WO2024012511A1 - 自限温远红外碳纤维复合面状电热材料及其制备方法 - Google Patents

自限温远红外碳纤维复合面状电热材料及其制备方法 Download PDF

Info

Publication number
WO2024012511A1
WO2024012511A1 PCT/CN2023/107118 CN2023107118W WO2024012511A1 WO 2024012511 A1 WO2024012511 A1 WO 2024012511A1 CN 2023107118 W CN2023107118 W CN 2023107118W WO 2024012511 A1 WO2024012511 A1 WO 2024012511A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
temperature
limiting
carbon fiber
epoxy resin
Prior art date
Application number
PCT/CN2023/107118
Other languages
English (en)
French (fr)
Inventor
全俊成
王婼楠
马玉梅
吴宇晖
吴亚琪
Original Assignee
上海骏珲新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海骏珲新材料科技有限公司 filed Critical 上海骏珲新材料科技有限公司
Publication of WO2024012511A1 publication Critical patent/WO2024012511A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to an electric heating material, in particular to a self-limiting temperature far-infrared carbon fiber composite planar electric heating material and a preparation method thereof.
  • carbon fiber composite planar electric heating materials generally use carbon fiber composite conductive paper as the heating carrier.
  • the conductive paper mainly uses a three-dimensional conductive network constructed of chopped carbon fibers.
  • the conductive network is a network formed by physical construction.
  • the composite electric heating material has Ultra-high service life and excellent infrared performance - high electrothermal conversion efficiency, electro-thermal radiation conversion efficiency can generally reach more than 60%, it is widely used in floor heating, rehabilitation physiotherapy, food drying, sterilization, wearable equipment , household appliances and other fields.
  • Chinese Patent Publication No. CN102291858A discloses a low-temperature composite electric heating material and a method for preparing the same.
  • the carbon fiber conductive paper is covered with a layer of epoxy resin glass fiber cloth on the upper and lower layers, and the upper and lower layers of the epoxy resin glass fiber cloth are each covered with a layer of epoxy resin glass fiber cloth.
  • It is formed by hot pressing of layers of ethylene terephthalate resin. Its heating area, temperature, and local temperature can be applied to the field of building heating.
  • the surface temperature can be adjusted arbitrarily between 16°C and 55°C.
  • the heating time is fast.
  • the set temperature can be reached within 30 minutes of startup.
  • its application temperature is relatively low, not exceeding 55 degrees, and its application range is limited. More importantly, it relies on an external temperature controller to control it. During use, it is easy to cause damage due to temperature superposition - at least the temperature superposition will cause carbonization of the covering, and at worst it may cause a fire.
  • Chinese Patent Publication No. CN111925686A discloses a graphene heating ink with PTC self-limiting temperature function, which is mainly composed of graphene, support material resin, PTC effect material, solvent, thickener, defoaming agent and leveling agent.
  • PTC effect material in graphene heating ink, the heating diaphragm obtained has a self-limiting temperature function, a reliable structure, and is easy to use; and does not require a temperature control switch.
  • the conductive network is a chemical conductive network formed by carbon powder, conductive filling slurry and PTC material.
  • the conductive filling slurry Under the condition of long-term temperature effect, the conductive filling slurry will gradually fatigue, and the conductive slurry will fatigue. The result is that the conductive network is damaged and a "virtual connection" occurs, leading to breakdown.
  • PTC materials generally fatigue after about 100,000 times.
  • the breakdown caused may directly burn the heating plate, or even cause a fire. For example, on February 5, 2017, a fire broke out in Zuxintang, Chunxiao Di, Chicheng Street, Tiantai County, Taizhou City, Zhejiang province. The fire was caused by the breakdown of the electric heating film, causing a major safety accident.
  • the present invention discloses a self-limiting temperature far-infrared carbon fiber composite planar electric heating material and a preparation method thereof. It has technical features as described below to solve existing problems.
  • the purpose of the present invention is to provide a self-limiting temperature far-infrared carbon fiber composite planar electrothermal material and a preparation method thereof, which utilizes a three-dimensional conductive network with a stable physical structure of carbon fiber conductive paper, which can effectively It solves the major problems of existing self-limiting temperature planar heating materials such as unstable heating performance, low service life, and fire hazards during use.
  • the working temperature of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material of the present invention At 30-160°C, it can be widely used in industrial heating, building heating, rehabilitation physiotherapy, agricultural drying, sterilization, household appliances, rail transit heating, automobile heating and special heating.
  • the self-limiting temperature far-infrared carbon fiber composite planar electric heating material of the present invention is realized through the following technical solution: the self-limiting temperature far-infrared carbon fiber composite planar electric heating material is composed of two layers of reinforced insulation layers, two layers of insulation layers, and two layers of self-limiting
  • the self-limiting temperature far-infrared carbon fiber composite planar electric heating material also includes a connecting terminal and a power lead wire.
  • the connection terminals are riveted on the copper poles at both ends of the self-temperature-limiting far-infrared carbon fiber composite planar electric heating material, and the power lead-out wire is clamped on the wiring slot of the connection terminals.
  • the above-mentioned self-limiting far-infrared carbon fiber composite planar electric heating material wherein the two self-limiting temperature layers cover the upper and lower layers of the heating layer respectively, and the two insulating layers cover the two self-limiting temperature layers respectively.
  • the two reinforced insulating layers respectively cover the upper and lower layers of the two insulating layers.
  • the above-mentioned self-limiting far-infrared carbon fiber composite planar electric heating material wherein the heating layer adopts carbon fiber conductive paper, the volume resistivity of the conductive paper is 0.1-6 ⁇ .cm, and the two sides of the carbon fiber conductive paper Two copper foil strips are also fixed on the sides, and the two copper foil strips are the same length as the carbon fiber conductive paper.
  • the above-mentioned self-limiting far-infrared carbon fiber composite planar electric heating material wherein the long sides and wide sides of the reinforced insulation layer, the insulation layer and the self-temperature limiting layer are the same, and the long sides of the heating layer are the same.
  • Each wide side is smaller than each long side and each wide side of the reinforced insulation layer, the insulation layer and the self-temperature limiting layer.
  • the above-mentioned self-limiting temperature far-infrared carbon fiber composite planar electric heating material wherein the self-limiting The temperature-limiting layer is a semi-cured sheet formed by impregnating, drying and hot-pressing a cloth material with a self-limiting temperature composite solvent.
  • the cloth material can be one of non-woven fabrics or glass fiber cloths.
  • the non-woven The cloth can be one of polyester fiber non-woven fabric, polypropylene fiber non-woven fabric, nylon fiber non-woven fabric, spandex fiber non-woven fabric or acrylic fiber non-woven fabric.
  • the fixed weight of the non-woven fabric is 20-100g. /m2
  • the glass fiber cloth can be one of alkali-free glass fiber cloth or medium-alkali glass fiber cloth, and the fixed weight of the glass fiber cloth is 50-150g/m2.
  • the self-limiting temperature composite solvent is an epoxy resin solution in which a thermoplastic polymer is evenly dispersed.
  • the epoxy resin solution and the thermoplastic polymer are uniformly mixed at a weight ratio of 10:0.5-1.
  • the thermoplastic polymer is prepared by air-pulverizing and mixing polypropylene powder, polyethylene powder and polyvinylidene fluoride powder in a weight ratio of 2:1-1.5:0.1-0.3.
  • the epoxy resin solution of the thermoplastic polymer is made of brominated epoxy resin solution, 6101 epoxy resin solution and diluent evenly mixed in a weight ratio of 10:3-6:1-0.3.
  • the brominated epoxy resin solution is The epoxy resin solution uses one of brominated bisphenol A-type epoxy resin, brominated phenolic-type epoxy resin, and dibromopentaglycol-type epoxy resin.
  • the diluent uses ethyl acetate or butyl acetate. One of the esters or acetone.
  • the insulating layer is a semi-cured sheet formed by impregnating glass fiber cloth with epoxy resin solution, drying, and hot pressing.
  • the glass fiber cloth can be one of alkali-free glass fiber cloth or medium-alkali glass fiber cloth, and the fixed weight of the glass fiber cloth is 150-300g/m2.
  • the epoxy resin solution is made by uniformly mixing brominated epoxy resin solution, 6101 epoxy resin solution and diluent in a weight ratio of 10:3-6:1-0.3.
  • the brominated epoxy resin solution use One of brominated bisphenol A epoxy resin, brominated phenolic epoxy resin, and dibromopentaglycol epoxy resin.
  • the diluent is ethyl acetate, butyl acetate or acetone. A sort of.
  • thermoplastic polymer film can adopt PET film, PBT film, PVDF film, PC film
  • the thickness of the thermoplastic polymer film is 20-50 ⁇ m.
  • the above-mentioned self-limiting temperature far-infrared carbon fiber composite planar electric heating material wherein the temperature of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material is 140-180°C, and the hot-pressing time is 60-180 minutes. , the hot pressing pressure is 50-150kg/cm2.
  • connection terminals are riveted to the copper poles at both ends of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material by riveting terminals, and the connection terminals are OT type connection terminal, and the T-end wiring slot of the OT type terminal is used to clamp and fix the power supply lead-out wire.
  • the riveted terminal is composed of hollow copper rivets and fastening washers.
  • the above-mentioned self-limiting temperature far-infrared carbon fiber composite planar electric heating material wherein the copper electrodes at both ends of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material have a set of symmetrical round holes, and the self-limiting temperature far-infrared far-infrared electric heating material has a set of symmetrical circular holes.
  • the round holes on the carbon fiber composite planar electric heating material have the same diameter as the hollow copper rivets.
  • the above-mentioned method for preparing the self-limiting temperature far-infrared carbon fiber composite planar electric heating material at least includes the following steps:
  • Step 1 Prepare a self-limiting temperature layer
  • Step 1.1 Use airflow to crush polypropylene powder, polyethylene powder and polyvinylidene fluoride powder according to the weight ratio to obtain a thermoplastic polymer;
  • Step 1.2 Put the brominated epoxy resin solution, 6101 epoxy resin solution and diluent into the mixer according to the weight ratio for homogenization. The average time is 10-30 minutes. After the homogenization is completed, the epoxy resin solution is obtained;
  • Step 1.3 Put the thermoplastic polymer obtained in step 1.1 and the epoxy resin solution obtained in step 1.2 into a mixer according to the weight ratio for homogenization.
  • the homogenization time is 20-45min, and the homogenizer speed is 800-1500r/min to obtain a self-limiting warm solvent;
  • Step 1.4 pour the self-limiting temperature solvent obtained in step 1.3 into the glue tank of the glue dipping machine;
  • Step 1.5 Put the fiberglass cloth into the dipping machine and start dipping;
  • Step 1.6 Dry the glass fiber cloth impregnated in step 1.5;
  • Step 1.7 Cut the dried glass fiber cloth in step 1.6, and send the cut glass fiber cloth to the hot press for hot pressing.
  • the hot pressing temperature is 80-140°C
  • the hot pressing time is 40-120 minutes.
  • the hot pressing pressure is 10-80kg/cm2.
  • Step 2 Prepare the insulation layer
  • Step 2.1 Put the brominated epoxy resin solution, 6101 epoxy resin solution and diluent into a mixer according to the weight ratio for homogenization. The average time is 10-30 minutes. After the homogenization is completed, the epoxy resin solution is obtained;
  • Step 2.2 pour the epoxy resin solution into the glue pool of the dipping machine
  • Step 2.3 Put the fiberglass cloth into the dipping machine and start dipping;
  • Step 2.4 Dry the glass fiber cloth soaked in step 2.3;
  • Step 2.5 Cut the fiberglass cloth dried in step 2.5 and cut The good glass fiber cloth is sent into the hot press for hot pressing.
  • the hot pressing temperature is 120-140°C
  • the hot pressing time is 60-120min
  • the hot pressing pressure is 30-120kg/cm2.
  • Step 3 Prepare the heating layer
  • Step 3.1 Cut the conductive paper according to the required size
  • Step 3.2 Tie copper electrodes on both sides of the cut conductive paper using a sewing machine.
  • Step 4 Cut the reinforced insulation layer
  • Step 5 Cut the self-temperature limiting layer
  • Step 6 Cut the insulation layer
  • Step 7 Place the reinforced insulation layer, insulation layer, self-temperature limiting layer, heating layer, self-temperature limiting layer, insulation layer, and reinforced insulation layer on the steel plate in order from bottom to top to obtain a self-temperature-limiting far-infrared carbon fiber composite planar electric heating material embryo body, and place a steel plate on the embryo body;
  • Step 8 Repeat step 7, 2-10 times;
  • Step 9 Place the multi-layer self-temperature-limiting far-infrared carbon fiber composite planar electric heating material embryo body prepared in step 8 in parallel onto the work surface of the hot press;
  • Step 10 Place the multi-layer self-temperature-limiting far-infrared carbon fiber composite surface electric heating material embryo on each layer of the work surface of the hot press, start the hot press for hot pressing, and obtain the self-limiting temperature far-infrared carbon fiber composite surface after the hot pressing.
  • Shape electric heating material sheet
  • Step 11 Cut the self-limiting temperature far-infrared carbon fiber composite planar electric heating material sheet obtained in step 10 according to product requirements;
  • Step 12 Punch holes on the two copper electrode edges of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material sheet obtained in step 11, and use a grinder to grind out the copper electrodes around the holes;
  • Step 13 Use crimping pliers to crimp the power supply lead to the OT terminal;
  • Step 14 Rivet the self-temperature-limiting far-infrared carbon fiber composite planar electrothermal material sheet obtained in step 12 to the terminal block obtained in step 13;
  • Step 15 Rivet the sections for sealing to obtain a self-limiting temperature far-infrared carbon fiber composite planar electric heating material.
  • the heat transfer of the self-limiting temperature far-infrared carbon fiber composite planar electrothermal material of the present invention is mainly far-infrared radiation.
  • the electrothermal conversion efficiency can reach 99%, the electrothermal radiation conversion efficiency can reach 50%, and the heat transfer efficiency is high. It is an advanced energy-saving materials;
  • the self-limiting temperature far-infrared carbon fiber composite planar electrothermal material of the present invention has the PTC effect and can self-limit the temperature. During use, it can avoid safety accidents caused by excessive temperature or temperature superposition, and at the same time, it can greatly avoid temperature overload. Compared with similar heating materials, it saves at least 30% more energy.
  • the heating element of the self-limiting temperature far-infrared carbon fiber composite planar electrothermal material of the present invention is a three-dimensional conductive network constructed of chopped carbon fibers. Its conductive path is a physical structure constructed of chopped carbon fibers. It has the characteristics of structural stability and has been approved by the National Infrared and Industrial Electric Heating Products Quality Supervision and Inspection Center Inspection-Inspection Business Number: (2020)-WT-HW-01113, its working life can reach 100,000 hours.
  • the self-limiting temperature far-infrared carbon fiber composite planar electric heating material of the present invention can be combined into various heating materials with different powers and temperatures according to the power and specification requirements to meet different requirements;
  • the self-limiting temperature far-infrared carbon fiber composite planar electric heating material of the present invention is safe to use and can be used in one Under normal voltage, the entire surface is an electron path, and the current density is extremely small, causing no harm to the human body.
  • Figure 1 is a schematic structural diagram of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material of the present invention.
  • Figure 2 is a schematic structural diagram of the heating layer in the self-temperature-limiting far-infrared carbon fiber composite planar electrothermal material of the present invention.
  • Heating layer 2. Self-limiting temperature layer; 3. Insulating layer; 4. Reinforced insulating layer; 5. Copper electrode.
  • the self-temperature-limiting far-infrared carbon fiber composite planar electric heating material of the present invention is composed of two layers of reinforced insulation layers 4, two layers of insulation layers 3, two layers of self-temperature limiting layers 2, and one layer of heating layer 1. Composed and cured by high-temperature hot pressing impregnation, the self-limiting temperature far-infrared carbon fiber composite planar electric heating material also includes connecting terminals and power lead wires.
  • the connection terminals are riveted on the copper poles 5 at both ends of the self-temperature-limiting far-infrared carbon fiber composite planar electric heating material, and the power lead-out wire is clamped on the wiring slot of the connection terminals.
  • the two self-temperature limiting layers 2 are respectively covered on the upper and lower layers of the heating layer 1, and the two insulating layers 3 are respectively covered on the upper and lower layers of the two self-temperature limiting layers 2.
  • the two layers are reinforced.
  • the insulating layer 4 covers the upper and lower layers of the two insulating layers 3 respectively.
  • the heating layer 1 is made of carbon fiber conductive paper.
  • the volume resistivity of the conductive paper is 0.1-6 ⁇ .cm.
  • Two copper foil strips are fixed on both sides of the carbon fiber conductive paper.
  • the two copper foil strips are the same length as the carbon fiber conductive paper.
  • Carbon fiber conductive paper belongs to the conductive mechanism of "conductive channel". It mainly relies on a three-dimensional conductive network built by chopped carbon fibers. Factors that affect its conductivity include: number of contacts, contact resistance and gap size, so it is When preparing carbon fiber conductive paper, its conductivity can be determined by adjusting the carbon fiber content and the fixed weight of the paper. In the case of carbon fibers of the same length and diameter: the higher the carbon fiber content, the smaller the volume resistivity of the conductive paper, and vice versa. Under the same carbon fiber content, the volume resistivity of conductive paper is a constant value. The greater the fixed weight of conductive paper, the smaller the resistance and the better the conductivity.
  • the conductivity of conductive paper is calculated using
  • Volume resistivity cross-sectional area of conductive paper/distance between copper electrodes*resistance value.
  • the long sides and wide sides of the reinforced insulating layer 4, the insulating layer 3 and the self-temperature limiting layer 2 are the same, and the long sides and wide sides of the heating layer 1 are smaller than the reinforced insulating layer 4 and the insulating layer 3. and each long side and each wide side of the self-temperature limiting layer 2.
  • the self-temperature-limiting layer 2 is a semi-cured sheet formed by impregnating, drying and hot-pressing cloth materials with a self-limiting temperature composite solvent.
  • the cloth material can be one of non-woven fabrics or glass fiber cloths.
  • the non-woven fabric can be one of polyester fiber non-woven fabric, polypropylene fiber non-woven fabric, nylon fiber non-woven fabric, spandex fiber non-woven fabric or acrylic fiber non-woven fabric.
  • the weight is 20-100g/m2.
  • the glass fiber cloth can be one of alkali-free glass fiber cloth or medium-alkali glass fiber cloth.
  • the fixed weight of the glass fiber cloth is 50-150g/m2.
  • the self-limiting temperature composite solvent is an epoxy resin solution in which thermoplastic polymer is evenly dispersed.
  • the epoxy resin solution and the thermoplastic polymer are uniformly mixed at a weight ratio of 10:0.5-1.
  • the thermoplastic polymer is prepared by air-pulverizing and mixing polypropylene powder, polyethylene powder and polyvinylidene fluoride powder in a weight ratio of 2:1-1.5:0.1-0.3.
  • the epoxy resin solution of the thermoplastic polymer is made by uniformly mixing brominated epoxy resin solution, 6101 epoxy resin solution and diluent in a weight ratio of 10:3-6:1-0.3.
  • the brominated epoxy resin solution adopts one of brominated bisphenol A-type epoxy resin, brominated phenolic-type epoxy resin, and dibromopentaglycol-type epoxy resin, and the described diluent adopts acetic acid.
  • the heating carrier of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material is mainly a three-dimensional conductive network built of chopped carbon fibers in carbon fiber conductive paper. Carbon fiber conductive paper itself has a fluffy structure, and the conductive network built by carbon fiber is not tight and needs to be hot-pressed and compounded.
  • thermoplastic polymer powders using polypropylene powder, polyethylene powder and polyvinylidene fluoride powder have good expansion coefficients and can design temperature limits according to different application fields. Because the conductive network of carbon fiber is a physical network built of chopped carbon fibers, it has good stability. When the polymer expands, the number of contacts between the conductive paths built between carbon fibers in the conductive paper is reduced, thereby avoiding excessive temperature.
  • the insulation layer 3 is a semi-cured sheet formed by impregnating glass fiber cloth with epoxy resin solution, drying, and hot pressing.
  • the glass fiber cloth can be one of alkali-free glass fiber cloth or medium-alkali glass fiber cloth, and the fixed weight of the glass fiber cloth is 150-300g/m2.
  • the epoxy resin solution is made by uniformly mixing brominated epoxy resin solution, 6101 epoxy resin solution and diluent in a weight ratio of 10:3-6:1-0.3.
  • the brominated epoxy resin solution One of brominated bisphenol A epoxy resin, brominated phenolic epoxy resin, and dibromopentaglycol epoxy resin is used, and the diluent is ethyl acetate, butyl acetate or acetone. kind of.
  • the reinforced insulation layer 4 is made of a thermoplastic polymer film.
  • the thermoplastic polymer film can be one of PET film, PBT film, PVDF film, and PC film.
  • the thermoplastic polymer film is Thickness is 20-50 ⁇ m.
  • the temperature of the self-limiting temperature far-infrared carbon fiber composite planar electrothermal material for high-temperature hot-press impregnation and curing is 140-180°C
  • the hot-pressing time is 60-180min
  • the hot-pressing pressure is 50-150kg/cm2.
  • connection terminals are riveted to the copper poles 5 at both ends of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material.
  • the connection terminals are OT-type connection terminals, and the T-terminal wiring slots of the OT-type terminals are Used to clamp and fix the power outlet wire.
  • the riveted terminal is composed of hollow copper rivets and fastening washers.
  • a method for preparing a self-limiting temperature far-infrared carbon fiber composite planar electric heating material at least includes the following steps:
  • Step 1 Prepare a self-limiting temperature layer
  • Step 1.1 Mix polypropylene powder, polyethylene powder and polyvinylidene fluoride powder according to their weight.
  • the thermoplastic polymer is obtained by airflow pulverization in quantitative ratio;
  • Step 1.2 Put the brominated epoxy resin solution, 6101 epoxy resin solution and diluent into the mixer according to the weight ratio for homogenization. The average time is 10-30 minutes. After the homogenization is completed, the epoxy resin solution is obtained;
  • Step 1.3 Put the thermoplastic polymer obtained in step 1.1 and the epoxy resin solution obtained in step 1.2 into a mixer according to the weight ratio for homogenization.
  • the homogenization time is 20-45min, and the homogenizer speed is 800-1500r/min to obtain a self-limiting warm solvent;
  • Step 1.4 pour the self-limiting temperature solvent obtained in step 1.3 into the glue tank of the glue dipping machine;
  • Step 1.5 Put the fiberglass cloth into the dipping machine and start dipping;
  • Step 1.6 Dry the glass fiber cloth impregnated in step 1.5;
  • Step 1.7 Cut the dried glass fiber cloth in step 1.6, and send the cut glass fiber cloth to the hot press for hot pressing.
  • the hot pressing temperature is 80-140°C
  • the hot pressing time is 40-120 minutes.
  • the hot pressing pressure is 10-80kg/cm2.
  • Step 2 Prepare the insulation layer
  • Step 2.1 Put the brominated epoxy resin solution, 6101 epoxy resin solution and diluent into a mixer according to the weight ratio for homogenization. The average time is 10-30 minutes. After the homogenization is completed, the epoxy resin solution is obtained;
  • Step 2.2 pour the epoxy resin solution into the glue pool of the dipping machine
  • Step 2.3 Put the fiberglass cloth into the dipping machine and start dipping;
  • Step 2.4 Dry the glass fiber cloth soaked in step 2.3;
  • Step 2.5 Cut the dried glass fiber cloth in step 2.5, and send the cut glass fiber cloth into a hot press for hot pressing.
  • the hot pressing temperature is 120-140°C.
  • the pressing time is 60-120min, and the hot pressing pressure is 30-120kg/cm2.
  • Step 3 Prepare the heating layer
  • Step 3.1 Cut the conductive paper according to the required size
  • Step 3.2 Tie copper electrodes on both sides of the cut conductive paper using a sewing machine.
  • Step 4 Cut the reinforced insulation layer
  • Step 5 Cut the self-temperature limiting layer
  • Step 6 Cut the insulation layer
  • Step 7 Place the reinforced insulation layer, insulation layer, self-temperature limiting layer, heating layer, self-temperature limiting layer, insulation layer, and reinforced insulation layer on the steel plate in order from bottom to top to obtain a self-temperature-limiting far-infrared carbon fiber composite planar electric heating material embryo body, and place a steel plate on the embryo body;
  • Step 8 Repeat step 7, 2-10 times;
  • Step 9 Place the multi-layer self-temperature-limiting far-infrared carbon fiber composite planar electric heating material embryo body prepared in step 8 in parallel onto the work surface of the hot press;
  • Step 10 Repeat steps 8 and 9 until the multi-layer self-temperature-limiting far-infrared carbon fiber composite planar electric heating material embryo is placed on each layer of the work surface of the hot press machine. Start the hot press machine for hot pressing. After the hot pressing is completed, you will get Self-limiting temperature far-infrared carbon fiber composite planar electric heating material sheet;
  • Step 11 Cut the self-limiting temperature far-infrared carbon fiber composite planar electric heating material sheet obtained in step 10 according to product requirements;
  • Step 12 Punch holes on the two copper electrode edges of the self-limiting temperature far-infrared carbon fiber composite planar electric heating material sheet obtained in step 11, and use a grinder to grind out the copper electrodes around the holes;
  • Step 13 Use crimping pliers to crimp the power supply lead to the OT terminal;
  • Step 14 Obtain the self-limiting temperature far-infrared carbon fiber composite planar electric heating material in step 12 The terminal block obtained in step 13 of sheet riveting;
  • Step 15 Rivet the sections for sealing to obtain a self-limiting temperature far-infrared carbon fiber composite planar electric heating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

本发明公开了一种自限温远红外碳纤维复合面状电热材料及其制备方法,该自限温远红外碳纤维复合面状电热材料是由两层加强绝缘层、两层绝缘层、两层自限温层及一层发热层组成并经高温热压浸渍固化而成,所述的自限温远红外碳纤维复合面状电热材料还包括连接端子和电源引出线。所述的连接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极上,所述的电源引出线卡接在连接端子的接线槽上。本发明中的电热材料利用碳纤维导电纸稳定的物理结构的三维导电网络,有效的解决现有自限温面状发热材料发热性能不稳定,使用寿命较低,使用过程存在发生火灾隐患等重大问题。

Description

自限温远红外碳纤维复合面状电热材料及其制备方法 技术领域
本发明涉及一种电热材料,具体涉及一种自限温远红外碳纤维复合面状电热材料及其制备方法。
技术背景
市面上,碳纤维复合面状电热材料一般采用碳纤维复合导电纸作为发热载体,导电纸主要采用短切碳纤维搭建的三维导电网络,其导电网络是物理性搭建而形成的网络,其复合的电热材料具有超高的使用寿命,并具有优异的红外性能--电热转换效率高,电-热辐射转换效率一般可以达到60%以上,其被广泛应用于地板采暖、康复理疗、食品干燥、杀菌、穿戴设备、家用电器等领域。
中国专利公开号CN102291858A公开了一种低温复合电热材料及其制备的方法,其在碳纤维导电纸上下各覆一层环氧树脂玻璃纤维布,并在环氧树脂玻璃纤维布上层和下层各覆一层对苯二甲酸乙二醇酯树脂热压而成。其发热面积、温度、局部温度均可适用于建筑采暖领域,表面温度可在16℃-55℃任意调节,升温时间快,一般启动30分钟以内即可达到设定的温度。但是其应用温度较低,不超过55度,应用范围有限。更为重要的是,它依靠外部的温度控制器对其进行控制,在使用过程中容易出现因温度叠加造成伤害--轻则出现温度叠加造成对覆盖物的碳化,重则引发火灾。
目前的自限温发热材料的多以碳系粉体与高分子聚合物及导电填 充浆料混合而成。中国专利公开号CN111925686A公布了一种PTC自限温功能的石墨烯发热油墨,主要由石墨烯、支撑材料树脂、PTC效应材料、溶剂、增稠剂、消泡剂和流平剂组成。其通过在石墨烯发热油墨中使用PTC效应材料,从而使获得的发热膜片具有自限温功能,结构可靠,使用方便;并且无需温控开关。但是其导电网络是由碳系粉体、导电填充浆料和PTC材料形成的化学性的导电网络,在长时间温度效应的情况下,导电填充浆料会逐步发生疲劳,导电浆料发生疲劳的结果就是其导电网络发生破坏,出现“虚接”现象,从而导致发生击穿。同时,PTC材料一般在10万次左右亦会发生疲劳,当导电填充浆料和PTC材料发生疲劳后,其引发的击穿轻则直接将发热片烧毁,重则引发火灾。如2017年2月5日浙江省台州市天台县赤城街道春晓堤足馨堂发生火灾,就是因电热膜击穿而引发的火灾,造成了重大的安全事故。
鉴于上述问题,本发明公开了一种自限温远红外碳纤维复合面状电热材料及其制备方法。其具有如下文所述之技术特征,以解决现有的问题。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种自限温远红外碳纤维复合面状电热材料及其制备方法,其利用碳纤维导电纸稳定的物理结构的三维导电网络,它能有效的解决现有自限温面状发热材料发热性能不稳定,使用寿命较低,使用过程存在发生火灾隐患等重大问题。本发明的自限温远红外碳纤维复合面状电热材料工作温度 在30-160℃,可广泛应用于工业加热、建筑采暖、康复理疗、农业干燥、杀菌、家用电器、轨道交通采暖、汽车加热及特种加热等领域。
本发明的自限温远红外碳纤维复合面状电热材料是通过以下技术方案实现的:自限温远红外碳纤维复合面状电热材料是由两层加强绝缘层、两层绝缘层、两层自限温层及一层发热层组成并经高温热压浸渍固化而成,所述的自限温远红外碳纤维复合面状电热材料还包括连接端子和电源引出线。所述的连接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极上,所述的电源引出线卡接在连接端子的接线槽上。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的两层自限温层分别覆盖在发热层的上、下层,所述的两层绝缘层分别覆盖在两层自限温层的上、下层,所述的两层加强绝缘层分别覆盖在两层绝缘层的上、下层。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的发热层采用碳纤维导电纸,所述的导电纸的体积电阻率为0.1-6Ω.cm,所述的碳纤维导电纸的两侧还分别固定设有两条铜箔条,所述的两条铜箔条与碳纤维导电纸等长。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的加强绝缘层、绝缘层和自限温层的各长边和各宽边相同,所述的发热层的各长边和各宽边小于加强绝缘层、绝缘层和自限温层的各长边和各宽边。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的自 限温层由布类材料经自限温复合溶剂浸渍、烘干、热压而形成的半固化片材,所述的布类材料可采用无纺布或玻璃纤维布中的一种,所述的无纺布可采用涤纶纤维无纺布、丙纶纤维无纺布、锦纶纤维无纺布、氨纶纤维无纺布或腈纶纤维无纺布中的一种,所述的无纺布的定重为20-100g/m2,所述的玻璃纤维布可采用无碱玻璃纤维布或中碱玻璃纤维布中的一种,所述的玻璃纤维布的定重为50-150g/m2。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的自限温复合溶剂为均匀分散有热塑性聚合物的环氧树脂溶液。所述的环氧树脂溶液和热塑性聚合物按照10:0.5-1的重量比均匀混合而成。所述的热塑性聚合物采用聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末按照2:1-1.5:0.1-0.3的重量比经气流粉碎混合而成。所述的热塑性聚合物的环氧树脂溶液采用溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照10:3-6:1-0.3的重量比均匀混合而成,所述的溴化环氧树脂溶液采用溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、二溴季戊二醇型环氧树脂中的一种,所述的稀释剂采用醋酸乙酯、醋酸丁酯或丙酮中的一种。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的绝缘层由玻璃纤维布经环氧树脂溶液浸渍、烘干、热压而形成的半固化片材。所述的玻璃纤维布可采用无碱玻璃纤维布或中碱玻璃纤维布中的一种,所述的玻璃纤维布的定重为150-300g/m2。所述的环氧树脂溶液采用溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照10:3-6:1-0.3的重量比均匀混合而成,所述的溴化环氧树脂溶液采用 溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、二溴季戊二醇型环氧树脂中的一种,所述的稀释剂采用醋酸乙酯、醋酸丁酯或丙酮中的一种。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的加强绝缘层采用热塑性聚合物薄膜,所述的热塑型聚合物薄膜可采用PET膜、PBT膜、PVDF膜、PC膜中的一种,所述的热塑型聚合物薄膜的厚度为20-50μm。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的自限温远红外碳纤维复合面状电热材料高温热压浸渍固化的温度为140-180℃,热压时间为60-180min,热压压力为50-150kg/cm2。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的连接端子由铆接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极上,所述的连接端子为OT型连接端子,所述的OT型端子的T端接线槽用以卡接固定电源引出线。所述的铆接端子由空心铜铆钉和紧固垫片组成。
上述的自限温远红外碳纤维复合面状电热材料,其中,所述的自限温远红外碳纤维复合面状电热材料两端的铜极上有一组对称的圆孔,所述的自限温远红外碳纤维复合面状电热材料上的圆孔与空心铜铆钉直径相同。
上述的自限温远红外碳纤维复合面状电热材料的制备方法,该方法至少包括以下步骤:
步骤1:制备自限温层;
步骤1.1:将聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末按照重量比采用气流粉碎而得到热塑性聚合物;
步骤1.2:将溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照重量比投入搅拌机中进行均质,均值时间10-30min,均质完成后得到环氧树脂溶液;
步骤1.3:将步骤1.1得到的热塑性聚合物和步骤1.2得到的环氧树脂溶液按照重量比投入搅拌机中进行均质,均质时间20-45min,均质机转速800-1500r/min,得到自限温溶剂;
步骤1.4:将步骤1.3得到的自限温溶剂倒入浸胶机的胶池中;
步骤1.5:将玻璃纤维布放入浸胶机并开始浸胶;
步骤1.6:将步骤1.5浸胶后的玻璃纤维布进行烘干;
步骤1.7:将步骤1.6烘干后的玻璃纤维布进行裁剪,并将裁剪好的玻璃纤维布送入热压机中进行热压,热压温度为80-140℃,热压时间为40-120min,热压压力为10-80kg/cm2。
步骤2;制备绝缘层;
步骤2.1:将溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照重量比投入搅拌机中进行均质,均值时间10-30min,均质完成后得到环氧树脂溶液;
步骤2.2:将环氧树脂溶液倒入浸胶机的胶池中;
步骤2.3:将玻璃纤维布放入浸胶机并启动浸胶;
步骤2.4:将步骤2.3浸胶后的玻璃纤维布进行烘干;
步骤2.5;将步骤2.5烘干后的玻璃纤维布进行裁剪,并将裁剪 好的玻璃纤维布送入热压机中进行热压,热压温度为120-140℃,热压时间为60-120min,热压压力为30-120kg/cm2。
步骤3:制备发热层;
步骤3.1:根据所需的尺寸裁剪导电纸;
步骤3.2:将裁剪好的导电纸的两边分别用缝纫机扎上铜极。
步骤4:裁剪加强绝缘层;
步骤5:裁剪自限温层;
步骤6:裁剪绝缘层;
步骤7:在钢板从下至上依次平放加强绝缘层、绝缘层、自限温层、发热层、自限温层、绝缘层、加强绝缘层得到自限温远红外碳纤维复合面状电热材料胚体,并在胚体上放置钢板;
步骤8:重复步骤7,重复2-10次;
步骤9:将步骤8制得的多层自限温远红外碳纤维复合面状电热材料胚体平行放置入热压机工作台面;
步骤10:将多层自限温远红外碳纤维复合面状电热材料胚体放满热压机各层工作台面,启动热压机进行热压,热压结束后得到自限温远红外碳纤维复合面状电热材料片材;
步骤11:将步骤10得到的自限温远红外碳纤维复合面状电热材料片材按照产品要求进行剪裁;
步骤12:将步骤11得到的自限温远红外碳纤维复合面状电热材料片材两条铜极边打孔,并在孔的周围用打磨机磨出铜极;
步骤13:用压接线钳将电源引出线压接在OT型端子上;
步骤14:对步骤12得到自限温远红外碳纤维复合面状电热材料片材铆接步骤13得到的接线端子;
步骤15:铆接段子进行密封处理,从而得到自限温远红外碳纤维复合面状电热材料。
本发明一种上述的自限温远红外碳纤维复合面状电热材料及其制备方法由于采用了上述方案,使之与现有技术相比,具有以下的优点和积极效果:
本发明的自限温远红外碳纤维复合面状电热材料热量传递主要以远红外辐射为主,电热转换效率可达99%,电热辐射转换效率可达50%,传热效率高,是一种先进的节能材料;
本发明的自限温远红外碳纤维复合面状电热材料具有PTC效应,能进行自限温,在使用过程中能避免因温度过高或温度叠加引起的安全事故,同时能极大的避免温度过载造成能源的浪费等情况,相比同类的发热材料,至少节能30%以上。
本发明的自限温远红外碳纤维复合面状电热材料的发热体是短切碳纤维搭建的三维导电网络,其导电通路是短切碳纤维搭建的物理结构的,具有结构稳定的特点,经国家红外及工业电热产品质量监督检验中心检测-检验业务号:(2020)-WT-HW-01113,其工作寿命可以达到10万小时。
本发明的自限温远红外碳纤维复合面状电热材料可以根据功率和规格要求,组合成各种不同功率与温度的发热材料,以满足不同要求;
本发明的自限温远红外碳纤维复合面状电热材料使用安全,在一 般电压下整个面都是电子通路,电流密度极小,对人体毫无伤害。
附图说明
图1是本发明自限温远红外碳纤维复合面状电热材料的结构示意图。图2是本发明自限温远红外碳纤维复合面状电热材料中发热层的结构示意图。
图中:1、发热层;2、自限温层;3、绝缘层;4、加强绝缘层;5、铜极。
具体实施方式
请参见附图1和图2,本发明自限温远红外碳纤维复合面状电热材料是由两层加强绝缘层4、两层绝缘层3、两层自限温层2及一层发热层1组成并经高温热压浸渍固化而成,所述的自限温远红外碳纤维复合面状电热材料还包括连接端子和电源引出线。所述的连接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极5上,所述的电源引出线卡接在连接端子的接线槽上。
所述的两层自限温层2分别覆盖在发热层1的上、下层,所述的两层绝缘层3分别覆盖在两层自限温层2的上、下层,所述的两层加强绝缘层4分别覆盖在两层绝缘层3的上、下层。
所述的发热层1采用碳纤维导电纸,所述的导电纸的体积电阻率为0.1-6Ω.cm,所述的碳纤维导电纸的两侧还分别固定设有两条铜箔条,所述的两条铜箔条与碳纤维导电纸等长。碳纤维导电纸属于“导电通道”的导电机理,主要依靠短切碳纤维搭建的三维导电网络,影响其导电性的因素包括:接触数目、接触电阻和间隙大小,故在制 备碳纤维导电纸时通过调整碳纤维含量和纸张的定重可决定其导电性。在同等长度和直径的碳纤维的情况下:碳纤维含量越高,导电纸的体积电阻率越小,反之亦然。在同等含量碳纤维情况下,导电纸的体积电阻率为定值,导电纸的定重越大,其电阻越小,导电性越好。导电纸的导电性采用以下公式进行计算;
体积电阻率=导电纸的横截面积/铜极间的距离*电阻值。
所述的加强绝缘层4、绝缘层3和自限温层2的各长边和各宽边相同,所述的发热层1的各长边和各宽边小于加强绝缘层4、绝缘层3和自限温层2的各长边和各宽边。
所述的自限温层2由布类材料经自限温复合溶剂浸渍、烘干、热压而形成的半固化片材,所述的布类材料可采用无纺布或玻璃纤维布中的一种,所述的无纺布可采用涤纶纤维无纺布、丙纶纤维无纺布、锦纶纤维无纺布、氨纶纤维无纺布或腈纶纤维无纺布中的一种,所述的无纺布的定重为20-100g/m2,所述的玻璃纤维布可采用无碱玻璃纤维布或中碱玻璃纤维布中的一种,所述的玻璃纤维布的定重为50-150g/m2。
所述的自限温复合溶剂为均匀分散有热塑性聚合物的环氧树脂溶液。所述的环氧树脂溶液和热塑性聚合物按照10:0.5-1的重量比均匀混合而成。所述的热塑性聚合物采用聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末按照2:1-1.5:0.1-0.3的重量比经气流粉碎混合而成。所述的热塑性聚合物的环氧树脂溶液采用溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照10:3-6:1-0.3的重量比均匀混合而成, 所述的溴化环氧树脂溶液采用溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、二溴季戊二醇型环氧树脂中的一种,所述的稀释剂采用醋酸乙酯、醋酸丁酯或丙酮中的一种。自限温远红外碳纤维复合面状电热材料的发热载体主要是碳纤维导电纸中由短切碳纤维搭建的三维导电网络。碳纤维导电纸本身处于蓬松的结构,其由碳纤维搭建的导电网络并不紧实,需要进行热压复合处理。采用环氧类材料对碳纤维导电纸进行复合时,压力越大,导电纸中短切碳纤维搭建的导电网络越紧实,在热压处理时自限温层2和绝缘层3的环氧树脂完全浸渍导电纸,从而在压力的作用下对导电纸中的短切碳纤维搭建的导电网络进行固化定型。碳纤维导电纸是“导电通道”的导电机理,在热压处理时,自限温层2中的热塑性聚合物亦随着环氧树脂复合到碳纤维导电纸中,在自限温远红外碳纤维复合面状电热材料工作时,当其温度达到热塑性聚合物的膨胀系数温度时,热塑性聚合物的体积会发生膨胀,引起碳纤维导电纸三维导电网络的导电通路被慢慢分开,电阻增大。采用聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末的热塑性聚合物的粉末,其膨胀系数好,可以根据不同的应用领域设计限温温度。因为碳纤维导电的导电网络是短切碳纤维搭建的物理性的网络,其稳定性好,聚合物膨胀时,导电纸中的由碳纤维与碳纤维间搭建的导电通路接触数目减少,从而避免温度过高。
所述的绝缘层3由玻璃纤维布经环氧树脂溶液浸渍、烘干、热压而形成的半固化片材。所述的玻璃纤维布可采用无碱玻璃纤维布或中碱玻璃纤维布中的一种,所述的玻璃纤维布的定重为150-300g/m2。 所述的环氧树脂溶液采用溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照10:3-6:1-0.3的重量比均匀混合而成,所述的溴化环氧树脂溶液采用溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、二溴季戊二醇型环氧树脂中的一种,所述的稀释剂采用醋酸乙酯、醋酸丁酯或丙酮中的一种。
所述的加强绝缘层4采用热塑性聚合物薄膜,所述的热塑型聚合物薄膜可采用PET膜、PBT膜、PVDF膜、PC膜中的一种,所述的热塑型聚合物薄膜的厚度为20-50μm。
所述的自限温远红外碳纤维复合面状电热材料高温热压浸渍固化的温度为140-180℃,热压时间为60-180min,热压压力为50-150kg/cm2。
所述的连接端子由铆接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极5上,所述的连接端子为OT型连接端子,所述的OT型端子的T端接线槽用以卡接固定电源引出线。所述的铆接端子由空心铜铆钉和紧固垫片组成。
所述的自限温远红外碳纤维复合面状电热材料两端的铜极5上有一组对称的圆孔,所述的自限温远红外碳纤维复合面状电热材料上的圆孔与空心铜铆钉直径相同。
一种自限温远红外碳纤维复合面状电热材料的制备方法,该方法至少包括以下步骤:
步骤1:制备自限温层;
步骤1.1:将聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末按照重 量比采用气流粉碎而得到热塑性聚合物;
步骤1.2:将溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照重量比投入搅拌机中进行均质,均值时间10-30min,均质完成后得到环氧树脂溶液;
步骤1.3:将步骤1.1得到的热塑性聚合物和步骤1.2得到的环氧树脂溶液按照重量比投入搅拌机中进行均质,均质时间20-45min,均质机转速800-1500r/min,得到自限温溶剂;
步骤1.4:将步骤1.3得到的自限温溶剂倒入浸胶机的胶池中;
步骤1.5:将玻璃纤维布放入浸胶机并开始浸胶;
步骤1.6:将步骤1.5浸胶后的玻璃纤维布进行烘干;
步骤1.7:将步骤1.6烘干后的玻璃纤维布进行裁剪,并将裁剪好的玻璃纤维布送入热压机中进行热压,热压温度为80-140℃,热压时间为40-120min,热压压力为10-80kg/cm2。
步骤2;制备绝缘层;
步骤2.1:将溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照重量比投入搅拌机中进行均质,均值时间10-30min,均质完成后得到环氧树脂溶液;
步骤2.2:将环氧树脂溶液倒入浸胶机的胶池中;
步骤2.3:将玻璃纤维布放入浸胶机并启动浸胶;
步骤2.4:将步骤2.3浸胶后的玻璃纤维布进行烘干;
步骤2.5;将步骤2.5烘干后的玻璃纤维布进行裁剪,并将裁剪好的玻璃纤维布送入热压机中进行热压,热压温度为120-140℃,热 压时间为60-120min,热压压力为30-120kg/cm2。
步骤3:制备发热层;
步骤3.1:根据所需的尺寸裁剪导电纸;
步骤3.2:将裁剪好的导电纸的两边分别用缝纫机扎上铜极。
步骤4:裁剪加强绝缘层;
步骤5:裁剪自限温层;
步骤6:裁剪绝缘层;
步骤7:在钢板从下至上依次平放加强绝缘层、绝缘层、自限温层、发热层、自限温层、绝缘层、加强绝缘层得到自限温远红外碳纤维复合面状电热材料胚体,并在胚体上放置钢板;
步骤8:重复步骤7,重复2-10次;
步骤9:将步骤8制得的多层自限温远红外碳纤维复合面状电热材料胚体平行放置入热压机工作台面;
步骤10:重复步骤8和步骤9,直至将多层自限温远红外碳纤维复合面状电热材料胚体放满热压机各层工作台面,启动热压机进行热压,热压结束后得到自限温远红外碳纤维复合面状电热材料片材;
步骤11:将步骤10得到的自限温远红外碳纤维复合面状电热材料片材按照产品要求进行剪裁;
步骤12:将步骤11得到的自限温远红外碳纤维复合面状电热材料片材两条铜极边打孔,并在孔的周围用打磨机磨出铜极;
步骤13:用压接线钳将电源引出线压接在OT型端子上;
步骤14:对步骤12得到自限温远红外碳纤维复合面状电热材料 片材铆接步骤13得到的接线端子;
步骤15:铆接段子进行密封处理,从而得到自限温远红外碳纤维复合面状电热材料。
以上对本发明的具体实施例进行了详细描述,但本发明不限制于以上描述的具体实施例,其只是作为范例。对于本领域技术人员而言,任何对于该系统进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所做出的均等变换和修改,都应涵盖在本发明的范围内。

Claims (12)

  1. 一种自限温远红外碳纤维复合面状电热材料,其特征在于:该电热材料是由两层加强绝缘层、两层绝缘层、两层自限温层及一层发热层组成并经高温热压浸渍固化而成,该电热材料还包括连接端子和电源引出线,所述的连接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极上,所述的电源引出线卡接在连接端子的接线槽上。
  2. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的两层自限温层分别覆盖在所述的发热层的上、下层,所述的两层绝缘层分别覆盖在所述的两层自限温层的上、下层,所述的两层加强绝缘层分别覆盖在所述的两层绝缘层的上、下层。
  3. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的发热层采用碳纤维导电纸,该碳纤维导电纸的体积电阻率为0.1-6Ω.cm,该碳纤维导电纸的两侧还分别固定设有两条铜箔条,所述的两条铜箔条与碳纤维导电纸等长。
  4. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的加强绝缘层、绝缘层和自限温层的各长边和各宽边相同,所述的发热层的各长边和各宽边小于加强绝缘层、绝缘层和自限温层的各长边和各宽边。
  5. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的自限温层由布类材料经自限温复合溶剂浸渍、烘干、热压而形成的半固化片材,所述的布类材料可采用无纺布或玻璃纤维布中的一种,所述的无纺布可采用涤纶纤维无纺布、丙纶纤维无纺布、锦纶纤维无纺布、氨纶纤维无纺布或腈纶纤维无纺布中的一种, 所述的无纺布的定重为20-100g/m2,所述的玻璃纤维布可采用无碱玻璃纤维布或中碱玻璃纤维布中的一种,所述的玻璃纤维布的定重为50-150g/m2
  6. 根据权利要求5所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的自限温复合溶剂为均匀分散有热塑性聚合物的环氧树脂溶液,所述的环氧树脂溶液和热塑性聚合物按照10:0.5-1的重量比均匀混合而成,所述的热塑性聚合物采用聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末按照2:1-1.5:0.1-0.3的重量比经气流粉碎混合而成,所述的热塑性聚合物的环氧树脂溶液采用溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照10:3-6:1-0.3的重量比均匀混合而成,所述的溴化环氧树脂溶液采用溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、二溴季戊二醇型环氧树脂中的一种,所述的稀释剂采用醋酸乙酯、醋酸丁酯或丙酮中的一种。
  7. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的绝缘层由玻璃纤维布经环氧树脂溶液浸渍、烘干、热压而形成的半固化片材,所述的玻璃纤维布可采用无碱玻璃纤维布或中碱玻璃纤维布中的一种,所述的玻璃纤维布的定重为150-300g/m2,所述的环氧树脂溶液采用溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照10:3-6:1-0.3的重量比均匀混合而成,所述的溴化环氧树脂溶液采用溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、二溴季戊二醇型环氧树脂中的一种,所述的稀释剂采用醋酸乙酯、醋酸丁酯或丙酮中的一种。
  8. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的加强绝缘层采用热塑性聚合物薄膜,所述的热塑型聚合物薄膜可采用PET膜、PBT膜、PVDF膜、PC膜中的一种,所述的热塑型聚合物薄膜的厚度为20-50μm。
  9. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的自限温远红外碳纤维复合面状电热材料高温热压浸渍固化的温度为140-180℃,热压时间为60-180min,热压压力为50-150kg/cm2
  10. 根据权利要求1所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的连接端子由铆接端子铆接在自限温远红外碳纤维复合面状电热材料两端的铜极上,所述的连接端子为OT型端子,所述的OT型端子的T端接线槽用以卡接固定电源引出线,所述的铆接端子由空心铜铆钉和紧固垫片组成。
  11. 根据权利要求10所述的自限温远红外碳纤维复合面状电热材料,其特征在于:所述的自限温远红外碳纤维复合面状电热材料两端的铜极上有一组对称的圆孔,所述的自限温远红外碳纤维复合面状电热材料上的圆孔与空心铜铆钉直径相同。
  12. 一种制备自限温远红外碳纤维复合面状电热材料的方法,其特征在于:该方法至少包括以下步骤:
    步骤1:制备自限温层;
    步骤1.1:将聚丙烯粉末、聚乙烯粉末和聚偏氟乙烯粉末按照重量比采用气流粉碎而得到热塑性聚合物;
    步骤1.2:将溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照重量比投入搅拌机中进行均质,均值时间10-30min,均质完成后得到环氧树脂溶液;
    步骤1.3:将步骤1.1得到的热塑性聚合物和步骤1.2得到的环氧树脂溶液按照重量比投入搅拌机中进行均质,均质时间20-45min,均质机转速800-1500r/min,得到自限温溶剂;
    步骤1.4:将步骤1.3得到的自限温溶剂倒入浸胶机的胶池中;
    步骤1.5:将玻璃纤维布放入浸胶机并开始浸胶;
    步骤1.6:将步骤1.5浸胶后的玻璃纤维布进行烘干;
    步骤1.7:将步骤1.6烘干后的玻璃纤维布进行裁剪,并将裁剪好的玻璃纤维布送入热压机中进行热压,热压温度为80-140℃,热压时间为40-120min,热压压力为10-80kg/cm2
    步骤2;制备绝缘层;
    步骤2.1:将溴化环氧树脂溶液、6101环氧树脂溶液和稀释剂按照重量比投入搅拌机中进行均质,均值时间10-30min,均质完成后得到环氧树脂溶液;
    步骤2.2:将环氧树脂溶液倒入浸胶机的胶池中;
    步骤2.3:将玻璃纤维布放入浸胶机并启动浸胶;
    步骤2.4:将步骤2.3浸胶后的玻璃纤维布进行烘干;
    步骤2.5;将步骤2.5烘干后的玻璃纤维布进行裁剪,并将裁剪好的玻璃纤维布送入热压机中进行热压,热压温度为120-140℃,热压时间为60-120min,热压压力为30-120kg/cm2
    步骤3:制备发热层;
    步骤3.1:根据所需的尺寸裁剪导电纸;
    步骤3.2:将裁剪好的导电纸的两边分别用缝纫机扎上铜极。
    步骤4:裁剪加强绝缘层;
    步骤5:裁剪自限温层;
    步骤6:裁剪绝缘层;
    步骤7:在一块钢板上从下至上依次平放加强绝缘层、绝缘层、自限温层、发热层、自限温层、绝缘层、加强绝缘层,得到自限温远红外碳纤维复合面状电热材料胚体,并在胚体上放置另一块钢板;
    步骤8:重复步骤7,重复2-10次;
    步骤9:将步骤8制得的多层自限温远红外碳纤维复合面状电热材料胚体平行放置入热压机工作台面;
    步骤10:将多层自限温远红外碳纤维复合面状电热材料胚体放满热压机各层工作台面,启动热压机进行热压,热压结束后得到自限温远红外碳纤维复合面状电热材料片材;
    步骤11:将步骤10得到的自限温远红外碳纤维复合面状电热材料片材按照产品要求进行剪裁;
    步骤12:将步骤11得到的自限温远红外碳纤维复合面状电热材料片材两条铜极边打孔,并在孔的周围用打磨机磨出铜极;
    步骤13:用压接线钳将电源引出线压接在OT型端子上;
    步骤14:对步骤12得到自限温远红外碳纤维复合面状电热材料片材铆接步骤13得到的接线端子;
    步骤15:铆接段子进行密封处理,从而得到自限温远红外碳纤维复合面状电热材料。
PCT/CN2023/107118 2022-07-15 2023-07-13 自限温远红外碳纤维复合面状电热材料及其制备方法 WO2024012511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210831673.6 2022-07-15
CN202210831673.6A CN115175387A (zh) 2022-07-15 2022-07-15 自限温远红外碳纤维复合面状电热材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024012511A1 true WO2024012511A1 (zh) 2024-01-18

Family

ID=83495865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107118 WO2024012511A1 (zh) 2022-07-15 2023-07-13 自限温远红外碳纤维复合面状电热材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115175387A (zh)
WO (1) WO2024012511A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175387A (zh) * 2022-07-15 2022-10-11 上海骏珲新材料科技有限公司 自限温远红外碳纤维复合面状电热材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945466A (ja) * 1995-07-27 1997-02-14 Oki Electric Ind Co Ltd 自己温度調節型発熱抵抗体材料およびこれに用いる導体粉並びに発熱抵抗体材料を用いた自己温度調節型ヒーター
CN1799831A (zh) * 2005-12-30 2006-07-12 上海维安热电材料股份有限公司 高分子ptc芯片多层复合制造方法
CN102291858A (zh) * 2011-07-01 2011-12-21 上海热丽电热材料有限公司 低温复合电热材料及其制备方法
CN210042264U (zh) * 2019-06-11 2020-02-07 四川烯南碳素科技有限公司 一种石墨烯自限温发热体
CN115175387A (zh) * 2022-07-15 2022-10-11 上海骏珲新材料科技有限公司 自限温远红外碳纤维复合面状电热材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945466A (ja) * 1995-07-27 1997-02-14 Oki Electric Ind Co Ltd 自己温度調節型発熱抵抗体材料およびこれに用いる導体粉並びに発熱抵抗体材料を用いた自己温度調節型ヒーター
CN1799831A (zh) * 2005-12-30 2006-07-12 上海维安热电材料股份有限公司 高分子ptc芯片多层复合制造方法
CN102291858A (zh) * 2011-07-01 2011-12-21 上海热丽电热材料有限公司 低温复合电热材料及其制备方法
CN210042264U (zh) * 2019-06-11 2020-02-07 四川烯南碳素科技有限公司 一种石墨烯自限温发热体
CN115175387A (zh) * 2022-07-15 2022-10-11 上海骏珲新材料科技有限公司 自限温远红外碳纤维复合面状电热材料及其制备方法

Also Published As

Publication number Publication date
CN115175387A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
KR101602880B1 (ko) 고분자 수계 에멀전 전도성 조성물을 이용한 피티씨 소자의 제조 방법과, 그 제조 방법에 의해 제조된 피티씨 소자 및 그 피티씨 소자가 구비된 면상 발열체
WO2024012511A1 (zh) 自限温远红外碳纤维复合面状电热材料及其制备方法
CN105352008B (zh) 一种石墨烯自发热地板及低电压自发热地板系统
CN207727900U (zh) 一种石墨烯热能地板
CN103476158B (zh) Ptc复合材料发热膜及其制备方法和应用
CN111073059B (zh) 一种纳米纤维素电热膜及其制备方法
CN102083246A (zh) 一种远红外电热膜
CN205279216U (zh) 一种石墨烯自发热地板及低电压自发热地板系统
CN104159341B (zh) 带有接地层的自限温导电高分子电热膜
CN108271280A (zh) 一种石墨烯变流电热膜
CN101150891B (zh) 纳米碳素晶体材料及其制备电热板的方法
CN102291858B (zh) 低温复合电热材料及其制备方法
CN207638913U (zh) 一种石墨烯热敏电阻变频电热膜
CN104411026B (zh) 地暖电热膜
CN208016031U (zh) 石墨烯无机复合发热体
CN105960035A (zh) 一种自控温电热膜的生产方法及其电热膜
CN102050977A (zh) 正温度系数材料及其制备方法及含该材料的热敏电阻及其制备方法
CN218998305U (zh) 自限温远红外碳纤维复合面状电热材料
CN104010392B (zh) 负离子红外发热板制作方法
CN105384954A (zh) 一种利用芳纶树脂制备芳纶绝缘薄膜的方法
CN203675344U (zh) 红外碳晶电子发热板
CN110279277A (zh) 一种石墨烯基保温地毯
CN1250637C (zh) 聚烯烃/碳黑ptc导电复合材料及其制备方法
WO2016022044A1 (ru) Гибкий нагревательный резистивный элемент
CN211702419U (zh) 一种具有过温防护的石墨烯加热膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839001

Country of ref document: EP

Kind code of ref document: A1