WO2024014025A1 - 制御装置、圧縮システムおよび制御方法 - Google Patents

制御装置、圧縮システムおよび制御方法 Download PDF

Info

Publication number
WO2024014025A1
WO2024014025A1 PCT/JP2023/005766 JP2023005766W WO2024014025A1 WO 2024014025 A1 WO2024014025 A1 WO 2024014025A1 JP 2023005766 W JP2023005766 W JP 2023005766W WO 2024014025 A1 WO2024014025 A1 WO 2024014025A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil level
dilution
pressure
capacitance
Prior art date
Application number
PCT/JP2023/005766
Other languages
English (en)
French (fr)
Inventor
和広 竹之下
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024014025A1 publication Critical patent/WO2024014025A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors

Definitions

  • the present disclosure relates to a control device, a compression system, and a control method.
  • This application claims priority based on Japanese Patent Application No. 2022-112363 filed in Japan on July 13, 2022, the contents of which are incorporated herein.
  • an oil extraction pipe provided with a capillary tube and an on-off valve is connected between the closed case of the compressor and the refrigerant suction pipe. Furthermore, a pair of temperature sensors are provided at two positions sandwiching the capillary tube. With this configuration, if the oil level of the lubricating oil in the sealed case has reached an appropriate oil level position, the lubricating oil will flow into the oil outlet pipe when the on-off valve is opened. On the other hand, if the lubricating oil level in the sealed case has not reached the appropriate oil level position, the refrigerant will flow into the oil outlet pipe when the on-off valve is opened. With this configuration, based on the temperature difference between the pair of temperature sensors, it is possible to confirm whether the oil level of the lubricating oil in the sealed case has reached an appropriate oil level position.
  • the present disclosure has been made to solve the above problems, and aims to provide a control device, a compression system, and a control method that can accurately detect the height of the oil level in a compressor. .
  • a control device provides information representing the temperature and pressure of oil inside a compressor that compresses refrigerant, and detection results of an oil level sensor that detects the height of the oil level of the oil. and a correction unit that estimates the degree of dilution of the oil based on information representing the temperature and the pressure, and corrects the detection result based on the estimated degree of dilution.
  • a compression system includes a compressor that compresses a refrigerant, an oil pod that stores oil inside the compressor, and an oil level sensor that is provided in the oil pod and that detects the height of the oil level. and a control device, wherein the control device obtains information representing the temperature and pressure of oil inside the compressor and a detection result of the oil level sensor, and information representing the temperature and the pressure. and a correction unit that estimates the dilution of the oil based on the dilution and corrects the detection result based on the estimated dilution.
  • a control method includes the steps of acquiring information representing the temperature and pressure of oil inside a compressor that compresses refrigerant and a detection result of an oil level sensor that detects the height of the oil level;
  • the method includes a step of estimating a degree of dilution of the oil based on information representing the temperature and the pressure, and correcting the detection result based on the estimated degree of dilution.
  • the height of the oil level in the compressor can be detected with high accuracy.
  • FIG. 1 is a diagram illustrating an example configuration of a compression system according to an embodiment of the present disclosure.
  • 3 is a flowchart illustrating an example of the operation of the control device according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the control device according to the embodiment of the present disclosure, and shows an example of the correspondence between pressure, temperature, and dilution rate.
  • FIG. 3 is a schematic diagram for explaining an example of the characteristics of the oil level sensor according to the embodiment of the present disclosure, and shows an example of the correspondence between oil level height and capacitance.
  • FIG. 2 is a schematic diagram for explaining an example of the characteristics of the oil level sensor according to the embodiment of the present disclosure, and shows an example of the correspondence between the dilution rate and the capacitance change ratio.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the control device according to the embodiment of the present disclosure, and shows an example of the correspondence between the dilution rate and the capacitance change ratio.
  • FIG. 1 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a compression system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating an example of the operation of the control device according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the control device according to the embodiment of the present disclosure, and shows an example of the correspondence between pressure, temperature, and dilution rate.
  • FIG. 4 is a schematic diagram for explaining an example of the characteristics of the oil level sensor according to the embodiment of the present disclosure, and shows an example of the correspondence between oil level height and capacitance.
  • FIG. 5 is a schematic diagram for explaining an example of the characteristics of the oil level sensor according to the embodiment of the present disclosure, and shows an example of the correspondence between the dilution rate and the capacitance change ratio.
  • FIG. 6 is a schematic diagram for explaining an example of the operation of the control device according to the embodiment of the present disclosure.
  • the same reference numerals are used for the same or corresponding components, and the description thereof will be omitted as appropriate.
  • the compression system 1 shown in FIG. 1 is, for example, a compression system installed in a large-capacity CO2 refrigerator, and includes a high-stage compressor 11, a low-stage compressor 21, a control panel 3, and their peripheral devices.
  • the refrigerant is carbon dioxide.
  • embodiments of the present disclosure are not limited thereto.
  • the high-stage compressor 11 is a compressor that compresses refrigerant, and an oil pod 12 that stores oil (also referred to as lubricating oil, refrigerating machine oil, etc.) filled inside the high-stage compressor 11 is connected by a pipe 13. There is.
  • the oil level height in the oil pod 12 matches the oil level height in the high stage compressor 11.
  • the oil level height within the oil pod 12 is detected by an oil level sensor 14.
  • the refrigerant compressed by the low-stage compressor 21 is introduced into the high-stage compressor 11 via an intercooler 41, an accumulator 42, a capillary 43, a strainer 44, and the like.
  • a cooling refrigerant is supplied to the high-stage compressor 11 from an injection circuit (not shown) via a check valve 17 .
  • a temperature sensor 15 is provided at the bottom of the high-stage compressor 11. Further, in the injection circuit, a pressure sensor 16 is provided on the high-stage compressor 11 side of the check valve 17. The temperature sensor 15 measures the temperature of oil inside the high-stage compressor 11. The pressure sensor 16 measures the oil pressure inside the high-stage compressor 11.
  • the low-stage compressor 21 is a compressor that compresses refrigerant, and is connected to an oil pod 22 through a pipe 23 that stores oil to be filled inside the low-stage compressor 21 .
  • the oil level height in the oil pod 22 matches the oil level height in the low stage compressor 21.
  • the oil level height within the oil pod 22 is measured by an oil level sensor 24.
  • Refrigerant is introduced into the low stage compressor 21 via an accumulator (not shown) or the like.
  • a cooling refrigerant is supplied to the low-stage compressor 21 from an injection circuit (not shown) via a check valve 27 .
  • a temperature sensor 25 is provided at the bottom of the low stage compressor 21.
  • a pressure sensor 26 is provided on the low stage compressor 21 side of the check valve 27.
  • the temperature sensor 25 measures the temperature of the oil inside the low stage compressor 21.
  • the pressure sensor 26 measures the oil pressure inside the low stage compressor 21.
  • the oil level sensor 14 and the oil level sensor 24 are capacitive level sensors, and are an example of a liquid level sensor.
  • the oil level sensor 14 and the oil level sensor 24 are equipped with internal signal processing circuits, etc., and calculate the height of the oil level based on the capacitance that changes depending on the range of oil that comes into contact with the sensor. The results are output as detection results.
  • the oil level sensor 14 and the oil level sensor 24 detect the capacitance, and based on the detected capacitance, calculate the height of the oil level on the assumption that the dilution level of the oil is a predetermined value. Then, the calculated result is output as the detection result.
  • the dilution degree of this predetermined value is also called a standard dilution degree (or standard dilution rate).
  • the dielectric constant of the oil inside the high-stage compressor 11 and the low-stage compressor 21 changes depending on the degree of dilution of the oil. Therefore, when the degree of dilution changes, the capacitance output by the oil level sensor 14 and the oil level sensor 24 changes, causing an error in the calculation result of the oil level height.
  • the oil level sensor 14 and the oil level sensor 24 calculate the height of the oil level on the assumption that the degree of dilution (dilution rate) is 0%, for example.
  • the degree of dilution is the degree of the amount of refrigerant that dissolves in oil, and is determined by the amount of refrigerant/(amount of refrigerant + amount of oil).
  • the dilution rate is a value expressed as a percentage.
  • control panel 3 controls each part of the compression system 1 (or the refrigerator including the compression system 1).
  • the control panel 3 is an example of a configuration of a control device according to the present disclosure.
  • the control panel 3 includes an acquisition section 31 and a correction section 32.
  • the acquisition unit 31 includes information representing the temperature and pressure of oil inside the high-stage compressor 11 and the low-stage compressor 21 that compress refrigerant, and an oil level sensor 14 and an oil level sensor 24 that detect the height of the oil level. Obtain the detection results.
  • the information representing the temperature of the oil is information representing the detection results of the temperature sensor 15 and the temperature sensor 25.
  • the information representing the oil pressure is information representing the detection results of the pressure sensor 16 and the pressure sensor 26.
  • the correction unit 32 estimates the dilution of oil based on information representing temperature and pressure, and corrects the detection results of the oil level sensor 14 and the oil level sensor 24 based on the estimated dilution. For example, the correction unit 32 estimates the degree of dilution of the oil based on information representing temperature and pressure, and calculates the static level detected by the oil level sensor 14 and the oil level sensor 24 based on the detection results of the oil level sensor 14 and the oil level sensor 24. The capacitance is calculated, the calculated capacitance is corrected based on the estimated dilution, and the height of the oil level is calculated based on the corrected capacitance.
  • the acquisition unit 31 and correction unit 32 shown in FIG. 1 repeatedly execute the process shown in FIG. 2 at a predetermined period. Note that the acquisition unit 31 and the correction unit 32 acquire and correct the detection results of the oil level sensor 14 and the oil level sensor 24 in parallel. When the oil level sensor 14 and the oil level sensor 24 have the same specifications, the contents of the processing are the same. Below, the oil level sensor 14 will be explained as a representative.
  • the acquisition unit 31 acquires the pressure, temperature, and oil level height.
  • the acquisition unit 31 acquires the measurement results of the oil pressure from the pressure sensor 16, the measurement results of the oil temperature from the temperature sensor 15, and the measurement results (calculation results) of the oil level height from the oil level sensor 14 ( S1).
  • the correction unit 32 calculates the dilution rate of the oil in the high-stage compressor 11 (S2).
  • the correction unit 32 calculates the dilution rate using, for example, a table as shown in FIG. 3 that shows the correspondence between temperature (° C.), pressure (MPa), and dilution rate (%).
  • the correction unit 32 calculates the capacitance at the standard dilution rate based on the oil level height calculated by the oil level sensor 14 (S3).
  • FIG. 4 shows an example of conversion characteristics between capacitance and oil level height in the oil level sensor 14.
  • the oil level sensor 14 which is a capacitive oil level sensor, calculates the oil level height from the capacitance that changes depending on the height of the oil in contact with the sensor. Note that the oil level sensor 14 calculates the oil level height assuming a dilution rate of 0%. In the example shown in FIG. 4, the oil level sensor 14 calculates the oil level height using the following formula.
  • C is the capacitance (pF)
  • h is the oil level height (mm).
  • step S3 the correction unit 32 converts the obtained oil level height value h into a capacitance value C at a dilution rate of 0% using the conversion characteristics shown in FIG.
  • the correction unit 32 corrects the capacitance calculated in step S3 to the capacitance at the reference dilution rate based on the dilution rate calculated in step S2 (S4).
  • the correction unit 32 calculates the corrected oil level height based on the corrected capacitance (S5).
  • FIG. 5 shows an example of a change in capacitance according to a change in dilution rate.
  • the capacitance changes depending on the dilution rate of refrigerating machine oil and CO2, and the higher the dilution rate, the lower the capacitance. Since the capacitance decreases depending on the dilution rate, the correction unit 32 divides the capacitance by the capacitance change ratio and corrects it to a capacitance equivalent to a dilution rate of 0%, and then calculates the oil level height using the following formula. do.
  • x is the dilution rate.
  • y is an approximate function representing the capacitance change ratio with x as a variable.
  • FIG. 6 shows an example of the process shown in FIG. 2 when the oil level sensor indicates 100 mm at a dilution rate of 50%.
  • the capacitance is 40.8 pF based on the relationship between the capacitance and the oil level height at a dilution rate of 0%.
  • step S5 the oil level height is determined from the capacitance of 45.8 pF corresponding to a dilution rate of 0%, and is 128 mm.
  • the degree of dilution of oil is estimated based on information representing temperature and pressure, and the detection result of the oil level sensor is corrected based on the estimated degree of dilution, so even if the degree of dilution changes, the compressor
  • the height of the internal oil level can be calculated accurately. That is, according to this embodiment, the height of the oil level in the compressor can be detected with high accuracy.
  • FIG. 7 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • Computer 90 includes a processor 91, main memory 92, storage 93, and interface 94.
  • the above-described control panel 3 (the acquisition unit 31 and the correction unit 32) is installed in the computer 90.
  • the operations of each processing section described above are stored in the storage 93 in the form of a program.
  • the processor 91 reads the program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 reserves storage areas corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
  • the program may be one for realizing a part of the functions to be performed by the computer 90.
  • the program may function in combination with other programs already stored in storage or in combination with other programs installed in other devices.
  • the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array), and the like.
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Storage 93 examples include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), and DVD-ROM (Digital Versatile Disc Read Only Memory). , semiconductor memory, etc.
  • Storage 93 may be an internal medium connected directly to the bus of computer 90, or may be an external medium connected to computer 90 via an interface 94 or a communication line. Furthermore, when this program is distributed to the computer 90 via a communication line, the computer 90 that received the distribution may develop the program in the main memory 92 and execute the above processing.
  • storage 93 is a non-transitory, tangible storage medium.
  • control device control panel 3 described in each embodiment can be understood, for example, as follows.
  • the control device includes information indicating the temperature and pressure of oil inside the compressors (high-stage compressor 11 and low-stage compressor 21) that compress refrigerant, and an acquisition unit 31 that acquires the detection results of oil level sensors (oil level sensors 14 and 24) that detect the height of the oil level; and an acquisition unit 31 that estimates the degree of dilution of the oil based on information representing the temperature and the pressure. , a correction unit 32 that corrects the detection result based on the estimated dilution.
  • the height of the oil level in the compressor can be detected with high accuracy.
  • control device control panel 3 according to the second aspect is the control device (control panel 3) according to (1), in which the pressure is provided in an injection circuit that cools the inside of the compressor. These are measurement results of pressure sensors (pressure sensors 16 and 26).
  • a control device (control panel 3) according to a third aspect is the control device (control panel 3) according to (1) or (2), in which the oil level sensor is a capacitive level sensor. be.
  • the control device (control panel 3) is the control device (control panel 3) of (3), in which the oil level sensor detects capacitance and the detected static
  • the height of the oil level is calculated based on the capacitance on the premise that the dilution level of the oil is a predetermined value, and the result is output as the detection result, and the correction unit calculates the height of the oil level based on the temperature and the Estimating the dilution of the oil based on information representing pressure, calculating the capacitance detected by the oil level sensor based on the detection result, and correcting the capacitance calculated based on the estimated dilution. Then, the height of the oil level is calculated based on the corrected capacitance.
  • the compression system 1 includes a compressor (high stage compressor 11 and low stage compressor 21) that compresses refrigerant, and oil pods 12 and 22 that store oil inside the compressor. , oil level sensors 14 and 24 provided in the oil pod to detect the height of the oil level, and a control device (control panel 3), the control device controlling the level of oil inside the compressor. an acquisition unit 31 that acquires information representing temperature and pressure and a detection result of the oil level sensor; and an acquisition unit 31 that estimates the degree of dilution of the oil based on the information representing the temperature and the pressure, and based on the estimated degree of dilution. A correction section 32 that corrects the detection result is provided.
  • the control method acquires information representing the temperature and pressure of oil inside a compressor that compresses refrigerant and the detection result of an oil level sensor that detects the height of the oil level. and steps (S2 to S5) of estimating the degree of dilution of the oil based on information representing the temperature and the pressure, and correcting the detection result based on the estimated degree of dilution.
  • the height of the oil level in the compressor can be detected with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

制御装置は、冷媒を圧縮する圧縮機内部の油の温度と圧力を表す情報と油の油面の高さを検知する油面センサの検知結果とを取得する取得部と、温度と圧力を表す情報に基づき油の希釈度を推定し、推定した希釈度に基づいて検知結果を補正する補正部とを備える。

Description

制御装置、圧縮システムおよび制御方法
 本開示は、制御装置、圧縮システムおよび制御方法に関する。本願は、2022年7月13日に、日本に出願された特願2022-112363号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1に記載されている冷凍サイクル装置では、圧縮機の密閉ケースと冷媒吸込管との間にキャピラリチューブと開閉弁を設けた油取出管が接続されている。また、キャピラリチューブを挟む2箇所の位置に1対の温度センサが設けられる。この構成では、密閉ケース内の潤滑油の油面が適正な油面位置に達していれば開閉弁を開放した際に、潤滑油が油取出管に流入する。一方、密閉ケース内の潤滑油の油面が適正な油面位置に達していなければ開閉弁を開放した際に、冷媒が油取出管に流入する。この構成では、1対の温度センサの温度差に基づいて、密閉ケース内の潤滑油の油面が適正な油面位置に達しているのか否かを確認することができる。
特開2002-242833号公報
 しかしながら、特許文献1に記載の冷凍サイクル装置では、圧縮機内の油面の高さを精度良く検知することはできないという課題があった。
 本開示は、上記課題を解決するためになされたものであって、圧縮機内の油面の高さを精度良く検知することができる制御装置、圧縮システムおよび制御方法を提供することを目的とする。
 上記課題を解決するために、本開示に係る制御装置は、冷媒を圧縮する圧縮機内部の油の温度と圧力を表す情報と前記油の油面の高さを検知する油面センサの検知結果とを取得する取得部と、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正する補正部とを備える。
 本開示に係る圧縮システムは、冷媒を圧縮する圧縮機と、前記圧縮機内部の油を貯留するオイルポッドと、前記オイルポッドに設けられ、前記油の油面の高さを検知する油面センサと、制御装置とを備え、前記制御装置が、前記圧縮機内部の油の温度と圧力を表す情報と前記油面センサの検知結果とを取得する取得部と、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正する補正部とを備える。
 本開示に係る制御方法は、冷媒を圧縮する圧縮機内部の油の温度と圧力を表す情報と前記油の油面の高さを検知する油面センサの検知結果とを取得するステップと、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正するステップとを含む。
 本開示の制御装置、圧縮システムおよび制御方法によれば、圧縮機内の油面の高さを精度良く検知することができる。
本開示の実施形態に係る圧縮システムの構成例を示す図である。 本開示の実施形態に係る制御装置の動作例を示すフローチャートである。 本開示の実施形態に係る制御装置の動作例を説明するための模式図であり、圧力および温度と希釈率との対応関係の例を示す。 本開示の実施形態に係る油面センサの特性の例を説明するための模式図であり、油面高さと静電容量との対応関係の例を示す。 本開示の実施形態に係る油面センサの特性の例を説明するための模式図であり、希釈率と静電容量変化比との対応関係の例を示す。 本開示の実施形態に係る制御装置の動作例を説明するための模式図であり、希釈率と静電容量変化比との対応関係の例を示す。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
<第一実施形態>
(圧縮システムの構成)
 以下、本開示の実施形態に係る制御装置、圧縮システムおよび制御方法について、図1~図6を参照して説明する。図1は、本開示の実施形態に係る圧縮システムの構成例を示す図である。図2は、本開示の実施形態に係る制御装置の動作例を示すフローチャートである。図3は、本開示の実施形態に係る制御装置の動作例を説明するための模式図であり、圧力および温度と希釈率との対応関係の例を示す。図4は、本開示の実施形態に係る油面センサの特性の例を説明するための模式図であり、油面高さと静電容量との対応関係の例を示す。図5は、本開示の実施形態に係る油面センサの特性の例を説明するための模式図であり、希釈率と静電容量変化比との対応関係の例を示す。図6は、本開示の実施形態に係る制御装置の動作例を説明するための模式図である。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。
 図1に示す圧縮システム1は、例えば大容量のCO2冷凍機に設けられる圧縮システムであり、高段圧縮機11と、低段圧縮機21と、制御盤3と、それらの周辺装置等を備える。本実施形態では、冷媒が二酸化炭素である。ただし、本開示の実施形態はこれに限定されない。
 高段圧縮機11は、冷媒を圧縮する圧縮機であり、高段圧縮機11内部に充填される油(潤滑油、冷凍機油等ともいう)を貯留するオイルポッド12が管13で接続されている。オイルポッド12内の油面高さは、高段圧縮機11内の油面高さと一致する。オイルポッド12内の油面高さは、油面センサ14で検知される。高段圧縮機11には、低段圧縮機21で圧縮された冷媒が、インタークーラ41、アキュムレータ42、キャピラリ43およびストレーナ44等を介して導入される。また、高段圧縮機11には、図示していないインジェクション回路から逆止弁17を介して冷却用の冷媒が供給される。高段圧縮機11の下部には温度センサ15が設けられている。また、インジェクション回路には、逆止弁17の高段圧縮機11側に圧力センサ16が設けられている。温度センサ15は、高段圧縮機11内部の油の温度を計測する。圧力センサ16は、高段圧縮機11内部の油の圧力を計測する。
 低段圧縮機21は、冷媒を圧縮する圧縮機であり、低段圧縮機21内部に充填される油を貯留するオイルポッド22が管23で接続されている。オイルポッド22内の油面高さは、低段圧縮機21内の油面高さと一致する。オイルポッド22内の油面高さは、油面センサ24で計測される。低段圧縮機21には、図示していないアキュムレータ等を介して冷媒が導入される。また、低段圧縮機21には、図示していないインジェクション回路から逆止弁27を介して冷却用の冷媒が供給される。低段圧縮機21の下部には温度センサ25が設けられている。また、インジェクション回路には、逆止弁27の低段圧縮機21側に圧力センサ26が設けられている。温度センサ25は、低段圧縮機21内部の油の温度を計測する。圧力センサ26は、低段圧縮機21内部の油の圧力を計測する。
 油面センサ14および油面センサ24は、本実施形態において、静電容量式のレベルセンサであり、また、液面センサの一例である。油面センサ14および油面センサ24は、内部に信号処理回路等を備え、センサに接する油の範囲によって変化する静電容量に基づき油面の高さを算出し、油面の高さを算出した結果を検知結果として出力する。その際、油面センサ14および油面センサ24は、静電容量を検知し、検知した静電容量に基づき、油の希釈度が所定の値であることを前提として油面の高さを算出し、算出した結果を検知結果として出力する。なお、以下では、この所定の値の希釈度を基準希釈度(あるいは基準希釈率)ともいう。高段圧縮機11および低段圧縮機21内部の油は、油の希釈度によって誘電率が変化する。そのため、希釈度が変化すると、油面センサ14および油面センサ24が出力する静電容量が変化し、油面の高さの算出結果に誤差が生じる。油面センサ14および油面センサ24は、例えば希釈度(希釈率)が0%であることを前提として油面の高さを算出する。なお、希釈度は、油に溶け込む冷媒の量の度合いであり、冷媒量/(冷媒量+油量)で求められる。希釈率は、希釈度を百分率で表した値である。
 一方、制御盤3は、圧縮システム1(あるいは圧縮システム1を含む冷凍機)の各部を制御する。制御盤3は、本開示に係る制御装置の一構成例である。本実施形態において、制御盤3は、取得部31と補正部32を備える。取得部31は、冷媒を圧縮する高段圧縮機11および低段圧縮機21内部の油の温度と圧力を表す情報と油の油面の高さを検知する油面センサ14および油面センサ24の検知結果とを取得する。油の温度を表す情報は、温度センサ15および温度センサ25の各検知結果を表す情報である。油の圧力を表す情報は、圧力センサ16および圧力センサ26の各検知結果を表す情報である。
 補正部32は、温度と圧力を表す情報に基づき油の希釈度を推定し、推定した希釈度に基づいて油面センサ14および油面センサ24の検知結果を補正する。補正部32は、例えば、温度と圧力を表す情報に基づき油の希釈度を推定し、油面センサ14および油面センサ24の検知結果に基づき油面センサ14および油面センサ24が検知した静電容量を算出し、推定した希釈度に基づき算出した静電容量を補正し、補正した静電容量に基づき油面の高さを算出する。
(圧縮システムの動作例)
 次に、図2~図6を参照して、本実施形態の動作例について説明する。図1に示す取得部31と補正部32は、所定の周期で繰り返し図2に示す処理を実行する。なお、取得部31および補正部32は、並列的に油面センサ14の検知結果と油面センサ24の検知結果を取得し、補正する。油面センサ14と油面センサ24が同一仕様である場合、処理の内容は同一である。以下では、油面センサ14について代表して説明する。
 図2に示す処理では、まず、取得部31が、圧力、温度および油面高さを取得する。取得部31は、圧力センサ16から油の圧力の計測結果、温度センサ15から油の温度の計測結果、ならびに、油面センサ14から油面の高さの計測結果(算出結果)を取得する(S1)。
 次に、補正部32が、高段圧縮機11内の油の希釈率を算出する(S2)。補正部32は、例えば、図3に示すような、温度(℃)と圧力(MPa)と希釈率(%)との対応関係を示すテーブルを用いて、希釈率を算出する。
 次に、補正部32は、油面センサ14が算出した油面高さに基づき基準希釈率における静電容量を算出する(S3)。図4は、油面センサ14における静電容量と油面高さとの変換特性の例を示す。上述したように、静電容量式油面センサである油面センサ14は、センサに接する油の高さに応じて変化する静電容量から油面高さを算出している。なお、油面センサ14は、希釈率0%として油面高さを算出している。図4に示す例の場合、油面センサ14は、油面高さを下式によって算出する。Cは静電容量(pF)、hは油面高さ(mm)である。
Figure JPOXMLDOC01-appb-M000001
 
 ステップS3において補正部32は、図4に示す変換特性を用いて、取得した油面高さの値hを、希釈率0%での静電容量の値Cに変換する。
 次に、補正部32は、ステップS3で算出した静電容量をステップS2で算出した希釈率に基づき基準希釈率における静電容量に補正する(S4)。次に、補正部32は、補正した静電容量に基づき補正後の油面高さを算出する(S5)。
 図5は、希釈率の変化に応じた静電容量の変化の例を示す。静電容量は冷凍機油とCO2の希釈率によって変化し、希釈率が高くなるほど静電容量が下がる。希釈率によって静電容量が低下するため、補正部32は、下式により、静電容量を静電容量変化比で割り希釈率0%相当の静電容量に補正後、油面高さを算出する。
Figure JPOXMLDOC01-appb-M000002
 
 ここで、xは希釈率である。yはxを変数とする静電容量変化比を表す近似関数である。
 図6は、希釈率50%にて油面センサが100mmを示した場合における図2に示す処理の例を示す。この場合、ステップS3では希釈率0%での静電容量と油面高さの関係から静電容量は40.8pFとなる。
 また、ステップS4では、希釈率が50%であるため、希釈率が0%の静電容量と比較して0.89倍になっていると推定される。このため、希釈率0%相当の静電容量は、40.8pF/0.89=45.8pFとなる。
 また、ステップS5では、希釈率0%相当の静電容量45.8pFから油面高さを求めると、128mmとなる。
(作用・効果)
 本実施形態によれば、温度と圧力を表す情報に基づき油の希釈度を推定し、推定した希釈度に基づいて油面センサの検知結果を補正するので、希釈度が変化しても圧縮機内部の油面の高さを正確に算出することができる。すなわち、本実施形態によれば、圧縮機内の油面の高さを精度良く検知することができる。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
〈コンピュータ構成〉
 図7は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、および、インタフェース94を備える。
 上述の制御盤3(取得部31および補正部32)は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。
 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータは、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)等が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。
 ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。 
<付記>
 各実施形態に記載の制御装置(制御盤3)は、例えば以下のように把握される。
(1)第1の態様に係る制御装置(制御盤3)は、冷媒を圧縮する圧縮機(高段圧縮機11および低段圧縮機21)内部の油の温度と圧力を表す情報と前記油の油面の高さを検知する油面センサ(油面センサ14および24)の検知結果とを取得する取得部31と、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正する補正部32とを備える。本態様および以下の各態様によれば、圧縮機内の油面の高さを精度良く検知することができる。
(2)第2の態様に係る制御装置(制御盤3)は、(1)の制御装置(制御盤3)であって、前記圧力は、前記圧縮機内部を冷却するインジェクション回路に設けられた圧力センサ(圧力センサ16および26)の計測結果である。
(3)第3の態様に係る制御装置(制御盤3)は、(1)または(2)の制御装置(制御盤3)であって、前記油面センサが静電容量式のレベルセンサである。
(4)第4の態様に係る制御装置(制御盤3)は、(3)の制御装置(制御盤3)であって、前記油面センサは、静電容量を検知し、検知した前記静電容量に基づき、前記油の希釈度が所定の値であることを前提として前記油面の高さを算出した結果を前記検知結果として出力するものであり、前記補正部は、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、前記検知結果に基づき前記油面センサが検知した前記静電容量を算出し、前記推定した希釈度に基づき算出した前記静電容量を補正し、補正した前記静電容量に基づき前記油面の高さを算出する。
(5)第5の態様に係る圧縮システム1は、冷媒を圧縮する圧縮機(高段圧縮機11および低段圧縮機21)と、前記圧縮機内部の油を貯留するオイルポッド12および22と、前記オイルポッドに設けられ、前記油の油面の高さを検知する油面センサ14および24と、制御装置(制御盤3)とを備え、前記制御装置が、前記圧縮機内部の油の温度と圧力を表す情報と前記油面センサの検知結果とを取得する取得部31と、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正する補正部32とを備える。
(6)第6の態様に係る制御方法は、冷媒を圧縮する圧縮機内部の油の温度と圧力を表す情報と前記油の油面の高さを検知する油面センサの検知結果とを取得するステップ(S1)と、 前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正するステップ(S2~S5)とを含む。
 本開示の制御装置、圧縮システムおよび制御方法によれば、圧縮機内の油面の高さを精度良く検知することができる。
1…圧縮システム
11…高段圧縮機
12…オイルポッド
21…低段圧縮機
22…オイルポッド
14、24…油面センサ
15、25…温度センサ
16、26…圧力センサ
3…制御盤
31…取得部
32…補正部

Claims (6)

  1.  冷媒を圧縮する圧縮機内部の油の温度と圧力を表す情報と前記油の油面の高さを検知する油面センサの検知結果とを取得する取得部と、
     前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正する補正部と
     を備える制御装置。
  2.  前記圧力は、前記圧縮機内部を冷却するインジェクション回路に設けられた圧力センサの計測結果である
     請求項1に記載の制御装置。
  3.  前記油面センサが静電容量式のレベルセンサである
     請求項1または2に記載の制御装置。
  4.  前記油面センサは、静電容量を検知し、検知した前記静電容量に基づき、前記油の希釈度が所定の値であることを前提として前記油面の高さを算出した結果を前記検知結果として出力するものであり、
     前記補正部は、前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、前記検知結果に基づき前記油面センサが検知した前記静電容量を算出し、前記推定した希釈度に基づき算出した前記静電容量を補正し、補正した前記静電容量に基づき前記油面の高さを算出する
     請求項3に記載の制御装置。
  5.  冷媒を圧縮する圧縮機と、
     前記圧縮機内部の油を貯留するオイルポッドと、
     前記オイルポッドに設けられ、前記油の油面の高さを検知する油面センサと、
     制御装置とを備え、
     前記制御装置が、
     前記圧縮機内部の油の温度と圧力を表す情報と前記油面センサの検知結果とを取得する取得部と、
     前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正する補正部と
     を備える
     圧縮システム。
  6.  冷媒を圧縮する圧縮機内部の油の温度と圧力を表す情報と前記油の油面の高さを検知する油面センサの検知結果とを取得するステップと、
     前記温度と前記圧力を表す情報に基づき前記油の希釈度を推定し、推定した前記希釈度に基づいて前記検知結果を補正するステップと
     を含む制御方法。
PCT/JP2023/005766 2022-07-13 2023-02-17 制御装置、圧縮システムおよび制御方法 WO2024014025A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112363A JP2024010832A (ja) 2022-07-13 2022-07-13 制御装置、圧縮システムおよび制御方法
JP2022-112363 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014025A1 true WO2024014025A1 (ja) 2024-01-18

Family

ID=89536394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005766 WO2024014025A1 (ja) 2022-07-13 2023-02-17 制御装置、圧縮システムおよび制御方法

Country Status (2)

Country Link
JP (1) JP2024010832A (ja)
WO (1) WO2024014025A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291484A (ja) * 1989-04-28 1990-12-03 Toshiba Corp コンプレッサ
JPH07260549A (ja) * 1994-03-23 1995-10-13 Suzuki Motor Corp 液面検知装置および液面検出装置
JP2015190679A (ja) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル 空気調和機
WO2018079226A1 (ja) * 2016-10-31 2018-05-03 三菱重工サーマルシステムズ株式会社 冷凍装置、冷凍システム
WO2018150706A1 (ja) * 2017-02-17 2018-08-23 三菱重工サーマルシステムズ株式会社 圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291484A (ja) * 1989-04-28 1990-12-03 Toshiba Corp コンプレッサ
JPH07260549A (ja) * 1994-03-23 1995-10-13 Suzuki Motor Corp 液面検知装置および液面検出装置
JP2015190679A (ja) * 2014-03-28 2015-11-02 株式会社富士通ゼネラル 空気調和機
WO2018079226A1 (ja) * 2016-10-31 2018-05-03 三菱重工サーマルシステムズ株式会社 冷凍装置、冷凍システム
WO2018150706A1 (ja) * 2017-02-17 2018-08-23 三菱重工サーマルシステムズ株式会社 圧縮機

Also Published As

Publication number Publication date
JP2024010832A (ja) 2024-01-25

Similar Documents

Publication Publication Date Title
CA3004143C (en) Gas-replenishing and enthalpy-increasing control method, device and apparatus for two-stage compressor
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US9752815B2 (en) Method of controlling heat source-side heat exchanger fan, and air conditioner
EP3163217B1 (en) Refrigeration cycle device
JP5495949B2 (ja) 冷凍装置
CN208779744U (zh) 压缩式制冷机
WO2024014025A1 (ja) 制御装置、圧縮システムおよび制御方法
CN104567070B (zh) 压缩机及压缩机的油量管理系统
CN110651163A (zh) 空调机
CN105180533B (zh) 螺杆机组回油控制方法、系统及螺杆机组
CN109751234B (zh) 一种冰箱压缩机测试装置
CN114688067A (zh) 压缩机的喘振检测方法、装置和电子设备
JP2002372346A (ja) 冷媒回路及びその運転検査方法並びに冷媒充填方法及び冷媒充填用閉鎖弁
CN114046619A (zh) 热泵与制冷系统抽真空和充放制冷剂系统及其控制方法
CN108692790A (zh) 一种新能源汽车空调制冷剂检测装置
US11781936B2 (en) Airtightness evaluation device
JP2018185116A (ja) 冷凍サイクル装置
CN103196525B (zh) 检测贮罐中液化天然气液位的方法
CN114364934B (zh) 室外单元以及冷冻循环装置
US2782637A (en) Apparatus for testing compressors
CN101718271B (zh) 部分相变制冷压缩机热工性能测试方法
JP2018119746A (ja) 冷凍装置
CN109612049B (zh) 压缩机输出功率的控制方法及装置
JPH0979711A (ja) 冷媒量判定装置
JP2020153571A (ja) 制御ゲイン学習装置、方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839205

Country of ref document: EP

Kind code of ref document: A1