WO2023168593A1 - 更换电池的方法、装置和站控系统 - Google Patents

更换电池的方法、装置和站控系统 Download PDF

Info

Publication number
WO2023168593A1
WO2023168593A1 PCT/CN2022/079732 CN2022079732W WO2023168593A1 WO 2023168593 A1 WO2023168593 A1 WO 2023168593A1 CN 2022079732 W CN2022079732 W CN 2022079732W WO 2023168593 A1 WO2023168593 A1 WO 2023168593A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
batteries
target
candidate
station
Prior art date
Application number
PCT/CN2022/079732
Other languages
English (en)
French (fr)
Inventor
王霞
Original Assignee
时代电服科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代电服科技有限公司 filed Critical 时代电服科技有限公司
Priority to CN202280027273.8A priority Critical patent/CN117157800A/zh
Priority to PCT/CN2022/079732 priority patent/WO2023168593A1/zh
Publication of WO2023168593A1 publication Critical patent/WO2023168593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a method, device and station control system for replacing batteries.
  • charging equipment such as charging piles can be used to charge the vehicle, that is, to charge the battery in the vehicle to realize the cycle of charging and discharging the battery.
  • battery charging takes a long time, which limits the vehicle's endurance.
  • the vehicle can achieve rapid battery life by replacing a battery with insufficient power with a battery with sufficient power at the battery swap station. Batteries with insufficient power can be charged at the battery swap station, and the charged battery can be used as a replacement battery for subsequent vehicles that enter the battery swap station for battery replacement. There is currently no solution available for how to select a battery at a battery swap station.
  • the embodiments of the present application provide a method, device and station control system for replacing batteries, which is beneficial to improving battery replacement performance.
  • a method of replacing a battery includes, when it is determined that the vehicle needs to be exchanged for M batteries in a power swap station, obtaining battery parameters of the batteries in the power swap station;
  • the battery parameters of the battery, M target batteries are determined in the battery swap station, and the M target batteries meet the first condition, so that when the M target batteries provide electric energy for the vehicle, discharge balance can be achieved, Among them, M is greater than 1.
  • the circulating current between the M target batteries when providing electric energy to the vehicle can be reduced as much as possible, and The M target batteries are discharged as balanced as possible, thereby maximizing the capacity of the battery system composed of the M target batteries, which is beneficial to improving the battery replacement performance.
  • the battery parameters include state of charge SOC
  • the battery parameters of the M target batteries satisfy the first condition, including: the difference between any two batteries among the M target batteries.
  • the difference in SOC is less than the first threshold.
  • the first threshold is 2%.
  • the battery parameters include voltage
  • the battery parameters of the M target batteries satisfy the first condition, including: the difference in voltage between any two batteries among the M target batteries. less than the second threshold.
  • the second threshold is 5V.
  • determining the M target batteries in the battery swap station according to the battery parameters of the batteries includes: determining in the battery swap station according to the battery parameters of the batteries.
  • a plurality of candidate battery groups, each of the plurality of candidate battery groups includes M batteries, and the battery parameters of each candidate battery group satisfy the first condition; according to the plurality of candidate battery groups
  • the waiting time determines one candidate battery group from the plurality of candidate battery groups, and the M batteries in the one candidate battery group are the M target batteries.
  • the station control system first determines multiple candidate battery groups in the battery swap station based on the battery parameters of the battery, and then determines a candidate battery group based on the waiting time of the multiple candidate battery groups, which can maximize the The capacity of the battery system composed of the M target batteries is greatly increased, and it is also conducive to the balanced use of each charging compartment, thereby increasing the life of the charging compartment.
  • determining a candidate battery group from the plurality of candidate battery groups according to the waiting time of the plurality of candidate battery groups includes: selecting from the plurality of candidate battery groups Determine the candidate battery pack with the longest waiting time.
  • M batteries in the candidate battery group with the longest waiting time among the plurality of candidate battery groups are determined as the M target batteries, which is conducive to the balanced use of each charging bin, thereby improving charging The life of the warehouse.
  • the waiting time of the battery includes the waiting time after the battery enters the battery compartment of the battery swap station and/or the waiting time after the battery is fully charged in the battery compartment.
  • the M target batteries are used to replace N batteries on the vehicle to provide electric energy to the vehicle, and M is less than N.
  • the method further includes: determining in the battery swap station (N-M) target battery filling blocks, the (N-M) target battery filling blocks and the M target batteries are jointly used to position the N batteries installed on the vehicle, and the battery filling blocks do not Includes batteries.
  • determining (N-M) target battery filling blocks in the power swap station includes: determining (N-M) battery filling blocks with the longest waiting time in the power swap station. Fill the blocks for the (N-M) target cells.
  • the (N-M) target battery filling blocks are determined in a first-in, first-out manner, so that each charging compartment for placing the battery filling blocks can be used in a balanced manner.
  • the waiting time of the battery filling block includes the waiting time after the battery filling block enters the battery compartment of the battery swap station.
  • the SOC of each battery in the M target batteries is greater than the minimum SOC that allows battery swapping.
  • a device for updating a battery including: an acquisition unit, configured to acquire battery parameters of the batteries in the battery swap station when it is determined that the vehicle needs to be exchanged for M batteries in the battery swap station; a determination unit , used to determine M target batteries in the battery swap station according to the battery parameters of the batteries in the battery swap station, and the M target batteries satisfy the first condition, so that the M target batteries are the vehicles When electric energy is provided, discharge equilibrium can be achieved, where M is greater than 1.
  • a station control system which is used in a battery swap station.
  • the battery swap station is used to provide battery swap services for vehicles.
  • the station control system includes a memory and a processor, and the memory is used to store instructions.
  • the processor is configured to read the instruction and execute the method described in the first aspect and any possible implementation manner of the first aspect based on the instruction.
  • Figure 1 is a schematic diagram of an application scenario disclosed in the embodiment of the present application.
  • Figure 2 is a schematic block diagram of a battery replacement method disclosed in an embodiment of the present application.
  • FIG. 3 is another schematic block diagram of the battery replacement method disclosed in the embodiment of the present application.
  • FIG. 4 is another schematic block diagram of the battery replacement method disclosed in the embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a battery replacement device disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of the station control system disclosed in the embodiment of the present application.
  • batteries With the development of new energy technology, the application fields of batteries are becoming more and more extensive. For example, they can be used as a power source to power vehicles and reduce the use of non-renewable resources.
  • charging equipment such as charging piles can be used to charge the vehicle, that is, to charge the battery in the vehicle to realize the cycle of charging and discharging the battery.
  • battery charging takes a long time, which limits the vehicle's endurance.
  • Battery swapping technology adopts the method of "vehicle battery separation", which can provide battery replacement services for vehicles through battery swapping stations, that is, the battery can be quickly removed or installed from the vehicle.
  • the battery removed from the vehicle can be placed in the battery swap cabinet of the battery swap station for charging in preparation for battery swapping for subsequent vehicles entering the battery swap station.
  • embodiments of the present application provide a method of replacing batteries. Users can replace the batteries on the vehicle according to their own needs, instead of simply replacing all batteries on the vehicle. It can fully meet the needs of users, thus improving the user’s battery swap experience.
  • the station control system can determine the target battery in the battery swap station based on the battery parameters of the battery in the battery swap station, which is conducive to selecting a battery with better performance to improve the overall performance of the vehicle.
  • FIG. 1 shows a schematic diagram of an application scenario of the battery replacement method according to the embodiment of the present application.
  • the application scenario of this battery replacement method may involve a battery replacement station 11 , a vehicle 12 and a battery.
  • the battery swap station 11 may refer to a place that provides battery swap services for vehicles.
  • the power swap station 11 may be a fixed place, or the power swap station 11 may be a movable place such as a mobile battery swap vehicle, which is not limited here.
  • the vehicle 12 may be removably connected to the battery.
  • the vehicle 12 may be a car, a truck, or other vehicles that use a power battery as a power source.
  • the battery may include a battery disposed in the vehicle 12 and a battery located in the battery swap station 11 for battery swapping.
  • the battery 141 the battery used for power swapping in the battery swap station is referred to as the battery 142 .
  • the battery may be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, etc., and is not limited here.
  • the battery can be a battery cell, a battery module or a battery pack, which is not limited here.
  • the battery can also power other electrical devices in the vehicle 12 .
  • the battery can also power the in-car air conditioner, car player, etc.
  • the battery swap station 11 When the vehicle 12 equipped with the battery 141 drives into the battery swap station 11 , the battery swap station 11 removes the battery 141 from the vehicle 12 through the battery swap device, takes out the battery 142 from the battery swap station 11 , and then installs the battery 142 on the vehicle 12 . Afterwards, the vehicle 12 with the battery 142 installed can drive away from the battery swap station 11 . Through this power swap technology, the vehicle can be quickly replenished with energy within a few minutes or even tens of seconds, improving the user experience.
  • a power swap cabinet 13 may be provided in the power swap station 11 .
  • the power swap cabinet 13 includes a first battery management unit 131 and a charging unit 132 .
  • the power swap cabinet 13 may also be provided with multiple charging compartments 133 , and batteries used for power swapping may be placed in the charging compartments 133 of the power swap cabinet 13 of the power swap station 11 .
  • the first battery management unit 131 may be a battery management unit disposed in the power swap cabinet 13.
  • the first battery management unit 131 may be called a central battery management unit (Central Battery Management Unit, CBMU).
  • the charging unit 132 can charge the battery in the charging compartment 133 .
  • the charging unit may include an AC/DC module, that is, an AC/DC module and other components, devices or equipment with a charging function, which is not limited here.
  • the charging unit 132 can be provided in one-to-one correspondence with the charging compartments 133, or multiple charging compartments 133 can share one charging unit 132, which is not limited here.
  • the battery may be provided with a second battery management unit 143 correspondingly.
  • the second battery management unit 143 may be a battery management unit corresponding to a battery.
  • the second battery management unit 143 may be called a slave battery management unit (SBMU).
  • the power swap station 11 may also be provided with a corresponding management device.
  • the management device may have a centralized structure or a distributed structure, which is not limited here.
  • the management device can be installed inside the power swap station 11 or outside the power swap station 11 .
  • the management device may also be partially installed inside the power swap station 11 and partially outside the power swap station 11 .
  • the management device may include a station control system 151 within the power swap station 11 and a cloud server 152 outside the power swap station 11 , which is not limited here.
  • the first battery management unit 131 can communicate and interact with other units, modules, devices, etc. through wired or wireless means.
  • the second battery management unit 143 can communicate and interact with other units, modules, devices, etc. through wired or wireless methods.
  • the station control system 151 can communicate and interact with other units, modules, devices, etc. through wired or wireless methods.
  • Wired communication methods include, for example, a CAN communication bus.
  • Wireless communication methods include various methods such as Bluetooth communication, WiFi communication, ZigBee communication, etc., and are not limited here.
  • the first battery management unit 131 may communicate with the second battery management unit 143 to control charging of the battery 142 in the battery compartment 133 .
  • the station control system 151 can communicate with the first battery management unit 131 or the second battery management unit 143 to obtain relevant information about the battery 141 on the vehicle 12 or the battery 142 in the charging compartment 133 .
  • the station control system 151 can also communicate with the cloud server 152 to obtain relevant information about the battery 141 on the vehicle 12 or the battery 142 in the charging compartment 133 .
  • FIG. 2 shows a schematic block diagram of a battery replacement method 100 according to an embodiment of the present application.
  • the vehicle in the method 100 can be the vehicle 12 in Figure 1
  • the power swap station in the method 100 can be the power swap station 11 in Figure 1
  • the method 100 can be controlled by the station control system in the power swap station 11 shown in Figure 1 151 is executed.
  • the method 100 includes part or all of the following content.
  • the battery in the embodiment of the present application refers to a battery that can provide electric energy for a vehicle, that is to say, the battery includes a battery cell.
  • a battery is a "real" battery.
  • the batteries in the embodiment of the present application may be the battery 141 and the battery 142 in FIG. 1 .
  • Embodiments of the present application also relate to a battery filling block that is similar to a battery.
  • the battery filling block may have the same casing as the battery, that is, the battery filling block can also be installed on a vehicle, but the battery filling block does not include a battery core and cannot Provide electrical energy to vehicles.
  • battery filler blocks can be called "fake" batteries.
  • Battery filler blocks can also be placed in battery swap stations.
  • the charging compartment in a battery swap station can be divided into two parts. One part is a charging compartment for placing batteries, which can be used to charge the battery, and the other part is a charging compartment for placing battery filling blocks, which are not used for charging the battery filling blocks. Charge.
  • the compartment for placing the battery filling block may not have a charging function, but may only serve as an accommodation function.
  • how many batteries a vehicle has refers to how many "real" batteries the vehicle has.
  • the station control system can not only exchange a corresponding number of batteries in the battery swap station according to the user's needs, but also obtain the number of batteries currently installed on the vehicle from the cloud server. , and by default users need to exchange the same number of batteries at a battery swap station.
  • the station control system can obtain the electricity exchange instruction input by the user.
  • the electricity exchange instruction is used to instruct the exchange of M batteries from the electricity exchange station.
  • the station control system can, according to the electricity exchange instruction, in the battery compartment of the electricity exchange station. Determine M target batteries.
  • the station control system can also control the battery swapping device to remove the battery from the vehicle and install the M target batteries into the vehicle.
  • N is less than or Equal to the maximum number of batteries R that can be installed in the vehicle. For example, if a vehicle can install up to 3 batteries, then N should not be greater than 3.
  • the station control system determines according to the above various methods that the vehicle needs to exchange multiple batteries at the battery swap station, it can also obtain the battery parameters of the batteries in the battery swap station, and the station control system can also obtain the battery parameters of the batteries in the battery swap station according to the parameters of the batteries in the battery swap station.
  • the battery parameters determine multiple target batteries in the battery swap station.
  • the station control system can obtain the battery parameters of all batteries currently in the battery swap station, and can also obtain the battery parameters of some batteries in the battery swap station. For example, if the battery swap station is a dual-channel, that is to say, both sides of the battery swap position are With a charging compartment, the station control system can select a channel and obtain the battery parameters of all batteries in a channel.
  • the battery parameters of the battery may include, but are not limited to, at least one of the following: state of charge (SOC), voltage, or state of health (SOH).
  • SOC state of charge
  • SOH state of health
  • the number of targets can be reduced as much as possible Circulation between batteries when the batteries provide electric energy to the vehicle, and making the multiple target batteries achieve a discharge balance as much as possible, thereby maximizing the capacity of the battery system composed of the multiple target batteries, which is beneficial Improve battery swap performance.
  • the user can send a power replacement instruction to the station control system through his or her mobile terminal, such as a mobile phone or a tablet.
  • the processor of the mobile terminal can send a power replacement instruction to the station control system.
  • the user can also send a battery replacement instruction to the station control system through the vehicle. Specifically, it can be sent to the station control system by, for example, the vehicle control unit (Vehicle Control Unit, VCU) on the vehicle. Battery replacement instructions.
  • VCU Vehicle Control Unit
  • Battery replacement instructions Specifically, when exchanging power, the user can click on the display screen of the mobile terminal or the vehicle controlled by the VCU to change power with one click.
  • the display screen will show the user multiple power swap modes and multiple power swap modes.
  • the i-th battery swap mode in the mode is used to indicate the replacement of i batteries from the battery swap station, where i is any integer from 1 to R.
  • the user can select a power exchange mode by clicking on the display screen of the mobile terminal, and the mobile terminal sends a power exchange instruction to the station control system.
  • the power exchange instruction is used to indicate the power exchange mode selected by the user, for example , this battery swap command is used to instruct the Mth battery swap mode among multiple battery swap modes, that is, to swap M batteries from the battery swap station.
  • the user can also directly input the desired power exchange mode on the display screen of the mobile terminal, and send a power exchange instruction to the station control system through the mobile terminal to indicate the power exchange mode input by the user.
  • Embodiments of the present application There is no limit to this.
  • the station control system can directly obtain the battery replacement instruction input by the user from the mobile terminal.
  • the station control system has a Bluetooth communication function
  • the mobile terminal also has a Bluetooth communication function.
  • the station control system and the mobile terminal establish a Bluetooth connection to obtain the battery replacement instructions input by the user.
  • the station control system can also indirectly obtain the battery replacement instruction input by the user from the mobile terminal.
  • the mobile terminal can send the power exchange instruction input by the user to the cloud server, and the cloud server can forward the power exchange instruction input by the user to the station control system.
  • the interaction between the mobile terminal and the cloud server and the station control system and the cloud server can be realized through the network.
  • Battery rental may be billed based on the number of batteries per day. Users can determine their battery needs based on their intended use of the vehicle. For example, assuming that the user only needs to drive the vehicle to and from get off work, and one battery can support the vehicle's continuous driving for two weeks, the cost of renting one battery is lower than renting multiple batteries. For another example, if the user needs to drive the vehicle for a long distance, and two batteries can meet the battery life, the user can rent two batteries to reduce the number of battery replacements.
  • the station control system can determine the target batteries in the battery swap station that are equal to the number of batteries indicated by the battery swap command input by the user. That is, the user can replace the battery on the vehicle according to his or her own needs without Then, all batteries on the vehicle can be replaced in a single way, which can meet the needs of users in a targeted manner, thereby improving the user's battery replacement experience.
  • battery parameters may include SOC
  • battery parameters of the M target batteries that meet the first condition include: SOC between any two batteries among the M target batteries. The difference is less than the first threshold.
  • the first threshold can be obtained based on experience. For example, under the same conditions, the circulating current value of two batteries of the same model when connected in parallel under multiple sets of SOC differences can be detected, and the SOC difference value when the circulating current value is less than or equal to the battery's maximum withstand current can be determined as the first threshold. That is to say, the first threshold is when the circulating current value of two batteries in parallel is less than or equal to the SOC difference between the two batteries under the maximum endurance capacity of the battery.
  • the first threshold may be less than or equal to 2%. Specifically, the first threshold may be 2%. It should be understood that the first threshold can also be other values, such as 3%, 1% or 0. From the perspective of battery performance, the first threshold should be as small as possible.
  • the first threshold is small, it may not be possible to match M cells that meet the first condition. target battery. Therefore, when setting the first threshold, two factors, battery performance and the number of batteries that meet the first condition, should be considered in a balanced manner.
  • the battery parameters include voltage
  • the battery parameters of the M target batteries satisfy the first condition, including: between any two batteries in the M target batteries The difference in voltage is less than the second threshold.
  • the second threshold can be obtained empirically. For example, under the same conditions, the circulating current value of two batteries of the same model when connected in parallel under multiple sets of voltage differences can be detected, and the voltage difference value when the circulating current value is less than or equal to the battery's maximum withstand current can be determined as the second threshold. That is to say, the second threshold is when the circulating current value of two batteries connected in parallel is less than or equal to the voltage difference between the two batteries under the maximum endurance capacity of the battery.
  • the second threshold may be less than or equal to 5V. Specifically, the second threshold may be 5V. It should be understood that the second threshold can also be other values, such as 6V, 4V, 3V, 2V, 1V or 0V.
  • the second threshold In terms of battery performance, the second threshold should be as small as possible. However, due to differences in charging conditions for batteries in different charging bins, if the second threshold is small, it may not be possible to match M cells that meet the first condition. target battery. Therefore, when setting the second threshold, two factors, battery performance and the number of batteries that meet the first condition, should be considered in a balanced manner.
  • the battery parameters include SOC and voltage
  • the battery parameters of the M target batteries satisfy the first condition, including: any two batteries among the M target batteries.
  • the difference in SOC between them is less than the first threshold
  • the difference in voltage between any two batteries among the M target batteries is less than the second threshold.
  • M target batteries that meet the first condition may also be determined based on other battery parameters besides SOC and voltage, which is not limited in the embodiments of the present application.
  • the station control system can also sort the waiting times of all or part of the batteries in the battery swap station from long to short, and according to the ranking, The M target batteries are determined therefrom. For example, the station control system may determine the M batteries with the longest waiting time in the sorting as the M target batteries.
  • M target batteries are selected in a first-in, first-out manner, so that each charging bin can be used in a balanced manner, thereby extending the life of the charging bin.
  • the station control system can also use other rules to determine the M target batteries based on the waiting time sorting, which is not limited here.
  • the station control system can also sort the distances from all or part of the batteries in the battery swap station to the battery swap position from large to small, and determine the M target batteries therefrom according to the sorting. For example, the station control system may determine the M batteries with the smallest distance in the sorting as the M target batteries.
  • M batteries with the smallest distance to the battery replacement position are selected as target batteries, which can effectively improve the battery replacement efficiency.
  • the station control system may also determine the M target batteries in combination with the information involved in the various embodiments mentioned above.
  • the M target batteries may be determined in the power swap station based on the battery parameters of the battery in the power swap station, the waiting time of the battery, and the distance from the battery to the power swap location.
  • the 120 may include part or all of the following content.
  • each candidate battery group in the multiple candidate battery groups includes M batteries.
  • Each candidate battery group The battery parameters of the battery pack satisfy the first condition.
  • S132 Determine one candidate battery group from the plurality of candidate battery groups according to the waiting times of the plurality of candidate battery groups, and the M batteries in the one candidate battery group are the M target batteries.
  • the station control system can group N batteries that are replaced from the vehicle each time and place them together. For example, they can be placed in different charging compartments in the same power replacement cabinet. Then, when the number of batteries required for the next power replacement is N, the station control system can determine one battery group as the target battery from the multiple battery groups including N batteries that were replaced together before. For example, the station control system can number the two batteries that are removed together each time. If the current vehicle also needs to exchange for two batteries at the battery swap station, the station control system can group the batteries from the multiple existing batteries in the battery swap station. Select a battery pack from a battery pack of 2 cells, and use the 2 cells in the selected battery pack as the target battery. In short, in this example, since the two batteries of the same battery pack are removed and entered into the battery compartment at the same time, it can be considered that the waiting time of different batteries in the same battery pack is the same.
  • the station control system can first select a plurality of candidate battery groups from the existing battery groups with M batteries in the battery swap station, and the battery parameters of each candidate battery group in the selected plurality of candidate battery groups are The first condition above needs to be met. For example, the difference in SOC between any two batteries in each candidate battery group is less than the above-mentioned first threshold. For another example, the voltage difference between any two batteries in each candidate battery group is less than the above-mentioned second threshold. If there are multiple candidate battery groups that meet the first condition, the station control system can further combine the waiting times of the multiple candidate battery groups to determine a candidate battery group, and save the M battery groups in the selected candidate battery group. The battery serves as the M target batteries.
  • the station control system first determines multiple candidate battery groups in the battery swap station based on the battery parameters of the battery, and then determines a candidate battery group based on the waiting time of the multiple candidate battery groups, which can maximize the The capacity of the battery system composed of the M target batteries is greatly increased, and it is also conducive to the balanced use of each charging compartment, thereby increasing the life of the charging compartment.
  • S122 may include: determining a candidate battery group with the longest waiting time from the plurality of candidate battery groups.
  • M batteries in the candidate battery group with the longest waiting time among the plurality of candidate battery groups are determined as the M target batteries.
  • M batteries in the candidate battery group with the longest waiting time among the plurality of candidate battery groups are determined as the M target batteries, which is conducive to the balanced use of each charging compartment, thereby improving the charging capacity of the charging compartment. life span.
  • the station control system may also first determine multiple candidate battery groups in the battery swap station based on the waiting time of the battery; and then determine the number of candidate battery groups in each of the multiple candidate battery groups.
  • the battery parameters of the battery are used to determine a candidate battery pack. For example, if the current vehicle needs to exchange for two batteries at the battery swap station, the station control system can sort the waiting times of the batteries in the battery swap station, and group two batteries with adjacent waiting times into a group, and set the waiting time to be less than a certain threshold. Multiple battery groups are used as candidate battery groups, and then the station control system determines a candidate battery group based on the battery parameters of the two batteries in each candidate battery group.
  • two batteries in one candidate battery group whose battery parameters satisfy the above-mentioned first condition can be used as target batteries to be installed on the vehicle.
  • the station control system determines whether the battery parameters of the two adjacent batteries meet the above first condition in order of the waiting times of the batteries from long to short, and sets the first Two batteries that meet the above first condition are determined as target batteries to be installed on the vehicle.
  • the SOC of each of the M target batteries is greater than the minimum SOC that allows battery swapping.
  • the station control system can determine K batteries in the power swap station based on whether the SOC is greater than the minimum SOC that allows power swapping.
  • the SOC of each battery among the K batteries is greater than the preset minimum SOC that allows power swapping.
  • Minimum SOC the station control system then selects M target batteries that meet the first condition from the K target batteries, where K is a positive integer greater than 1, and K is greater than M.
  • the K batteries are fault-free.
  • the charging compartment where the K batteries are located does not have problems such as water and electricity connections that cannot be disconnected. That is to say, when selecting K batteries in sequence, if an abnormality occurs in a battery compartment, the next battery will be re-selected.
  • the M target batteries are used to replace N batteries on the vehicle to provide electrical energy to the vehicle.
  • N and M may be equal or different. That is to say, N can be greater than M, N can also be less than M, and N can also be equal to M.
  • the method 100 further includes the following content.
  • the battery filling block does not include cells, and the battery filling block may not include a battery management system (battery management system, BMS).
  • BMS battery management system
  • S130 may include: determining the (N-M) battery filling blocks with the longest waiting time in the battery swap station as the (N-M) target battery filling blocks.
  • (N-M) target battery filling blocks are determined in a first-in, first-out manner, so that each charging bin used to place the battery filling blocks can be used in a balanced manner.
  • the waiting time of the battery filling block includes the waiting time after the battery filling block enters the battery compartment of the battery swap station.
  • N is less than M, and N is less than the maximum number R of batteries that can be installed in the vehicle, that is to say, the vehicle itself is equipped with N batteries and (R-N) battery filling blocks, During battery swapping, N batteries and (M-N) battery filling blocks can be removed, and M target batteries selected from the battery swap station can be installed on the vehicle.
  • the station control system can also determine (N-M) battery filling blocks based on the placement positions of the battery filling blocks in the battery swap station.
  • the station control system can also randomly determine (N-M) battery filling blocks in the battery swap station.
  • N is the current number of batteries in the vehicle.
  • the embodiments of the present application do not exclude the technical solution of removing only some of the batteries on the vehicle and replacing them with batteries in a battery swap station to provide electric energy to the vehicle.
  • the relay in the battery that has not been removed from the vehicle can be controlled to be disconnected, that is, the battery that has not been removed does not need to participate in the work while the vehicle is driving. The embodiments of the present application do not limit this.
  • the station control system may send the storage location information of the battery compartment where the M target batteries are located to the battery swap controller. Then, the battery replacement controller can control the water and electricity disconnection of the battery compartment where the M target batteries are located. The station control system can also send the position information of the battery bins where N batteries are to be placed to the battery swap controller.
  • the battery swap controller controls the battery swap device to install M target batteries into the vehicle
  • the battery swap controller can control the battery swap. The device places the N batteries removed from the vehicle into the battery compartment indicated by the station control system.
  • the station control system may first determine the location information of the battery compartments where the N batteries are to be placed before sending the location information of the battery compartments where the N batteries are to be placed to the battery replacement controller.
  • the station control system can determine the position information of the battery compartment where the N batteries are to be placed based on various rules. For example, the station control system can sort the vacant charging bins according to the number of charging times, and can give priority to charging bins with smaller charging times, so that each charging bin can be used in a balanced manner. For another example, the station control system can also choose a charging bin with a smaller number.
  • the station control system can obtain various preset values involved in the embodiments of this application from the cloud server. For example, the first threshold, the second threshold, the minimum SOC that allows battery swapping, etc.
  • the charging compartment is faultless and meets the charging requirements, it should be ensured that the charging compartment is selected at least once during the selection cycle.
  • the station control system should try to consider placing faulty batteries in faulty charging bins to facilitate rational utilization of resources.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of a battery replacement device 200 according to an embodiment of the present application. As shown in Figure 5, the device 200 includes part or all of the following content.
  • the acquisition unit 210 is configured to acquire the battery parameters of the batteries in the battery swap station when it is determined that the vehicle needs to be exchanged for M batteries in the battery swap station;
  • the determining unit 220 is configured to determine M target batteries in the battery swap station according to battery parameters of the batteries in the battery swap station, and the M target batteries satisfy the first condition, such that the M target batteries are When the vehicle provides electric energy, it can achieve discharge equilibrium, where M is a positive integer greater than 1.
  • the battery parameters include state of charge SOC
  • the battery parameters of the M target batteries satisfy the first condition, including: any two batteries among the M target batteries.
  • the difference in SOC between is less than the first threshold.
  • the first threshold is 2%.
  • the battery parameters include voltage
  • the battery parameters of the M target batteries satisfy the first condition, including: the voltage between any two batteries among the M target batteries. The difference is less than the second threshold.
  • the second threshold is 5V.
  • the determination unit 220 is specifically configured to determine multiple candidate battery groups in the battery swap station according to the battery parameters of the battery.
  • Each candidate battery group includes M batteries, and the battery parameter of each candidate battery group satisfies the first condition; according to the waiting time of the multiple candidate battery groups, determine one from the multiple candidate battery groups.
  • Candidate battery group, the M batteries in the candidate battery group are the M target batteries.
  • the determination unit 220 is specifically configured to determine a candidate battery group with the longest waiting time from the plurality of candidate battery groups.
  • the waiting time of the battery includes the waiting time after the battery enters the battery compartment of the battery swap station and/or the waiting time after the battery is fully charged in the battery compartment. time.
  • the M target batteries are used to replace N batteries on the vehicle to provide electric energy to the vehicle, N is a positive integer, and M is less than N, and the determination unit 220 It is also used for: determining (N-M) target battery filling blocks in the power swap station, the (N-M) target battery filling blocks and the M target batteries being jointly used for the N installed on the vehicle. In the position of a battery, the battery filling block does not include a battery cell compared to the battery.
  • the determination unit 220 is specifically configured to determine the (N-M) battery filling blocks with the longest waiting time in the battery swap station as the (N-M) target battery filling blocks. .
  • the waiting time of the battery filling block includes the waiting time after the battery filling block enters the battery compartment of the battery swap station.
  • the SOC of each of the M target batteries is greater than the minimum SOC that allows battery swapping.
  • the device 200 may correspond to the station control system in the method embodiment of the present application, and the above and other operations and/or functions of each module in the device 200 are respectively to realize each of FIGS. 2 to 4
  • the corresponding process of the station control system in the method will not be repeated here for the sake of simplicity.
  • FIG. 6 shows a schematic block diagram of the station control system 300 according to the embodiment of the present application.
  • the station control system is used in battery swap stations, which are used to provide battery swap services for vehicles.
  • the device 300 includes a processor 310 and a memory 320, where the memory 320 is used to store instructions, and the processor 310 is used to read the instructions and execute the aforementioned various embodiments of the present application based on the instructions. method.
  • the memory 320 may be a separate device independent of the processor 310 , or may be integrated into the processor 310 .
  • the station control system 300 may also include a transceiver 330, and the processor 310 may control the transceiver 330 to communicate with other devices. Specifically, you can send information or data to other devices, or receive information or data sent by other devices.
  • Embodiments of the present application also provide a computer storage medium for storing a computer program, and the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the station control system in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the station control system in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of simplicity, here No longer.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the station control system in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application. In order to It’s concise and I won’t go into details here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种更换电池的方法、装置、站控系统和移动终端。该方法包括在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数;根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M大于1。本申请实施例提供的方法、装置、站控系统,有利于提高换电性能。

Description

更换电池的方法、装置和站控系统 技术领域
本申请涉及电池技术领域,特别是涉及一种更换电池的方法、装置和站控系统。
背景技术
随着新能源技术的发展,电池的应用领域越来越广泛,如可作为动力源为车辆提供动力,减少不可再生资源的使用。
在车辆中电池的电量不足以支持车辆继续行驶的情况下,可利用充电桩等充电设备对车辆进行充电,即对车辆中的电池进行充电,以实现电池的充、放电循环使用。但电池充电需要花费较长时间,限制了车辆的续航使用。
为了提高车辆的续航使用率,换电技术应运而生。车辆可通过在换电站中将电量不足的电池更换为电量充足的电池,实现车辆的快速续航使用。电量不足的电池可在换电站中充电,充电后的电池可作为为后续进入换电站换电的车辆进行更换的电池。如何在换电站中选取电池,目前没有可提供的方案。
发明内容
本申请实施例提供了一种更换电池的方法、装置和站控系统,有利于提高换电性能。
第一方面,提供了一种更换电池的方法,该方法包括在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数;根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M大于1。
在该实施例中,通过设置第一条件,并且在选择M个目标电池时参考该第一条件,能够尽可能地减小M个目标电池在为车辆提供电能时的电池之间的环流,并且尽可能地使得该M个目标电池达到放电均衡,从而能够最大程度地提升由该M个目标电池所组成的电池系统的容量,有利于提高换电性能。
在一种可能的实现方式中,所述电池参数包括荷电状态SOC,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的SOC之差小于第一阈值。
在该实施例中,通过设置第一阈值,并且选择任意两个电池之间的SOC之差 小于第一阈值的M个目标电池,能够尽可能地减小所选择的M个目标电池在为车辆提供电能时的电池之间的环流,并且尽可能地使得该M个目标电池达到放电均衡,从而能够最大程度地提升由该M个目标电池所组成的电池系统的容量。
在一种可能的实现方式中,所述第一阈值为2%。
在一种可能的实现方式中,所述电池参数包括电压,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的电压之差小于第二阈值。
在该实施例中,通过设置第二阈值,并且选择任意两个电池之间的电压之差小于第二阈值的M个目标电池,能够尽可能地减小所选择的M个目标电池在为车辆提供电能时的电池之间的环流,并且尽可能地使得该M个目标电池达到放电均衡,从而能够最大程度地提升由该M个目标电池所组成的电池系统的容量。
在一种可能的实现方式中,所述第二阈值为5V。
在一种可能的实现方式中,所述根据所述电池的电池参数,在所述换电站中确定所述M个目标电池,包括:根据所述电池的电池参数,在所述换电站中确定多个候选电池组,所述多个候选电池组中的每个候选电池组包括M个电池,所述每个候选电池组的电池参数满足所述第一条件;根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,所述一个候选电池组中的M个电池为所述M个目标电池。
在该实施例中,站控系统先根据电池的电池参数,在换电站中确定多个候选电池组,然后再根据多个候选电池组的等待时间,从中确定一个候选电池组,既能够最大程度地提升由该M个目标电池所组成的电池系统的容量,又有利于均衡使用各充电仓,从而可以提高充电仓的寿命。
在一种可能的实现方式中,所述根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,包括:将从所述多个候选电池组中确定等待时间最长的一个候选电池组。
在该实施例中,将所述多个候选电池组中等待时间最长的一个候选电池组中的M个电池确定为所述M个目标电池,有利于均衡使用各充电仓,从而可以提高充电仓的寿命。
在一种可能的实现方式中,所述电池的等待时间包括所述电池进入所述换电站的电池仓后的等待时间和/或所述电池在所述电池仓内充满电后的等待时间。
在一种可能的实现方式中,所述M个目标电池用于替换所述车辆上的N个电池以为所述车辆提供电能,M小于N,所述方法还包括:在所述换电站中确定(N-M)个目标电池填充块,所述(N-M)个目标电池填充块和所述M个目标电池共同用于安装到所述车辆上的所述N个电池的位置,所述电池填充块不包括电芯。
在该实施例中,通过将(N-M)个目标电池填充块和M个目标电池共同安装到车辆上的N个替换下来的电池的位置,可以避免车辆上电池的安装位置空置导致接口暴露在外,从而可以提高车辆的安全性能。
在一种可能的实现方式中,所述在所述换电站中确定(N-M)个目标电池填充块,包括:将所述换电站中等待时间最长的(N-M)个所述电池填充块确定为所述(N-M)个目标电池填充块。
在该实施例中,采用先进先出的方式确定(N-M)个目标电池填充块,能够均衡使用用于放置电池填充块的各充电仓。
在一种可能的实现方式中,所述电池填充块的等待时间包括所述电池填充块进入所述换电站的电池仓后的等待时间。
在一种可能的实现方式中,所述M个目标电池中的每个电池的SOC均大于允许换电的最小SOC。
第二方面,提供了一种更新电池的装置,包括:获取单元,用于在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数;确定单元,用于根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M大于1。
第三方面,提供了一种站控系统,应用于换电站,所述换电站用于为车辆提供换电服务,所述站控系统包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行第一方面及其第一方面任一种可能的实现方式中所述的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例公开的一种应用场景的示意图。
图2是本申请实施例公开的更换电池的方法的示意性框图。
图3是本申请实施例公开的更换电池的方法的再一示意性框图。
图4是本申请实施例公开的更换电池的方法的再一示意性框图。
图5是本申请实施例公开的更换电池的装置的示意性框图。
图6是本申请实施例公开的站控系统的示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着新能源技术的发展,电池的应用领域越来越广泛,如可作为动力源为车辆提供动力,减少不可再生资源的使用。在车辆中电池的电量不足以支持车辆继续行驶的情况下,可利用充电桩等充电设备对车辆进行充电,即对车辆中的电池进行充电,以实现电池的充、放电循环使用。但电池充电需要花费较长时间,限制了车辆的续航使用。
为了提高车辆的续航使用率,换电技术应运而生。换电技术采用“车电分离”的方式,可以通过换电站为车辆提供电池更换服务,即电池可以从车辆上快速取下或者安装。从车辆上取下的电池可以放入换电站的换电柜中进行充电,以备为后续进入换电站的车辆进行换电。如何在换电站中选取电池,目前没有可提供的方案。
有鉴于此,本申请实施例提供了一种更换电池的方法,用户可根据自己的需求,对车辆上的电池进行更换,而不再是单一地将车辆上的所有电池全部更换,能够针对性地满足用户的需求,从而提高了用户的换电体验。另外,站控系统可以根据换电站中的电池的电池参数,在换电站中确定目标电池,有利于选择到性能更好的电池,以提高车辆的整体性能。
图1示出了本申请实施例的更换电池的方法的应用场景的一种示意图。如图1所示,该更换电池的方法的应用场景可涉及到换电站11、车辆12和电池。
换电站11可指为车辆提供换电服务的场所。例如,换电站11可以为固定的场所,或者,换电站11可为如移动换电车辆等可移动场所,在此并不限定。
车辆12可与电池可拆卸连接。在一些示例中,车辆12可以是小汽车、货车等以动力电池为动力源的车辆。
电池可包括设置在车辆12内的电池和位于换电站11中用于换电的电池。为了便于区分,如图1所示,车辆12内待更换的电池记作电池141,换电站中用于换电的电池记作电池142。电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢 电池、锂硫电池、锂空气电池或者钠离子电池等,在此并不限定。从规模而言,电池可为电池单体、电池模组或电池包,在此并不限定。电池除了可作为动力源为车辆12的电机供电,还可为车辆12中的其他用电器件供电,例如,电池还可为车内空调、车载播放器等供电。
当安装有电池141的车辆12驶入换电站11之后,换电站11通过换电装置将电池141从车辆12取下,并从换电站11中取出电池142,然后将电池142安装到车辆12上。之后安装有电池142的车辆12可以驶离换电站11。通过该换电技术,可以在几分钟、甚至数十秒内对车辆进行快速的能量补充,提高了用户的体验。
如图1所示,换电站11中可设置有换电柜13。换电柜13包括第一电池管理单元131和充电单元132。换电柜13还可设置有多个充电仓133,用于换电的电池可放置于换电站11的换电柜13的充电仓133中。第一电池管理单元131可为设置在换电柜13中的电池管理单元,例如,可称第一电池管理单元131为中心电池管理单元(Central Battery Management Unit,CBMU)。充电单元132可对充电仓133中的电池充电。在一些示例中,充电单元可包括交流/直流模块即AC/DC模块等具有充电功能的部件、装置或设备,在此并不限定。充电单元132可与充电仓133一一对应设置,也可多个充电仓133共用一个充电单元132,在此并不限定。
电池可对应设置有第二电池管理单元143。在一些示例中,第二电池管理单元143可为与电池对应的电池管理单元,例如,可称第二电池管理单元143为从电池管理单元(Slave Battery Management Unit,SBMU)。
换电站11还可对应设置有管理装置。该管理装置可为集中式结构,也可为分布式结构,在此并不限定。管理装置可设置在换电站11内,也可以设置在换电站11外。在管理装置为分布式结构的情况下,管理装置还可以部分设置在换电站11内,部分设置在换电站11外。例如,如图1所示,管理装置可以包括换电站11内的站控系统151和换电站11外的云端服务器152,在此并不限定。
可选地,第一电池管理单元131可通过有线或无线方式与其他单元、模块、装置等进行通信交互。第二电池管理单元143可通过有线或无线方式与其他单元、模块、装置等进行通信交互。站控系统151可通过有线或无线方式与其他单元、模块、装置等进行通信交互。有线通信方式包括例如CAN通信总线。无线通信方式包括例如蓝牙通信、WiFi通信、ZigBee通信等各种方式,在此并不限定。
例如,第一电池管理单元131可以与第二电池管理单元143之间进行通信,以控制对电池仓133内的电池142进行充电。再例如,站控系统151可以与第一电池管理单元131或第二电池管理单元143之间进行通信,以获取车辆12上的电池141或充电仓133内的电池142的相关信息。再例如,站控系统151也可以与云端服务器152之间进行通信,以获取车辆12上的电池141或充电仓133内的电池142的相关信息。
图2示出了本申请实施例的更换电池的方法100的示意性框图。应理解,方法100中的车辆可以是图1中的车辆12,方法100中的换电站可以是图1中的换电站11,方法100可以由图1所示的换电站11中的站控系统151执行,如图2所示,该方法100包括以下部分或全部内容。
S110,在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数。
S120,根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M为大于1的正整数。
首先,需要说明的是,本申请实施例中的电池是指能为车辆提供电能的电池,也就是说,电池包括电芯。通俗地讲,电池为“真”电池。例如,本申请实施例中的电池可以为图1中的电池141和电池142。本申请实施例还涉及与电池相似的电池填充块,该电池填充块可以具有与电池相同的外壳,即该电池填充块也能够安装到车辆上,但该电池填充块并不包括电芯,无法为车辆提供电能。通俗地讲,电池填充块可以称为“假”电池。电池填充块也可以放置在换电站中。例如,换电站中的充电仓可以分为两部分,一部分是用于放置电池的充电仓,可以对电池进行充电,另一部分是用于放置电池填充块的充电仓,不用来对电池填充块进行充电。可选地,用于放置电池填充块的仓也可以没有充电作用,只是起到容纳作用。
一般来讲,车辆具有几个电池,是指车辆具有几个“真”电池。在本申请实施例中,对于能够安装多个电池的车辆来说,站控系统既可以按照用户的需求在换电站中换取相应数量的电池,又可以从云端服务器获取车辆上当前安装的电池数量,并默认用户需要在换电站换取相同数量的电池。例如,在换电时,站控系统可以获取用户输入的换电指令,换电指令用于指示从换电站换取M个电池,站控系统可以根据该换电指令,在换电站的电池仓中确定M个目标电池。在确定好该M个目标电池之后,该站控系统还可以控制换电装置将车辆上的电池从车辆上拆下来,并将M个目标电池安装到车辆上,需要说明的是,N小于或等于车辆能够安装的电池的最大数量R。例如,车辆最多能安装3块电池,那么N不大于3。
进一步地,站控系统在根据上述各种方式确定到车辆需要在换电站换取多个电池的情况下,也可以去获取换电站中电池的电池参数,并且站控系统可以根据换电站中电池的电池参数在换电站中确定多个目标电池。具体地,站控系统可以获取换电站中当前所有的电池的电池参数,也可以获取换电站中部分电池的电池参数,例如,若换电站为双通道,也就是说,换电位置的两边均具有充电仓,站控系统可以选择一个通道,并且获取一个通道内所有的电池的电池参数。该电池的电池参数可以包括但不限于以下中的至少一个:荷电状态(state of charge,SOC)、电压或健康状态(state of health,SOH)。站控系统在获取到换电站中电池的电池参数之后,在换电站中确定M个目标电池。具体地,该M个目标电池的电池参数需要满足第一条件,以使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,也就是说,该M个目标电池之间不存在环流。
在该实施例中,在确定车辆需要在换电站换取多个电池的情况下,通过设置第一条件,并且在选择多个目标电池时参考该第一条件,能够尽可能地减小多个目标电池在为车辆提供电能时的电池之间的环流,并且尽可能地使得该多个目标电池达到放电均衡,从而能够最大程度地提升由该多个目标电池所组成的电池系统的容量,有利 于提高换电性能。
在一种示例中,用户可以通过自己的移动终端,例如,手机、平板,来向站控系统发送换电指令,例如,可以由移动终端的处理器向站控系统发送换电指令。在另一种示例中,用户也可以通过车辆来向站控系统发送换电指令,具体地,可以由例如,可以由车辆上的整车控制单元(Vehicle Control Unit,VCU)向站控系统发送换电指令。具体地,在换电时,用户可以在移动终端的显示屏或者是由VCU控制的车辆上的显示屏上点击一键换电,显示屏会向用户显示多种换电模式,多种换电模式中的第i种换电模式用于指示从换电站中换取i个电池,其中,i为1至R中的任一整数。
为了便于描述,以下将以移动终端与站控系统之间的交互为例具体描述本申请实施例。具体地,用户可以通过在移动终端的显示屏上的点击操作,选择一种换电模式,移动终端向站控系统发送换电指令,该换电指令用于指示用户选择的换电模式,例如,该换电指令用于指示多种换电模式中的第M种换电模式,即从换电站中换取M个电池。在其他实施例中,用户也可以直接通过在移动终端的显示屏上输入期望的换电模式,并通过移动终端向站控系统发送换电指令以指示用户输入的换电模式,本申请实施例对此不作限定。
可选地,在一种实施例中,站控系统可以直接从移动终端获取用户输入的换电指令。例如,站控系统具有蓝牙通信功能,移动终端也具有蓝牙通信功能,站控系统与移动终端通过建立蓝牙连接,以获取用户输入的换电指令。在另一种实施例中,站控系统也可以间接从移动终端获取用户输入的换电指令。例如,移动终端可以向云端服务器发送用户输入的换电指令,云端服务器可以向站控系统转发该用户输入的换电指令。移动终端与云端服务器以及站控系统与云端服务器之间的交互可以通过网络实现。
在未来,用户在购买新能源汽车时,可能不再购买电池,而是采用租用的方式获取电池,租用电池可能会以电池的数量按天计费。用户可以根据对车辆的使用用途确定对电池的需求。例如,假设用户只需要上下班驾驶车辆,一块电池可以支撑车辆连续行驶两周,那么相对于租用多块电池而言,租用一块电池的成本更低。再例如,用户需要长途驾驶车辆,并且两块电池才能满足续航,那么用户可以租用两块电池,减少换电次数。
在该实施例中,站控系统可以在换电站中确定与用户输入的换电指令所指示的电池数量相等的目标电池,即用户可根据自己的需求,对车辆上的电池进行更换,而不再是单一地将车辆上的所有电池全部更换,能够针对性地满足用户的需求,从而提高了用户的换电体验。
可选地,在本申请一实施例中,电池参数可以包括SOC,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的SOC之差小于第一阈值。
该第一阈值可以根据经验获的。例如,可以在同一条件下,检测相同型号的2个电池在多组SOC差值下并联时的环流值,将环流值小于或等于电池最大承受电流下的SOC差值确定为该第一阈值。也就是说,该第一阈值是两个电池并联时的环流值小 于或等于电池最大承受能力下的该两个电池之间的SOC差值。可选地,该第一阈值可以小于或等于2%。具体地,该第一阈值可以是2%。应理解,该第一阈值也可以是其他数值,例如,3%、1%或者0等。从电池的性能上来讲,该第一阈值应越小越好,但由于不同充电仓对电池的充电条件的差异,若第一阈值较小,可能会导致无法匹配到满足第一条件的M个目标电池。因此,在设定该第一阈值时,应均衡考虑电池性能和满足第一条件的电池的数量这两方面的因素。
在该实施例中,通过设置第一阈值,并且选择任意两个电池之间的SOC之差小于第一阈值的M个目标电池,能够尽可能地减小所选择的M个目标电池在为车辆提供电能时的电池之间的环流,并且尽可能地使得该M个目标电池达到放电均衡,从而能够最大程度地提升由该M个目标电池所组成的电池系统的容量。
可选地,在本申请另一实施例中,所述电池参数包括电压,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的电压之差小于第二阈值。
该第二阈值可以根据经验获的。例如,可以在同一条件下,检测相同型号的2个电池在多组电压差值下并联时的环流值,将环流值小于或等于电池最大承受电流下的电压差值确定为该第二阈值。也就是说,该第二阈值是两个电池并联时的环流值小于或等于电池最大承受能力下的该两个电池之间的电压差。可选地,该第二阈值可以小于或等于5V。具体地,该第二阈值可以为5V。应理解,该第二阈值也可以是其他数值,例如,6V、4V、3V、2V、1V或0V等。从电池的性能上来讲,该第二阈值应越小越好,但由于不同充电仓对电池的充电条件的差异,若第二阈值较小,可能会导致无法匹配到满足第一条件的M个目标电池。因此,在设定该第二阈值时,应均衡考虑电池性能和满足第一条件的电池的数量这两方面的因素。
在该实施例中,通过设置第二阈值,并且选择任意两个电池之间的电压之差小于第二阈值的M个目标电池,能够尽可能地减小所选择的M个目标电池在为车辆提供电能时的电池之间的环流,并且尽可能地使得该M个目标电池达到放电均衡,从而能够最大程度地提升由该M个目标电池所组成的电池系统的容量。
可选地,在本申请再一实施例中,所述电池参数包括SOC和电压,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的SOC之差小于第一阈值,并且,所述M个目标电池中的任意两个电池之间的电压之差小于第二阈值。
在本申请的其他实施例中,也可以根据除SOC和电压之外的其他电池参数,来确定满足第一条件的M个目标电池,本申请实施例对此不作限定。
可替代地,站控系统除了根据换电站中电池的电池参数去确定目标电池,站控系统还可以对换电站中的全部或部分电池的等待时间进行从长到短的排序,并且按照排序,从中确定所述M个目标电池。例如,站控系统可以将排序中等待时间最长的M个电池确定为所述M个目标电池。
在该实施例中,采用先入先出的方式选择M个目标电池,能够均衡使用各充电仓,从而可以提高充电仓的寿命。
可选地,站控系统也可以基于等待时间的排序,采用其他规则从中确定所述M个目标电池,在此不作限定。例如,可以将等待时间最长的L1个电池和等待时间最短的L2个电池共同确定为所述M个目标电池,其中,M=L1+L2。
在其他示例中,站控系统也可以对换电站中的全部或部分电池到换电位置的距离进行从大到小的排序,并且按照排序,从中确定所述M个目标电池。例如,站控系统可以将排序中距离最小的M个电池确定为所述M个目标电池。
在该实施例中,选择到换电位置的距离最小的M个电池为目标电池,能够有效提高换电效率。
在其他实施例中,站控系统也可以结合上述各种实施例中所涉及到的信息,确定所述M个目标电池。例如,可以根据换电站中所述电池的电池参数、所述电池的等待时间以及所述电池到换电位置的距离,在换电站中确定所述M个目标电池。
可选地,在本申请实施例中,如图3所示,所述120,可以包括以下部分或全部内容。
S121,根据所述换电站中电池的电池参数,在所述换电站中确定多个候选电池组,所述多个候选电池组中的每个候选电池组包括M个电池,所述每个候选电池组的电池参数满足所述第一条件。
S132,根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,所述一个候选电池组中的M个电池为所述M个目标电池。
首先,需要解释的是,站控系统可以将每次从车辆上换下来的N个电池作为一组并且放置在一起,例如,可以放置在同一个换电柜中的不同充电仓中。那么,当下一次换电所需要的电池的数量为N时,站控系统可以从之前一起换下来的包括N个电池的多个电池组中确定一个电池组作为目标电池。举例来说,站控系统可以对每次一起拆下来的2个电池进行组编号,若当前车辆也需要换取换电站的2个电池,则站控系统可以从换电站中已有的多个具有2个电池的电池组中选择一个电池组,并将所选择的电池组中的2个电池作为目标电池。总之,在该示例中,由于同一个电池组的2个电池是同时拆下并进入电池仓内的,因此,可以认为同一个电池组中的不同电池的等待时间是相同的。
具体地,站控系统可以先从换电站中已有的具有M个电池的电池组中,选择多个候选电池组,所选择的该多个候选电池组中的每个候选电池组的电池参数需要满足上述第一条件。例如,每个候选电池组中任意两个电池之间的SOC之差小于上述第一阈值。再例如,每个候选电池组中任意两个电池之间的电压之差小于上述第二阈值。若存在多个满足第一条件的候选电池组,站控系统可以进一步地再结合该多个候选电池组的等待时间,确定一个候选电池组,并将所选择的一个候选电池组中的M个电池作为所述M个目标电池。
在该实施例中,站控系统先根据电池的电池参数,在换电站中确定多个候选电池组,然后再根据多个候选电池组的等待时间,从中确定一个候选电池组,既能够最大程度地提升由该M个目标电池所组成的电池系统的容量,又有利于均衡使用各充电仓,从而可以提高充电仓的寿命。
可选地,在本申请实施例中,S122,可以包括:从所述多个候选电池组中确定等待时间最长的一个候选电池组。换句话说,将所述多个候选电池组中等待时间最长的一个候选电池组中的M个电池确定为所述M个目标电池。
在该示例中,将所述多个候选电池组中等待时间最长的一个候选电池组中的M个电池确定为所述M个目标电池,有利于均衡使用各充电仓,从而可以提高充电仓的寿命。
在其他实施例中,站控系统也可以先根据所述电池的等待时间,在所述换电站中确定多个候选电池组;然后再根据所述多个候选电池组中每个候选电池组中的电池的电池参数,确定一个候选电池组。例如,若当前车辆需要换取换电站的2个电池,站控系统可以对换电站中的电池的等待时间进行排序,并且将等待时间相邻的2个电池作为一组,将等待时间小于一定阈值的多个电池组作为候选电池组,之后站控系统再根据每个候选电池组中的两个电池的电池参数,确定一个候选电池组。例如,可以将多个候选电池组中电池的电池参数满足上述第一条件的一个候选电池组中的2个电池作为待安装在车辆上的目标电池。在其他示例中,站控系统在对电池的等待时间排序之后,从电池的等待时间从长到短的顺序,依次判断相邻的2个电池的电池参数是否满足上述第一条件,将第一个满足上述第一条件的2个电池确定为待安装在车辆上的目标电池。
在选取电池时,在电池无故障且符合换电要求的情况下,应至少保证电池在选取周期内能够被选取一次。
可选地,在本申请实施例中,所述M个目标电池中的每个目标电池的SOC均大于允许换电的最小SOC。例如,站控系统可以根据SOC是否大于允许换电的最小SOC,在所述换电站中确定K个电池,所述K个电池中的每个电池的SOC大于所述预设的允许换电的最小SOC;站控系统再从该K个目标电池中选择满足第一条件的M个目标电池,其中,K为大于1的正整数,K大于M。
可选地,该K个电池无故障。例如,该K个电池所在的充电仓并不存在水电连接等无法断开的问题。也就是说,在依次选择K个电池时,若某个电池仓发生异常,则重新选择下一个电池。
可选地,所述M个目标电池用于替换所述车辆上的N个电池以为所述车辆提供电能,应理解,N和M可以相等也可以不等。也就是说,N可以大于M,N也可以小于M,N还可以等于M。
在N大于M的情况下,如图4所示,所述方法100还包括以下内容。
S130,在所述换电站中确定(N-M)个目标电池填充块,所述(N-M)个目标电池填充块和所述M个目标电池共同用于安装到所述车辆上的所述N个电池的位置,所述电池填充块相比于所述电池不包括电芯。
具体地,当N大于M时,M个目标电池无法填满N个电池的安装位置,也就是说,当M个目标电池安装在车辆上时,会有(N-M)个安装位置空置。此时,可以利用电池填充块填满该(N-M)个安装位置。如上文所述,电池填充块与电池相比不包括电芯,该电池填充块也可以不包括电池管理系统(battery management system, BMS)。该电池填充块具有能够安装到车辆上的接口。
在该实施例中,通过将(N-M)个目标电池填充块和M个目标电池共同安装到N个替换下来的电池的位置,可以避免车辆上电池的安装位置空置导致接口暴露在外,从而可以提高车辆的安全性能。
在一种示例中,S130,可以包括:将所述换电站中等待时间最长的(N-M)个所述电池填充块确定为所述(N-M)个目标电池填充块。
在该示例中,采用先进先出的方式确定(N-M)个目标电池填充块,能够均衡使用用于放置电池填充块的各充电仓。
可选地,在本申请实施例中,所述电池填充块的等待时间包括所述电池填充块进入所述换电站的电池仓后的等待时间。
可选地,在本申请实施例中,若N小于M,并且N小于车辆能够安装的电池的最大数量R,也就是说,车辆上本身安装有N个电池和(R-N)个电池填充块,在换电时,可以将N个电池以及(M-N)个电池填充块拆下来,并将从换电站中选择的M个目标电池安装到车辆上。
应理解,本申请实施例并不限定确定电池填充块所采用的规则。例如,站控系统也可以根据换电站中电池填充块的放置位置确定(N-M)个电池填充块。再例如,站控系统也可以在换电站中随机确定(N-M)个电池填充块。
应理解,若车辆具有多个电池,在需要换电时,为了避免电池之间存在的环流对电池的性能造成影响,通常需要将车辆上的所有电池拆下来,并替换为换电站中的电池以为车辆提供电能。也就是说,N为车辆当前的电池数量。但是,本申请实施例并不排除只将车辆上的部分电池拆下来,并替换为换电站中的电池以为车辆提供电能的技术方案。例如,可以控制车辆上没被拆下来的电池中的继电器断开,即在车辆行驶过程中,未被拆下来的电池可以不参与工作。本申请实施例对此并不作限定。
可选地,本申请实施例中,站控系统在确定了M个目标电池之后,可以向换电控制器发送该M个目标电池所在的电池仓的仓位信息。进而换电控制器可以控制该M个目标电池所在的电池仓的水电断开连接。站控系统也可以向换电控制器发送N个电池待放置的电池仓的仓位信息,当换电控制器控制换电装置将M个目标电池安装到车辆之后,换电控制器可以控制换电装置将从车辆上拆下来的N个电池放置到站控系统所指示的电池仓内。
可选地,在本申请实施例中,站控系统在向换电控制器发送N个电池待放置的电池仓的仓位信息之前,可以先确定该N个电池待放置的电池仓的仓位信息。站控系统可以基于各种规则,确定该N个电池待放置的电池仓的仓位信息。例如,站控系统可以按照充电次数对空置的充电仓进行排序,并且可以优先选择充电次数较小的充电仓,从而可以均衡使用各充电仓。再例如,站控系统也可以选择编号较小的充电仓。
应理解,本申请实施例所涉及到的各种预设值,站控系统均可以从云端服务器中获取。例如,第一阈值、第二阈值以及允许换电的最小SOC等。
在放置电池时,在充电仓无故障且符合充电要求的情况下,应至少保证充电仓在选取周期内被选取一次。
可选地,在放置电池时,站控系统应尽量考虑将有故障的电池放在有故障的充 电仓内,以便资源合理利用。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文详细描述了本申请实施例的更换电池的方法,下面将结合图5和图6详细描述本申请实施例的更换电池的装置。方法实施例所描述的技术特征适用于以下装置实施例。
图5示出了本申请实施例的更换电池的装置200的示意性框图。如图5所示,该装置200包括以下部分或全部内容。
获取单元210,用于在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数;
确定单元220,用于根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M为大于1的正整数。
可选地,在本申请实施例中,所述电池参数包括荷电状态SOC,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的SOC之差小于第一阈值。
可选地,在本申请实施例中,所述第一阈值为2%。
可选地,在本申请实施例中,所述电池参数包括电压,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的电压之差小于第二阈值。
可选地,在本申请实施例中,所述第二阈值为5V。
可选地,在本申请实施例中,所述确定单元220具体用于:根据所述电池的电池参数,在所述换电站中确定多个候选电池组,所述多个候选电池组中的每个候选电池组包括M个电池,所述每个候选电池组的电池参数满足所述第一条件;根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,所述一个候选电池组中的M个电池为所述M个目标电池。
可选地,在本申请实施例中,所述确定单元220具体用于:将从所述多个候选电池组中确定等待时间最长的一个候选电池组。
可选地,在本申请实施例中,所述电池的等待时间包括所述电池进入所述换电站的电池仓后的等待时间和/或所述电池在所述电池仓内充满电后的等待时间。
可选地,在本申请实施例中,所述M个目标电池用于替换所述车辆上的N个电池以为所述车辆提供电能,N为正整数,且M小于N,所述确定单元220还用于:在所述换电站中确定(N-M)个目标电池填充块,所述(N-M)个目标电池填充块和所述M个目标电池共同用于安装到所述车辆上的所述N个电池的位置,所述电池填充块相比于所述电池不包括电芯。
可选地,在本申请实施例中,所述确定单元220具体用于:将所述换电站中等待时间最长的(N-M)个电池填充块确定为所述(N-M)个目标电池填充块。
可选地,在本申请实施例中,所述电池填充块的等待时间包括所述电池填充块进入所述换电站的电池仓后的等待时间。
可选地,在本申请实施例中,所述M个目标电池中的每个目标电池的SOC均大于允许换电的最小SOC。
应理解,根据本申请实施例的装置200可对应于本申请方法实施例中的站控系统,并且装置200中的各个模块的上述和其它操作和/或功能分别为了实现图2至图4各方法中站控系统的相应流程,为了简洁,在此不再赘述。
图6示出了本申请实施例的站控系统300的示意性框图。该站控系统应用于换电站,换电站用于为车辆提供换电服务。如图6所示,该装置300包括处理器310和存储器320,其中,存储器320用于存储指令,处理器310用于读取所述指令并基于所述指令执行前述本申请各种实施例的方法。
其中,存储器320可以是独立于处理器310的一个单独的器件,也可以集成在处理器310中。
可选地,如6所示,该站控系统300还可以包括收发器330,处理器310可以控制该收发器330与其他设备进行通信。具体地,可以向其他设备发送信息或数据,或者接收其他设备发送的信息或数据。
本申请实施例还提供了一种计算机存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器 (Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的站控系统,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的站控系统,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的站控系统,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (25)

  1. 一种更换电池的方法,其特征在于,包括:
    在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数;
    根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述电池参数包括荷电状态SOC,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的SOC之差小于第一阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述第一阈值为2%。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述电池参数包括电压,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的电压之差小于第二阈值。
  5. 根据权利要求4所述的方法,其特征在于,所述第二阈值为5V。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据所述换电站中电池的电池参数,在所述换电站中确定M个目标电池,包括:
    根据所述换电站中电池的电池参数,在所述换电站中确定多个候选电池组,所述多个候选电池组中的每个候选电池组包括M个电池,所述每个候选电池组的电池参数满足所述第一条件;
    根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,所述一个候选电池组中的M个电池为所述M个目标电池。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,包括:
    从所述多个候选电池组中确定等待时间最长的一个候选电池组。
  8. 根据权利要求6或7所述的方法,其特征在于,所述电池的等待时间包括所述电池进入所述换电站的电池仓后的等待时间和/或所述电池在所述电池仓内充满电后的等待时间。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述M个目标电池用于替换所述车辆上的N个电池以为所述车辆提供电能,N为正整数,且M小于N,所述方法还包括:
    在所述换电站中确定(N-M)个目标电池填充块,所述(N-M)个目标电池填充块和所述M个目标电池共同用于安装到所述车辆上的所述N个电池的位置,所述电池填充块不包括电芯。
  10. 根据权利要求9所述的方法,其特征在于,所述在所述换电站中确定(N-M)个目标电池填充块,包括:
    将所述换电站中等待时间最长的(N-M)个电池填充块确定为所述(N-M)个目标电池填充块。
  11. 根据权利要求10所述的方法,其特征在于,所述电池填充块的等待时间包括所述电池填充块进入所述换电站的电池仓后的等待时间。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述M个目标电池中的每个目标电池的SOC均大于允许换电的最小SOC。
  13. 一种更换电池的装置,其特征在于,包括:
    获取单元,用于在确定车辆需要换取换电站中的M个电池的情况下,获取所述换电站中的电池的电池参数;
    确定单元,用于根据所述换电站中的电池的电池参数,在所述换电站中确定M个目标电池,所述M个目标电池满足第一条件,使得在所述M个目标电池为所述车辆提供电能时,能够达到放电均衡,其中,M为大于1的正整数。
  14. 根据权利要求13所述的装置,其特征在于,所述电池参数包括荷电状态SOC,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的SOC之差小于第一阈值。
  15. 根据权利要求14所述的装置,其特征在于,所述第一阈值为2%。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述电池参数包括电压,所述M个目标电池的电池参数满足第一条件,包括:所述M个目标电池中的任意两个电池之间的电压之差小于第二阈值。
  17. 根据权利要求16所述的装置,其特征在于,所述第二阈值为5V。
  18. 根据权利要求13至17中任一项所述的装置,其特征在于,所述确定单元具体用于:
    根据所述换电站中电池的电池参数,在所述换电站中确定多个候选电池组,所述多个候选电池组中的每个候选电池组包括M个电池,所述每个候选电池组的电池参数满足所述第一条件;
    根据所述多个候选电池组的等待时间,从所述多个候选电池组中确定一个候选电池组,所述一个候选电池组中的M个电池为所述M个目标电池。
  19. 根据权利要求18所述的装置,其特征在于,所述确定单元具体用于:
    从所述多个候选电池组中确定等待时间最长的一个候选电池组。
  20. 根据权利要求18或19所述的装置,其特征在于,所述电池的等待时间包括所述电池进入所述换电站的电池仓后的等待时间和/或所述电池在所述电池仓内充满电后的等待时间。
  21. 根据权利要求13至20中任一项所述的装置,其特征在于,所述M个目标电池用于替换所述车辆上的N个电池以为所述车辆提供电能,N为正整数,且M小于N,所述确定单元还用于:
    在所述换电站中确定(N-M)个目标电池填充块,所述(N-M)个目标电池填充块和所述M个目标电池共同用于安装到所述车辆上的所述N个电池的位置,所述电池填充块不包括电芯。
  22. 根据权利要求21所述的装置,其特征在于,所述确定单元具体用于:
    将所述换电站中等待时间最长的(N-M)个电池填充块确定为所述(N-M)个目标电池填充块。
  23. 根据权利要求22所述的装置,其特征在于,所述电池填充块的等待时间包括所述电池填充块进入所述换电站的电池仓后的等待时间。
  24. 根据权利要求13至22中任一项所述的装置,其特征在于,所述M个目标电池中的每个目标电池的SOC均大于允许换电的最小SOC。
  25. 一种站控系统,应用于换电站,所述换电站用于为车辆提供换电服务,所述站控系统包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行如权利要求1至12中任一项所述的方法。
PCT/CN2022/079732 2022-03-08 2022-03-08 更换电池的方法、装置和站控系统 WO2023168593A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280027273.8A CN117157800A (zh) 2022-03-08 2022-03-08 更换电池的方法、装置和站控系统
PCT/CN2022/079732 WO2023168593A1 (zh) 2022-03-08 2022-03-08 更换电池的方法、装置和站控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079732 WO2023168593A1 (zh) 2022-03-08 2022-03-08 更换电池的方法、装置和站控系统

Publications (1)

Publication Number Publication Date
WO2023168593A1 true WO2023168593A1 (zh) 2023-09-14

Family

ID=87937021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079732 WO2023168593A1 (zh) 2022-03-08 2022-03-08 更换电池的方法、装置和站控系统

Country Status (2)

Country Link
CN (1) CN117157800A (zh)
WO (1) WO2023168593A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522994A (zh) * 2013-10-28 2014-01-22 国家电网公司 电动汽车换电站动力电池箱成组自动选优系统及工作方法
CN112248876A (zh) * 2019-11-11 2021-01-22 张军 换电柜电池管理方法、换电柜、换电系统及组合适配器
US20210276448A1 (en) * 2017-07-29 2021-09-09 Mohanadas Balasingham Battery exchange program using universal rechargeable batteries, fitting battery cases, battery packs, mini rack and rack systems along with gps tracking for battery exchange stations
CN113500011A (zh) * 2021-05-21 2021-10-15 蓝谷智慧(北京)能源科技有限公司 换电站及电池包的筛选方法、车辆换电方法、介质与设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522994A (zh) * 2013-10-28 2014-01-22 国家电网公司 电动汽车换电站动力电池箱成组自动选优系统及工作方法
US20210276448A1 (en) * 2017-07-29 2021-09-09 Mohanadas Balasingham Battery exchange program using universal rechargeable batteries, fitting battery cases, battery packs, mini rack and rack systems along with gps tracking for battery exchange stations
CN112248876A (zh) * 2019-11-11 2021-01-22 张军 换电柜电池管理方法、换电柜、换电系统及组合适配器
CN113500011A (zh) * 2021-05-21 2021-10-15 蓝谷智慧(北京)能源科技有限公司 换电站及电池包的筛选方法、车辆换电方法、介质与设备

Also Published As

Publication number Publication date
CN117157800A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US10431996B2 (en) Smart Battery, electric energy allocation bus system, battery charging and discharging method and electric energy allocation method
US11084365B2 (en) Cloud storage-based system and method for electric vehicle battery exchange
EP3264560B1 (en) Smart battery, electric energy allocation bus system and battery charging and discharging method
CN109874360A (zh) 能够进行高速单体平衡和节能的充电控制装置及其方法
CN108923082B (zh) 分布式电池管理系统及电池包
CN105122581A (zh) 用于向多bms分配通信标识的系统和方法
CN115101840B (zh) 电池系统和电池包连接状态识别方法
KR101822824B1 (ko) 전력저장시스템의 충방전 분배장치 및 그 방법
JP2021506207A (ja) Bms間の通信システム及び方法
CN116545080A (zh) 电池充电控制方法、控制装置和储能系统、存储介质
WO2023206484A1 (zh) 更换电池的方法及装置、站控系统和用电装置
WO2023168593A1 (zh) 更换电池的方法、装置和站控系统
WO2023168592A1 (zh) 更换电池的方法、装置和站控系统
CN112737010A (zh) 一种锂离子动力电池均衡效果评价系统及其方法
WO2023206493A1 (zh) 换电系统
WO2024000107A1 (zh) 电池的充电方法和充电装置
CN115825758A (zh) 电池充电剩余时间的确定方法和系统
WO2024007212A1 (zh) 用于电池换电的方法和装置
WO2024007214A1 (zh) 用于电池换电的方法和装置
WO2023206470A1 (zh) 更换电池的方法、装置以及站控系统
WO2024007213A1 (zh) 用于电池换电的方法和装置
WO2024007215A1 (zh) 用于电池换电的方法和装置
WO2024007218A1 (zh) 用于电池换电的方法和装置
WO2024007277A1 (zh) 电池换电的方法、装置、站控系统和换电站
WO2024007216A1 (zh) 用于电池换电的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930239

Country of ref document: EP

Kind code of ref document: A1