WO2024013968A1 - メタン合成システム - Google Patents

メタン合成システム Download PDF

Info

Publication number
WO2024013968A1
WO2024013968A1 PCT/JP2022/027806 JP2022027806W WO2024013968A1 WO 2024013968 A1 WO2024013968 A1 WO 2024013968A1 JP 2022027806 W JP2022027806 W JP 2022027806W WO 2024013968 A1 WO2024013968 A1 WO 2024013968A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
synthesis system
water
fluid
methanation reaction
Prior art date
Application number
PCT/JP2022/027806
Other languages
English (en)
French (fr)
Inventor
俊雄 篠木
洋次 尾中
誠治 中島
誠 川本
誠 谷島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/027806 priority Critical patent/WO2024013968A1/ja
Priority to JP2023505685A priority patent/JPWO2024013968A1/ja
Publication of WO2024013968A1 publication Critical patent/WO2024013968A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane

Definitions

  • the present disclosure relates to a methane synthesis system.
  • Patent Document 1 discloses a production system that produces hydrocarbons using carbon dioxide and water. This production system reduces water and carbon dioxide to obtain a mixed gas containing hydrogen and carbon monoxide. This production system produces hydrocarbons such as methane from a gas mixture.
  • the present disclosure aims to provide a methane synthesis system that can increase methane production efficiency.
  • One embodiment of the methane synthesis system includes a co-electrolytic part that obtains hydrogen and carbon monoxide from water and carbon dioxide by electrolysis, and a co-electrolytic part that produces methane by a methanation reaction using the hydrogen and the carbon monoxide. It includes a methanation reaction section for obtaining a product gas, and a cooling section having a flow path through which a phase-changeable refrigerant flows. The cooling section cools the methanation reaction section using heat of vaporization as at least a portion of the refrigerant vaporizes within the flow path.
  • FIG. 1 is a schematic diagram of a methane synthesis system according to Embodiment 1.
  • FIG. 2 is a schematic diagram of a methane synthesis system according to a second embodiment.
  • FIG. 3 is a schematic diagram of a methane synthesis system according to Embodiment 3.
  • FIG. 1 is a schematic diagram showing a methane synthesis system in Embodiment 1.
  • the methane synthesis system 1 includes a supply path 2, a co-electrolysis section 3, a methanation reaction section 4, a cooling section 5, a separator 6, a recovery path 7, and a first heat exchanger. It includes a container 8 and an ejector 9.
  • the supply route 2 leads water (for example, water vapor) and carbon dioxide to the co-electrolyzer 3.
  • Water for example, water vapor
  • Carbon dioxide is supplied from the introduction route 11.
  • the supply path 2 leads, for example, a mixed fluid of water and carbon dioxide to the co-electrolyzer 3.
  • the carbon dioxide supplied from the introduction route 11 may be carbon dioxide recovered from the atmosphere by DAC (Direct Air Capture).
  • the carbon dioxide supplied from the introduction route 11 may be carbon dioxide exhausted from a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • the co-electrolysis section 3 includes, for example, a solid oxide electrolysis cell (SOEC) having a cathode electrode and an anode electrode.
  • SOEC solid oxide electrolysis cell
  • a solid oxide having oxygen ion conductivity is used in the solid oxide electrolytic cell.
  • the electrolyte zirconia-based oxide or the like is used.
  • the co-electrolyzer 3 is an example of an electrolyzer.
  • the co-electrolysis section 3 supplies water and carbon dioxide supplied from the supply route 2 to the cathode electrode of the solid oxide electrolytic cell.
  • the water used for co-electrolysis in the solid oxide electrolytic cell is desirably water vapor.
  • the co-electrolysis section 3 may include a heating device that heats the solid oxide electrolytic cell.
  • the heating device can adjust the temperature within the solid oxide electrolytic cell to a temperature suitable for the co-electrolytic reaction.
  • the ratio of carbon dioxide and water supplied to the solid oxide electrolytic cell can be determined depending on the ratio of the components (carbon monoxide, hydrogen) of the target mixed gas.
  • the co-electrolysis unit 3 obtains a mixed gas (mixed fluid) containing hydrogen (H 2 ) and carbon monoxide (CO) from water (H 2 O) and carbon dioxide (CO 2 ) by co-electrolysis.
  • Co-electrolysis proceeds, for example, according to formula (I) shown below. This reaction is endothermic.
  • Co-electrolysis is an electrolysis reaction in which water electrolysis and carbon dioxide electrolysis are performed simultaneously. 3H 2 O+CO 2 ⁇ CO+3H 2 +2O 2 ...(I)
  • co-electrolysis can be performed using electric power generated using renewable energy (for example, solar power generation, wind power generation, etc.).
  • renewable energy for example, solar power generation, wind power generation, etc.
  • Methane obtained using renewable energy can be considered a carbon-neutral fuel that does not contribute to global warming, as no additional carbon dioxide is generated when it is combusted.
  • the mixed gas obtained in the co-electrolyzer 3 contains not only hydrogen (H 2 ) and carbon monoxide, but also unreacted water and carbon dioxide.
  • the mixed gas is guided to the methanation reaction section 4 through the outlet path 12.
  • the methanation reaction section 4 obtains a product gas (product fluid) containing water (H 2 O) and methane (CH 4 ) from hydrogen (H 2 ) and carbon monoxide (CO) through a methanation reaction. .
  • product fluid water
  • methane methane
  • CH 4 methane
  • CO carbon monoxide
  • the methanation reaction proceeds, for example, according to formula (II) shown below. This reaction is exothermic. 3H2 +CO ⁇ H2O + CH4 ...(II)
  • the methanation reaction section 4 includes a methanation catalyst with which the mixed gas comes into contact.
  • methanation catalysts include Ni catalysts and Ru catalysts. Methanation catalysts promote methanation reactions.
  • the product gas obtained in the methanation reaction section 4 may contain not only water and methane but also unreacted hydrogen (H 2 ), carbon monoxide, carbon dioxide, and the like.
  • the product gas is led to the separator 6 through the discharge path 13.
  • the inlet 4a of the methanation reaction section 4 is a location to which the derivation path 12 is connected.
  • the outlet 4b of the methanation reaction section 4 is a location to which the discharge path 13 is connected.
  • the cooling section 5 is thermally connected to the methanation reaction section 4.
  • the cooling section 5 is in contact with the methanation reaction section 4, for example.
  • the cooling section 5 is, for example, formed integrally with the methanation reaction section 4.
  • the cooling unit 5 is capable of transferring heat to and from the methanation reaction unit 4 .
  • the cooling section 5 cools the methanation reaction section 4.
  • a flow path 51 through which a refrigerant flows is formed in the cooling section 5 .
  • the flow direction of the refrigerant in the flow path 51 (the direction from the inlet 51a to the outlet 51b) is, for example, the opposite direction to the flow direction in the methanation reaction section 4 (the direction from the inlet 4a to the outlet 4b).
  • the separator 6 separates a fluid containing methane and a fluid containing water from the product gas.
  • the separator 6 employs a separation method such as liquefaction separation, membrane separation, adsorption separation, etc., for example.
  • the separator 6 may employ one of these separation techniques, or may use a combination of two or more.
  • the separator 6 using liquefaction separation for example, liquefies a specific component and separates it from other components (gas). Specifically, for example, a component containing water is liquefied by temperature adjustment and separated from other components (gas) containing methane.
  • the separator 6 using membrane separation uses, for example, a separation membrane through which components with small molecular sizes can pass through to separate specific components from other components. Specifically, for example, a separation membrane that selectively permeates water is used. This separation membrane separates components containing water and other components containing methane from the mixed gas.
  • the separator 6 that uses adsorption separation, for example, separates specific components by adsorbing them onto an adsorbent.
  • the adsorbent include silica gel, zeolite, and activated carbon. Specifically, by adsorbing a component containing water onto an adsorbent, this component can be separated from other components containing methane.
  • the separator 6 using adsorption separation has the function of desorbing the adsorbed material from the adsorbent.
  • the separator 6 includes, for example, a heating device.
  • the heating device desorbs the adsorbed material from the adsorbent by heating the adsorbent.
  • the separator 6 may be equipped with a pressure reducing device such as a pressure reducing pump.
  • the decompression device places the adsorbent under reduced pressure to promote desorption of the adsorbed material from the adsorbent.
  • the component containing methane is led out from the separator 6 through the lead-out path 14.
  • Components containing methane are sent to gas production facilities, for example, as raw materials for city gas and the like.
  • the recovery path 7 connects the separator 6 and the cooling unit 5.
  • the water-containing component water-containing fluid F1
  • the recovery path 7 is provided with a pump 71 for sending the fluid F1 to the cooling unit 5.
  • the main component of fluid F1 is water.
  • the fluid F1 can undergo a phase change between liquid and gas. Fluid F1 may contain not only water but also other components.
  • a water supply route 15 is connected to the recovery route 7 .
  • the recovery path 7 is supplied with water from the outside via the water supply path 15 as needed.
  • the first heat exchanger 8 is provided in the recovery path 7 .
  • the first heat exchanger 8 preheats the fluid F1 flowing through the recovery path 7 by heat exchange with the product gas flowing through the discharge path 13.
  • a known heat exchanger can be used.
  • the fluid F1 flowing through the recovery path 7 is introduced into the flow path 51 of the cooling section 5, and flows through the flow path 51 as a refrigerant.
  • the methanation reaction section 4 is cooled by heat exchange with the fluid F1.
  • the ejector 9 is provided in the supply path 2.
  • the ejector 9 has an inlet 9a, a suction port 9b, and an outlet 9c.
  • the fluid F1 flowing through the supply path 2 flows into the ejector 9 from the inlet 9a and flows out from the outlet 9c. Fluid F1 becomes a driving fluid.
  • a nozzle for ejecting driving fluid is provided inside the ejector 9.
  • An introduction path 11 is connected to the suction port 9b. Carbon dioxide flows into the ejector 9 as suction fluid from the suction port 9b through the introduction path 11.
  • the methane synthesis method according to this embodiment includes a supply step, an electrolysis step, a methanation step, a separation step, and a cooling step.
  • water (H 2 O) and carbon dioxide (CO 2 ) are introduced to the co-electrolyzer 3 through the supply route 2 .
  • a mixed gas containing hydrogen (H 2 ) and carbon monoxide (CO) is obtained from water and carbon dioxide by co-electrolysis in the co-electrolyzer 3 .
  • a product gas containing water and methane is obtained from hydrogen and carbon monoxide through a methanation reaction in the methanation reaction section 4 .
  • the product gas includes water and methane, as well as unreacted carbon monoxide, hydrogen (H 2 ), carbon dioxide, and the like.
  • the product gas is led to the separator 6 through the discharge path 13.
  • a fluid containing methane and a fluid containing water are separated from the product gas in the separator 6.
  • the fluid F1 containing water is led out from the separator 6 and guided to the flow path 51 of the cooling unit 5 through the recovery path 7. At least a portion of the fluid F1 vaporizes as a refrigerant while flowing through the flow path 51 from the inlet 51a to the outlet 51b. When the fluid F1 is vaporized, it cools the methanation reaction section 4 with the heat of vaporization.
  • the cooling unit 5 forms a temperature distribution having a first region, a second region, and a third region in this order from the inlet 51a of the flow path 51 toward the outlet 51b.
  • the first region is a region where the temperature of the fluid F1 increases.
  • the second region is a region where the temperature of the fluid F1 remains substantially constant while it is vaporized.
  • the third region is a region where the temperature of the vaporized fluid F1 increases again.
  • the temperature of the fluid F1 at the inlet 51a of the flow path 51 is lower than the temperature of the fluid F1 at the outlet 51b.
  • the temperature of the fluid F1 at the inlet 51a is, for example, 200°C to 400°C.
  • the temperature of the fluid F1 at the outlet 51b is, for example, 450°C to 650°C.
  • the temperature of the methanation reaction section 4 corresponds to the temperature of the cooling section 5. That is, the temperature at the outlet 4b is lower than the temperature at the inlet 4a.
  • the temperature inside the methanation reaction section 4 at the outlet 4b is, for example, 200°C to 400°C.
  • the temperature inside the methanation reaction section 4 at the inlet 4a is, for example, 450°C to 650°C.
  • the fluid F1 containing water (steam) is introduced into the co-electrolyzer 3 through the supply path 2 together with carbon dioxide introduced by the ejector 9.
  • the cooling unit 5 cools the methanation reaction unit 4 using the heat of vaporization that occurs when at least a portion of the fluid F1, which is a refrigerant, vaporizes in the flow path 51.
  • the cooling unit 5 has a first region where the temperature of the fluid F1 increases, a second region where the temperature remains almost constant while the fluid F1 is vaporized, and a third region where the temperature of the vaporized fluid F1 increases again. has.
  • the reaction heat of the methanation reaction is appropriately removed as vaporization heat in the second region, so that the temperature inside the methanation reaction section 4 can be optimized. Therefore, the methanation reaction proceeds efficiently. Therefore, the production efficiency of methane can be increased.
  • the methanation reaction in the methanation reaction section 4 can proceed efficiently.
  • the methane synthesis system 1 includes the supply path 2 that guides the fluid F1 that has passed through the cooling section 5 to the co-electrolysis section 3, the heat obtained by the fluid F1 in the cooling section 5 can be effectively used in the co-electrolysis section 3. . Therefore, the energy efficiency of the entire system can be improved.
  • the methane synthesis system 1 includes the ejector 9, it is possible to save energy compared to, for example, a case where only a blower is used to guide carbon dioxide to the supply route 2.
  • the methane synthesis system 1 includes a separator 6 that separates the fluid F1 containing water from the product gas of the methanation reaction, and a recovery path 7 that leads the fluid F1 to the cooling section 5. It is possible to make effective use of existing water and increase the efficiency of the methane synthesis system.
  • Embodiment 2 Next, a methane synthesis system according to Embodiment 2 will be explained. Since the basic configuration of the methane synthesis system according to this embodiment is the same as that of Embodiment 1, the differences from Embodiment 1 will mainly be explained. Components that are the same as those in other embodiments are designated by the same reference numerals and description thereof will be omitted.
  • FIG. 2 is a schematic diagram of a methane synthesis system according to a second embodiment.
  • the methane synthesis system 101 differs from the methane synthesis system 1 (see FIG. 1) in that it includes a derivation path 16 and a second heat exchanger 17.
  • the second heat exchanger 17 is an example of a "heat exchanger".
  • oxygen (O 2 ) is generated at the anode by co-electrolysis of water and carbon dioxide.
  • the lead-out path 16 leads out the fluid F2 containing oxygen (O 2 ) generated in the co-electrolyzer 3.
  • the second heat exchanger 17 is provided in the recovery path 7 .
  • the second heat exchanger 17 heats the fluid F1 flowing through the recovery route 7 by heat exchange with the fluid F2 led out through the lead-out route 16.
  • a known heat exchanger can be used.
  • the methane synthesis system 101 can optimize the temperature within the methanation reaction section 4, thereby increasing the methane production efficiency.
  • the methane synthesis system 101 has the same effects as the methane synthesis system 1 (see FIG. 1).
  • the methane synthesis system 101 can preheat the fluid F1 using the second heat exchanger 17. Therefore, it is possible to effectively utilize the heat of the fluid F2 and improve the energy efficiency of the entire system.
  • Embodiment 3 A methane synthesis system according to Embodiment 3 will be explained. Components that are the same as those in other embodiments are given the same reference numerals and descriptions thereof will be omitted.
  • FIG. 3 is a schematic diagram of a methane synthesis system according to Embodiment 3.
  • the methane synthesis system 201 differs from the methane synthesis system 1 (see FIG. 1) in that it includes a methane purifier 202 and a return path 203.
  • the methane purifier 202 is provided in the outlet path 14.
  • the derivation path 14 is a path for deriving a methane-containing component (methane-containing fluid F3) from the separator 6.
  • the methane purifier 202 purifies the methane contained in the fluid F3 to obtain a fluid F4 with a high methane concentration.
  • the methane purifier 202 is an example of a "methane purification section.”
  • Purification techniques that can be employed in the methane purifier 202 include membrane separation, liquefaction separation, and adsorption separation, with membrane separation being preferred.
  • the methane purifier 202 using membrane separation includes, for example, a separation membrane that selectively allows methane to pass through.
  • the return route 203 connects the non-permeate side exit of the methane purifier 202 and the derivation route 12 .
  • the return route 203 returns the non-permeate fluid F5 that has not passed through the separation membrane of the methane purifier 202 to the methanation reaction section 4 via the outlet route 12.
  • the return route 203 may be a route that connects the non-permeate side exit of the methane purifier 202 and the methanation reaction section 4.
  • the fluid F3 led out from the separator 6 through the lead-out path 14 is led to the methane purifier 202.
  • the fluid F4 on the permeate side whose methane concentration has been increased in the methane purifier 202 is led out of the system as purified gas (purified product fluid).
  • the process of purifying methane contained in the fluid F3 using the methane purifier 202 is referred to as a "purification process.”
  • the non-permeate fluid F5 that has not passed through the separation membrane of the methane purifier 202 is returned to the outlet path 12 via the return path 203.
  • Fluid F5 is introduced into the methanation reaction section 4 from the outlet path 12. Therefore, methanation of unreacted substances (for example, hydrogen, carbon monoxide) contained in the fluid F5 can be promoted. Therefore, the production efficiency of methane in the methanation reaction section 4 can be increased.
  • the non-permeation side fluid F5 is a residual gas (residual fluid) obtained by separating the permeation side fluid F4 from the fluid F3.
  • the methane synthesis system 201 can optimize the temperature within the methanation reaction section 4, and therefore can increase the methane production efficiency. In addition, the methane synthesis system 201 has the same effects as the methane synthesis system 1 (see FIG. 1).
  • the methane synthesis system 201 includes the methane purifier 202, it is possible to obtain the fluid F4 (purified product gas) with a high methane concentration. Since the methane synthesis system 201 has the return path 203, it is possible to return the non-permeate side fluid F5 (residual gas) to the methanation reaction section 4. Therefore, the production efficiency of methane in the methanation reaction section 4 can be increased.
  • the co-electrolytic section 3 using a solid oxide electrolytic cell is illustrated, but other systems may be adopted for the co-electrolytic section.
  • the co-electrolytic portion may be, for example, a solid polymer type co-electrolytic portion.
  • a co-electrolytic section 3 that obtains hydrogen and carbon monoxide from water and carbon dioxide by co-electrolysis is used, but the device for obtaining hydrogen (H 2 ) and carbon monoxide is limited to the co-electrolytic section. do not have.
  • an electrolyzer that performs independently the step of electrolyzing carbon dioxide to obtain carbon monoxide and the step of electrolyzing water to obtain hydrogen (H 2 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本開示に係るメタン合成システムは、水と二酸化炭素から電気分解によって水素と一酸化炭素を得る共電解部と、前記水素と前記一酸化炭素を用いたメタン化反応によってメタンを含む生成物ガスを得るメタン化反応部と、相変化可能な冷媒が流通する流通路を有する冷却部と、を備える。前記冷却部は、前記冷媒の少なくとも一部が前記流通路内で気化するのに伴う気化熱によって前記メタン化反応部を冷却する。

Description

メタン合成システム
 本開示は、メタン合成システムに関する。
 特許文献1は、二酸化炭素と水を用いて炭化水素を製造する製造システムを開示する。この製造システムは、水と二酸化炭素とを還元して、水素と一酸化炭素とを含む混合ガスを得る。この製造システムは、混合ガスからメタンなどの炭化水素を生成させる。
国際公開第2021/201192号
 前記技術では、メタンの生成効率が低くなる可能性があった。
 本開示は、上記の事情に鑑みて、メタンの生成効率を高めることができるメタン合成システムを提供することを目的とする。
 本開示に係るメタン合成システムの一つの態様は、水と二酸化炭素から電気分解によって水素と一酸化炭素を得る共電解部と、前記水素と前記一酸化炭素を用いたメタン化反応によってメタンを含む生成物ガスを得るメタン化反応部と、相変化可能な冷媒が流通する流通路を有する冷却部と、を備える。前記冷却部は、前記冷媒の少なくとも一部が前記流通路内で気化するのに伴う気化熱によって前記メタン化反応部を冷却する。
 本開示によれば、メタンの生成効率を高めることができるメタン合成システムを提供できる。
実施の形態1に係るメタン合成システムの模式図である。 実施の形態2に係るメタン合成システムの模式図である。 実施の形態3に係るメタン合成システムの模式図である。
 以下、図面を参照しながら、本開示の実施の形態について説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。
 実施の形態1.
 図1は、実施の形態1におけるメタン合成システムを示す模式図である。
 図1に示すように、メタン合成システム1は、供給経路2と、共電解部3と、メタン化反応部4と、冷却部5と、分離器6と、回収経路7と、第1熱交換器8と、エジェクタ9と、を備える。
 供給経路2は、水(例えば、水蒸気)と、二酸化炭素とを共電解部3に導く。水(例えば、水蒸気)は、冷却部5から供給される。二酸化炭素は、導入経路11から供給される。供給経路2は、例えば、水と二酸化炭素との混合流体を共電解部3に導く。
 導入経路11から供給される二酸化炭素は、DAC(Direct Air Capture)により大気中から回収された二酸化炭素であってもよい。導入経路11から供給される二酸化炭素は、固体酸化物燃料電池(SOFC:Solid Oxide Fuel Cell)から排気される二酸化炭素であってもよい。
 共電解部3は、例えば、カソード電極およびアノード電極を有する固体酸化物形電解セル(SOEC:Solid Oxide Electrolysis Cell)を備える。固体酸化物形電解セルには、例えば、酸素イオン伝導性を有する固体酸化物が用いられる。電解質としては、ジルコニア系酸化物などが用いられる。共電解部3は、電解装置の一例である。
 共電解部3は、供給経路2から供給された水および二酸化炭素を固体酸化物形電解セルのカソード電極に供給する。固体酸化物形電解セルにおける共電解に用いられる水は、水蒸気であることが望ましい。
 共電解部3は、固体酸化物形電解セルを加熱する加熱装置を備えていてもよい。加熱装置は、固体酸化物形電解セル内の温度を共電解反応に適した温度に調整することができる。固体酸化物形電解セルに供給される二酸化炭素と水との比率は、目的とする混合ガスの成分(一酸化炭素、水素)の比率に応じて定めることができる。
 共電解部3は、水(HO)および二酸化炭素(CO)から、共電解によって水素(H)および一酸化炭素(CO)を含む混合ガス(混合流体)を得る。共電解は、例えば、以下に示す式(I)に従って進行する。この反応は、吸熱反応である。共電解は、水の電気分解と二酸化炭素の電気分解とを同時に行う電気分解反応である。
 3HO+CO→CO+3H+2O ・・・(I)
 共電解部3では、例えば、再生可能エネルギー(例えば、太陽光発電、風力発電等)を用いて生成された電力を用いて共電解を行うことができる。再生可能エネルギーを用いて得られたメタンは、燃焼利用しても追加的な二酸化炭素の発生がないことから、地球温暖化に影響しないカーボンニュートラル燃料と考えることができる。
 共電解部3で得られる混合ガスは、水素(H)および一酸化炭素だけでなく、未反応の水および二酸化炭素を含む。混合ガスは、導出経路12を通してメタン化反応部4に導かれる。
 メタン化反応部4は、水素(H)および一酸化炭素(CO)から、メタン化反応によって、水(HO)およびメタン(CH)を含む生成物ガス(生成物流体)を得る。メタン化反応は、例えば、以下に示す式(II)に従って進行する。この反応は、発熱反応である。
 3H+CO→HO+CH ・・・(II)
 メタン化反応部4は、混合ガスが接触するメタン化触媒を備えることが好ましい。メタン化触媒としては、Ni触媒、Ru触媒などが挙げられる。メタン化触媒は、メタン化反応を促進する。
 メタン化反応部4で得られる生成物ガスは、水およびメタンだけでなく、未反応の水素(H)、一酸化炭素、二酸化炭素などを含む場合がある。生成物ガスは、排出経路13を通して分離器6に導かれる。
 メタン化反応部4の入口4aは、導出経路12が接続された箇所である。メタン化反応部4の出口4bは、排出経路13が接続された箇所である。
 冷却部5は、メタン化反応部4と熱的に接続されている。冷却部5は、例えば、メタン化反応部4と接している。冷却部5は、例えば、メタン化反応部4と一体に形成されている。冷却部5は、メタン化反応部4との間で熱移動可能とされている。
 冷却部5は、メタン化反応部4を冷却する。冷却部5には、冷媒が流れる流通する流通路51が形成されている。流通路51における冷媒の流れ方向(入口51aから出口51bに向かう方向)は、例えば、メタン化反応部4における流れ方向(入口4aから出口4bに向かう方向)とは反対の方向である。
 分離器6は、生成物ガスから、メタンを含む流体と、水を含む流体とを分離する。
 分離器6には、例えば、液化分離、膜分離、吸着分離などの分離手法が採用される。分離器6では、これらの分離手法のうち1つを採用してもよいし、2以上を組み合わせてもよい。
 液化分離を用いた分離器6は、例えば、特定の成分を液化させて他の成分(気体)から分離する。具体的には、例えば、温度調整により水を含む成分を液化させて、メタンを含む他の成分(気体)から分離する。
 膜分離を用いた分離器6は、例えば、分子サイズが小さい成分が透過できる分離膜を用いて、特定の成分を他の成分から分離する。具体的には、例えば、水を選択的に透過させる分離膜を用いる。この分離膜は、混合ガスから、水を含む成分と、メタンを含む他の成分とを分離する。
 吸着分離を用いた分離器6は、例えば、特定の成分を吸着剤に吸着させて分離する。吸着剤としては、シリカゲル、ゼオライト、活性炭などが挙げられる。具体的には、水を含む成分を吸着剤に吸着させることによって、この成分を、メタンを含む他の成分と分離することができる。
 吸着分離を用いた分離器6は、吸着剤から被吸着物を脱離させる機能を有する。分離器6は、例えば、加熱装置を備える。加熱装置は、吸着剤を加熱することによって吸着剤から被吸着物を脱離させる。分離器6は、減圧ポンプなどの減圧装置を備えていてもよい。減圧装置は、吸着剤を減圧下に置くことで、吸着剤からの被吸着物の脱離を促す。
 メタンを含む成分は、導出経路14を通して分離器6から導出される。メタンを含む成分は、例えば、都市ガスなどの原料として、ガス製造設備などに送られる。
 回収経路7は、分離器6と冷却部5とを接続する。水を含む成分(水を含む流体F1)は、回収経路7を通して分離器6から導出され、冷却部5の流通路51に導かれる。回収経路7には、流体F1を冷却部5に送るためのポンプ71が設けられている。流体F1の主成分は水である。流体F1は、液体と気体との相変化が可能である。流体F1は、水だけでなく他の成分を含んでいてもよい。
 回収経路7には、水供給経路15が接続されている。回収経路7には、必要に応じて水供給経路15によって外部から水を補給する。
 第1熱交換器8は、回収経路7に設けられている。第1熱交換器8は、排出経路13を流れる生成物ガスとの熱交換によって、回収経路7を流れる流体F1を予熱する。
 第1熱交換器8としては、公知の熱交換器を使用できる。第1熱交換器8としては、例えば、多管式熱交換器、プレート式熱交換器、コイル式熱交換器、二重管式熱交換器、スパイラル式熱交換器等を使用できる。
 回収経路7を流れる流体F1は、冷却部5の流通路51に導入され、冷媒として流通路51を流通する。メタン化反応部4は、流体F1との熱交換によって冷却される。
 流通路51の入口51aにおいて、流体F1の少なくとも一部は液体である。流体F1は、入口51aから出口51bに向けて流通路51を流れる過程で、少なくとも一部が気化する。流体F1が気化する際には、気化熱によってメタン化反応部4を冷却する。
 エジェクタ9は、供給経路2に設けられている。エジェクタ9は、流入口9aと、吸引口9bと、流出口9cと、を有する。供給経路2を流れる流体F1は、流入口9aからエジェクタ9に流入し、流出口9cから流出する。流体F1は駆動流体となる。エジェクタ9の内部には、駆動流体を噴出するノズルが設けられている。吸引口9bには、導入経路11が接続されている。二酸化炭素は、導入経路11を通して吸引口9bから吸引流体としてエジェクタ9に流入する。
 次に、メタン合成システム1を用いたメタン合成方法の例について説明する。
 本実施の形態に係るメタン合成方法は、供給工程と、電解工程と、メタン化工程と、分離工程と、冷却工程とを有する。
 供給工程では、供給経路2によって、水(HO)および二酸化炭素(CO)を共電解部3に導く。
 電解工程では、共電解部3において、水および二酸化炭素から、共電解によって水素(H)および一酸化炭素(CO)を含む混合ガスを得る。
 メタン化工程では、メタン化反応部4において、水素および一酸化炭素から、メタン化反応によって、水およびメタンを含む生成物ガスを得る。生成物ガスは、水およびメタンだけでなく、未反応の一酸化炭素、水素(H)、二酸化炭素などを含む。生成物ガスは、排出経路13を通して分離器6に導かれる。
 分離工程では、分離器6において、生成物ガスから、メタンを含む流体と、水を含む流体とを分離する。
 冷却工程では、水を含む流体F1を分離器6から導出し、回収経路7によって冷却部5の流通路51に導く。流体F1は、冷媒として、入口51aから出口51bに向けて流通路51を流れる過程で、少なくとも一部が気化する。流体F1は、気化する際、気化熱によってメタン化反応部4を冷却する。
 冷却部5は、流通路51の入口51aから出口51bに向かって、第1領域と、第2領域と、第3領域とをこの順に有する温度分布を形成する。第1領域は、流体F1の温度が上昇する領域である。第2領域は、流体F1が気化しつつ温度がほぼ一定となる領域である。第3領域は、気化した流体F1の温度が再び上昇する領域である。
 流通路51の入口51aにおける流体F1の温度は、出口51bにおける流体F1の温度より低い。入口51aにおける流体F1の温度は、例えば、200℃~400℃である。出口51bにおける流体F1の温度は、例えば、450℃~650℃である。
 メタン化反応部4の温度は、冷却部5に応じた温度となる。すなわち、出口4bにおける温度は、入口4aにおける温度より低い。出口4bにおけるメタン化反応部4内の温度は、例えば、200℃~400℃である。入口4aにおけるメタン化反応部4内の温度は、例えば、450℃~650℃である。
 水(水蒸気)を含む流体F1は、エジェクタ9で導入された二酸化炭素とともに、供給経路2を通して共電解部3に導入される。
 メタン合成システム1では、冷却部5は、冷媒である流体F1の少なくとも一部が流通路51で気化するのに伴う気化熱によってメタン化反応部4を冷却する。例えば、冷却部5は、流体F1の温度が上昇する第1領域と、流体F1が気化しつつ温度がほぼ一定となる第2領域と、気化した流体F1の温度が再び上昇する第3領域とを有する。メタン化反応部4では、メタン化反応の反応熱が第2領域において気化熱として適切に奪われることで、メタン化反応部4内の温度を適正化できる。そのため、メタン化反応は効率よく進行する。よって、メタンの生成効率を高めることができる。
 メタン合成システム1では、水を含む流体F1を冷媒として使用するため、メタン化反応部4に適切な温度分布を与えることができる。よって、メタン化反応部4におけるメタン化反応を効率よく進行させることができる。
 メタン合成システム1は、冷却部5を経た流体F1を共電解部3に導く供給経路2を備えるため、冷却部5で流体F1が得た熱を共電解部3で有効に利用することができる。よって、システム全体のエネルギー効率を向上させることができる。
 メタン合成システム1は、エジェクタ9を備えるため、例えば、ブロワのみを用いて二酸化炭素を供給経路2に導く場合と比較して、省エネルギー化が可能である。
 メタン合成システム1は、メタン化反応の生成物ガスから水を含む流体F1を分離する分離器6と、流体F1を冷却部5に導く回収経路7とを備えるため、メタン化反応の生成物である水を有効に利用し、メタン合成システムとしての効率を高めることができる。
 実施の形態2.
 次に、実施の形態2に係るメタン合成システムについて説明する。本実施の形態に係るメタン合成システムは、基本的な構成が実施の形態1と同様であるため、主に、実施の形態1と異なる点を説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
 図2は、実施の形態2に係るメタン合成システムの模式図である。
 図2に示すように、メタン合成システム101は、導出経路16と、第2熱交換器17とを備える点で、メタン合成システム1(図1参照)と異なる。第2熱交換器17は、「熱交換器」の一例である。
 共電解部3では、アノードにおいて、前述の水と二酸化炭素との共電解によって酸素(O)が生成する。
 導出経路16は、共電解部3で生成した酸素(O)を含む流体F2を導出する。
 第2熱交換器17は、回収経路7に設けられている。第2熱交換器17は、導出経路16によって導出された流体F2との熱交換によって、回収経路7を流れる流体F1を加熱する。
 第2熱交換器17としては、公知の熱交換器を使用できる。第2熱交換器17としては、例えば、多管式熱交換器、プレート式熱交換器、コイル式熱交換器、二重管式熱交換器、スパイラル式熱交換器等を使用できる。
 メタン合成システム101は、メタン合成システム1(図1参照)と同様に、メタン化反応部4内の温度を適正化できるため、メタンの生成効率を高めることができる。メタン合成システム101は、この他、メタン合成システム1(図1参照)と同様の効果を奏する。
 メタン合成システム101は、第2熱交換器17によって流体F1を予熱できる。そのため、流体F2の熱を有効に利用し、システム全体のエネルギー効率を向上させることができる。
 実施の形態3.
 実施の形態3に係るメタン合成システムについて説明する。他の実施の形態と同じ構成については、同じ符号を付して説明を省略する。
 図3は、実施の形態3に係るメタン合成システムの模式図である。
 図3に示すように、メタン合成システム201は、メタン精製器202と、返送経路203とを備える点で、メタン合成システム1(図1参照)と異なる。メタン精製器202は、導出経路14に設けられる。導出経路14は、分離器6からメタンを含む成分(メタンを含む流体F3)を導出する経路である。メタン精製器202は、流体F3に含まれるメタンを精製し、メタン濃度が高い流体F4を得る。メタン精製器202は、「メタン精製部」の一例である。
 メタン精製器202で採用できる精製手法としては、膜分離、液化分離、吸着分離などがあるが、膜分離が好適である。膜分離を用いたメタン精製器202は、例えば、メタンを選択的に透過させる分離膜を備える。
 返送経路203は、メタン精製器202の非透過側の出口と、導出経路12とを接続する。返送経路203は、メタン精製器202の分離膜を透過していない非透過側の流体F5を、導出経路12を介してメタン化反応部4に戻す。なお、返送経路203は、メタン精製器202の非透過側の出口と、メタン化反応部4とを接続する経路であってもよい。
 メタン合成システム201では、分離器6から導出経路14によって導出された流体F3は、メタン精製器202に導かれる。メタン精製器202でメタン濃度が高められた透過側の流体F4は、精製物ガス(精製物流体)として系外に導出される。メタン精製器202を用いて流体F3に含まれるメタンを精製する工程を「精製工程」という。
 メタン精製器202の分離膜を透過していない非透過側の流体F5は、返送経路203によって導出経路12に戻される。流体F5は、導出経路12からメタン化反応部4に導入される。そのため、流体F5に含まれる未反応物(例えば、水素、一酸化炭素)のメタン化を促すことができる。よって、メタン化反応部4におけるメタンの生成効率を高めることができる。
 非透過側の流体F5は、流体F3から透過側の流体F4が分離されることによって得られた残余物ガス(残余物流体)である。
 メタン合成システム201は、メタン合成システム1(図1参照)と同様に、メタン化反応部4内の温度を適正化できるため、メタンの生成効率を高めることができる。メタン合成システム201は、この他、メタン合成システム1(図1参照)と同様の効果を奏する。
 メタン合成システム201は、メタン精製器202を備えるため、メタン濃度が高い流体F4(精製物ガス)を得ることができる。
 メタン合成システム201は、返送経路203を有するため、非透過側の流体F5(残余物ガス)をメタン化反応部4に戻すことができる。よって、メタン化反応部4におけるメタンの生成効率を高めることができる。
 なお、本開示の技術的範囲は前記実施の形態に限定されず、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、実施の形態1では、固体酸化物形電解セル(SOEC)を用いた共電解部3を例示したが、共電解部には、他の方式を採用してもよい。共電解部は、例えば、固体高分子型の共電解部であってもよい。
 実施の形態1では、水および二酸化炭素から共電解によって水素および一酸化炭素を得る共電解部3が用いられるが、水素(H)および一酸化炭素を得るための装置は共電解部に限らない。例えば、二酸化炭素を電気分解して一酸化炭素を得る工程と、水を電気分解して水素(H)を得る工程とを独立に行う電解装置を用いることもできる。
 1,101,201…メタン合成システム 2…供給経路 3…共電解部 4…メタン化反応部 4a…入口 4b…出口 5…冷却部 6…分離器 7…回収経路 9…エジェクタ 17…第2熱交換器(熱交換器) 202…メタン精製器(メタン精製部) 203…返送経路

Claims (8)

  1.  水と二酸化炭素から電気分解によって水素と一酸化炭素を得る共電解部と、
     前記水素と前記一酸化炭素を用いたメタン化反応によってメタンを含む生成物ガスを得るメタン化反応部と、
     相変化可能な冷媒が流通する流通路を有する冷却部と、を備え、
     前記冷却部は、前記冷媒の少なくとも一部が前記流通路内で気化するのに伴う気化熱によって前記メタン化反応部を冷却し、前記メタン化反応部の出口における温度を、入口における温度より低くする、
     メタン合成システム。
  2.  前記冷媒は、水を含む流体である、
     請求項1に記載のメタン合成システム。
  3.  前記冷却部を経た前記冷媒を前記水として前記共電解部に導く供給経路を備える、
     請求項2に記載のメタン合成システム。
  4.  前記供給経路に、前記水を駆動流体として前記二酸化炭素を吸引するエジェクタが設けられている、
     請求項3に記載のメタン合成システム。
  5.  前記生成物ガスから水を分離する分離器と、
     前記分離器で分離した前記水を前記冷媒として前記冷却部に導く回収経路と、を備える、
     請求項2~4のうちいずれか1項に記載のメタン合成システム。
  6.  前記回収経路に、前記共電解部で前記水と前記二酸化炭素との共電解によって生成した酸素との熱交換によって前記水を加熱する熱交換器が設けられている、
     請求項5記載のメタン合成システム。
  7.  前記生成物ガスから前記メタンを含む流体を分離する分離器と、
     前記メタンを含む流体に含まれる前記メタンを精製して精製物ガスを得るメタン精製部と、をさらに備える、
     請求項1~4のうちいずれか1項に記載のメタン合成システム。
  8.  前記メタンを含む流体から前記精製物ガスが分離されて得られた残余物ガスを前記メタン化反応部に戻す返送経路をさらに備える、
     請求項7記載のメタン合成システム。
PCT/JP2022/027806 2022-07-15 2022-07-15 メタン合成システム WO2024013968A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/027806 WO2024013968A1 (ja) 2022-07-15 2022-07-15 メタン合成システム
JP2023505685A JPWO2024013968A1 (ja) 2022-07-15 2022-07-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027806 WO2024013968A1 (ja) 2022-07-15 2022-07-15 メタン合成システム

Publications (1)

Publication Number Publication Date
WO2024013968A1 true WO2024013968A1 (ja) 2024-01-18

Family

ID=89536268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027806 WO2024013968A1 (ja) 2022-07-15 2022-07-15 メタン合成システム

Country Status (2)

Country Link
JP (1) JPWO2024013968A1 (ja)
WO (1) WO2024013968A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118704A (en) * 1975-03-27 1976-10-18 Midland Ross Corp Process for preparing synthetic gas and apparutus and improvement in method of making methane
US4839391A (en) * 1986-04-16 1989-06-13 Kernforschungsanlage Julich Gmbh Method and reactor for catalytic methanization of a gas containing CO, CO2 and H2
US20120148481A1 (en) * 2009-08-03 2012-06-14 Clomburg Jr Lloyd Anthony Process for the co-production of superheated steam and methane
US20150080483A1 (en) * 2012-04-10 2015-03-19 Siemens Aktiengesellschaft Power station-based methanation system
JP2021161124A (ja) * 2020-03-31 2021-10-11 大阪瓦斯株式会社 炭化水素製造システム、そのシステムの製造方法及び運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118704A (en) * 1975-03-27 1976-10-18 Midland Ross Corp Process for preparing synthetic gas and apparutus and improvement in method of making methane
US4839391A (en) * 1986-04-16 1989-06-13 Kernforschungsanlage Julich Gmbh Method and reactor for catalytic methanization of a gas containing CO, CO2 and H2
US20120148481A1 (en) * 2009-08-03 2012-06-14 Clomburg Jr Lloyd Anthony Process for the co-production of superheated steam and methane
US20150080483A1 (en) * 2012-04-10 2015-03-19 Siemens Aktiengesellschaft Power station-based methanation system
JP2021161124A (ja) * 2020-03-31 2021-10-11 大阪瓦斯株式会社 炭化水素製造システム、そのシステムの製造方法及び運転方法

Also Published As

Publication number Publication date
JPWO2024013968A1 (ja) 2024-01-18

Similar Documents

Publication Publication Date Title
US7060382B2 (en) Fuel cell system with recycle of anode exhaust gas
US20090035619A1 (en) Methods and systems of producing molecular hydrogen using a plasma system in combination with an electrical swing adsorption separation system
JP6405275B2 (ja) 水素の製造方法、および水素製造システム
US20040197616A1 (en) Oxidant-enriched fuel cell system
US20130130134A1 (en) Solid oxide fuel cell steam reforming power system
CA3223306A1 (en) Ammonia cracking process
KR20240021941A (ko) NOx 제거를 이용한 그린 수소를 위한 암모니아 분해
KR20240021944A (ko) 그린 수소를 위한 암모니아 분해
WO2024013968A1 (ja) メタン合成システム
JP2024012206A (ja) メタン合成システム
JP7197374B2 (ja) 水素製造システム
KR20240021940A (ko) 암모니아 분해 프로세스로부터의 재생 가능한 수소 생성물의 회수
WO2023233499A1 (ja) メタン生成システム
AU2021286875A1 (en) Method for the production of hydrogen
JP2016184550A (ja) ガス製造装置
JP7270865B1 (ja) メタン生成システム
WO2024013959A1 (ja) メタン合成システム
JP2024094421A (ja) メタン生成システム
JP2016184549A (ja) ガス製造装置
CA3155106A1 (en) System and method for the production of synthetic fuels without fresh water
JP2016184551A (ja) ガス製造装置
JP2004175584A (ja) 水素製造装置及び水素製造方法
JP2019147708A (ja) 水素供給システム、外部水素供給システム及び水素電力併給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023505685

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951177

Country of ref document: EP

Kind code of ref document: A1