranged on the second side of the disassembly and assembly device, which facilitates the balance sensor to collect the inclination angle of the disassembly and assembly device, which greatly improves the detection efficiency.
  • the number of balancing sensors may be one.
  • the second data also includes one data.
  • the second sensor can also be a gravity sensor.
  • the second sensor when the first sensor is a gravity sensor, the second sensor may be a balance sensor; when the first sensor is a balance sensor, the second sensor may be a gravity sensor.
  • Determining whether the disassembly and assembly device is in a balanced state according to the second data may specifically include: determining that the disassembly and assembly device is in a balanced state when the second data is less than or equal to the second threshold; and determining whether the disassembly and assembly device is in a balanced state when the second data is greater than the second threshold. , confirm that the disassembly and assembly device is in an unbalanced state.
  • the second data When the second data is less than or equal to the second threshold, it indicates that the inclination angle of the disassembly and assembly device is small or has no inclination, so it can be determined that the disassembly and assembly device is in a balanced state; when the second data is greater than the second threshold, it indicates that the inclination angle of the disassembly and assembly device is If the tilt angle is too large, the disassembly and assembly device may be shaking and tilting, etc., so it can be determined that the disassembly and assembly device is in an unbalanced state.
  • the second threshold may be 1.3°, for example.
  • the second data such as the inclination angle is small, such as zero; when the disassembly and assembly device is in an unbalanced state, the second data, such as the inclination angle is large. Therefore, the above technical solution compares the second data with the threshold. When the second data is less than or equal to the second threshold, it is determined that the disassembly and assembly device is in a balanced state. When the second data is greater than the second threshold, it is determined that the disassembly and assembly device is in a non-balanced state. The equilibrium state is determined in a manner consistent with the actual situation, which is not only simple to implement, but also has high accuracy.
  • the disassembly and assembly device may include an electric push rod.
  • the electric push rod includes a plurality of claw arms, for example, four claw arms.
  • the plurality of claw arms are used to grab the battery to be removed and the battery to be installed. Specifically, before the disassembly and assembly device disassembles the battery to be disassembled, multiple claw arms need to be extended to grab the battery to be disassembled. After the disassembly and assembly device transports the battery to be disassembled to the battery storage mechanism, the plurality of claw arms need to be retracted.
  • the plurality of claw arms need to be extended, and after the battery to be installed is installed on the electrical equipment, the plurality of claw arms need to be retracted.
  • the disassembly and assembly device may not be able to grasp the battery to be removed or the battery to be installed, thus affecting battery replacement. proceed normally.
  • the method 200 may also include: determining the telescopic state of the plurality of claw arms before the plurality of claw arms grab the battery to be removed and the battery to be installed, and/or, after the plurality of claw arms have grabbed the battery to be removed and the battery to be installed. After installing the battery, determine the telescopic state of the multiple claw arms.
  • the disassembly and assembly device may tilt.
  • determining the telescopic state of the plurality of claw arms may include: obtaining the third data output by the second sensor, and if the third data is less than or equal to the second threshold, determining that the telescopic status of the plurality of claw arms is a normal state; if the third data is greater than the second threshold, it is determined that the telescopic state of the plurality of claw arms is an abnormal state.
  • the normal state of the multiple claw arms can be understood as: before the multiple claw arms grab the battery to be removed and the battery to be installed, the multiple claw arms have stretched out; or, after the multiple claw arms have grabbed the battery to be installed, After the battery is removed and the battery to be installed, the multiple claw arms have been retracted.
  • the third data is a tilt angle.
  • the disassembly and assembly device will hardly tilt, so the third data, such as the tilt angle is small, for example, is zero; when the telescopic state of multiple claw arms is When the status is normal, the disassembly and assembly device may tilt, so the third data, such as the tilt angle, is larger. Therefore, the above technical solution compares the third data with the threshold. When the third data is less than or equal to the threshold, the telescopic state of the multiple claw arms is determined to be the normal state. When the third data is greater than the threshold, the telescopic state is determined to be the normal state. , which is not only simple to implement, but also has high accuracy.
  • the disassembly and assembly device can be controlled to stop working and an alarm signal is output.
  • an error signal is output on the display screen of the battery swap station.
  • Another example is controlling the battery swapping station to emit an alarm sound, such as a buzzer, etc.; another example is controlling a voice broadcast alarm signal, etc.
  • the disassembly and assembly device may not be able to grasp the battery to be removed or the battery to be installed, thus affecting the Battery replacement proceeds normally.
  • the above technical solution determines the telescopic state of multiple claw arms during the battery swapping process, and then determines the next operation based on the telescopic status of the multiple claw arms, ensuring the normal progress of battery swapping.
  • the method 200 may further include: receiving status information sent by the electrical device, where the status information includes the telescopic status of the plurality of claw arms.
  • the status information sent by the electrical device can be received through wireless communication.
  • status information is received through Bluetooth communication.
  • the telescopic states of the multiple claw arms can be determined first based on the received status information, and then the telescopic states of the multiple claw arms can be determined again based on the third data; or, the telescopic states of the multiple claw arms can be determined first based on the third data.
  • the telescopic state of the multiple claw arms is determined based on the received status information; or, the telescopic status of the multiple claw arms can be determined simultaneously based on the status information and the third data.
  • the telescopic status of the plurality of claw arms is also determined based on the status information sent by the electrical equipment, that is, the telescopic status of the plurality of claw arms is determined based on multiple parameters. Therefore, the telescopic state of multiple claw arms can be determined with higher accuracy.
  • the locking mechanism may not unlock the locking portion of the battery to be removed before removing the battery to be removed, or the locking mechanism may not lock the locking portion of the battery to be installed after the battery to be installed is installed. This will not only affect the normal progress of battery replacement, but may also cause serious safety accidents. For example, after the electrical equipment has completed the battery swap and left the battery swap station, the electrical equipment may fall down while driving because the locking part of the battery to be installed is not locked.
  • the method 200 may further include: determining the locking state of the locking portion of the battery to be removed or the battery to be installed.
  • the locking state of the locking part can be judged based on the weight borne by the disassembly and assembly device. Specifically, if the locking part is in the unlocked state before the battery to be disassembled is disassembled, then after the battery to be disassembled is disassembled, The weight borne by the device is the sum of the weight of the disassembly and assembly device itself and the weight of the battery to be disassembled; if the locking part is in an unlocked state before the battery to be disassembled is removed, the disassembly and assembly device will be in a fully loaded state after the battery to be disassembled is removed.
  • the weight borne by the disassembly and assembly device includes the weight of the disassembly and assembly device itself and the weight of the electrical equipment. If the electrical equipment is also loaded with cargo, the weight borne by the disassembly and assembly device may also include the weight of the cargo.
  • the locking state of the locking part can be determined based on the data collected by the first sensor. Specifically, after the disassembly and assembly device disassembles the battery to be disassembled, the fourth data output by the first sensor can be obtained. If the difference between the fourth data and the target weight is less than or equal to the third threshold, the lock can be determined. The locking part is in the unlocked state; if the difference between the fourth data and the target weight is greater than the third threshold, it is determined that the locking part is in the non-unlocked state.
  • the target weight is the sum of the weight of the disassembly and assembly device and the weight of the battery to be disassembled.
  • the range of the third threshold may be, for example, between 0.1 ton and 0.2 ton, or may be other values, which may be determined based on the actual situation.
  • the above technical solution also determines the locking state of the locking part of the battery to be removed or the battery to be installed, which can ensure the normal progress of power replacement and avoid the occurrence of safety accidents, thereby improving the safety of the entire power replacement process.
  • the method 200 may further include: receiving locking information sent by the electrical device, where the locking information includes the locking state of the locking part.
  • the locking information sent by the electrical device can be received through wireless communication.
  • locking information is received through Bluetooth communication.
  • the locking state of the locking part may be determined first based on the received locking information, and then the locking state of the locking part may be determined again based on the fourth data; or, the locking state of the locking part may be determined first based on the fourth data.
  • locking state and then determine the locking state of the locking part based on the received locking information; or alternatively, the locking state of the locking part may be determined based on the locking information and the fourth data at the same time.
  • the locking state of the locking part is also determined based on the locking information sent by the electrical equipment, that is, based on multiple parameters.
  • the telescopic state of the plurality of claw arms can thereby determine the locking state of the locking portion with higher accuracy.
  • unlocking information may be sent to the battery management unit (battery management unit, BMU) of the battery to be disassembled, and the unlocking information includes the locking state of the locking part to Let the BMU automatically unlock, or output a reminder signal on the display screen of the battery swap station to remind the driver of the electrical equipment to manually unlock.
  • BMU battery management unit
  • unlocking information can be sent to the BMU of the battery to be installed.
  • the unlocking information includes the locked state of the locking part, so that the BMU can automatically Lock, or output a reminder signal on the display screen of the battery swap station to remind the driver of the electrical equipment to manually lock the locking part.
  • the first sensor is a load sensor
  • the second sensor is a balance sensor
  • the electrical equipment is a heavy truck
  • the disassembly and assembly device is a spreader.
  • S302 The laser sensor on the power swap channel detects that the heavy truck has arrived at the power swap position, and the heavy truck sends the vehicle information to the station control system.
  • the vehicle information may include but is not limited to the vehicle identification number (VIN) of the heavy truck, the model of the heavy truck, the Bluetooth media access control (media access control, MAC) address, etc.
  • VIN vehicle identification number
  • MAC media access control
  • S303 Start the battery replacement process and control the vehicle to move from the standby position to above the battery to be removed.
  • S304 Determine whether the expansion and contraction states of the multiple claw arms of the spreader are normal.
  • third data output by the balance sensor is obtained. If the third data is less than or equal to the second threshold, it is determined that the telescopic state of the multiple claw arms of the spreader is a normal state, and S305 is executed; if the third data is greater than the second threshold, it is determined that the telescopic state of the multiple claw arms is an abnormal state. , execute S317.
  • S307 Determine the locking state of the locking part of the battery to be removed.
  • the fourth data output by the load sensor is obtained. If the difference between the fourth data and the target weight is less than or equal to the third threshold, it is determined that the locking part is in the unlocked state, and S308 is executed; if the fourth data and the target weight are If the difference between the target weights is greater than the third threshold, it is determined that the locking part is in a non-unlocked state, and S318 is executed.
  • the target weight is the sum of the weight of the disassembly and assembly device and the weight of the battery to be disassembled.
  • the first data output by the load sensor is obtained, and whether the spreader is in a balanced state is determined based on the first data, and the second data output by the balance sensor is obtained, and whether the spreader is in a balanced state is determined based on the second data. If the spreader is in a balanced state, execute S309; if the spreader is in an unbalanced state, execute S317.
  • S310 Determine whether the expansion and contraction states of the multiple claw arms of the spreader are normal.
  • third data output by the balance sensor is obtained. If the third data is less than or equal to the second threshold, it is determined that the telescopic state of the multiple claw arms of the spreader is a normal state, and S311 is executed; if the third data is greater than the second threshold, it is determined that the telescopic state of the multiple claw arms is an abnormal state. , execute S317.
  • S311 Control the spreader to lower and grab the battery to be installed.
  • the first data output by the load sensor is obtained, and whether the spreader is in a balanced state is determined based on the first data, and the second data output by the balance sensor is obtained, and whether the spreader is in a balanced state is determined based on the second data. If the spreader is in a balanced state, execute S314; if the spreader is in an unbalanced state, execute S317.
  • S315 Determine the locking state of the locking part of the battery to be installed.
  • the locking information sent by the electrical equipment is received, and the locking information includes the locking state of the locking part.
  • the fifth data output by the load sensor may be acquired, and the locking state of the locking part may be determined based on the fifth data. If the locking part is in the non-unlocked state, that is, the locking has been successfully performed, and S316 is executed; if the locking part is in the unlocked and loaded state, that is, the locking is not performed, and S318 is executed.
  • S317 Control the spreader to stop working and output an alarm signal.
  • S318 Send unlocking information to the heavy truck, or output a reminder signal.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application. .
  • FIG. 4 shows a schematic block diagram of a balance detection device 400 according to an embodiment of the present application.
  • the balance detection device 400 may include:
  • the processing unit 410 is configured to obtain the first data output by the first sensor during the process of exchanging power for the electrical equipment.
  • the processing unit 410 is also configured to determine, based on the first data, whether the disassembly and assembly device is in a balanced state.
  • the disassembly and assembly device is used to disassemble the battery to be disassembled from the electrical equipment and install the battery to be installed on the electrical equipment.
  • the first sensor is a load sensor.
  • the load sensor is provided on the first side of the connector used to connect the disassembly and assembly device.
  • the first side is the side of the connector close to the battery to be removed or the battery to be installed.
  • each connecting member is provided with a weighing sensor, and the first data is the weight borne by each connecting member.
  • the processing unit 410 is specifically configured to: obtain preset data; and determine whether the disassembly and assembly device is in a balanced state based on the deviation value between the first data and the preset data.
  • the disassembly and assembly device when the deviation value is less than or equal to the first threshold, the disassembly and assembly device is in a balanced state; when the deviation value is greater than the first threshold, the disassembly and assembly device is in an unbalanced state.
  • the first threshold ranges from 0.1 to 0.2.
  • a communication unit configured to receive battery information sent by the electrical device, where the battery information includes specification parameters of the battery to be disassembled; the processing unit 410 is specifically configured to: use the specification parameters according to , confirm the preset data.
  • the processing unit 410 is also configured to: obtain the second data output by the second sensor; after determining whether the disassembly and assembly device is in a balanced state based on the first data, determine based on the second data Check whether the disassembly and assembly device is in a balanced state.
  • the second sensor is a balance sensor
  • the second data is the inclination angle of the disassembly and assembly device.
  • the balance sensor is disposed on the second side of the disassembly and assembly device, wherein, in the direction opposite to gravity, the second side is the side of the disassembly and assembly device away from the battery to be disassembled or the battery to be installed. .
  • the disassembly and assembly device when the second data is less than or equal to the second threshold, the disassembly and assembly device is in a balanced state; when the second data is greater than the second threshold, the disassembly and assembly device is in an unbalanced state. state.
  • the disassembly and assembly device includes multiple claw arms.
  • the plurality of claw arms are used to grab the battery to be removed and the battery to be installed.
  • the processing unit 410 is also used to: grab the battery in the multiple claw arms. Determine the telescopic state of the multiple claw arms before the battery to be removed and the battery to be installed; and/or determine the telescopic state of the multiple claw arms after the multiple claw arms have grabbed the battery to be removed and the battery to be installed.
  • the processing unit 410 is specifically configured to: obtain the third data output by the second sensor; if the third data is less than or equal to the second threshold, determine that the telescopic state of the plurality of claw arms is a normal state. ; If the third data is greater than the second threshold, it is determined that the telescopic state of the plurality of claw arms is an abnormal state.
  • a communication unit is further included, configured to receive status information sent by the electrical device, where the status information includes the telescopic status of the plurality of claw arms.
  • the second threshold is 1.3°.
  • the processing unit 410 is also used to determine the locking state of the locking portion of the battery to be removed or the battery to be installed.
  • the processing unit 410 is specifically configured to: obtain the fourth data output by the first sensor after the disassembly device disassembles the battery to be disassembled; if the difference between the fourth data and the target weight is If the difference is less than or equal to the third threshold, it is determined that the locking part is in the unlocked state; if the difference between the fourth data and the target weight is greater than the third threshold, it is determined that the locking part is in the non-unlocked state; where the target weight is disassembly and assembly The weight of the device plus the weight of the battery to be removed.
  • a communication unit is further included, configured to receive locking information sent by the electrical device, where the locking information includes the locking state of the locking part.
  • the device 400 can implement corresponding operations in the method 200, which will not be described again for the sake of simplicity.
  • FIG. 5 is a schematic diagram of the hardware structure of the station control system 500 according to the embodiment of the present application.
  • the station control system 500 includes a memory 501, a processor 502, a communication interface 503 and a bus 504. Among them, the memory 501, the processor 502, and the communication interface 503 realize communication connections between each other through the bus 504.
  • the memory 501 may be a read-only memory (ROM), a static storage device, and a random access memory (RAM).
  • the memory 501 can store programs. When the program stored in the memory 501 is executed by the processor 502, the processor 502 and the communication interface 503 are used to perform various steps of the balance detection method in the embodiment of the present application.
  • the processor 502 may be a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a graphics processing unit (GPU), or one or more
  • the integrated circuit is used to execute relevant programs to implement the functions required to be performed by the units in the station control system of the embodiment of the present application, or to perform the balance detection method of the embodiment of the present application.
  • the processor 502 may also be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the balance detection method in the embodiment of the present application can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 502 .
  • the above-mentioned processor 502 can also be a general-purpose processor, digital signal processing (DSP), ASIC, off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 501.
  • the processor 502 reads the information in the memory 501, and combines its hardware to complete the functions required to be performed by the units included in the station control system of the embodiment of the present application, or to perform the balance detection of the embodiment of the present application. method.
  • the communication interface 503 uses a transceiver device such as but not limited to a transceiver to realize communication between the station control system 500 and other devices or communication networks.
  • Bus 504 may include a path for transmitting information between various components of station control system 500 (eg, memory 501, processor 502, communication interface 503).
  • station control system 500 only shows a memory, a processor, and a communication interface, during the specific implementation process, those skilled in the art will understand that the station control system 500 may also include other components necessary for normal operation. device. At the same time, based on specific needs, those skilled in the art should understand that the station control system 500 may also include hardware devices that implement other additional functions. In addition, those skilled in the art should understand that the station control system 500 may only include components necessary to implement the embodiments of the present application, and does not necessarily include all components shown in FIG. 5 .
  • the station control system 500 may be, for example, the station control system 151 in FIG. 1 .
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by the computer, the computer is caused to perform the above balancing. detection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Secondary Cells (AREA)

Abstract

一种平衡检测的方法、装置(400)和站控系统(500),能够有效提高用电设备在换电过程中的安全性能。方法包括:在对用电设备进行换电的过程中,获取第一传感器输出的第一数据;根据第一数据,确定拆装装置是否处于平衡状态,拆装装置用于拆卸用电设备的待拆卸电池以及将待安装电池安装在用电设备上。

Description

平衡检测的方法、装置和站控系统 技术领域
本申请涉及电池技术领域,特别是涉及一种平衡检测的方法、装置和站控系统。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池的充换电技术又是关乎其发展的一项重要因素。
目前,除了可通过充电装置对电动车辆中的电池进行充电以保证电动车辆的持续运行以外,还可通过换电站更换电动车辆中的电池,能够快速给为能量不足的电动车辆补给能量,从而避免电池的长时间充电。然而,目前的换电过程中可能存在着不安全的情况。
发明内容
本申请实施例提供一种平衡检测的方法、装置和站控系统,能够有效提高用电设备在换电过程中的安全性能。
第一方面,提供了一种平衡检测的方法,所述方法包括:在对用电设备进行换电的过程中,获取第一传感器输出的第一数据;根据所述第一数据,确定拆装装置是否处于平衡状态,所述拆装装置用于拆卸所述用电设备的待拆卸电池以及将待安装电池安装在所述用电设备上。
本申请实施例,在对用电设备进行换电的过程中,通过传感器输出的数据来确定拆装装置是否处于平衡状态,不仅实现简单,降低了拆装装置平衡检测的复杂度,而且确定的拆装装置是否处于平衡状态的准确率较高。这样若确定拆装装置处于非平衡状态,则能够采取一系列措施以避免危险事故的发生,从而能够有效提高用电设备在换电过程中的安全性能。
在一些可能的实现方式中,所述第一传感器为称重传感器。
由于称重传感器的价格比较便宜,通常情况下,一个称重传感器的价格约为两百多块钱左右。因此,将第一传感器设置为称重传感器,能够以较低的检测成本实现对拆装装置的平衡状态的有效检测。
在一些可能的实现方式中,所述称重传感器设置在用于连接所述拆装装置的连接件的第一面,沿重力方向,所述第一面为所述连接件的靠近所述待拆卸电池或所述待安装电池的一面;其中,所述第一数据为所述连接件所承受的重量。
上述技术方案,将称重传感器设置在连接件的第一面,这样,在拆装装置抓取到待安装电池或待拆卸电池后,称重传感器可以比较容易且准确地测量出连接件所承 受的重量,进而进一步地提高了拆装装置平衡状态的检测。
在一些可能的实现方式中,所述连接件的数量为多个,每个所述连接件上均设置有所述称重传感器,所述第一数据为每个所述连接件所承受的重量。
上述技术方案,将连接件的数量设置为多个,一方面,能够将拆装装置连接地更牢固;另一方面,从安全方面考虑,即使多个连接件中的部分断裂,但未断裂的部分仍然可能抓取住待安装电池或待拆卸电池,从而在一定程度上能够提高换电过程中的安全性。此外,在每个连接件上均设置称重传感器,能够进一步提高确定拆装装置的平衡状态的准确率。
在一些可能的实现方式中,所述根据所述第一数据,确定拆装装置是否处于平衡状态,包括:获取预设数据;根据所述第一数据和所述预设数据之间的偏差值,确定所述拆装装置是否处于平衡状态。
上述技术方案,将传感器输出的数据与预设数据进行比较,以确定拆装装置是否处于平衡状态,该方案不需要复杂的运算,大大减小了处理时间,提高了处理速度。
在一些可能的实现方式中,在所述偏差值小于或等于第一阈值的情况下,所述拆装装置处于平衡状态;在所述偏差值大于第一阈值的情况下,所述拆装装置处于非平衡状态。
在一些可能的实现方式中,所述第一阈值的范围在0.1-0.2之间。
通过大量实验证明,将第一阈值范围设置在0.1-0.2之间,确定的拆装装置的平衡状态的准确率较高。
在一些可能的实现方式中,所述获取预设数据,包括:接收所述用电设备发送的电池信息,所述电池信息包括所述待拆卸电池的规格参数;根据所述规格参数,确定所述预设数据。
由于不同用电设备的电池种类可能不同,若在对不同种类的电池进行换电的过程中,用于确定拆装装置是否平衡的预设数据采用相同的值,则可能会出现确定的拆装装置的平衡状态与实际平衡状态相反的情况。因此,上述技术方案通过用电设备发送的电池信息中包括的电池的规格参数,确定预设数据,使得确定的预设数据能够匹配于该用电设备的电池,进而能够极大地提高确定的拆装装置的平衡状态的准确率。
在一些可能的实现方式中,所述方法还包括:获取第二传感器输出的第二数据;
在根据所述第一数据,确定所述拆装装置是否处于平衡状态之后,根据所述第二数据,确定所述拆装装置是否处于平衡状态。
上述技术方案,在根据第一传感器输出的第一数据确定拆装装置是否处于平衡状态的基础上,结合第二传感器输出的第二数据再次确定拆装装置是否处于平衡状态,即根据多个参数确定拆装装置的平衡状态,能够进一步提高确定的拆装装置是否处于平衡状态的准确率,进而进一步提高用电设备在换电过程中的安全性能。
在一些可能的实现方式中,所述第二传感器为平衡传感器,所述第二数据为所述拆装装置的倾斜角度。
由于拆装装置处于平衡状态和非平衡状态的最大区别之一是倾斜角度的不同,若拆装状态处于平衡状态,则倾斜角度可能为零或接近零;若拆装装置处于非平衡状 态,则倾斜角度较大。因此,将第二传感器设置为平衡传感器,这样,第二数据就为拆装装置的倾斜角度,从而能够比较容易地判断出拆装装置是否处于平衡状态,降低了检测复杂度。
在一些可能的实现方式中,所述平衡传感器设置于所述拆装装置的第二面,其中,沿与重力相反的方向,所述第二面为所述拆装装置的远离所述待拆卸电池或所述待安装电池的一面。
上述技术方案,将平衡传感器设置于拆装装置的第二面,便于平衡传感器采集拆装装置的倾斜角度,极大地提高了检测的效率。
在一些可能的实现方式中,在所述第二数据小于或等于第二阈值的情况下,所述拆装装置处于平衡状态;在所述第二数据大于第二阈值的情况下,所述拆装装置处于非平衡状态。
通常情况下,在拆装装置处于平衡状态的情况下,第二数据,如倾斜角度较小,比如为零;在拆装装置处于非平衡状态的情况下,第二数据,如倾斜角度较大。因此,上述技术方案将第二数据与阈值进行比较,当第二数据小于或等于第二阈值时,确定拆装装置处于平衡状态,当第二数据大于第二阈值时,确定拆装装置处于非平衡状态,确定方式与实际情况相符,不仅实现简单,而且准确率较高。
在一些可能的实现方式中,所述拆装装置包括多个爪臂,所述多个爪臂用于抓取所述待拆卸电池和所述待安装电池,所述方法还包括:在所述多个爪臂抓取所述待拆卸电池和所述待安装电池之前,确定所述多个爪臂的伸缩状态;和/或在所述多个爪臂抓取完所述待拆卸电池和所述待安装电池之后,确定所述多个爪臂的伸缩状态。
由于在某些情况下,拆装装置的多个爪臂中可能只有部分爪臂能够正常的伸缩,在这种情况下,拆装装置可能无法抓取到待拆卸电池或待安装电池,从而影响电池换电的正常进行。上述技术方案,在换电的过程中确定多个爪臂的伸缩状态,进而根据多个爪臂的伸缩状态确定下一个操作,保证了电池换电的正常进行。
在一些可能的实现方式中,所述确定所述多个爪臂的伸缩状态,包括:获取所述第二传感器输出的第三数据;若所述第三数据小于或等于第二阈值,确定所述多个爪臂的伸缩状态为正常状态;若所述第三数据大于第二阈值,确定所述多个爪臂的伸缩状态为非正常状态。
通常情况下,在多个爪臂的伸缩状态为正常状态的情况下,拆装装置几乎不会发生倾斜的情况,因此第三数据,如倾斜角度较小,比如为零;在多个爪臂的伸缩状态为正常状态的情况下,拆装装置可能会倾斜,因此第三数据,如倾斜角度较大。因此,上述技术方案将第三数据与阈值进行比较,当第三数据小于或等于阈值时,确定多个爪臂的伸缩状态为正常状态,当第三数据大于阈值时,确定伸缩状态为正常状态,不仅实现简单,而且准确率较高。
在一些可能的实现方式中,所述方法还包括:接收所述用电设备发送的状态信息,所述状态信息包括所述多个爪臂的伸缩状态。
上述技术方案,除了根据第二传感器输出的第三数据确定多个爪臂的伸缩状态之外,还根据用电设备发送的状态信息确定多个爪臂的伸缩状态,即根据多个参数确 定多个爪臂的伸缩状态,从而能够使确定的多个爪臂的伸缩状态的准确率更高。
在一些可能的实现方式中,所述第二阈值为1.3°。
通过大量的实验证明,将第二阈值设置为1.3°,使得确定的拆装装置的平衡状态和/或多个爪臂的伸缩状态的准确率较高。
在一些可能的实现方式中,所述方法还包括:确定所述待拆卸电池或所述待安装电池的锁止部的锁止状态。
由于在拆卸待拆卸电池之前锁止机构可能未解除对待拆卸电池的锁止部的锁止,或者,在安装完待安装电池之后锁止机构可能未对待安装电池的锁止部进行锁止。这样,不仅会影响换电的正常进行,而且还可能会造成严重的安全事故。因此,上述技术方案还确定待拆卸电池或待安装电池的锁止部的锁止状态,能够保证换电的正常进行并避免安全事故的发生,从而提高整个换电过程的安全性。
在一些可能的实现方式中,所述确定所述待拆卸电池或所述待安装电池的锁止部的锁止状态,包括:在所述拆装装置将所述待拆卸电池拆卸下来后,获取所述第一传感器输出的第四数据;若所述第四数据和目标重量之间的差值小于或等于第三阈值,确定所述锁止部处于解锁状态;若所述第四数据和目标重量之间的差值大于第三阈值,确定所述锁止部处于非解锁状态;其中,所述目标重量为所述拆装装置的重量和所述待拆卸电池的重量之和。
在一些可能的实现方式中,所述方法还包括:接收所述用电设备发送的锁止信息,所述锁止信息包括所述锁止部的锁止状态。
上述技术方案,除了根据第一传感器输出的第四数据确定锁止部的锁止状态之外,还根据用电设备发送的锁止信息确定锁止部的锁止状态,即根据多个参数确定多个爪臂的伸缩状态,从而能够使确定的锁止部的锁止状态的准确率更高。
第二方面,提供了一种平衡检测的装置,用于执行上述第一方面或其各实现方式中的方法。具体地,该装置包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种站控系统,应用于换电站,所述站控系统包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例的一种换电系统的结构示意图。
图2是本申请实施例的一种平衡检测的方法的示意性流程图。
图3是本申请实施例的一种平衡检测的步骤示意性图。
图4是本申请实施例的平衡检测的装置的示意性框图。
图5是本申请实施例的站控系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
随着新能源技术的发展,电池的应用领域越来越广泛,如可作为动力源为用电设备提供动力,减少不可再生资源的使用。在用电设备中电池的电量不足以支持用电设备继续行驶的情况下,可利用充电桩等充电设备对用电设备进行充电,即对用电设 备中的电池进行充电,以实现电池的充、放电循环使用。但电池充电需要花费较长时间,限制了用电设备的续航使用。
为了提高用电设备的续航使用率,换电技术应运而生。换电技术采用“车电分离”的方式,可以通过换电站为用电设备提供电池更换服务,即电池可以从用电设备上快速取下或者安装。从用电设备上取下的电池可以放入换电站的换电柜中进行充电,以备为后续进入换电站的用电设备进行换电。
在用电设备为重型卡车的情况下,通常通过行车来完成电池的换电。具体来说,在重型卡车停驻在换电通道且重型卡车的锁止机构已解除对锁止部的锁止之后,行车上的吊具从重型卡车上方抓取待拆卸电池,并将待拆卸电池放入电池存放机构。之后,吊具从电池存放机构上方抓取待安装电池,并将待安装电池吊装放置于重型卡车上,并且锁止机构对锁止部进行锁止,实现重型卡车的电池的更换。
然而,吊具在工作过程中可能会出现不平衡的问题,比如用于连接行车和吊具的钢丝绳出现断裂而导致吊具不平衡。由于重型卡车的电池的重量通常会有好几吨重,若吊具在将待拆卸电池运送至电池存放机构的过程中,或者在将待安装电池从电池存放机构运送至重型卡车的过程中,出现不平衡的情况,则吊具抓取的电池可能会掉落下来而发生砸到人(比如换电站的工作人员或者重型卡车的驾驶员等)等极其严重的安全事故。
基于此,本申请实施例提供了一种平衡检测的方法,在对用电设备进行换电的过程中,通过传感器输出的数据来确定拆装装置是否处于平衡状态,不仅实现简单,降低了拆装装置平衡检测的复杂度,而且确定的拆装装置是否处于平衡状态的准确率较高,从而能够有效提高用电设备在换电过程中的安全性能。
图1示出了本申请实施例的平衡检测的方法的应用场景的一种示意图。如图1所示,该平衡检测的方法的应用场景可涉及到换电站11、用电设备12和电池。
换电站11可指为用电设备提供换电服务的场所。例如,换电站11可以为固定的场所,或者,换电站11可为如移动换电车辆等可移动场所,在此并不限定。
用电设备12可与电池可拆卸连接。在一些示例中,用电设备12可以是小汽车、重型卡车等以动力电池为动力源的车辆。
电池可包括设置在用电设备12内的电池和位于换电站11中用于换电的电池。为了便于区分,如图1所示,用电设备12内的待拆卸电池记作电池141,换电站中用于换电的电池记作电池142。从电池的种类而言,该电池可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,该电池可以是电池包、电芯/电池单体,也可以是电池模组。
电池除了可作为动力源为用电设备的电机供电,还可为用电设备中的其他用电器件供电,例如,该电池还可为车内空调、车载播放器等供电。
当安装有电池141的用电设备12驶入换电站11之后,换电站11通过换电装置将电池141从用电设备12取下,并从换电站11中取出电池142,然后将电池142安装到用电设备辆12上。之后安装有电池142的用电设备12可以驶离换电站11。通过该换 电技术,可以在几分钟、甚至数十秒内对用电设备进行快速的能量补充,提高了用户的体验。
如图1所示,换电站11中可设置有换电柜13。换电柜13包括电池管理单元(battery management unit,BMU)131。此外,换电柜13还可设置有多个充电仓132,用于换电的电池可放置于充电仓132中。
换电站11还可对应设置有管理装置。该管理装置可为集中式结构,也可为分布式结构,在此并不限定。管理装置可设置在换电站11内,也可以设置在换电站11外。在管理装置为分布式结构的情况下,管理装置还可以部分设置在换电站11内,部分设置在换电站11外。例如,如图1所示,管理装置可以包括换电站11内的站控系统151和换电站11外的云端服务器152,在此并不限定。
可选地,BMU 131可通过有线或无线方式与其他单元、模块、装置等进行通信交互。站控系统151可通过有线或无线方式与其他单元、模块、装置等进行通信交互。有线通信方式例如可以包括制器局域网(control area network,CAN)通信方式、菊花链(daisy chain)通信方式。无线通信方式例如可以包括蓝牙通信、无线保真(wireless fidelity,WIFI)通信、ZigBee通信等各种方式,在此并不限定。
例如,站控系统151可以与BMU 131进行通信,以获取用电设备12上的电池141或充电仓133内的电池142的相关信息。再例如,站控系统151也可以与云端服务器152之间进行通信,以获取用电设备12上的电池141或充电仓133内的电池142的相关信息。
图2示出了本申请实施例的一种平衡检测的方法200的示意性流程图。方法200可以包括以下内容中的至少部分内容。
S210,在对用电设备进行换电的过程中,获取第一传感器输出的第一数据。
S220,根据该第一数据,确定拆装装置是否处于平衡状态,拆装装置用于拆卸用电设备的待拆卸电池以及将待安装电池安装在用电设备上。
方法200可以应用于换电站中。如前文所述,换电站可以为固定的场所,也可以为可移动场所。方法200可由换电站中的管理装置执行,例如由站控系统执行,如图1中的站控系统151。示例性地,在用电设备停驻在换电站的换电通道后,站控系统可以执行方法200。
可选地,待拆卸电池可以为亏电电池,待安装电池可以为满电电池。
或者,待拆卸电池可以为异常电池,如发生热失控的电池,或者形状出现变形的电池等。此时,待安装电池也可以为满电电池,或者也可以为电量与待拆卸电池的电量相同,但未发生热失控或形状出现变形的电池。
用电设备可以为电动车辆,也可以为船舶或航天器等。电动车辆例如可以为重型卡车,如洒水车、消防车、拉土车、载货车等。据分析,重型卡车总体市场保有量约为700万辆,超过70%的重型卡车24小时运营(两班倒或三班倒)。在这种情况下,用电设备为重型卡车,能够提高重型卡车的使用体验。并且对于重型卡车来说,相较于充电,换电模式能够有效解决充电车位稀缺、电池容量大、充电时间长等痛点。
在用电设备为重型卡车的情况下,拆装装置可以为吊具。在用电设备为乘用车 的情况下,拆装装置可以为轨制导车辆(rail guided vehicle,RGV),或者,也可以为自动制导车辆(automated guided vehicle,AGV)。
可选地,第一传感器可以实时采集第一数据,并实时输出第一数据。
可选地,第一传感器可以每隔预设时间段采集第一数据,并每隔预设时间段输出第一数据。例如,预设时间段可以为10ms。
本申请实施例,在对用电设备进行换电的过程中,通过传感器输出的数据来确定拆装装置是否处于平衡状态,不仅实现简单,降低了拆装装置平衡检测的复杂度,而且确定的拆装装置是否处于平衡状态的准确率较高,这样若确定拆装装置处于非平衡状态,则能够采取一系列措施以避免危险事故的发生,从而能够有效提高用电设备在换电过程中的安全性能。
在一些实施例中,第一传感器为称重传感器。在第一传感器为称重传感器的情况下,第一数据为重量值。
由于称重传感器的价格比较便宜,通常情况下,一个称重传感器的价格约为两百多块钱左右。因此,将第一传感器设置为称重传感器,能够以较低的检测成本实现对拆装装置的平衡状态的有效检测。
可选地,称重传感器可以设置在用于连接拆装装置的连接件的第一面,其中,第一面为沿重力方向,连接件的靠近待安装电池或待拆卸电池的一面。换言之,称重传感器设置在连接件的下面。
应理解,在本申请实施例中,“上”和“下”是相对于重力方向而言的。
此时,在拆装装置抓取到待安装电池或待拆卸电池后,连接件受力从而对称重传感器施加压力,因此第一数据为连接件所承受的重量。示例性地,连接件所承受的重量可以为待拆卸电池待安装电池的重量和拆装装置的重量之和。
其中,当用电设备为重型卡车时,连接件可为用于连接吊具和行车的钢丝绳。
该技术方案,将称重传感器设置在连接件的第一面,这样,在拆装装置抓取到待安装电池或待拆卸电池后,称重传感器可以比较容易且准确地测量出连接件所承受的重量,进而进一步地提高了拆装装置平衡状态的检测。
可选地,连接件可以设置为一个。或者,为了将拆装装置连接地更牢固,并且从安全方面考虑,连接件的数量可以为多个。比如,可以为三个或四个。这样,即使多个连接件中的部分断裂,但未断裂的部分仍然可能抓取住待安装电池或待拆卸电池,从而在一定程度上能够提高换电过程中的安全性。
其中,当连接件的数量为四个时,拆装装置相对来说可以更容易地保持平衡状态。
在连接件的数量为多个的情况下,每个连接件上可以均设置有称重传感器。此时,第一数据为每个连接件所承受的重量。比如,假设待拆卸电池的重量为2.9吨,拆装装置的重量为1.1吨,连接件的数量为四个,且每个连接件上均设置有称重传感器,拆装装置处于平衡状态,则第一数据=(2.9+1.1)/4=1吨。
上述技术方案,将连接件的数量设置为多个,一方面,能够将拆装装置连接地更牢固;另一方面,从安全方面考虑,即使多个连接件中的部分断裂,但未断裂的部 分仍然可能抓取住待安装电池或待拆卸电池,从而在一定程度上能够提高换电过程中的安全性。此外,在每个连接件上均设置称重传感器,能够进一步提高确定拆装装置的平衡状态的准确率。
在另一些实施例中,第一传感器可以为平衡传感器。此时,第一数据可为拆装装置的倾斜角度。
可选地,平衡传感器可以设置于拆装装置的第二面,其中,第二面为沿与重力相反的方向,拆装装置的原理待拆卸电池或待安装电池的一面。换言之,平衡传感器设置在拆装装置的最上边。
可选地,平衡传感器的数量可以为一个。
为了描述方便,后文将以第一传感器为称重传感器,且称重传感器的数量为四个为例进行说明。但应理解,本申请实施例并不限于此。
在一些实施例中,S220具体可以包括:获取预设数据,根据第一数据和预设数据之间的偏差值,确定拆装装置是否处于平衡状态。
其中,预设数据可以为待拆卸电池(或待安装电池)的重量与拆装装置的重量之和。继续参考上文的举例,假设待拆卸电池的重量为2.9吨,拆装装置的重量为1.1吨,则预设数据为1吨
可选地,预设数据可以为固定值。
由于不同的用电设备的电池种类可能不同,不同种类的电池的重量可能不同,若在对不同种类的电池进行换电的过程中,预设数据采用相同的值,则可能会出现确定的拆装装置的平衡状态与实际平衡状态相反的情况。因此,可选地,预设数据可以随待拆卸电池或待安装电池的不同而不同。即不同的待拆卸电池或待安装电池对应不同的预设数据。
在这种情况下,获取预设数据可以包括:接收用电设备发送的电池信息,该电池信息可以包括待拆卸电池的规格参数,之后根据规格参数,确定预设数据。
其中,规格参数可以包括电池型号,可以根据电池型号确定电池的重量,进而确定预设数据。
示例性地,可以在用电设备进入换电站后,接收用电设备发送的电池信息。可选地,可通过无线通信的方式接收用电设备发送的电池信息。例如,通过蓝牙通信的方式接收电池信息。
上述技术方案,通过用电设备发送的电池信息中包括的电池的规格参数,确定预设数据,使得确定的预设数据能够匹配于该用电设备的电池,进而能够极大地提高确定的拆装装置的平衡状态的准确率。
可选地,第一数据和预设数据之间的偏差值可以为第一数据和预设数据之间的差值,也可以为第一数据和预设数据之间的商。
以第一数据和预设数据之间的偏差值为差值为例进行说明。在偏差值小于或等于第一阈值的情况下,拆装装置处于平衡状态;在偏差值大于第一阈值的情况下,拆装装置处于非平衡状态。
可选地,第一阈值的范围可以在0.1吨-0.2吨之间。
通过大量实验证明,将第一阈值的范围设置在0.1-0.2之间,确定的拆装装置的平衡状态的准确率较高。
需要说明的是,四个第一数据中,若部分第一数据和预设数据之间的偏差值大于第一阈值,就可以确定拆装装置处于非平衡状态。
若拆装装置处于非平衡状态,则可以控制拆装装置停止工作,并输出报警信号。例如,在换电站的显示屏上输出错误信号。再例如,控制换电站发出警报声,例如蜂鸣声等;再例如,语音播报报警信号等。
通常情况下,用电设备的电池底座上包括导向柱,在待拆卸电池或待安装电池接触到导向柱后,导向柱可能会卸掉待拆卸电池或待安装电池的部分重量。在这种情况下,若第一传感器为称重传感器,则可能会产生称重传感器输出的第一数据不准确,进而导致确定的拆装装置的平衡状态不准确的问题。例如,实际上钢丝绳发生了断裂,但确定的吊具却处于平衡状态,从而控制吊具继续工作,这样,很容易发生吊具抓取的电池掉落的情况。
因此,为了提高确定的拆装装置的平衡状态的准确率,方法200进一步包括:获取第二传感器输出的第二数据,在根据第一数据确定拆装装置是否处于平衡状态之后,根据第二数据,确定拆装装置是否处于平衡状态。
当然,也可以同时根据第一数据和第二数据确定拆装装置是否处于平衡状态;或者,先根据第二数据确定拆装装置是否处于平衡状态,再根据第一数据确定拆装装置是否处于平衡状态。
可选地,第二传感器可以实时采集第二数据,并实时输出第二数据。
可选地,第二传感器可以每隔预设时间段采集第二数据,并每隔预设时间段输出第二数据。例如,预设时间段可以为10ms。
可选地,第一传感器和第二传感器可以同时采集数据,也可以在不同的时间采集数据,本申请实施例对此不作具体限定。
该技术方案,在根据第一传感器输出的第一数据确定拆装装置是否处于平衡状态的基础上,结合第二传感器输出的第二数据再次确定拆装装置是否处于平衡状态,即根据多个参数确定拆装装置的平衡状态,能够进一步提高确定的拆装装置是否处于平衡状态的准确率,进而进一步提高用电设备在换电过程中的安全性能。
在一些实施例中,第二传感器为平衡传感器。此时,第二数据可以为拆装装置的倾斜角度。
由于拆装装置处于平衡状态和非平衡状态的最大区别之一是倾斜角度的不同,若拆装状态处于平衡状态,则倾斜角度可能为零或接近零;若拆装装置处于非平衡状态,则倾斜角度较大。因此,将第二传感器设置为平衡传感器,这样,第二数据就为拆装装置的倾斜角度,从而能够比较容易地判断出拆装装置是否处于平衡状态,降低了检测复杂度。
可选地,平衡传感器可以设置于拆装装置的第二面,其中,第二面为沿与重力相反的方向,拆装装置的远离待拆卸电池或待安装电池的一面。
上述技术方案,将平衡传感器设置于拆装装置的第二面,便于平衡传感器采集 拆装装置的倾斜角度,极大地提高了检测的效率。
可选地,平衡传感器的数量可以为一个。此时,第二数据也包括一个数据。
当然,第二传感器也可以为重力传感器。具体来说,当第一传感器为重力传感器时,第二传感器可以为平衡传感器;当第一传感器为平衡传感器时,第二传感器可以为重力传感器。
根据第二数据确定拆装装置是否处于平衡状态,具体可以包括:在第二数据小于或等于第二阈值的情况下,确定拆装装置处于平衡状态;在第二数据大于第二阈值的情况下,确定拆装装置处于非平衡状态。
在第二数据小于或等于第二阈值时,表明拆装装置的倾斜角度较小或者没有倾斜,因而可以确定拆装装置处于平衡状态;在第二数据大于第二阈值时,表明拆装装置的倾斜角度过大,拆装装置可能发生了晃动倾斜等情况,因而可以确定拆装装置处于非平衡状态。
可选地,第二阈值例如可以为1.3°。通过大量的实验证明,将第二阈值设置为1.3°,使得确定的拆装装置的平衡状态准确率更高。
通常,在拆装装置处于平衡状态的情况下,第二数据,如倾斜角度较小,比如为零;在拆装装置处于非平衡状态的情况下,第二数据,如倾斜角度较大。因此,上述技术方案将第二数据与阈值进行比较,当第二数据小于或等于第二阈值时,确定拆装装置处于平衡状态,当第二数据大于第二阈值时,确定拆装装置处于非平衡状态,确定方式与实际情况相符,不仅实现简单,而且准确率较高。
需要说明的是,若根据第一数据确定拆装装置处于平衡状态,但根据第二数据确定拆装装置处于非平衡状态,则可以确定拆装装置处于非平衡状态。类似地,若根据第一数据确定拆装装置处于非平衡状态,但根据第二数据确定拆装装置处于平衡状态,则可以确定拆装装置处于非平衡状态。
通常情况下,拆装装置可以包括电推杆,电推杆包括多个爪臂,例如,四个爪臂,该多个爪臂用于抓取待拆卸电池和待安装电池。具体来说,在拆装装置拆卸待拆卸电池之前,多个爪臂需要都伸出来以抓取待拆卸电池。在拆装装置将待拆卸电池运送至电池存放机构后,多个爪臂需要都收缩回去。类似地,在拆装装置从电池存放机构抓取待安装电池之前,多个爪臂需要都伸出来,在将待安装电池安装在用电设备上之后,多个爪臂需要都收缩回去。然而,在某些情况下,多个爪臂中可能只有部分爪臂能够正常的伸缩,在这种情况下,拆装装置可能无法抓取到待拆卸电池或待安装电池,从而影响电池换电的正常进行。
因此,方法200还可以包括:在多个爪臂抓取待拆卸电池和待安装电池之前,确定多个爪臂的伸缩状态,和/或,在多个爪臂抓取完待拆卸电池和待安装电池之后,确定多个爪臂的伸缩状态。
若在多个爪臂抓取待拆卸电池和待安装电池之前,多个爪臂中有部分爪臂未伸出来,或者,在多个爪臂抓取完待拆卸电池和待安装电池之后,多个爪臂中有部分爪臂未收缩回去,则拆装装置可能发生倾斜的情况。
因此,确定多个爪臂的伸缩状态可以包括:获取第二传感器输出的第三数据, 若第三数据小于或等于第二阈值,确定多个爪臂的伸缩状态为正常状态;若第三数据大于第二阈值,确定多个爪臂的伸缩状态为非正常状态。
多个爪臂的伸缩状态为正常状态可以理解为:在多个爪臂抓取待拆卸电池和待安装电池之前,多个爪臂均已伸出来;或者,在多个爪臂抓取完待拆卸电池和待安装电池之后,多个爪臂均已收缩回。
可选地,当第二传感器为平衡传感器时,第三数据为倾斜角度。
通常,在多个爪臂的伸缩状态为正常状态的情况下,拆装装置几乎不会发生倾斜的情况,因此第三数据,如倾斜角度较小,比如为零;在多个爪臂的伸缩状态为正常状态的情况下,拆装装置可能会倾斜,因此第三数据,如倾斜角度较大。因此,上述技术方案将第三数据与阈值进行比较,当第三数据小于或等于阈值时,确定多个爪臂的伸缩状态为正常状态,当第三数据大于阈值时,确定伸缩状态为正常状态,不仅实现简单,而且准确率较高。
若多个爪臂的伸缩状态为非正常状态,则可以控制拆装装置停止工作,并输出报警信号。例如,在换电站的显示屏上输出错误信号。再例如,控制换电站发出警报声,例如蜂鸣声等;再例如,语音播报报警信号等。
由于在某些情况下,拆装装置的多个爪臂中可能只有部分爪臂能够正常的伸缩,在这种情况下,拆装装置可能无法抓取到待拆卸电池或待安装电池,从而影响电池换电的正常进行。上述技术方案,在换电的过程中确定多个爪臂的伸缩状态,进而根据多个爪臂的伸缩状态确定下一个操作,保证了电池换电的正常进行。
为了使确定的多个爪臂的伸缩状态的准确率更高,进一步地,方法200还可以包括:接收用电设备发送的状态信息,该状态信息包括多个爪臂的伸缩状态。
可选地,可通过无线通信的方式接收用电设备发送的状态信息。例如,通过蓝牙通信的方式接收状态信息。
可选地,可以先根据接收到的状态信息确定多个爪臂的伸缩状态,再根据第三数据再次确定多个爪臂的伸缩状态;或者,可以先根据第三数据确定多个爪臂的伸缩状态,再根据接收到的状态信息确定多个爪臂的伸缩状态;再或者,可以同时根据状态信息和第三数据确定多个爪臂的伸缩状态。
上述技术方案,除了根据第二传感器输出的第三数据确定多个爪臂的伸缩状态之外,还根据用电设备发送的状态信息确定多个爪臂的伸缩状态,即根据多个参数确定多个爪臂的伸缩状态,从而能够使确定的多个爪臂的伸缩状态的准确率更高。
考虑到在拆卸待拆卸电池之前锁止机构可能未解除对待拆卸电池的锁止部的锁止,或者,在安装完待安装电池之后锁止机构可能未对待安装电池的锁止部进行锁止。这样,不仅会影响换电的正常进行,而且还可能会造成严重的安全事故。比如,在用电设备换电完成并驶离换电站之后,由于待安装电池的锁止部未进行锁止,则用电设备在行驶过程可能会发生掉落等情况。
因此,进一步地,方法200还可以包括:确定待拆卸电池或待安装电池的锁止部的锁止状态。
对锁止部的锁止状态进行判断可以根据拆装装置承受的重量进行判断,具体来 说,若在拆卸待拆卸电池之前,锁止部处于解锁状态,则在拆卸待拆卸电池之后,拆装装置承受的重量为拆装装置本身的重量和待拆卸电池的重量之和;若在拆卸待拆卸电池之前,锁止部处于非解锁状态,则在拆卸待拆卸电池之后,拆装装置处于满载状态,即拆装装置承受的重量包括拆装装置本身的重量和用电设备的重量。若用电设备上还装载有货物,则拆装装置承受的重量还可以包括货物的重量。
因此,可以根据第一传感器采集到的数据对锁止部的锁止状态进行判断。具体地,在拆装装置将待拆卸电池拆卸下来后,可以获取第一传感器输出的第四数据,若第四数据和目标重量之间的差值小于或等于第三阈值,则可以确定锁止部处于解锁状态;若第四数据和目标重量之间的差值大于第三阈值,确定锁止部处于非解锁状态。其中,目标重量为拆装装置的重量和待拆卸电池的重量之和。
第三阈值的范围例如可以为0.1吨-0.2吨之间,也可以为其他值,具体可以根据实际情况确定。
上述技术方案还确定待拆卸电池或待安装电池的锁止部的锁止状态,能够保证换电的正常进行并避免安全事故的发生,从而提高整个换电过程的安全性。
同样为了使确定的锁止部的锁止状态的准确率更高,进一步地,方法200还可以包括:接收用电设备发送的锁止信息,该锁止信息包括锁止部的锁止状态。
可选地,可通过无线通信的方式接收用电设备发送的锁止信息。例如,通过蓝牙通信的方式接收锁止信息。
可选地,可以先根据接收到的锁止信息确定锁止部的锁止状态,再根据第四数据再次确定锁止部的锁止状态;或者,可以先根据第四数据确定锁止部的锁止状态,再根据接收到的锁止信息确定锁止部的锁止状态;再或者,可以同时根据锁止信息和第四数据确定锁止部的锁止状态。
上述技术方案,除了根据第一传感器输出的第四数据确定锁止部的锁止状态之外,还根据用电设备发送的锁止信息确定锁止部的锁止状态,即根据多个参数确定多个爪臂的伸缩状态,从而能够使确定的锁止部的锁止状态的准确率更高。
若在拆卸待拆卸电池之前确定锁止状态为非解锁状态,则可以向待拆卸电池的电池管理单元(battery management unit,BMU)发送解锁信息,该解锁信息包括锁止部的锁止状态,以使BMU进行自动解锁,或者,在换电站的显示屏上输出提醒信号,以提醒用电设备的驾驶员手动解锁。若在将待安装电池安装在用电设备上之后确定锁止状态为解锁状态,则可以向待安装电池的BMU发送解锁信息,该解锁信息包括锁止部的锁止状态,以使BMU进行自动锁止,或者,在换电站的显示屏上输出提醒信号,以提醒用电设备的驾驶员手动对锁止部进行锁止。
为了更加清楚地理解本申请实施例的平衡检测的方法200,以下结合图3描述本申请一种可能的实施例的平衡检测的方法。
其中,在图3中,第一传感器为称重传感器,第二传感器为平衡传感器,用电设备为重型卡车,拆装装置为吊具。
S301:重型卡车驶入换电站的换电通道。
S302:换电通道上的激光传感器检测到重型卡车到达换电位置,并且重型卡车 将车辆信息发送给站控系统。
示例性地,车辆信息可以包括但不限于重型卡车的车辆识别码(vehicle identification number,VIN)、重型卡车的车型、蓝牙媒体访问控制(media access control,MAC)地址等。
S303:启动换电流程,控制行车由待机位移动至待拆卸电池上方。
S304:判断吊具的多个爪臂的伸缩状态是否为正常状态。
具体而言,获取平衡传感器输出的第三数据。若第三数据小于或等于第二阈值,确定吊具的多个爪臂的伸缩状态为正常状态,执行S305;若第三数据大于第二阈值,确定多个爪臂的伸缩状态为非正常状态,执行S317。
S305:控制吊具下降抓取待拆卸电池。
S306:在吊具抓取到待拆卸电池后,控制吊具上升,并控制行车移动至电池存取机构。
S307:判断待拆卸电池的锁止部的锁止状态。
具体而言,获取称重传感器输出的第四数据,若第四数据和目标重量之间的差值小于或等于第三阈值,则确定锁止部处于解锁状态,执行S308;若第四数据和目标重量之间的差值大于第三阈值,确定锁止部处于非解锁状态,执行S318。其中,目标重量为拆装装置的重量和待拆卸电池的重量之和。
S308:判断吊具是否处于平衡状态。
具体而言,获取称重传感器输出的第一数据,并根据第一数据确定吊具是否处于平衡状态,并且获取平衡传感器输出的第二数据,并根据第二数据确定吊具是否处于平衡状态。若吊具处于平衡状态,执行S309;若吊具处于非平衡状态,执行S317。
S309:控制吊具上升,并控制行车移动至满足换电要求的电池存放机构。
S310:判断吊具的多个爪臂的伸缩状态是否为正常状态。
具体而言,获取平衡传感器输出的第三数据。若第三数据小于或等于第二阈值,确定吊具的多个爪臂的伸缩状态为正常状态,执行S311;若第三数据大于第二阈值,确定多个爪臂的伸缩状态为非正常状态,执行S317。
S311:控制吊具下降抓取待安装电池。
S312:在吊具抓取到待安装电池后,控制吊具上升,并控制行车移动至待安装电池的安装位置。
S313:判断吊具是否处于平衡状态。
具体而言,获取称重传感器输出的第一数据,并根据第一数据确定吊具是否处于平衡状态,并且获取平衡传感器输出的第二数据,并根据第二数据确定吊具是否处于平衡状态。若吊具处于平衡状态,执行S314;若吊具处于非平衡状态,执行S317。
S314:在将待安装电池安装在用电设备上之后,控制吊具上升。
S315:判断待安装电池的锁止部的锁止状态。
具体而言,接收用电设备发送的锁止信息,该锁止信息包括锁止部的锁止状态。或者,可以获取称重传感器输出的第五数据,根据第五数据确定锁止部的锁止状态。若锁止部处于非解锁状态,即已成功进行锁止,执行S316;若锁止部处于解锁装填, 即未进行锁止,执行S318。
S316:换电结束。
S317:控制吊具停止工作,并输出报警信号。
S318:向重型卡车发送解锁信息,或者,输出提醒信号。
在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
并且,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
上文详细描述了本申请实施例的平衡检测的方法,下面将描述本申请实施例的平衡检测的装置。
图4示出了本申请实施例的平衡检测的装置400的示意性框图。如图4所示,该平衡检测的装置400可以包括:
处理单元410,用于在对用电设备进行换电的过程中,获取第一传感器输出的第一数据。
处理单元410还用于,根据第一数据,确定拆装装置是否处于平衡状态,拆装装置用于拆卸用电设备的待拆卸电池以及将待安装电池安装在用电设备上。
可选地,在本申请实施例中,第一传感器为称重传感器。
可选地,在本申请实施例中,称重传感器设置在用于连接拆装装置的连接件的第一面,沿重力方向,第一面为连接件的靠近待拆卸电池或待安装电池的一面;其中,第一数据为连接件所承受的重量。
可选地,在本申请实施例中,连接件的数量为多个,每个连接件上均设置有称重传感器,第一数据为每个连接件所承受的重量。
可选地,在本申请实施例中,处理单元410具体用于:获取预设数据;根据第一数据和预设数据之间的偏差值,确定拆装装置是否处于平衡状态。
可选地,在本申请实施例中,在偏差值小于或等于第一阈值的情况下,拆装装置处于平衡状态;在偏差值大于第一阈值的情况下,拆装装置处于非平衡状态。
可选地,在本申请实施例中,第一阈值的范围在0.1-0.2之间。
可选地,在本申请实施例中,还包括:通信单元,用于接收用电设备发送的电池信息,电池信息包括待拆卸电池的规格参数;处理单元410具体用于:用于根据规格参数,确定预设数据。
可选地,在本申请实施例中,处理单元410还用于:获取第二传感器输出的第二数据;在根据第一数据,确定拆装装置是否处于平衡状态之后,根据第二数据,确定拆装装置是否处于平衡状态。
可选地,在本申请实施例中,第二传感器为平衡传感器,第二数据为拆装装置的倾斜角度。
可选地,在本申请实施例中,平衡传感器设置于拆装装置的第二面,其中,沿与重力相反的方向,第二面为拆装装置的远离待拆卸电池或待安装电池的一面。
可选地,在本申请实施例中,在第二数据小于或等于第二阈值的情况下,拆装装置处于平衡状态;在第二数据大于第二阈值的情况下,拆装装置处于非平衡状态。
可选地,在本申请实施例中,拆装装置包括多个爪臂,多个爪臂用于抓取待拆卸电池和待安装电池,处理单元410还用于:在多个爪臂抓取待拆卸电池和待安装电池之前,确定多个爪臂的伸缩状态;和/或在多个爪臂抓取完待拆卸电池和待安装电池之后,确定多个爪臂的伸缩状态。
可选地,在本申请实施例中,处理单元410具体用于:获取第二传感器输出的第三数据;若第三数据小于或等于第二阈值,确定多个爪臂的伸缩状态为正常状态;若第三数据大于第二阈值,确定多个爪臂的伸缩状态为非正常状态。
可选地,在本申请实施例中,还包括:通信单元,用于接收用电设备发送的状态信息,状态信息包括多个爪臂的伸缩状态。
可选地,在本申请实施例中,第二阈值为1.3°。
可选地,在本申请实施例中,处理单元410还用于:确定待拆卸电池或待安装电池的锁止部的锁止状态。
可选地,在本申请实施例中,处理单元410具体用于:在拆装装置将待拆卸电池拆卸下来后,获取第一传感器输出的第四数据;若第四数据和目标重量之间的差值小于或等于第三阈值,确定锁止部处于解锁状态;若第四数据和目标重量之间的差值大于第三阈值,确定锁止部处于非解锁状态;其中,目标重量为拆装装置的重量和待拆卸电池的重量之和。
可选地,在本申请实施例中,还包括:通信单元,用于接收用电设备发送的锁止信息,锁止信息包括锁止部的锁止状态。
应理解,该装置400可以实现该方法200中的相应操作,为了简洁,在此不再赘述。
图5是本申请实施例的站控系统500的硬件结构示意图。该站控系统500包括存储器501、处理器502、通信接口503以及总线504。其中,存储器501、处理器502、通信接口503通过总线504实现彼此之间的通信连接。
存储器501可以是只读存储器(read-only memory,ROM),静态存储设备和随机存取存储器(random access memory,RAM)。存储器501可以存储程序,当存储器501中存储的程序被处理器502执行时,处理器502和通信接口503用于执行本申请实施例的平衡检测的方法的各个步骤。
处理器502可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的站控系统中的单元所需执行的功能,或者执行本申请实施例的平衡检测的方法。
处理器502还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例的平衡检测的方法的各个步骤可以通过处理器502中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器502还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、ASIC、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器501,处理器502读取存储器501中的信息,结合其硬件完成本申请实施例的站控系统中包括的单元所需执行的功能,或者执行本申请实施例的平衡检测的方法。
通信接口503使用例如但不限于收发器一类的收发装置,来实现站控系统500与其他设备或通信网络之间的通信。
总线504可包括在站控系统500各个部件(例如,存储器501、处理器502、通信接口503)之间传送信息的通路。
应注意,尽管上述站控系统500仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,站控系统500还可以包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,站控系统500还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,站控系统500也可仅仅包括实现本申请实施例所必须的器件,而不必包括图5中所示的全部器件。
应理解,站控系统500例如可以为图1中的站控系统151。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序用于执行前述本申请各种实施例的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在计算机可读存储介质上的计算机程序,该计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行上述平衡检测的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (40)

  1. 一种平衡检测的方法,其特征在于,所述方法包括:
    在对用电设备进行换电的过程中,获取第一传感器输出的第一数据;
    根据所述第一数据,确定拆装装置是否处于平衡状态,所述拆装装置用于拆卸所述用电设备的待拆卸电池以及将待安装电池安装在所述用电设备上。
  2. 根据权利要求1所述的方法,其特征在于,所述第一传感器为称重传感器。
  3. 根据权利要求2所述的方法,其特征在于,所述称重传感器设置在用于连接所述拆装装置的连接件的第一面,沿重力方向,所述第一面为所述连接件的靠近所述待拆卸电池或所述待安装电池的一面;
    其中,所述第一数据为所述连接件所承受的重量。
  4. 根据权利要求3所述的方法,其特征在于,所述连接件的数量为多个,每个所述连接件上均设置有所述称重传感器,所述第一数据为每个所述连接件所承受的重量。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述第一数据,确定拆装装置是否处于平衡状态,包括:
    获取预设数据;
    根据所述第一数据和所述预设数据之间的偏差值,确定所述拆装装置是否处于平衡状态。
  6. 根据权利要求5所述的方法,其特征在于,在所述偏差值小于或等于第一阈值的情况下,所述拆装装置处于平衡状态;
    在所述偏差值大于第一阈值的情况下,所述拆装装置处于非平衡状态。
  7. 根据权利要求6所述的方法,其特征在于,所述第一阈值的范围在0.1-0.2之间。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述获取预设数据,包括:
    接收所述用电设备发送的电池信息,所述电池信息包括所述待拆卸电池的规格参数;
    根据所述规格参数,确定所述预设数据。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    获取第二传感器输出的第二数据;
    在根据所述第一数据,确定所述拆装装置是否处于平衡状态之后,根据所述第二数据,确定所述拆装装置是否处于平衡状态。
  10. 根据权利要求9所述的方法,其特征在于,所述第二传感器为平衡传感器,所述第二数据为所述拆装装置的倾斜角度。
  11. 根据权利要求10所述的方法,其特征在于,所述平衡传感器设置于所述拆装装置的第二面,其中,沿与重力相反的方向,所述第二面为所述拆装装置的远离所述待拆卸电池或所述待安装电池的一面。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,在所述第二数据小 于或等于第二阈值的情况下,所述拆装装置处于平衡状态;
    在所述第二数据大于第二阈值的情况下,所述拆装装置处于非平衡状态。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述拆装装置包括多个爪臂,所述多个爪臂用于抓取所述待拆卸电池和所述待安装电池,所述方法还包括:
    在所述多个爪臂抓取所述待拆卸电池和所述待安装电池之前,确定所述多个爪臂的伸缩状态;和/或
    在所述多个爪臂抓取完所述待拆卸电池和所述待安装电池之后,确定所述多个爪臂的伸缩状态。
  14. 根据权利要求13所述的方法,其特征在于,所述确定所述多个爪臂的伸缩状态,包括:
    获取所述第二传感器输出的第三数据;
    若所述第三数据小于或等于第二阈值,确定所述多个爪臂的伸缩状态为正常状态;
    若所述第三数据大于第二阈值,确定所述多个爪臂的伸缩状态为非正常状态。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    接收所述用电设备发送的状态信息,所述状态信息包括所述多个爪臂的伸缩状态。
  16. 根据权利要求12或15所述的方法,其特征在于,所述第二阈值为1.3°。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述方法还包括:
    在所述拆装装置将所述待拆卸电池拆卸下来后或将所述待安装电池安装在所述用电设备上后,确定所述待拆卸电池或所述待安装电池的锁止部的锁止状态。
  18. 根据权利要求17所述的方法,其特征在于,所述确定所述待拆卸电池或所述待安装电池的锁止部的锁止状态,包括:
    在所述拆装装置将所述待拆卸电池拆卸下来后,获取所述第一传感器输出的第四数据;
    若所述第四数据和目标重量之间的差值小于或等于第三阈值,确定所述锁止部处于解锁状态;
    若所述第四数据和目标重量之间的差值大于第三阈值,确定所述锁止部处于非解锁状态;
    其中,所述目标重量为所述拆装装置的重量和所述待拆卸电池的重量之和。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    接收所述用电设备发送的锁止信息,所述锁止信息包括所述锁止部的锁止状态。
  20. 一种平衡检测的装置,其特征在于,包括:
    处理单元,用于在对用电设备进行换电的过程中,获取第一传感器输出的第一数据;
    所述处理单元还用于,根据所述第一数据,确定拆装装置是否处于平衡状态,所述拆装装置用于拆卸所述用电设备的待拆卸电池以及将待安装电池安装在所述用电设备上。
  21. 根据权利要求20所述的装置,其特征在于,所述第一传感器为称重传感器。
  22. 根据权利要求21所述的装置,其特征在于,所述称重传感器设置在用于连接所述拆装装置的连接件的第一面,沿重力方向,所述第一面为所述连接件的靠近所述待拆卸电池或所述待安装电池的一面;
    其中,所述第一数据为所述连接件所承受的重量。
  23. 根据权利要求22所述的装置,其特征在于,所述连接件的数量为多个,每个所述连接件上均设置有所述称重传感器,所述第一数据为每个所述连接件所承受的重量。
  24. 根据权利要求20至23中任一项所述的装置,其特征在于,所述处理单元具体用于:
    获取预设数据;
    根据所述第一数据和所述预设数据之间的偏差值,确定所述拆装装置是否处于平衡状态。
  25. 根据权利要求24所述的装置,其特征在于,在所述偏差值小于或等于第一阈值的情况下,所述拆装装置处于平衡状态;
    在所述偏差值大于第一阈值的情况下,所述拆装装置处于非平衡状态。
  26. 根据权利要求25所述的装置,其特征在于,所述第一阈值的范围在0.1-0.2之间。
  27. 根据权利要求24至26中任一项所述的装置,其特征在于,还包括:
    通信单元,用于接收所述用电设备发送的电池信息,所述电池信息包括所述待拆卸电池的规格参数;
    所述处理单元具体用于:
    用于根据所述规格参数,确定所述预设数据。
  28. 根据权利要求20至27中任一项所述的装置,其特征在于,所述处理单元还用于:
    获取第二传感器输出的第二数据;
    在根据所述第一数据,确定所述拆装装置是否处于平衡状态之后,根据所述第二数据,确定所述拆装装置是否处于平衡状态。
  29. 根据权利要求28所述的装置,其特征在于,所述第二传感器为平衡传感器,所述第二数据为所述拆装装置的倾斜角度。
  30. 根据权利要求29所述的装置,其特征在于,所述平衡传感器设置于所述拆装装置的第二面,其中,沿与重力相反的方向,所述第二面为所述拆装装置的远离所述待拆卸电池或所述待安装电池的一面。
  31. 根据权利要求28至30中任一项所述的装置,其特征在于,在所述第二数据小于或等于第二阈值的情况下,所述拆装装置处于平衡状态;
    在所述第二数据大于第二阈值的情况下,所述拆装装置处于非平衡状态。
  32. 根据权利要求28至31中任一项所述的装置,其特征在于,所述拆装装置包括多个爪臂,所述多个爪臂用于抓取所述待拆卸电池和所述待安装电池,所述处理单元还用于:
    在所述多个爪臂抓取所述待拆卸电池和所述待安装电池之前,确定所述多个爪臂的伸缩状态;和/或
    在所述多个爪臂抓取完所述待拆卸电池和所述待安装电池之后,确定所述多个爪臂的伸缩状态。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于:
    获取所述第二传感器输出的第三数据;
    若所述第三数据小于或等于第二阈值,确定所述多个爪臂的伸缩状态为正常状态;
    若所述第三数据大于第二阈值,确定所述多个爪臂的伸缩状态为非正常状态。
  34. 根据权利要求32或33所述的装置,其特征在于,还包括:
    通信单元,用于接收所述用电设备发送的状态信息,所述状态信息包括所述多个爪臂的伸缩状态。
  35. 根据权利要求31或34所述的装置,其特征在于,所述第二阈值为1.3°。
  36. 根据权利要求20至35中任一项所述的装置,其特征在于,所述处理单元还用于:
    在所述拆装装置将所述待拆卸电池拆卸下来前或将所述待安装电池安装在所述用电设备上后,确定所述待拆卸电池或所述待安装电池的锁止部的锁止状态。
  37. 根据权利要求36所述的装置,其特征在于,所述处理单元具体用于:
    获取所述第一传感器输出的第四数据;
    若所述第四数据和目标重量之间的差值小于或等于第三阈值,确定所述锁止部处于解锁状态;
    若所述第四数据和目标重量之间的差值大于第三阈值,确定所述锁止部处于非解锁状态;
    其中,所述目标重量为所述拆装装置的重量和所述待拆卸电池的重量之和,或者,为所述拆装装置的重量和所述待安装电池的重量之和。
  38. 根据权利要求36或37所述的装置,其特征在于,还包括:
    通信单元,用于接收所述用电设备发送的锁止信息,所述锁止信息包括所述锁止部的锁止状态。
  39. 一种站控系统,其特征在于,应用于换电站,所述站控系统系统包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行根据权利要求1至19中任一项所述的平衡检测的方法。
  40. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的平衡检测的方法。
PCT/CN2022/106992 2022-07-21 2022-07-21 平衡检测的方法、装置和站控系统 WO2024016254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/106992 WO2024016254A1 (zh) 2022-07-21 2022-07-21 平衡检测的方法、装置和站控系统
CN202280062817.4A CN118076512A (zh) 2022-07-21 2022-07-21 平衡检测的方法、装置和站控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106992 WO2024016254A1 (zh) 2022-07-21 2022-07-21 平衡检测的方法、装置和站控系统

Publications (1)

Publication Number Publication Date
WO2024016254A1 true WO2024016254A1 (zh) 2024-01-25

Family

ID=89616661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106992 WO2024016254A1 (zh) 2022-07-21 2022-07-21 平衡检测的方法、装置和站控系统

Country Status (2)

Country Link
CN (1) CN118076512A (zh)
WO (1) WO2024016254A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090179763A1 (en) * 2008-01-16 2009-07-16 Dhc Specialty Corp. Detachable battery status alarm and battery detector thereof
CN209972155U (zh) * 2019-03-15 2020-01-21 北京汽车股份有限公司 电动汽车电池包的更换装置和电动汽车
WO2021043055A1 (zh) * 2019-09-06 2021-03-11 杭州海康机器人技术有限公司 Agv的电池拆装机构及电池拆卸方法
CN112477681A (zh) * 2020-11-30 2021-03-12 浙江吉利控股集团有限公司 一种车辆换电控制方法、装置、设备及存储介质
CN112550056A (zh) * 2020-11-20 2021-03-26 浙江吉利控股集团有限公司 一种吊装换电装置及吊装换电方法
CN114314306A (zh) * 2021-12-28 2022-04-12 三一重工股份有限公司 浮动吊具及换电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090179763A1 (en) * 2008-01-16 2009-07-16 Dhc Specialty Corp. Detachable battery status alarm and battery detector thereof
CN209972155U (zh) * 2019-03-15 2020-01-21 北京汽车股份有限公司 电动汽车电池包的更换装置和电动汽车
WO2021043055A1 (zh) * 2019-09-06 2021-03-11 杭州海康机器人技术有限公司 Agv的电池拆装机构及电池拆卸方法
CN112550056A (zh) * 2020-11-20 2021-03-26 浙江吉利控股集团有限公司 一种吊装换电装置及吊装换电方法
CN112477681A (zh) * 2020-11-30 2021-03-12 浙江吉利控股集团有限公司 一种车辆换电控制方法、装置、设备及存储介质
CN114314306A (zh) * 2021-12-28 2022-04-12 三一重工股份有限公司 浮动吊具及换电设备

Also Published As

Publication number Publication date
CN118076512A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
EP2849309A1 (en) Apparatus and method for controlling operation for balancing charge capacity of secondary battery cells
CN103057433A (zh) 工作状态下的电动汽车中成组电池的单体电池的检测方法
CN205049709U (zh) 电池检测装置
EP4382332A1 (en) Battery system, charging control method and apparatus, and electronic device and storage medium
CN108400397B (zh) 电池管理系统及平台
CN117769655A (zh) 低压电池的状态校准方法及装置、电动车辆
WO2024016254A1 (zh) 平衡检测的方法、装置和站控系统
WO2023225975A1 (zh) 热失控检测的方法和装置
WO2023123767A1 (zh) 电池充电剩余时间的确定方法和系统
WO2017134995A1 (ja) サーバ装置の制御方法、及び、サーバ装置
CN115882548A (zh) 锂电池的充电系统及方法
WO2024007276A1 (zh) 电池换电的方法、换电系统和换电站
WO2024007277A1 (zh) 电池换电的方法、装置、站控系统和换电站
WO2023225974A1 (zh) 热失控检测的方法和装置
WO2023206484A1 (zh) 更换电池的方法及装置、站控系统和用电装置
WO2023206470A1 (zh) 更换电池的方法、装置以及站控系统
WO2023206481A1 (zh) 通信的方法和装置
WO2023168593A1 (zh) 更换电池的方法、装置和站控系统
WO2024007212A1 (zh) 用于电池换电的方法和装置
EP4227695A1 (en) Method and system for determining remaining battery charging time
WO2023206494A1 (zh) 电池管理设备、用电装置和电池
WO2024007214A1 (zh) 用于电池换电的方法和装置
WO2024007218A1 (zh) 用于电池换电的方法和装置
WO2024007216A1 (zh) 用于电池换电的方法和装置
KR102524183B1 (ko) 차량용 배터리 충전 스테이션의 부하 밸런싱 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951531

Country of ref document: EP

Kind code of ref document: A1