US20130130134A1 - Solid oxide fuel cell steam reforming power system - Google Patents

Solid oxide fuel cell steam reforming power system Download PDF

Info

Publication number
US20130130134A1
US20130130134A1 US13/742,643 US201313742643A US2013130134A1 US 20130130134 A1 US20130130134 A1 US 20130130134A1 US 201313742643 A US201313742643 A US 201313742643A US 2013130134 A1 US2013130134 A1 US 2013130134A1
Authority
US
United States
Prior art keywords
sofc
gas
reforming system
reforming
reformate gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/742,643
Inventor
Lawrence A. Chick
Michael R. Powell
Vincent L. Sprenkle
Kerry D. Meinhardt
Greg A. Whyatt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Priority to US13/742,643 priority Critical patent/US20130130134A1/en
Publication of US20130130134A1 publication Critical patent/US20130130134A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system.
  • adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated; instead the device operates at a higher temperature. This allows efficiencies higher than 65%.
  • This adiabatic reforming can be accomplished in a variety of ways. In one embodiment of the invention, this is done by utilizing modules that split the number plates in a typical SOFC stack, however it will be perceptible to persons of skill in the art that the adiabatic reformation can also be achieved in other was as well. In other embodiments of the invention this is done by including at least one separation device that selectively removes preselected materials from within said system. While particular carriers and structures are disclosed in the present preferred embodiment it is to be distinctly understood that the invention is not limited to this configuration but may be variously embodied in other forms as well. Such other systems could include CO 2 capture devices such as fluids, or plates that could be intermittently removed and replaced within the system. In addition to the use of this invention as a power source the invention also teaches a method and a device for carbon dioxide capture and sequestration.
  • FIG. 1 shows a schematic view of a first embodiment of the present invention
  • FIG. 3 shows a graph demonstrating the energy efficiency in the embodiment shown in FIG. 1 .
  • FIG. 4 shows a graph of the relative heats for various actions in the present system
  • FIG. 5 shows a second embodiment of the preferred invention
  • FIGS. 1 and 5 show various features of various embodiments of the present invention.
  • a highly efficient solid oxide fuel cell (SOFC) power system is described. While this system is described as being operated in conjunction with a coolant medium such as water it is to be distinctly understood that the invention is not limited thereto but may variously alternatively embodied in a variety of other types of devices, embodiments and applications as well.
  • This system achieves efficiencies of 65% and is preferably fueled by a sulfur-free liquid hydrocarbon, such as S-8 or JP-10, in conjunction with an oxidant.
  • This fuel is stored in fuel tank 16 and supplied to the system through fuel pumps 6 .
  • the oxidant is in a tank 20 .
  • Such a system has the potential to achieve an energy density of over 1200 watt-hours per liter.
  • the SOFC power system is preferably modular, with additional units called upon to ramp from about 2 kW to 11.5 kW net to a 100 to 200 VDC power bus at high efficiency.
  • a single fuel cell system cannot efficiently cover the full 2-to-11.5-kW range, so we are using a modular design that allows efficient power production over the full power range.
  • By selectively energizing each of the three power-system modules 2 it i,s possible to achieve high efficiency operation at net output power levels of about 2.3, 4.6, 6.9, 9.2, and 11.5 kW.
  • Each of the three power-system modules 2 shown in FIG. 1 may be operated independently of the other modules.
  • the basic arrangement of the key system components is shown in FIG. 1 . While this particular description of one embodiment of the present invention includes these parameters it is to be distinctly understood that the invention is not limited thereto but may be variously configured according to the needs and necessities of a user.
  • FIG. 1 shows modules 2 that each include at least one SOFC stack 4 .
  • this module 2 there are three SOFC stacks 4 .
  • a series of three smaller stacks 4 are employed.
  • each of the three power modules 2 contain three fuel-cell stacks 4 for a total of nine SOFC stacks in the system.
  • These three SOFC stacks 4 are used in each module 2 with the addition of fuel downstream of each module 2 in three separate stages.
  • the reformate gas then exits the reactor downstream of Stack # 3 and is cooled to 300° C. by the anode recuperator 32 before it contacts a water-gas-shift (WGS) catalyst in a water gas shift reactor 14 that converts approximately 80% of the carbon monoxide to carbon dioxide.
  • WGS water-gas-shift
  • the gas After exiting the WGS reactor 14 , the gas is further cooled in a condenser 13 and most of the water vapor is condensed and removed.
  • the cooled gas then flows through a microporous membrane separation device 18 which preferably contains a microporous, gas absorption membrane sized to remove approximately 90% of the carbon dioxide.
  • the solubilities of the fuel gases (CO, H 2 , and CH 4 ) in water are about 25 to 45 times lower than that of CO 2 , only a small fraction of the fuel gases are removed by the membrane 18 . With the majority of the CO 2 removed via the membrane 18 , the resulting hydrogen-rich gas can be reheated (by a recuperative heat exchanger) and fed to the anode of Stack # 1 .
  • Each of the three modules 2 containing stacks 4 has its cathode gas flow independently controlled by adjustment of blower speed from a blower 26 . This approach was selected to avoid the pressure loss associated with the use of control valves.
  • a means of cathode-gas flow control for each stack is required to ensure the stack temperatures can each be adjusted to achieve the targeted 800° C. maximum.
  • Cathode gas is circulated through a closed-loop flow path that includes recuperative heat exchangers, anode-cathode gas inlet heat exchangers, and a water-cooled gas chiller. A small fraction of the gas is vented from the flow loop to avoid buildup of contaminant gases (principally argon) that are likely present in the oxidant supply.
  • water is used for gas cooling, which is the means by which waste heat is ultimately rejected to the surroundings; and carbon dioxide is removed from the circulating anode gas.
  • This 3-stage configuration provides various advantages, first, the sensible heat in the 800° C. anode-exit gas from each of the three stacks is used to vaporize the added fuel and drive the endothermic reforming reaction. Because the anode gas between the exit of the first cell and entrance of the second cell is not cooled to be passed through the membrane 18 and recycle blower 28 , the inefficiency associated with the anode gas recuperation are avoided. A similar efficiency gain is obtained due to the reuse of anode gas exiting the second stack and entering the third stack. As a result, a greater fraction of the heat generated in the stack can be utilized to drive the reforming reaction Which increases the energy content of the fuel and improves efficiency.
  • Each set of three SOFC modules 2 containing stacks 4 comprising each power-system is positioned inside a well-insulated enclosure along with the adiabatic reforming reactors.
  • the three SOFC modules containing stacks 4 are each designed to utilize approximately 60% of the fuel gases (H 2 , CO, CH 4 ) in the anode gas. ‘The remaining 40% of the fuel gases continue on to either the next stack in the series or, in the case of the third stack in the series, is recycled to the entrance of the first stack. Because the fuel gas concentration in the anode gas becomes progressively more dilute as the gas goes from the first module to the third, the stacks in each module in the series are somewhat larger than the previous. In the current design, the stacks in the second and third modules 2 are roughly twice the size of the stacks in the first module.
  • the SOFC stacks generate sensible heat from the fraction of the H 2 and CO oxidation energy not used to create electric power. Some of this is used to heat the anode feed gas, vaporize the fuel and drive the fuel-reforming reaction, so the “waste heat” carried away by the anode gas is used to improve system efficiency. Some of the heat is lost to ambient through the insulation layer, and some is consumed by on-stack reforming of methane in the anode feed gas, this upgrades the anode-gas fuel quality and thereby improves system efficiency. The remaining excess heat is carried away by the cathode gas (oxygen) flow, which is adjusted to maintain the desired maximum stack operating temperature of about 800° C. As shown in FIG.
  • the cathode-gas flow to each module 2 containing stacks 4 can be independently controlled to ensure accurate control of each stack temperature. Even though the electrical conversion efficiency within the SOFC stack is in the range of 60 to 65% or less depending on cell voltage and anode-gas composition, the net system-level efficiency can exceed 70% because of the ways in which the “waste heat” is used to upgrade fuel quality (by steam reforming) and vaporize the liquid fuel.
  • each module 2 containing stacks 4 As the 800° C. anode gas exits each module 2 containing stacks 4 , a small amount of S-8 fuel is added and rapidly mixed with the gas.
  • the high gas temperature causes the fuel to vaporize and the rapid mixing is required to avoid localized high concentrations of fuel, which can lead to problematic carbon deposition.
  • the gas exiting each SOFC stack contains sufficient steam and hydrogen to guard against carbon formation provided the gas is thoroughly and rapidly mixed with the S-8 fuel.
  • the gas temperature decreases from 800° C. to about 700° C.
  • the 700° C. gas mixture is fed to an adiabatic retort reactor 8 , which contains a proprietary, high-activity, steam-reforming catalyst.
  • an adiabatic reactor 8 heat is neither added to nor removed from the reacting gas stream.
  • the reforming reaction is endothermic, so in the absence of external heat input, the gas temperature decreases as the reaction proceeds.
  • the reforming reactors are sized to result in the conversion of >99% of the S-8 fuel to reformate fuel gases (i.e., H 2 , CO, and CH 4 ). Preliminary estimates put the reactor size at roughly 0.5 liter per kW of SOFC output power.
  • heat exchangers are required for the power system. These include the anode-gas recuperator 32 three cathode-gas recuperators 10 , three anode-cathode feed-gas heat exchangers 22 , an anode gas cooler/condenser 13 , and a cathode gas cooler 12 . It has been found that microchannel heat exchangers offer very compact size even for low-pressure-drop, high-thermal-effectiveness designs.
  • a gas-separation membrane is used to selectively remove CO 2 from the recycled anode gas before it is reheated and fed to the first SOFC stack in the three-stage series.
  • Polypropylene, microporous membrane-based gas/liquid contactors are used industrially to degas liquids (e.g., oxygen removal for corrosion control) and to dissolve gases into liquids (e.g., water carbonation for beverage manufacture).
  • the membrane material is preferably highly hydrophobic with small (ca. 0.03 micron) pores.
  • the membrane is formed into hollow fibers, which are assembled into a fiber bundle.
  • One fluid typically the gas
  • the other fluid typically the liquid
  • the rate of carbon dioxide absorption is a function of fluid flow rates, temperature, and membrane area.
  • the macroporous membrane can withstand up to about 10 atm of pressure differential between the liquid and gas streams before liquid is able to penetrate the membrane and enter the gas flow.
  • Gas pressures in the power system are conveniently adjusted by controlling the fuel-addition rate, anode-recycle blower speed, and the rate of oxygen addition to the cathode-gas recycle loop. Pressure tracking will reduce the parasitic load associated with pumping a coolant media such as water through the membrane system. Operation of the power system at higher pressure is expected to improve the performance of most system components, including the membrane and the SOFC.
  • power from the SOFC system may be stored in a battery bank such as a lithium-ion battery bank and utilized to provide spurts of power at a preselected time.
  • a battery bank such as a lithium-ion battery bank
  • Transfers of power between the system and the batteries and other mechanized portions of the device can be performed by standard high efficiency converter devices.
  • this converter will perform the power conversion at an efficiency of about 90%. Higher conversion efficiencies (up to approximately 97%) can be achieved through the use of larger, custom-designed power converters.
  • waste heat from the fuel cell is used to provide heat for water and fuel vaporization as well as heat to drive the endothermic fuel reforming reaction.
  • a significant gain in system efficiency can be attained if an alternative, anode-recycle approach is used.
  • the anode gas is circulated through the SOFC anode using a high-temperature blower. Fuel is continuously injected into the anode exhaust just before the mixture reacts adiabatically over a catalyst. A small fraction (approximately 10%) of the circulating gas is vented to prevent the continuing buildup of reaction products.
  • the advantage of this approach is that the SOFC waste heat is not needed for water vaporization, and the result is more heat available for fuel vaporization and the steam-reforming reaction.
  • the fraction of anode gas purged from the recycle loop is kept at less than about 10%.
  • steam and CO 2 accumulate in the recycle loop and, effectively, reduce the concentrations of the fuel gases (H 2 , CO, and CH 4 ).
  • Reduced fuel-gas concentrations require larger SOFC stacks to achieve the same level of single-pass fuel utilization.
  • the high steam concentration can, under some conditions, cause a reduction in SOFC
  • the goal is to minimize the cost of power produced, which requires that increased fuel-cell efficiency and fuel-cost savings be traded off against the costs of a larger, more efficient fuel cell.
  • the optimal cell voltage is typically in the range of 0.6 to 0.75 volts, which results in reduced SOFC stack size, but also reduced net system efficiency.
  • high system energy density including fuel and oxidant
  • the peak stack voltage is 0.85 volts, which yields considerably higher electrical-conversion efficiencies than the typical, lower-voltage applications. Because stack volume is such a small fraction of the total available system volume (it is about 2-3% of the total), the benefits of going to a larger, more efficient SOFC stack greatly outweigh the effects of the increased stack volume.
  • thermodynamic electrical conversion efficiency for 800° C. hydrogen at 0.6 volts is 46.6% and at 0.85 volts, the efficiency is 65.9%.
  • solubility of CO 2 in water is higher than the solubilities of the fuel gases, with each pass through the membrane a large fraction (90%) of the CO 2 dissolves in the water whereas only a small fraction ( ⁇ 6%) of the fuel gases dissolve.
  • the CO 2 can be removed from the anode-recycle gas without the reduced efficiency associated with complete loss of the fuel gases.
  • Selective CO 2 removal without fuel-gas loss can also be accomplished by a gravity-driven, gas-absorption column in which water flows downward over a column packing material while the gas flows upward.
  • FIG. 5 Another embodiment of the invention is shown in FIG. 5 . This configuration shows a simplified arrangement premised upon a single module stack in which heat from the cathode exhaust from the stack is transferred to the reforming reaction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated; instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims priority from and is a divisional of U.S. patent application Ser. No. 12/118,353 filed by the same inventors on May 9, 2008 and entitled “SOLID OXIDE FUEL CELL STEAM REFORMING POWER SYSTEM,” the contents of which are hereby incorporated by reference.
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
  • This invention was made with Government support under Contract DE-AC057RL01830 awarded by the U.S. Department of Energy. The Government has certain rights in this invention.
  • SUMMARY OF THE INVENTION
  • While this application describes a particular embodiment of the invention it is to be distinctly understood that the invention is not limited to this particular embodiment but can be variously embodied in a variety of other configurations as well. The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated; instead the device operates at a higher temperature. This allows efficiencies higher than 65%.
  • This adiabatic reforming can be accomplished in a variety of ways. In one embodiment of the invention, this is done by utilizing modules that split the number plates in a typical SOFC stack, however it will be perceptible to persons of skill in the art that the adiabatic reformation can also be achieved in other was as well. In other embodiments of the invention this is done by including at least one separation device that selectively removes preselected materials from within said system. While particular carriers and structures are disclosed in the present preferred embodiment it is to be distinctly understood that the invention is not limited to this configuration but may be variously embodied in other forms as well. Such other systems could include CO2 capture devices such as fluids, or plates that could be intermittently removed and replaced within the system. In addition to the use of this invention as a power source the invention also teaches a method and a device for carbon dioxide capture and sequestration.
  • Additional objects advantages and novel features of the present invention are set forth above and described below in the detailed description of one embodiment of the present invention. While various embodiments of the invention have been described it is to be distinctly understood that the invention is not limited thereto but may be variously alternatively modified and embodied according to the needs and necessities of the user. Accordingly the descriptions here in should be construed as illustrative and not limiting in any way.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic view of a first embodiment of the present invention,
  • FIG. 3 shows a graph demonstrating the energy efficiency in the embodiment shown in FIG. 1.
  • FIG. 4 shows a graph of the relative heats for various actions in the present system
  • FIG. 5 shows a second embodiment of the preferred invention
  • DETAILED DESCRIPTION OF THE INVENTION
  • One embodiment of the present invention is described hereafter. While this description is provided in detail it is to be distinctly understood that the invention is not limited to the particular details described but that various alternative applications of the present invention may also be envisioned within the scope of the claims of the present invention. This description therefore is intended to be descriptive of the invention and not limiting in any way.
  • FIGS. 1 and 5 show various features of various embodiments of the present invention. In the embodiment shown in FIG. 1, a highly efficient solid oxide fuel cell (SOFC) power system is described. While this system is described as being operated in conjunction with a coolant medium such as water it is to be distinctly understood that the invention is not limited thereto but may variously alternatively embodied in a variety of other types of devices, embodiments and applications as well. This system achieves efficiencies of 65% and is preferably fueled by a sulfur-free liquid hydrocarbon, such as S-8 or JP-10, in conjunction with an oxidant. This fuel is stored in fuel tank 16 and supplied to the system through fuel pumps 6. The oxidant is in a tank 20. Such a system has the potential to achieve an energy density of over 1200 watt-hours per liter. The SOFC power system is preferably modular, with additional units called upon to ramp from about 2 kW to 11.5 kW net to a 100 to 200 VDC power bus at high efficiency. A single fuel cell system cannot efficiently cover the full 2-to-11.5-kW range, so we are using a modular design that allows efficient power production over the full power range. By selectively energizing each of the three power-system modules 2, it i,s possible to achieve high efficiency operation at net output power levels of about 2.3, 4.6, 6.9, 9.2, and 11.5 kW. Operation at power levels between these “peak efficiency” points is also possible, but system efficiency will decrease slightly because the stack voltages must be reduced to achieve the intermediate power levels. The system can easily be scaled to provide more output power by increasing the number and capacity of the power-system modules 2.
  • Each of the three power-system modules 2 shown in FIG. 1 may be operated independently of the other modules. The basic arrangement of the key system components is shown in FIG. 1. While this particular description of one embodiment of the present invention includes these parameters it is to be distinctly understood that the invention is not limited thereto but may be variously configured according to the needs and necessities of a user.
  • Referring now to FIG. 1, a view of a first embodiment of the present invention is shown. FIG. 1 shows modules 2 that each include at least one SOFC stack 4. Preferably, there are a plurality of SOFC stacks 4 in each module. For example, in this module 2 there are three SOFC stacks 4. In the preferred embodiment of the invention a series of three smaller stacks 4 are employed. Thus, each of the three power modules 2 contain three fuel-cell stacks 4 for a total of nine SOFC stacks in the system. These three SOFC stacks 4 are used in each module 2 with the addition of fuel downstream of each module 2 in three separate stages. In this “3-stage fuel addition” approach, fuel is metered into the anode gas immediately downstream of each stack 4 and the resulting gas is reacted adiabatically in an adiabatic steam reformer 8 over a suitable catalyst o form a mixture of hydrogen, carbon monoxide, methane, and steam. This gas mixture then serves as the anode feed gas for the next fuel-cell module 2 containing stacks 4 in the series.
  • The reformate gas then exits the reactor downstream of Stack #3 and is cooled to 300° C. by the anode recuperator 32 before it contacts a water-gas-shift (WGS) catalyst in a water gas shift reactor 14 that converts approximately 80% of the carbon monoxide to carbon dioxide. This is an exothermic process that has a minimal effect on system efficiency, but it is necessary to avoid carbon deposition in Stack #1. After exiting the WGS reactor 14, the gas is further cooled in a condenser 13 and most of the water vapor is condensed and removed. The cooled gas then flows through a microporous membrane separation device 18 which preferably contains a microporous, gas absorption membrane sized to remove approximately 90% of the carbon dioxide. Because the solubilities of the fuel gases (CO, H2, and CH4) in water are about 25 to 45 times lower than that of CO2, only a small fraction of the fuel gases are removed by the membrane 18. With the majority of the CO2 removed via the membrane 18, the resulting hydrogen-rich gas can be reheated (by a recuperative heat exchanger) and fed to the anode of Stack #1.
  • Each of the three modules 2 containing stacks 4 has its cathode gas flow independently controlled by adjustment of blower speed from a blower 26. This approach was selected to avoid the pressure loss associated with the use of control valves. A means of cathode-gas flow control for each stack is required to ensure the stack temperatures can each be adjusted to achieve the targeted 800° C. maximum. Cathode gas is circulated through a closed-loop flow path that includes recuperative heat exchangers, anode-cathode gas inlet heat exchangers, and a water-cooled gas chiller. A small fraction of the gas is vented from the flow loop to avoid buildup of contaminant gases (principally argon) that are likely present in the oxidant supply. In this embodiment water is used for gas cooling, which is the means by which waste heat is ultimately rejected to the surroundings; and carbon dioxide is removed from the circulating anode gas.
  • While a 3-stage fuel addition approach has been described it is to be distinctly understood that the invention is not limited thereto but maybe alternatively configured to provide various other configurations and options including 1-stage and 2-stage options. The 3-stage option that has been provided because these offer high system efficiency, greater resistance to carbon deposition in the SOFC stacks 4 and adiabatic reactors, and an expectation of improved SOFC stack reliability.
  • This 3-stage configuration provides various advantages, first, the sensible heat in the 800° C. anode-exit gas from each of the three stacks is used to vaporize the added fuel and drive the endothermic reforming reaction. Because the anode gas between the exit of the first cell and entrance of the second cell is not cooled to be passed through the membrane 18 and recycle blower 28, the inefficiency associated with the anode gas recuperation are avoided. A similar efficiency gain is obtained due to the reuse of anode gas exiting the second stack and entering the third stack. As a result, a greater fraction of the heat generated in the stack can be utilized to drive the reforming reaction Which increases the energy content of the fuel and improves efficiency.
  • Each set of three SOFC modules 2containing stacks 4 comprising each power-system is positioned inside a well-insulated enclosure along with the adiabatic reforming reactors. The three SOFC modules containing stacks 4 are each designed to utilize approximately 60% of the fuel gases (H2, CO, CH4) in the anode gas. ‘The remaining 40% of the fuel gases continue on to either the next stack in the series or, in the case of the third stack in the series, is recycled to the entrance of the first stack. Because the fuel gas concentration in the anode gas becomes progressively more dilute as the gas goes from the first module to the third, the stacks in each module in the series are somewhat larger than the previous. In the current design, the stacks in the second and third modules 2 are roughly twice the size of the stacks in the first module.
  • The SOFC stacks generate sensible heat from the fraction of the H2 and CO oxidation energy not used to create electric power. Some of this is used to heat the anode feed gas, vaporize the fuel and drive the fuel-reforming reaction, so the “waste heat” carried away by the anode gas is used to improve system efficiency. Some of the heat is lost to ambient through the insulation layer, and some is consumed by on-stack reforming of methane in the anode feed gas, this upgrades the anode-gas fuel quality and thereby improves system efficiency. The remaining excess heat is carried away by the cathode gas (oxygen) flow, which is adjusted to maintain the desired maximum stack operating temperature of about 800° C. As shown in FIG. 1, the cathode-gas flow to each module 2 containing stacks 4 can be independently controlled to ensure accurate control of each stack temperature. Even though the electrical conversion efficiency within the SOFC stack is in the range of 60 to 65% or less depending on cell voltage and anode-gas composition, the net system-level efficiency can exceed 70% because of the ways in which the “waste heat” is used to upgrade fuel quality (by steam reforming) and vaporize the liquid fuel.
  • As the 800° C. anode gas exits each module 2 containing stacks 4, a small amount of S-8 fuel is added and rapidly mixed with the gas. The high gas temperature causes the fuel to vaporize and the rapid mixing is required to avoid localized high concentrations of fuel, which can lead to problematic carbon deposition. The gas exiting each SOFC stack contains sufficient steam and hydrogen to guard against carbon formation provided the gas is thoroughly and rapidly mixed with the S-8 fuel.
  • Upon vaporization of he fuel, the gas temperature decreases from 800° C. to about 700° C. The 700° C. gas mixture is fed to an adiabatic retort reactor 8, which contains a proprietary, high-activity, steam-reforming catalyst. In an adiabatic reactor 8, heat is neither added to nor removed from the reacting gas stream. The reforming reaction is endothermic, so in the absence of external heat input, the gas temperature decreases as the reaction proceeds. The product gases exit the reforming reactors at about 570° C. The reforming reactors are sized to result in the conversion of >99% of the S-8 fuel to reformate fuel gases (i.e., H2, CO, and CH4). Preliminary estimates put the reactor size at roughly 0.5 liter per kW of SOFC output power.
  • Several heat exchangers are required for the power system. These include the anode-gas recuperator 32 three cathode-gas recuperators 10, three anode-cathode feed-gas heat exchangers 22, an anode gas cooler/condenser 13, and a cathode gas cooler 12. It has been found that microchannel heat exchangers offer very compact size even for low-pressure-drop, high-thermal-effectiveness designs.
  • A gas-separation membrane is used to selectively remove CO2 from the recycled anode gas before it is reheated and fed to the first SOFC stack in the three-stage series. Polypropylene, microporous membrane-based gas/liquid contactors are used industrially to degas liquids (e.g., oxygen removal for corrosion control) and to dissolve gases into liquids (e.g., water carbonation for beverage manufacture). The membrane material is preferably highly hydrophobic with small (ca. 0.03 micron) pores. In one embodiment of the invention the membrane is formed into hollow fibers, which are assembled into a fiber bundle. One fluid (typically the gas) is directed through the inside of the fiber tubes while the other fluid (typically the liquid) flows around the outside of the tube bundle. The rate of carbon dioxide absorption is a function of fluid flow rates, temperature, and membrane area.
  • Because of its hydrophobicity and small-diameter pores, the macroporous membrane can withstand up to about 10 atm of pressure differential between the liquid and gas streams before liquid is able to penetrate the membrane and enter the gas flow. Gas pressures in the power system are conveniently adjusted by controlling the fuel-addition rate, anode-recycle blower speed, and the rate of oxygen addition to the cathode-gas recycle loop. Pressure tracking will reduce the parasitic load associated with pumping a coolant media such as water through the membrane system. Operation of the power system at higher pressure is expected to improve the performance of most system components, including the membrane and the SOFC.
  • In the preferred embodiment of the invention power from the SOFC system may be stored in a battery bank such as a lithium-ion battery bank and utilized to provide spurts of power at a preselected time. Transfers of power between the system and the batteries and other mechanized portions of the device can be performed by standard high efficiency converter devices. In the embodiment selected for the present invention, this converter will perform the power conversion at an efficiency of about 90%. Higher conversion efficiencies (up to approximately 97%) can be achieved through the use of larger, custom-designed power converters.
  • In some steam-reforming SOFC power systems, waste heat from the fuel cell is used to provide heat for water and fuel vaporization as well as heat to drive the endothermic fuel reforming reaction. A significant gain in system efficiency can be attained if an alternative, anode-recycle approach is used. In an anode-recycle reforming system, the anode gas is circulated through the SOFC anode using a high-temperature blower. Fuel is continuously injected into the anode exhaust just before the mixture reacts adiabatically over a catalyst. A small fraction (approximately 10%) of the circulating gas is vented to prevent the continuing buildup of reaction products. The advantage of this approach is that the SOFC waste heat is not needed for water vaporization, and the result is more heat available for fuel vaporization and the steam-reforming reaction.
  • To maintain high efficiency and avoid carbon deposition, the fraction of anode gas purged from the recycle loop is kept at less than about 10%. As a consequence of this low purge rate, steam and CO2 accumulate in the recycle loop and, effectively, reduce the concentrations of the fuel gases (H2, CO, and CH4). Reduced fuel-gas concentrations require larger SOFC stacks to achieve the same level of single-pass fuel utilization. Further, the high steam concentration can, under some conditions, cause a reduction in SOFC These drawbacks can be largely overcome through the use of a gas-separation membrane designed to remove CO2 from the circulating anode gas without removing a significant portion of the fuel gases. With each pass through the anode-gas recycle loop, most of the H2O is removed via a condenser and most of the CO2 is removed via the gas-separation membrane. The gas returned to the SOFC anode is principally composed of fuel gases with relatively little H2O and CO2. This approach can be further improved if the fuel addition is performed in multiple stages (as described in Section 6.1) rather than in a single step.
  • In many power-generation applications, the goal is to minimize the cost of power produced, which requires that increased fuel-cell efficiency and fuel-cost savings be traded off against the costs of a larger, more efficient fuel cell. In such applications, the optimal cell voltage is typically in the range of 0.6 to 0.75 volts, which results in reduced SOFC stack size, but also reduced net system efficiency. In the present invention high system energy density (including fuel and oxidant) is of paramount importance. This results in the optimum stack operating voltage being significantly higher. In the proposed system, the peak stack voltage is 0.85 volts, which yields considerably higher electrical-conversion efficiencies than the typical, lower-voltage applications. Because stack volume is such a small fraction of the total available system volume (it is about 2-3% of the total), the benefits of going to a larger, more efficient SOFC stack greatly outweigh the effects of the increased stack volume.
  • In one embodiment of the present invention the thermodynamic electrical conversion efficiency for 800° C. hydrogen at 0.6 volts is 46.6% and at 0.85 volts, the efficiency is 65.9%. Because the solubility of CO2 in water is higher than the solubilities of the fuel gases, with each pass through the membrane a large fraction (90%) of the CO2 dissolves in the water whereas only a small fraction (−6%) of the fuel gases dissolve. With this approach, the CO2 can be removed from the anode-recycle gas without the reduced efficiency associated with complete loss of the fuel gases. Selective CO2 removal without fuel-gas loss can also be accomplished by a gravity-driven, gas-absorption column in which water flows downward over a column packing material while the gas flows upward. Another embodiment of the invention is shown in FIG. 5. This configuration shows a simplified arrangement premised upon a single module stack in which heat from the cathode exhaust from the stack is transferred to the reforming reaction.
  • While various preferred embodiments of the invention are shown and described, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description it will be apparent that various changes may be made without departing from the spirit and scope of the invention as defined by the following claims.

Claims (33)

What is claimed is:
1. A Solid Oxide Fuel Cell (SOFC) reforming system comprising:
a. a first SOFC stack for receiving an anode feed gas on an anode side of the first SOFC stack to generate a first anode effluent, wherein the first anode effluent is mixed with a hydrocarbon fuel to generate a first reformer feed stream; and
b. a first adiabatic reforming reactor, containing a steam-reforming catalyst, that receives the first reformer feed stream and produces a first reformate gas.
2. The SOFC reforming system of claim 1 wherein the reformate gas is fed back to the first SOFC stack.
3. The SOFC reforming system of claim 2 wherein a blower is used to feed back the reformate gas to the first SOFC stack.
4. The SOFC reforming system of claim 3 wherein the reformate gas is reheated by a recuperator before being fed back to the first SOFC stack.
5. The SOFC reforming system of claim 1 further comprising a recuperator for cooling the reform:ate gas.
6. The SOFC reforming system of claim 5 further comprising a water-gas-shift (WGS) catalyst for converting a portion of carbon monoxide in the cooled reformate gas to carbon dioxide.
7. The SOFC reforming system of claim 6 further comprising a condenser for cooling the reformate gas, wherein a portion of water vapor is condensed and removed.
8. The SOFC reforming system of claim 7 further comprising a separation device for removing carbon dioxide from the cooled reformate gas.
9. The SOFC reforming system of claim 8 wherein the cooled reformate gas leaving the separation device is reheated by the recuperator and fed back to the first SOFC stack.
10. The SOFC reforming system of claim 2 wherein a portion of the first anode effluent is purged from the system.
11. The SOFC reforming system of claim 10 wherein heat from the purge stream is used to heat the anode feed gas in a recuperator.
12. The SOFC reforming system of claim 11 wherein water and CO2 are removed from the purge stream, and a portion of H2, CO, and CH4 are returned to the anode feed gas.
13. The SOFC reforming system of claim 8 wherein the separation device is a microporous, gas absorption membrane.
14. The SOFC reforming system of claim 1 wherein no oxygen is added to the anode effluent before entering the first adiabatic reforming reactor.
15. The SOFC reforming system of claim 1 further comprising a second SOFC stack for receiving the first reformate gas and generating a second anode effluent, wherein the second anode effluent mixes with the hydrocarbon fuel to generate a second reformer feed stream.
16. The SOFC reforming system of claim 15 further comprising a second adiabatic reforming reactor, containing a steam-reforming catalyst, that receives the second reformer feed steam and produces a second reformate gas.
17. The SOFC reforming system of claim 16 wherein the second reformate gas is fed back to the first SOFC stack.
18. The SOFC reforming system of claim 17 wherein a blower is used to feed back the second reformate gas to the first SOFC stack.
19. The SOFC reforming system of claim 18 wherein the second reformate gas is reheated by a recuperator before being fed back to the first SOFC stack.
20. The SOFC reforming system of claim 15 further comprising a recuperator for cooling the second reformate gas.
21. The SOFC reforming system of claim 20 further comprising a WGS catalyst for converting a portion of carbon monoxide in the cooled reformate gas to carbon dioxide.
22. The SOFC reforming system of claim 21 further comprising a condenser for cooling the second reformate gas, wherein a portion of water vapor is condensed and removed.
23. The SOFC reforming system of claim 22 further comprising a separation device for removing carbon dioxide from the cooled reformate gas.
24. The SOFC reforming system of claim 23 wherein the cooled reformate gas leaving the separation device is reheated by the recuperator and fed back to the first SOFC stack.
25. The SOFC reforming system of claim 24 wherein a portion of the second anode effluent is purged from the system.
26. The SOFC reforming system of claim 25 wherein heat from the purge stream is used to heat the anode feed gas in a recuperator.
27. The SOFC reforming system of claim 26 wherein water and CO2 are removed from the purge stream, and a portion of H2, CO, and CH4 are returned to the anode feed gas.
28. The SOFC reforming system of claim 23 wherein the separation device is a microporous gas absorption membrane.
29. The SOFC reforming system of claim 16 wherein no oxygen is added to the second anode effluent before entering the second adiabatic reforming system.
30. The SOFC reforming system of claim 16 further comprising a third SOFC stack for receiving the second reformate gas and generating a third anode effluent, wherein the third anode effluent mixes with the hydrocarbon fuel to generate a third reformer feed stream.
31. The SOFC reforming system of claim 30 further comprising a third adiabatic reforming reactor, containing a steam-reforming catalyst, that receives the third reformer feed stream and produces a third reformate gas.
32. The SOFC reforming system of claim 31 wherein the third reformate gas is fed back to the first SOFC stack.
33. A SOFC reforming system comprising
a. a SOFC stack for receiving an anode feed gas on an anode side of the SOFC stack to generate an anode effluent, wherein the anode effluent is mixed with a hydrocarbon fuel to generate a reformer feed stream; and
b. an adiabatic reforming reactor, containing a steam-reforming catalyst, that receives the reformer feed stream and produces a reformate gas;
c. a recuperator for cooling the reformate gas;
d. a WGS catalyst for converting a portion of carbon monoxide in the cooled reformate gas to carbon dioxide;
e. a condenser for cooling the reformate gas, wherein a portion of water vapor is condensed and removed; and
a microporous, gas absorption membrane for removing carbon dioxide from the cooled gas, wherein the cooled reformate gas is reheated by the recuperator and fed back to the SOFC stack.
US13/742,643 2008-05-09 2013-01-16 Solid oxide fuel cell steam reforming power system Abandoned US20130130134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/742,643 US20130130134A1 (en) 2008-05-09 2013-01-16 Solid oxide fuel cell steam reforming power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/118,353 US8394544B2 (en) 2008-05-09 2008-05-09 Solid oxide fuel cell steam reforming power system
US13/742,643 US20130130134A1 (en) 2008-05-09 2013-01-16 Solid oxide fuel cell steam reforming power system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/118,353 Division US8394544B2 (en) 2008-05-09 2008-05-09 Solid oxide fuel cell steam reforming power system

Publications (1)

Publication Number Publication Date
US20130130134A1 true US20130130134A1 (en) 2013-05-23

Family

ID=41267111

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/118,353 Expired - Fee Related US8394544B2 (en) 2008-05-09 2008-05-09 Solid oxide fuel cell steam reforming power system
US13/742,643 Abandoned US20130130134A1 (en) 2008-05-09 2013-01-16 Solid oxide fuel cell steam reforming power system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/118,353 Expired - Fee Related US8394544B2 (en) 2008-05-09 2008-05-09 Solid oxide fuel cell steam reforming power system

Country Status (1)

Country Link
US (2) US8394544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256496B2 (en) 2014-07-01 2019-04-09 General Electric Company Power generation systems and methods utilizing cascaded fuel cells
US10854899B2 (en) 2016-11-04 2020-12-01 Cummins Enterprise Llc Power generation system using cascaded fuel cells and associated methods thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834441B2 (en) 2013-03-12 2017-12-05 Battelle Memorial Institute Reactor incorporating a heat exchanger
US10367208B2 (en) 2015-05-06 2019-07-30 Robert E. Buxbaum High efficiency fuel reforming and water use in a high temperature fuel-cell system and process for the such thereof
BR112018002616B1 (en) 2015-08-10 2022-09-20 Nissan Motor Co., Ltd. SOLID OXIDE FUEL CELL SYSTEM
US20200212461A1 (en) * 2019-01-02 2020-07-02 The Boeing Company Systems and Methods for Increasing Solid Oxide Fuel Cell Efficiency
TWI734657B (en) * 2021-01-15 2021-07-21 電聯運通股份有限公司 Fuel cell energy recycling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865924A (en) * 1972-03-03 1975-02-11 Inst Gas Technology Process for regenerative sorption of CO{HD 2
US20030143448A1 (en) * 2000-10-30 2003-07-31 Questair Technologies Inc. High temperature fuel cell power plant
US20050003247A1 (en) * 2003-07-01 2005-01-06 Ai-Quoc Pham Co-production of hydrogen and electricity using pyrolysis and fuel cells
US20080241638A1 (en) * 2007-03-30 2008-10-02 Bloom Energy Corporation SOFC system producing reduced atmospheric carbon dioxide using a molten carbonated carbon dioxide pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266938A (en) * 1961-12-20 1966-08-16 Texas Instruments Inc Method of operating a fuel cell system
US5366819A (en) * 1993-10-06 1994-11-22 Ceramatec, Inc. Thermally integrated reformer for solid oxide fuel cells
US7422810B2 (en) * 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
US20070160880A1 (en) * 2006-01-09 2007-07-12 Fischer Bernhard A Fuel-staged hydrocarbon reformer system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865924A (en) * 1972-03-03 1975-02-11 Inst Gas Technology Process for regenerative sorption of CO{HD 2
US20030143448A1 (en) * 2000-10-30 2003-07-31 Questair Technologies Inc. High temperature fuel cell power plant
US20050003247A1 (en) * 2003-07-01 2005-01-06 Ai-Quoc Pham Co-production of hydrogen and electricity using pyrolysis and fuel cells
US20080241638A1 (en) * 2007-03-30 2008-10-02 Bloom Energy Corporation SOFC system producing reduced atmospheric carbon dioxide using a molten carbonated carbon dioxide pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256496B2 (en) 2014-07-01 2019-04-09 General Electric Company Power generation systems and methods utilizing cascaded fuel cells
US10854899B2 (en) 2016-11-04 2020-12-01 Cummins Enterprise Llc Power generation system using cascaded fuel cells and associated methods thereof

Also Published As

Publication number Publication date
US20090280369A1 (en) 2009-11-12
US8394544B2 (en) 2013-03-12

Similar Documents

Publication Publication Date Title
US20130130134A1 (en) Solid oxide fuel cell steam reforming power system
US9373856B2 (en) Method of recycling and tapping off hydrogen for power generation apparatus
US7201979B2 (en) SORFC system and method with an exothermic net electrolysis reaction
US20110223501A1 (en) Hydrogen-recycling mcfc power-generating system
EP1584122B1 (en) Process for generating electricity and concentrated carbon dioxide
US20050123810A1 (en) System and method for co-production of hydrogen and electrical energy
CN1964121A (en) Reformer and fuel cell system using the same
US20100104903A1 (en) Power Plant With Membrane Water Gas Shift Reactor System
KR20010041687A (en) Process gas purification and fuel cell system
EP1144301A1 (en) Fuel cell power generation system with autothermal reformer
CN110582880B (en) Fuel cell system and method for operating a fuel cell system
KR100646985B1 (en) Plate type fuel reforming system and fuel cell system having the same
JP2021031369A (en) Plant for consuming reformed gas, and method for reforming raw material gas
TW202337064A (en) Fuel cell systems and methods with improved fuel utilization
KR102116876B1 (en) A fuel cell system using liquid fuel and hydrogen peroxide and a method for operating fuel cell
JP2007128786A (en) Fuel cell system
JP2022076978A (en) System and method for processing off-gas discharged from fuel cell
JP2021131948A (en) Fuel battery power generation system
Whyatt et al. Demonstration of energy efficient steam reforming in microchannels for automotive fuel processing
CN116845304A (en) Hydrogen generation using a fuel cell system with REP
JP2004530271A (en) Fuel cell power equipment
JP2008204662A (en) Fuel cell power generation system
US20080171247A1 (en) Reformer of fuel cell system
JP2004277189A (en) Fuel gas generation apparatus
KR20070040249A (en) Fuel cell system having cooling apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION