WO2024012264A1 - 储能电池柜和具有其的储能系统 - Google Patents

储能电池柜和具有其的储能系统 Download PDF

Info

Publication number
WO2024012264A1
WO2024012264A1 PCT/CN2023/104725 CN2023104725W WO2024012264A1 WO 2024012264 A1 WO2024012264 A1 WO 2024012264A1 CN 2023104725 W CN2023104725 W CN 2023104725W WO 2024012264 A1 WO2024012264 A1 WO 2024012264A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabinet
battery
energy storage
battery core
core layer
Prior art date
Application number
PCT/CN2023/104725
Other languages
English (en)
French (fr)
Inventor
眭加海
尹雪芹
曹虎
刘伟杰
尹小强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024012264A1 publication Critical patent/WO2024012264A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of energy storage technology, and in particular, to an energy storage battery cabinet and an energy storage system having the same.
  • multiple battery packs are usually placed in an energy storage cabinet, and the battery packs contain multiple cells.
  • the battery pack in the energy storage cabinet has a shell and other structures.
  • the cell volume utilization (Volumetric Cell To System, VCTS) has been degraded twice.
  • the size and volume of the cabinet body of the energy storage cabinet and the size and volume of the battery cells are set differently. Reasonable, which leads to a reduction in the cell volume utilization rate.
  • the cell volume utilization rate is less than 28%, resulting in a low energy density.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of the present disclosure is to propose an energy storage battery cabinet that has the advantages of high cell volume utilization and high energy density by controlling the size parameters of the cabinet and the size parameters of the cells. Take into account the output voltage of the energy storage battery cabinet.
  • the present disclosure also proposes an energy storage system having the above-mentioned energy storage battery cabinet.
  • an energy storage battery cabinet including: a cabinet body, a width W 1 of the cabinet body, a depth D 1 of the cabinet body, and a cabinet body.
  • the height H 1 of _ The length L of the battery core, the thickness D of the battery core, and the width H of the battery core satisfy: (D+H)/L ⁇ 0.2; where the volume V of each battery core and the cabinet The volume V 3 of the body satisfies: 0.0004 ⁇ V 1 /V 3 ⁇ 0.001.
  • the energy storage battery cabinet according to the embodiment of the present disclosure by controlling the size parameters of the cabinet and the size parameters of the battery cells, has the advantages of high cell volume utilization and high energy density, taking into account the output voltage of the energy storage battery cabinet.
  • the battery core is configured in a cuboid shape.
  • the sum V 2 of the volumes of the plurality of battery cells and the volume V 3 of the cabinet satisfy: 0.35 ⁇ V 2 /V 3 ⁇ 0.5.
  • the L, D and H respectively satisfy: 400mm ⁇ L ⁇ 1200mm, 10mm ⁇ D ⁇ 40mm, and 60mm ⁇ H ⁇ 150mm.
  • the L, D and H respectively satisfy: 800mm ⁇ L ⁇ 970mm, 10mm ⁇ D ⁇ 30mm, 80mm ⁇ H ⁇ 130mm.
  • the W 1 , D 1 and H 1 respectively satisfy: 600mm ⁇ W 1 ⁇ 1200mm, 700mm ⁇ D 1 ⁇ 1250mm, and 1300 ⁇ H 1 ⁇ 2600mm.
  • the L and W 1 satisfy: 0.35 ⁇ L/W 1 ⁇ 1.
  • the energy storage battery cabinet further includes: a plurality of battery core layer groups, a plurality of the battery core layer groups are stacked along the height direction of the cabinet, and each of the battery core layer groups is
  • the cabinet includes at least one battery core in one of the width direction and the depth direction of the cabinet, and includes a plurality of the battery core in the other of the width direction and the depth direction of the cabinet.
  • the length direction of the battery core is arranged along the width direction of the cabinet
  • the thickness direction of the battery core is arranged along the depth direction of the cabinet
  • the width direction of the battery core is along the Describe the height arrangement of the cabinet.
  • the number of the battery core layer groups is 8 to 18.
  • the overall width of the plurality of battery core layer groups arranged in the height direction of the cabinet is W 2 , the depth is D 2 , and the height is H 2 , wherein W 2 , D 2 and H 2 respectively satisfy: 500mm ⁇ W 2 ⁇ 1100mm; 450mm ⁇ D 2 ⁇ 1000mm; 1150mm ⁇ H 2 ⁇ 2450mm.
  • a plurality of the battery core layers are grouped into one battery core unit; or a plurality of the battery core layers are grouped into a plurality of battery core units, and the plurality of battery core units are arranged on the cabinet body. Arranged in the height direction; wherein each of the battery core units includes a plurality of the battery core layer groups, and two adjacent battery core layer groups of each battery core unit stop each other.
  • the size of the air duct gap is 5 mm to 20 mm.
  • each of the battery layer groups further includes: a first bottom plate and a second bottom plate, the first bottom plate and the second bottom plate are in contact with the cabinet along the width direction of the cabinet. are arranged at intervals in one of the depth directions.
  • the first bottom plate and the second bottom plate of one battery core layer group are in contact with the other. The cells of the cell layer group are stopped, and an air duct gap is formed between the first bottom plate and the second bottom plate.
  • each of the battery layer groups further includes: a first side plate and a second side plate, the first side plate and the second side plate are along the width direction of the cabinet and The other direction in the depth direction of the cabinet is spaced apart, and the two ends of the first bottom plate are respectively connected to one end of the first side plate and one end of the second side plate.
  • Both ends are respectively connected to the other end of the first side plate and the other end of the second side plate; wherein, for the two battery layer groups adjacent in the height direction of the cabinet, one The first bottom plate of the cell layer group is connected to another The first side plate and the second side plate of the electric core layer group stop, and the second bottom plate of the one electric core layer group stops with the first side plate and the second side plate of the other electric core layer group respectively.
  • the first bottom plate and the second bottom plate are each provided with one of a limiting post and a limiting hole, and the first side plate and the second side plate are both provided with the The other one of the limiting post and the limiting hole; wherein, for the two battery core layer groups adjacent in the height direction of the cabinet, the limiting post of one battery core layer group is matched with The limiting hole of another cell layer group.
  • the one of the limiting posts and the limiting holes is distributed at both ends of the first bottom plate and both ends of the second bottom plate; the limiting posts and The other one of the limiting holes is distributed at both ends of the first side plate and both ends of the second side plate.
  • the first side plate of the other battery core layer group is connected to the battery core layer group through a first fastener.
  • the first bottom plate and the second bottom plate of the one electric core layer group are fastened, and the second side plate of the other electric core layer group is connected to the first bottom plate and the second bottom plate of the one electric core layer group through a second fastener.
  • the second bottom plate is fastened.
  • the first fasteners are distributed at both ends of the first side plate; and the second fasteners are distributed at both ends of the second side plate.
  • each battery cell unit includes a base and a plurality of cells of the battery cell unit are supported on the base.
  • At least one restraint belt is provided above each battery cell unit. Two ends of each restraint belt are respectively connected to tie rods. The lower end of each tie rod is connected to the lower end of the battery cell unit. The base is connected.
  • the energy storage battery cabinet further includes: a refrigeration unit, the refrigeration unit is installed in the cabinet and is located on one side of the cabinet in the depth direction of the cabinet, so The refrigeration unit has an air outlet and a return air outlet, and a cooling air duct connected to the air outlet is constructed on one side of the cabinet in the height direction of the cabinet, and is adjacent to the air outlet in the height direction of the cabinet.
  • the cabinet has a cabinet door on one side in the depth direction; the energy storage battery cabinet further includes a refrigeration unit, and the refrigeration unit is installed in the cabinet; wherein, the refrigeration unit The unit is installed on the cabinet door, and the plurality of battery core layer groups enter and exit the cabinet by opening the cabinet door.
  • the cabinet door is provided with an external circulation air inlet, an external circulation air outlet and an exhaust device, and the external circulation air inlet, the external circulation air outlet and the exhaust device are provided along the cabinet The height direction of the body is arranged.
  • the cabinet door is provided with a maintenance door that can be opened and closed relative to the cabinet door, and the maintenance door is located at a lower part of the cabinet door in the height direction of the cabinet body.
  • an energy storage system including at least one energy storage battery cabinet according to the embodiment of the first aspect of the present disclosure.
  • Fig. 1 is a schematic structural diagram of an energy storage battery cabinet with the cabinet door closed according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of the energy storage battery cabinet with the cabinet door opened according to an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of a cell unit of an energy storage battery cabinet according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a cell unit of an energy storage battery cabinet from another perspective according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an energy storage battery cabinet with the cabinet door opened according to another embodiment of the present disclosure.
  • Figure 6 is an exploded view of an energy storage battery cabinet according to another embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of an energy storage system according to an embodiment of the present disclosure.
  • Figure 8 is a partial enlarged view of area D in Figure 3.
  • FIG. 9 is an exploded view of a cell layer group of an energy storage battery cabinet according to an embodiment of the present disclosure.
  • the energy storage battery cabinet 1 according to the embodiment of the present disclosure is described below with reference to the accompanying drawings.
  • an energy storage battery cabinet 1 includes a cabinet 100 and a plurality of battery cells 200.
  • the width W 1 of the cabinet 100, the depth D 1 of the cabinet 100 and the height H 1 of the cabinet 100 satisfy: 0.8 ⁇ W 1 /D 1 ⁇ 1.2, 0.8 ⁇ (W 1 +D 1 )/H 1 ⁇ 1.2.
  • a plurality of battery cells 200 are arranged in the cabinet 100.
  • the length L of the battery core 200, the thickness D of the battery core 200, and the width H of the battery core 200 satisfy: (D+H)/L ⁇ 0.2.
  • the volume V 1 of each battery cell 200 and the volume V 3 of the cabinet 100 satisfy: 0.0004 ⁇ V 1 /V 3 ⁇ 0.001.
  • the energy storage battery cabinet 1 can meet the needs of industrial and commercial energy storage and household energy storage.
  • the volume of each battery cell 200 may be 1.20 ⁇ 10 -3 m3 to 1.24 ⁇ 10 -3 m3.
  • the volume of the battery cell 200 is 1.22 ⁇ 10 -3 m3.
  • the width, depth and height of the cabinet 100 are calculated by the distance between its outer sides.
  • the volume of the cell 200 is the product of its length L, thickness D and width H.
  • the length L of the battery core 200 includes the poles at both ends of the battery core 200 .
  • the ratio of the width W 1 and the depth D 1 of the cabinet 100 can be 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15 or 1.2.
  • the ratio of the sum of the width W 1 and depth D 1 of the cabinet 100 to the height H 1 of the cabinet 100 is 0.8 to 1.2.
  • the sum of the width W 1 and depth D 1 of the cabinet 100 and the height of the cabinet 100 The H 1 ratio can be 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15 and 1.2. Therefore, the width and depth of the energy storage battery cabinet 1 are nearly equal, and the height of the energy storage battery cabinet 1 is nearly twice its width or depth.
  • the length L of the battery core 200, the thickness D of the battery core 200, and the width H of the battery core 200 satisfy: (D+H)/L ⁇ 0.2. Therefore, it can be ensured that the thickness and width of the battery core 200 are both much smaller than the length of the battery core 200 , so that the battery core 200 is configured as a long strip structure.
  • the volume V 1 of each battery cell 200 and the volume V 3 of the cabinet 100 satisfy: 0.0004 ⁇ V 1 /V 3 ⁇ 0.001.
  • V 1 /V 3 is not less than 0.0004 and not greater than 0.001
  • the energy storage battery cabinet of the present disclosure contains an appropriate number of cells 200 per unit volume, and while improving the volume utilization of the energy storage battery cabinet 1, Energy storage can be guaranteed The output voltage of pool cabinet 1.
  • V 1 /V 3 ⁇ 0.0004
  • the volume proportion of a single battery cell 200 is small.
  • the number of battery cells 200 must be within a certain range. Therefore, the energy storage battery cabinet There will be a lot of space where the battery cells 200 are not arranged in 1, and the volume utilization rate of the energy storage battery cabinet 1 will become low.
  • V 1 /V 3 >0.001 the volume proportion of a single battery cell 200 is too large. Even if as many battery cells 200 are arranged in the energy storage battery cabinet 1 to improve the volume utilization, the number of battery cells 200 will not be sufficient. It would be too much. Therefore, the overall output voltage of the battery cell 200 cannot reach the output voltage required by the energy storage battery cabinet 1 , that is, the output voltage of the energy storage battery cabinet 1 cannot be taken into account.
  • Such an arrangement can, on the one hand, prevent the cabinet 100 from being much larger than the battery cells 200, and the cabinet 100 can be filled with too many battery cells 200, which facilitates assembly. Moreover, the multiple battery cells 200 can fill the cabinet 100 as much as possible, thus avoiding a low number of battery cells 200 per unit volume of the cabinet 100 , thereby improving the volume utilization of the battery cells 200 .
  • the difference between the volume of the cabinet 100 and the battery cells 200 can be prevented from being too small.
  • the number of battery cells 200 in the cabinet 100 can reach a certain value, thereby ensuring that the overall output voltage of the battery cells 200 is within a certain range. , thereby making the output voltage of the energy storage battery cabinet 1 meet the usage requirements.
  • the energy storage battery cabinet 1 that meets the above four conditions at the same time has high cell volume utilization, high energy density, and moderate volume, and can take into account the output voltage of the energy storage battery cabinet 1.
  • the energy storage battery cabinet 1 by controlling the size parameters of the cabinet 100 and the size parameters of the battery cells 200, it has the advantages of high battery cell volume utilization and high energy density, and can take into account the energy storage battery.
  • Cabinet 1 output voltage.
  • the battery core 200 is configured in a rectangular parallelepiped shape. It should be noted that the battery core 200 can be generally in the shape of a rectangular parallelepiped, and does not necessarily have to be a strict rectangular parallelepiped shape.
  • the rectangular parallelepiped-shaped battery cells 200 can maximize the use of the width direction space of the energy storage battery cabinet 1 in the length direction.
  • the energy storage space can be maximized.
  • the sum V 2 of the volumes of the plurality of battery cells 200 and the volume V 3 of the cabinet 100 satisfy: 0.35 ⁇ V 2 /V 3 ⁇ 0.5.
  • the voltage range of the energy storage battery cabinet 1 is between 998.4VDC and Within 1497.6VDC, the energy storage battery cabinet 1 reaches optimal efficiency.
  • the number of battery cells 200 can be determined, thereby determining the output voltage of the energy storage battery cabinet 1 and ensuring the efficiency of the energy storage battery cabinet 1.
  • This solution can take into account both the volume utilization rate of the energy storage battery cabinet 1 and the output voltage of the energy storage battery cabinet 1 , that is, it can simultaneously take into account the volume utilization rate of the energy storage battery cabinet 1 and the efficiency of the energy storage battery cabinet 1 .
  • the space in the cabinet 100 except the space occupied by the battery cells 200 can be used to arrange units such as the control unit, the refrigeration unit 300 and the fire protection unit.
  • units such as the control unit, the refrigeration unit 300 and the fire protection unit.
  • the space of the energy storage battery cabinet 1 is more fully utilized, and the volume of the energy storage battery cabinet 1 does not need to be large.
  • the setting is too large to facilitate the application of the energy storage battery cabinet 1 in different scenarios.
  • the cell volume utilization rate of the energy storage battery cabinet 1 can reach a minimum of 35%, and even a maximum of 50%.
  • the cell volume utilization rate of the energy storage battery cabinet 1 of the present disclosure far exceeds that of storage cells in related technologies.
  • the energy density of the energy storage battery cabinet 1 of the present disclosure is higher.
  • the length L of the battery core 200 and the width W 1 of the cabinet 100 satisfy: 0.35 ⁇ L/W 1 ⁇ 1. Further, the length L of the battery core 210 and the width W 1 of the cabinet 100 satisfy: 0.8 ⁇ L/W 1 ⁇ 1.
  • the ratio of the length L of the battery core 200 to the width W 1 of the cabinet 100 is not less than 0.8, and the ratio of the length L of the battery core 200 to the width W 1 of the cabinet 100 is less than 1.
  • the length of the battery core 200 within the unit volume is The gap with the inner wall of the cabinet 100 in the direction is smaller, and the cell volume utilization rate is higher. For example, the cell volume utilization rate can reach 42.7%. Therefore, the length direction of the battery cores 200 and the width direction of the cabinet 100 can be arranged in the same direction, and the battery cores 200 can be arranged in more diverse ways within the cabinet 100 .
  • the length L of the battery core 200, the thickness D of the battery core 200, and the width H of the battery core 200 respectively satisfy: 400mm ⁇ L ⁇ 1200mm, 10mm ⁇ D ⁇ 40mm, 60mm ⁇ H ⁇ 150mm.
  • L can be 500mm, 550mm, 600mm, 650mm, 700mm, 750mm, 800mm, 850mm, 900mm, 950mm, 1000mm, 1050mm, 1100mm, 1150mm or 1200mm.
  • the energy storage battery cabinet 1 used in the home generally adopts a wall-mounted structure.
  • the battery cells 200 need to be in a flat shape as much as possible, and the battery cells 200 on each battery cell layer group 210 also need to be in a flat shape as much as possible after being arranged.
  • the protruding size from the wall is less likely to exceed 500 mm, thereby hardly interfering with the user's normal activities at home and better meeting the needs of home users.
  • the length L of the battery core 200, the thickness D of the battery core 200, and the width H of the battery core 200 respectively satisfy: 800mm ⁇ L ⁇ 970mm, 10mm ⁇ D ⁇ 30mm, 80mm ⁇ H ⁇ 130mm.
  • L can be 800mm, 820mm, 840mm, 860mm, 880mm, 900mm, 920mm, 940mm, 960mm, or 970mm.
  • the energy storage battery cabinet 1 used in industry and commerce generally requires one battery cell 200 to be arranged in the first direction, and multiple battery cells 200 can be stacked in the second and third directions. Therefore, the energy storage battery cabinet 1 using the above-mentioned battery cells 200 can store more electricity, have stronger power supply capability, and meet the needs of industrial and commercial use.
  • the width W 1 of the cabinet 100, the depth D 1 of the cabinet 100, and the height H 1 of the cabinet 100 respectively satisfy: 600mm ⁇ W 1 ⁇ 1200mm , 700mm ⁇ D 1 ⁇ 1250mm, 1300 ⁇ H 1 ⁇ 2600mm.
  • the size of the energy storage battery cabinet 1 will not be too large, the structural strength of the energy storage battery cabinet 1 can be ensured, and it is easy to hoist.
  • the size of the energy storage battery cabinet 1 is not too small.
  • the energy storage battery cabinet 1 has sufficient space for arranging the battery cells 200 to increase the power supply time of the energy storage battery cabinet 1 .
  • the energy storage battery cabinet 1 can be stacked, combined, transported and used in a 20GP container or a 40GP container. It can transport 10 energy storage battery cabinets 1 in a 20GP container, and 20 energy storage battery cabinets 1 in a 40GP container. The transportation cost is significantly reduced.
  • multiple battery cores 200 form multiple battery core layer groups 210 .
  • a plurality of battery core layer groups 210 are stacked along the height direction of the cabinet 100 .
  • Each battery core layer group 210 includes at least one battery core 200 in one of the width direction and depth direction of the cabinet 100 , and includes a plurality of battery cells in the other direction of the width direction and depth direction of the cabinet 100 .
  • Core 200 is
  • the height direction of the cabinet 100 is generally a vertical direction, and the bottom surface of each cell layer group 210 stops with the top surface of the cell layer group 210 below it. Moreover, under the action of gravity, except for the lowermost battery core layer group 210, each of the other battery core layer groups 210 will press against the adjacent lower battery core layer group 210. With this arrangement, the multiple battery core layer groups 210 can be reliably stopped, thereby limiting each other, so as to achieve stable positioning of the multiple battery core layer groups 210 in the cabinet 100 and ensure Safety of electrical connections.
  • the energy storage battery cabinet 1 of the present disclosure limits the position of the cell layer groups 210 by itself, without the need to set additional limits.
  • the fixed structure reduces the number of parts, so that more space in the energy storage battery cabinet 1 can be used to arrange the battery cells 200, which improves the energy density of the energy storage battery cabinet 1 and the volume utilization of the battery cells 200.
  • the length direction of the battery core 200 is arranged along the width direction of the cabinet 100 .
  • the thickness direction of the battery core 200 is arranged along the depth direction of the cabinet 100 .
  • the width direction of the battery core 200 is arranged along the height direction of the cabinet 100 .
  • the length of the battery core 200 is generally greater than the thickness of the battery core 200 and the width of the battery core 200 . By connecting the cell 200 long are arranged along the width direction of the cabinet 100. On the premise of meeting the electrical safety requirements, the length of the battery core 200 can be approximately the same as the width of the cabinet 100, so that the battery core 200 can fill the cabinet as much as possible in the width direction of the cabinet 100. Body 100.
  • the number of battery cores 200 arranged in each battery core layer group 210 along the depth direction of the cabinet 100 can be determined, so that the battery cores 200 can be placed in the cabinet 100
  • the cabinet 100 should be filled as fully as possible in the depth direction, thereby improving the cell volume utilization and energy density of the energy storage battery cabinet 1 .
  • the number of battery core layer groups 210 is 8 to 18.
  • the cell layer groups 210 need to support each other, when the energy storage battery cabinet 1 is used, one of the two outermost cell layer groups 210 must bear the pressure of the other cell layer groups 210 . Therefore, by setting the number of battery core layer groups 210 to no more than 18, it is possible to prevent the outermost battery core layer group 210 from being broken due to pressure, thus ensuring the service life of each battery core layer group 210 . Moreover, the number of cell layer groups 210 is not less than 8, which can increase the volume utilization of the cells 200 of the energy storage battery cabinet 1 and extend the power supply time of the energy storage battery cabinet 1 .
  • the overall width of multiple battery core layer groups 210 arranged in the height direction of the cabinet 100 is W 2 , the depth is D 2 , and the height is H2 .
  • W 2 , D 2 and H 2 respectively satisfy: 500mm ⁇ W 2 ⁇ 1100mm, 450mm ⁇ D 2 ⁇ 1000mm, 1150mm ⁇ H 2 ⁇ 2450mm.
  • the overall size of the multiple cell layer groups 210 will not be too large, making it suitable for different usage scenarios, and the energy storage battery cabinet 1 using the multiple battery cell layer groups 210 of the present disclosure is also easy to move and Disassembly and assembly.
  • the overall size of the multiple battery core layer groups 210 is not too small, so the power stored in the multiple battery core layer groups 210 can meet the usage in most situations, and the battery life is strong.
  • the overall size of the cell layer group 210 is more compatible with the cabinet 100, and the volume utilization rate is also higher.
  • multiple battery core layer groups 210 constitute one battery core unit 220 , or multiple battery core layer groups 210 constitute multiple battery core units 220 .
  • the plurality of battery cells 220 are arranged in the height direction of the cabinet 100 .
  • Each battery cell unit 220 includes a plurality of battery core layer groups 210 , and two adjacent battery core layer groups 210 of each battery core unit 220 stop each other.
  • the battery cells 200 also achieve the purpose of improving the battery cell volume utilization and energy density of the energy storage battery cabinet 1 .
  • FIGS. 3-6 there is an air duct gap 230 between the cells 200 of two adjacent cell layer groups 210 of each cell unit 220 .
  • the cells 200 of two adjacent cell layer groups 210 will not directly transfer heat to each other, which can avoid heat accumulation between the cells 200 , and the cells 200 of each cell layer group 210 are connected to each other.
  • the air heat exchange area in the energy storage battery cabinet 1 is larger, which improves the heat dissipation capacity of the battery cells 200.
  • the size of the air duct gap 230 in the height direction of the cabinet 100 is 5 mm to 20 mm.
  • the distance between the cells 200 of the two cell layer groups 210 is not less than 5 mm, which can facilitate sufficient heat dissipation of the cells 200 of each cell layer group 210 and avoid thermal runaway caused by heat accumulation. Moreover, the distance between the cells 200 of the two cell layer groups 210 is no more than 20 mm, which can ensure the cell volume utilization and energy density of the energy storage battery cabinet 11 .
  • each cell layer group 210 further includes a first bottom plate 240 and a second bottom plate 250 .
  • the first bottom plate 240 and the second bottom plate 250 are spaced apart along one of the width direction of the cabinet body 100 and the depth direction of the cabinet body 100 .
  • the first bottom plate 240 and the second bottom plate 250 of one battery core layer group 210 are in contact with the battery core 200 of the other battery core layer group 210.
  • An air duct gap 230 is formed between the first bottom plate 240 and the second bottom plate 250 .
  • the arrangement of the first bottom plate 240 and the second bottom plate 250 can, on the one hand, support the adjacent battery core layer groups 210 , so that the multiple battery core layer groups 210 can rely on the first bottom plate 240 and the second bottom plate 250 to limit each other. positions and supports to fix the relative positions between the plurality of battery core layer groups 210 .
  • the first bottom plate 240 and the second bottom plate 250 can guide the gas entering the air duct gap 230, thereby improving the heat dissipation efficiency of the gas to the battery core 200, and the battery core 200 is less susceptible to thermal damage, extending the energy storage battery cabinet 1 service life.
  • each battery cell unit 220 includes a base 260 and the plurality of battery cells 200 of the battery cell unit 220 are supported on the base 260 .
  • each base 260 can be directly connected to the cabinet 100.
  • the number of bases 260 corresponds to the number of battery core units 220, thereby reducing the maximum pressure on the battery core layer group 210 in each battery cell unit 220. , the number of battery cell units 220 in the energy storage battery cabinet 1 can be increased, and the probability of damage to the battery core layer group 210 in each battery cell unit 220 can be reduced.
  • At least one restraining band 270 is provided above each battery cell unit 220 .
  • Two ends of each restraint belt 270 are respectively connected to tie rods 280 , and the lower end of each tie rod 280 is connected to the base 260 of the battery unit 220 .
  • the tie rods 280 can extend along the height direction of the cabinet 100 , and the tie rods 280 are located on opposite sides of the battery core layer group 210 in the width direction or depth direction of the cabinet 100 . That is to say, if the tie rods 280 are located on both sides of the cell layer group 210 in the width direction of the cabinet 100, the restraint belt 270 can extend along the width direction of the cabinet 100, and the tie rods 280 can be positioned in the width direction of the cabinet 100.
  • the battery core layer group 210 is fixed and limited. If the tie rods 280 are located on both sides of the cell layer group 210 in the depth direction of the cabinet 100, the restraint belt 270 can be positioned along the depth direction of the cabinet 100. Extending in the direction, the tie rod 280 can fix and limit the battery core layer group 210 in the depth direction of the cabinet 100 .
  • the battery core layer group 210 can be fixed and limited in the height direction of the cabinet 100.
  • the position of the battery core layer group 210 is not easy to change, ensuring the electric power of the battery core 200.
  • the reliability of the connection is conducive to improving the safety and structural stability of the energy storage battery cabinet 1.
  • each cell layer group 210 further includes a first side plate 400 and a second side plate 500 .
  • the first side plate 400 and the second side plate 500 are respectively located on both sides of the battery core layer group 210 .
  • the first side panel 400 and the second side panel 500 are arranged oppositely along the other direction of the width direction and the depth direction of the cabinet 100 .
  • Two ends of the first bottom plate 240 are connected to one end of the first side plate 400 and one end of the second side plate 500 respectively.
  • Two ends of the second bottom plate 250 are connected to the other ends of the first side plate 400 and the other end of the second side plate 500 respectively.
  • the first bottom plate 240 of one battery core layer group 210 is connected to the first side plate 400 and the first side plate 400 of the other battery core layer group 210 respectively.
  • the two side plates 500 stop, and the second bottom plate 250 of the above-mentioned one cell layer group 210 stops with the first side plate 400 and the second side plate 500 of the other cell layer group 210 respectively.
  • the two adjacent battery core layer groups 210 do not need to be directly stopped by the battery core 200, thereby reducing the probability of the battery core 200 being broken due to force.
  • the first side plate 400 and the second side plate 500 are located on opposite sides of the battery core layer group 210, which can prevent the two adjacent battery core layer groups 210 from being deflected due to force. The arrangement is more stable.
  • one of the limiting posts 600 and the limiting holes 700 is provided on the first bottom plate 240 and the second bottom plate 250 , and the first side plate 400 and the second Each side plate 500 is provided with the other one of a limiting column 600 and a limiting hole 700 .
  • the limiting post 600 of one battery core layer group 210 is matched with the limiting hole 700 of the other battery core layer group 210.
  • the position between the adjacent battery core layer groups 210 can be fixed, preventing relative rotation between the adjacent battery core layer groups 210, and the positioning accuracy is higher, and the assembly and electrical wiring are improved.
  • the connection is more reliable and secure.
  • the above-mentioned one of the limiting posts 600 and the limiting holes 700 is distributed at both ends of the first bottom plate 240 and the second bottom plate 250, and the limiting The other one of the posts 600 and the limiting holes 700 is distributed at both ends of the first side plate 400 and both ends of the second side plate 500 .
  • the first battery core layer group 210 of the other battery core layer group 210 is The side plate 400 is fastened to the first bottom plate 240 and the second bottom plate 250 of one cell layer group 210 through the first fastener 410 .
  • the second side plate 500 of the other electric core layer group 210 is fastened to the first bottom plate 240 and the second bottom plate 250 of one electric core layer group 210 through the second fastener 510 .
  • the first fastener 410 and the second fastener 510 may be threaded fasteners.
  • Such an arrangement can fix the relative position between adjacent battery core layer groups 210 and prevent the adjacent battery core layer groups 210 from being separated during transportation or assembly, thereby making the adjacent battery core layer groups 210 can be disassembled and assembled as a whole, which not only has high assembly efficiency, but also ensures the positioning accuracy between adjacent cell layer groups 210 during the entire transportation and assembly process, so that the overall assembly accuracy of the energy storage battery cabinet 1 is higher. Assembly and electrical connections are more reliable and safer.
  • the first fasteners 410 are distributed at both ends of the first side plate 400
  • the second fasteners 510 are distributed at both ends of the second side plate 500 . both ends.
  • the energy storage battery cabinet 1 further includes a refrigeration unit 300.
  • the refrigeration unit 300 is installed in the cabinet 100 and is located on one side of the cabinet 100 in the depth direction of the cabinet 100 .
  • the refrigeration unit 300 has an air outlet 310 and a return air outlet 320.
  • the cabinet 100 is configured with a cooling air duct 120 connected to the air outlet on one side of the cabinet 100 in the height direction, and between the cells 200 of the two adjacent cell layer groups 210 in the height direction of the cabinet 100 There is air duct clearance 230.
  • the airflow flows into the cooling air duct 120 from the air outlet 310, it flows through the plurality of battery core layer groups 210 from the other side in the depth direction of the cabinet 100 and both sides in the width direction of the cabinet 100, and passes through the airflow.
  • the channel gap 230 flows into the return air outlet 320 .
  • the gas in the energy storage battery cabinet 1 is driven to circulate and flow, which can exchange heat with the gas in the energy storage battery cabinet 1 and reduce the temperature of the gas in the energy storage battery cabinet 1, so that the energy storage battery cabinet 1
  • the low-temperature gas inside can cool down and dissipate the heat of the battery cells 200 in the energy storage battery cabinet 1, preventing heat accumulation in the battery cells 200 of the energy storage battery cabinet 1 from causing thermal runaway, and improving the safety of the energy storage battery cabinet 1.
  • the refrigeration unit 300 is located in the cabinet 100 is located on one side of the cabinet 100 in the depth direction. Therefore, the refrigeration unit 300 will not affect the arrangement of the cell layer groups 210 along the height of the cabinet 100, and can enable a larger number of cell layer groups 210 to be installed. Therefore, the number of battery cells 200 can be larger to improve the volume utilization of the battery cells 200 in the energy storage battery cabinet 1 .
  • the cabinet 100 has a cabinet door 110 on one side in its depth direction.
  • the energy storage battery cabinet 1 also includes a refrigeration unit 300, which is installed in the cabinet 100.
  • the refrigeration unit 300 is installed on the cabinet door 110 , and the plurality of cell layer groups 210 enter and exit the cabinet 100 by opening the cabinet door 110 .
  • the gas in the energy storage battery cabinet 1 is driven to circulate and flow, which can exchange heat with the gas in the energy storage battery cabinet 1 and reduce the temperature of the gas in the energy storage battery cabinet 1, so that the energy storage battery cabinet 1
  • the low-temperature gas inside can cool down and dissipate the heat of the battery cells 200 in the energy storage battery cabinet 1, preventing heat accumulation in the battery cells 200 of the energy storage battery cabinet 1 from causing thermal runaway, and improving the safety of the energy storage battery cabinet 1.
  • the refrigeration unit 300 can be directly accessed by opening the cabinet door 110, which facilitates subsequent maintenance of the refrigeration unit 300. Moreover, the refrigeration unit 300 is not installed in the cabinet 100 and does not interfere with the assembly and disassembly of the battery core layer group 210, which reduces the difficulty of assembly and disassembly.
  • the cabinet door 110 is provided with an external circulation air inlet 130, an external circulation air outlet 140 and an exhaust device 150.
  • Such an arrangement can replace the air in the cabinet 100 and prevent hot air from accumulating in the cabinet 100, thus reducing the occurrence of thermal runaway caused by overheating of the battery core 200.
  • the external circulation air inlet 130, the external circulation air outlet 140 and the exhaust device 150 are directly installed on the cabinet door 110. Therefore, when the cabinet door 110 is opened, both ends of the external circulation air inlet 130 and both ends of the external circulation air outlet 140 can be connected. The end and both ends of the exhaust device 150 are cleaned, making cleaning more convenient.
  • the external circulation air inlet 130 , the external circulation air outlet 140 and the exhaust device 150 are arranged along the height direction of the cabinet 100 , so it is easy to distinguish the external circulation air inlet 130 , the external circulation air outlet 140 and the exhaust device 150 during assembly. time is more convenient.
  • the cabinet door 110 is provided with a maintenance door 160 that can be opened and closed relative thereto.
  • the maintenance door 160 is located at the lower part of the cabinet door 110 in the height direction of the cabinet 100 .
  • the maintenance door 160 can be used to maintain the control circuit in the energy storage battery cabinet 1.
  • the energy storage battery cabinet 1 is subsequently maintained, there is no need to open the main body of the cabinet door 110, so that the battery core 200 will not be directly exposed to the In the air, safety can be greatly improved.
  • the maintenance door 160 is located at the lower part of the cabinet door 110 in the height direction of the cabinet 100, the height of the cabinet door 110 is relatively high, making it easy to open and close, and it is convenient to put in or take out batteries. 200.
  • the energy storage system 2 includes at least one energy storage battery cabinet 1 according to the embodiment of the present disclosure.
  • the energy storage system 2 by using the energy storage battery cabinet 1 according to the above embodiment of the present disclosure, controls the size parameters of the cabinet 100 and the size parameters of the battery cells 200, and has high energy density and battery cell volume utilization. It has the advantages of high efficiency and can also take into account the output voltage of the energy storage system 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种储能系统具有储能电池柜。储能电池柜包括柜体和多个电芯。柜体的宽度W1、柜体的深度D1和柜体的高度H1满足:0.8≤W1/D1≤1.2,0.8≤(W1+D1)/H1≤1.2。多个电芯设于柜体内,电芯的长度L、电芯的厚度D和电芯的宽度H满足:(D+H)/L≤0.2。其中,每个电芯的体积V1和柜体的体积V3满足:0.0004≤V1/V3≤0.001。

Description

储能电池柜和具有其的储能系统
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2022年07月15日提交的名称为“储能电池柜和具有其的储能系统”的中国专利申请号“202210833933.3”的优先权。
技术领域
本公开涉及储能技术领域,尤其是涉及一种储能电池柜和具有其的储能系统。
背景技术
相关技术中,储能柜内通常放有多个电池包,并且电池包内具有多个电芯。储能柜中的电池包具有外壳以及其余结构,电芯体积利用率(Volumetric Cell To System,VCTS)经过两次降级,储能柜的柜体的尺寸和体积以及电芯的尺寸和体积设置不合理,导致电芯体积利用率降低,一般电芯体积利用率低于28%,导致能量密度也不高。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种储能电池柜,该储能电池柜通过控制柜体的尺寸参数和电芯的尺寸参数,具有电芯体积利用率高和能量密度大等优点,兼顾储能电池柜的输出电压。
本公开还提出一种具有上述储能电池柜的储能系统。
为了实现上述目的,根据本公开的第一方面实施例提出了一种储能电池柜,包括:柜体,所述柜体的宽度W1、所述柜体的深度D1和所述柜体的高度H1满足:0.8≤W1/D1≤1.2,0.8≤(W1+D1)/H1≤1.2;多个电芯,多个所述电芯设于所述柜体内,所述电芯的长度L、所述电芯的厚度D和所述电芯的宽度H满足:(D+H)/L≤0.2;其中,每个所述电芯的体积V1和所述柜体的体积V3满足:0.0004≤V1/V3≤0.001。
根据本公开实施例的储能电池柜,通过控制柜体的尺寸参数和电芯的尺寸参数,具有电芯体积利用率高和能量密度大等优点,兼顾储能电池柜的输出电压。
根据本公开的一些示例,所述电芯构造成长方体形。
根据本公开的一些示例,多个所述电芯的体积之和V2与所述柜体的体积V3满足:0.35≤V2/V3≤0.5。
根据本公开的一些示例,所述L、D和H分别满足:400mm≤L≤1200mm,10mm≤D≤40mm,60mm≤H≤150mm。
根据本公开的一些示例,所述L、D和H分别满足:800mm≤L≤970mm,10mm≤D≤30mm, 80mm≤H≤130mm。
根据本公开的一些示例,所述W1、D1和H1分别满足:600mm≤W1≤1200mm,700mm≤D1≤1250mm,1300≤H1≤2600mm。
根据本公开的一些示例,所述L和W1满足:0.35≤L/W1<1。
根据本公开的一些示例,所述储能电池柜还包括:多个电芯层组,多个所述电芯层组沿所述柜体的高度方向堆叠,每个所述电芯层组在所述柜体的宽度方向和深度方向中的一个方向上包括至少一个所述电芯,且在所述柜体的宽度方向和深度方向中的另一个方向上包括多个所述电芯。
根据本公开的一些示例,所述电芯的长度方向沿所述柜体的宽度方向布置,所述电芯的厚度方向沿所述柜体的深度方向布置,所述电芯的宽度方向沿所述柜体的高度方向布置。
根据本公开的一些示例,所述电芯层组的数量为8~18个。
根据本公开的一些示例,所述多个电芯层组在所述柜体的高度方向上排布后的整体宽度为W2、深度为D2、高度为H2,其中,所述W2、D2和H2分别满足:500mm≤W2≤1100mm;450mm≤D2≤1000mm;1150mm≤H2≤2450mm。
根据本公开的一些示例,多个所述电芯层组构成一个电芯单元;或多个所述电芯层组构成多个电芯单元,多个所述电芯单元在所述柜体的高度方向上排布;其中,每个所述电芯单元包括多个所述电芯层组,且每个所述电芯单元的相邻两个电芯层组彼此止抵。
根据本公开的一些示例,每个所述电芯单元的相邻两个电芯层组的电芯之间具有风道间隙。
根据本公开的一些示例,在所述柜体的高度方向上,所述风道间隙的尺寸为5mm~20mm。
根据本公开的一些示例,每个所述电芯层组还包括:第一底板和第二底板,所述第一底板和所述第二底板沿所述柜体的宽度方向和所述柜体的深度方向中的一个方向间隔设置,对于每个所述电芯单元的相邻的两个所述电芯层组,其中一个所述电芯层组的第一底板和第二底板与另一个所述电芯层组的电芯止抵,所述第一底板和所述第二底板之间形成风道间隙。
根据本公开的一些示例,每个所述电芯层组还包括:第一侧板和第二侧板,所述第一侧板和所述第二侧板沿所述柜体的宽度方向和所述柜体的深度方向中的另一个方向间隔设置,所述第一底板的两端分别与所述第一侧板的一端和所述第二侧板的一端相连,所述第二底板的两端分别与所述第一侧板的另一端和所述第二侧板的另一端相连;其中,对于在所述柜体的高度方向上相邻的两个所述电芯层组,一个电芯层组的第一底板分别与另一个 电芯层组的第一侧板和第二侧板止抵,且所述一个电芯层组的第二底板分别与另一个电芯层组的第一侧板和第二侧板止抵。
根据本公开的一些示例,所述第一底板和所述第二底板均设有限位柱和限位孔中的一种,所述第一侧板和所述第二侧板均设有所述限位柱和所述限位孔中的另一种;其中,对于在所述柜体的高度方向上相邻的两个所述电芯层组,一个电芯层组的限位柱配合于另一个电芯层组的限位孔。
根据本公开的一些示例,所述限位柱和所述限位孔中的所述一种分布于所述第一底板的两端和所述第二底板的两端;所述限位柱和所述限位孔中的所述另一种分布于所述第一侧板的两端和所述第二侧板的两端。
根据本公开的一些示例,对于在所述柜体的高度方向上相邻的两个所述电芯层组,所述另一个电芯层组的第一侧板通过第一紧固件与所述一个电芯层组的第一底板和第二底板紧固,所述另一个电芯层组的第二侧板通过第二紧固件与所述一个电芯层组的第一底板和第二底板紧固。
根据本公开的一些示例,所述第一紧固件分布于所述第一侧板的两端;所述第二紧固件分布于所述第二侧板的两端。
根据本公开的一些示例,每个所述电芯单元包括底座且该电芯单元的多个电芯支撑于所述底座。
根据本公开的一些示例,每个所述电芯单元的上方设有至少一个拘束带,每个所述拘束带的两端分别连接有拉杆,每个所述拉杆的下端与该电芯单元的底座相连。
根据本公开的一些示例,所述的储能电池柜还包括:制冷单元,所述制冷单元安装于所述柜体内且在所述柜体的深度方向上位于所述柜体的一侧,所述制冷单元具有出风口和回风口,所述柜体在所述柜体的高度方向上的一侧构造有与所述出风口连通的散热风道,在所述柜体的高度方向上相邻的两个所述电芯层组的电芯之间具有风道间隙;其中,气流从所述出风口流入所述散热风道后,从所述柜体的深度方向上的另一侧以及所述柜体的宽度方向上的两侧流经所述多个电芯层组,并通过所述风道间隙流入所述回风口。
根据本公开的一些示例,所述柜体在其深度方向上的一侧具有柜门;所述储能电池柜还包括制冷单元,所述制冷单元安装于所述柜体内;其中,所述制冷单元安装于所述柜门,所述多个电芯层组通过打开所述柜门进出所述柜体。
根据本公开的一些示例,所述柜门设有外循环进风口、外循环出风口和排气装置,所述外循环进风口、所述外循环出风口和所述排气装置沿所述柜体的高度方向排布。
根据本公开的一些示例,所述柜门设有相对于所述柜门可打开和关闭的维护门,在所述柜体的高度方向上,所述维护门位于所述柜门的下部。
根据本公开的第二方面的实施例提出了一种储能系统,包括至少一个根据本公开的第一方面的实施例所述的储能电池柜。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的储能电池柜的柜门关闭的结构示意图。
图2是根据本公开实施例的储能电池柜的柜门打开的结构示意图。
图3是根据本公开实施例的储能电池柜的电芯单元的结构示意图。
图4是根据本公开实施例的储能电池柜的电芯单元的另一视角的结构示意图。
图5是根据本公开另一实施例的储能电池柜的柜门打开的结构示意图。
图6是根据本公开另一实施例的储能电池柜的爆炸图。
图7是根据本公开实施例的储能系统的结构示意图。
图8是图3中D区域的局部放大图。
图9是根据本公开实施例的储能电池柜的电芯层组的爆炸图。
附图标记:
1、储能电池柜;2、储能系统;
100、柜体;110、柜门;120、散热风道;130、外循环进风口;140、外循环出风
口;150、排气装置;160、维护门;
200、电芯;210、电芯层组;220、电芯单元;230、风道间隙;240、第一底板;
250、第二底板;260、底座;270、拘束带;280、拉杆;
300、制冷单元;310、出风口;320、回风口;400、第一侧板;410、第一紧固件;
500、第二侧板;510、第二紧固件;600、限位柱;700、限位孔。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,“多个”的含义是两个或两个以上,“若干”的含义是一个或多个。
下面参考附图描述根据本公开实施例的储能电池柜1。
如图1-图7所示,根据本公开实施例的储能电池柜1,包括柜体100和多个电芯200。
柜体100的宽度W1、柜体100的深度D1和柜体100的高度H1满足:0.8≤W1/D1≤1.2,0.8≤(W1+D1)/H1≤1.2。多个电芯200设于柜体100内,电芯200的长度L、电芯200的厚度D和电芯200的宽度H满足:(D+H)/L≤0.2。其中,每个电芯200的体积V1和柜体100的体积V3满足:0.0004≤V1/V3≤0.001。
其中,储能电池柜1可以满足工商业储能以及家用储能的使用需求。而且,每个电芯200的体积可以为1.20×10-3m3~1.24×10-3m3。例如,电芯200的体积为1.22×10-3m3。柜体100的宽度、深度和高度以其外侧面之间的距离计算。电芯200的体积为其长度L、厚度D和宽度H之积。其中,电芯200的长度L包括在电芯200的两端的极柱。
根据本公开实施例的储能电池柜1,通过将柜体100的宽度W1和深度D1之比设置为0.8~1.2,例如,柜体100的宽度W1和深度D1之比可以为0.8、0.85、0.9、0.95、1、1.05、1.1、1.15或者1.2。柜体100的宽度W1和深度D1之和与柜体100的高度H1之比为0.8~1.2,例如,柜体100的宽度W1和深度D1之和与柜体100的的高度H1之比可以为0.8、0.85、0.9、0.95、1、1.05、1.1、1.15以及1.2。由此,储能电池柜1的宽度和深度趋近相等,储能电池柜1的高度趋近其宽度或深度的2倍。
另外,电芯200的长度L、电芯200的厚度D和电芯200的宽度H满足:(D+H)/L≤0.2。由此,能够保证电芯200的厚度和宽度都远小于电芯200的长度,以使电芯200被构造为长条形结构。
其中,每个电芯200的体积V1和柜体100的体积V3满足:0.0004≤V1/V3≤0.001。通过将V1/V3设置为不小于0.0004且不大于0.001,本公开的储能电池柜1单位体积内容纳的电芯200的数量适当,在提高储能电池柜1体积利用率的同时,可以保证储能电 池柜1的输出电压。
举例而言,若V1/V3≤0.0004,单独一个电芯200的体积占比小,要保证储能系统2输出电压,电芯200的数量在一定的范围之内,因此储能电池柜1内会存在较多未布置电芯200的空间,储能电池柜1的体积利用率就会变低。若V1/V3>0.001,单独一个电芯200的体积占比过大,即使在储能电池柜1内尽可能多地布置电芯200,提高体积利用率,电芯200的数量也不会太多。因此,电芯200整体的输出电压无法达到储能电池柜1所需的输出电压,也就是无法兼顾储能电池柜1的输出电压。
如此设置,一方面,可以避免柜体100的体积远大于电芯200的体积,无需过多的电芯200即可装满柜体100,便于装配。而且,多个电芯200能够尽可能地装填满柜体100,避免了单位体积的柜体100内的电芯200数量较低,从而能够提高电芯200的体积利用率。
另一方面,可以避免柜体100的体积与电芯200的体积差距过小,柜体100内电芯200的数量可以达到一定值,从而保证电芯200整体的输出电压在一定的范围之内,进而使储能电池柜1的输出电压满足使用要求。
综上所述,0.8≤W1/D1≤1.2,0.8≤(W1+D1)/H1≤1.2,(D+H)/L≤0.2,且0.0004≤V1/V3≤0.001,同时满足以上四个条件的储能电池柜1的电芯体积利用率高,能量密度大,且体积适中,可以兼顾储能电池柜1的输出电压。
如此,根据本公开实施例的储能电池柜1,通过控制柜体100的尺寸参数和电芯200的尺寸参数,具有电芯体积利用率高和能量密度大等优点,并且可以兼顾储能电池柜1的输出电压。
根据本公开的一些具体实施例,如图2-图4所示,电芯200构造成长方体形。需要说明的是,电芯200大体呈长方体形即可,并不一定是严格的长方体形。
相比于弧面较多的圆柱体电芯或者异形电芯,储能电池柜1内除必要结构(例如隔热处理),长方体形的电芯200堆叠放置时,能够最大程度地利用储能电池柜1内的空间体积,提高空间利用率。例如,长方体形的电芯200在其长度方向可以最大程度利用储能电池柜1的宽度方向空间,长方体形的电芯200沿其厚度方向和高度方向并排放置时,可以最大程度地利用储能电池柜1的深度方向空间。
根据本公开的一些具体实施例,如图2和图5所示,多个电芯200的体积之和V2与柜体100的体积V3满足:0.35≤V2/V3≤0.5。例如,每个电芯200的电压在3.2V左右时,每个电芯200处于最优工作状态,储能电池柜1的电压范围在998.4VDC~ 1497.6VDC之内,储能电池柜1达到最优效率。
基于V2/V3和V1/V3的限定,可以确定电芯200的数量,从而确定储能电池柜1的输出电压,保证储能电池柜1的效率。本方案能够同时兼顾储能电池柜1的体积利用率和储能电池柜1输出电压,即,同时兼顾储能电池柜1的体积利用率和储能电池柜1的效率。
例如,柜体100中除了电芯200所占用空间之外的空间可以用于布置控制单元、制冷单元300以及消防单元等单元。由此,在提高储能电池柜1的电芯体积利用率的同时,还能够有充足的空间布置其他单元,储能电池柜1的空间利用更为充分,且储能电池柜1的体积无需设置过大,便于储能电池柜1应用于不同的场景。而且,储能电池柜1的电芯体积利用率最低能够达到为35%,甚至最高能够达到为50%,本公开的储能电池柜1的电芯体积利用率远远超过相关技术中的储能电池柜的电芯体积利用率,本公开的储能电池柜1的能量密度更高。
根据本公开的一些具体实施例,如图3和图4所示,电芯200的长度L和柜体100的宽度W1满足:0.35≤L/W1<1。进一步地,电芯210的长度L和柜体100的宽度W1满足:0.8≤L/W1<1。
电芯200的长度L和柜体100的宽度W1之比不小于0.8,并且电芯200的长度L和柜体100的宽度W1之比小于1,单位体积内的电芯200在其长度方向上与柜体100的内壁的间隙更小,电芯体积利用率较高,例如,电芯体积利用率可以达到42.7%。因此电芯200的长度方向与柜体100的宽度方向可以相同布置,电芯200在柜体100内的排布方式更为多样。
根据本公开的一些具体实施例,如图3和图4所示,电芯200的长度L、电芯200的厚度D和电芯200的宽度H分别满足:400mm≤L≤1200mm,10mm≤D≤40mm,60mm≤H≤150mm。例如,L可以为500mm、550mm、600mm、650mm、700mm、750mm、800mm、850mm、900mm、950mm、1000mm、1050mm、1100mm、1150mm或者1200mm。
家庭中用的储能电池柜1一般采用壁挂式结构,电芯200需要尽量处于扁平形态,且每个电芯层组210上的电芯200排列后也需要尽量处于扁平形态。如此设置,采用上述电芯200的储能电池柜1挂墙后,凸出墙面的尺寸更不容易超过500mm,从而几乎不干涉用户在家庭中正常活动,更满足家庭用户的使用需求。
根据本公开的一些具体实施例,如图3和图4所示,电芯200的长度L、电芯200的厚度D和电芯200的宽度H分别满足:800mm≤L≤970mm,10mm≤D≤30mm,80mm≤H ≤130mm。例如,L可以为800mm、820mm、840mm、860mm、880mm、900mm、920mm、940mm、960mm或者970mm。
工商业中用的储能电池柜1一般需要电芯200在第一方向布置一个,电芯200在第二方向和第三方向可以堆叠放置多个。由此,采用上述电芯200的储能电池柜1的储存的电量更多,供电能力更强,满足工商业的使用需求。
根据本公开的一些具体实施例,如图3和图4所示,柜体100的宽度W1、柜体100的深度D1和柜体100的高度H1分别满足:600mm≤W1≤1200mm,700mm≤D1≤1250mm,1300≤H1≤2600mm。
如此设置,储能电池柜1的尺寸不至于过大,能够保证储能电池柜1的结构强度,且便于吊装。储能电池柜1的尺寸也不会过小,储能电池柜1有充足的空间用于布置电芯200,提高储能电池柜1的供电时长。例如,储能电池柜1可以在20GP集装箱或者40GP集装箱内堆叠并柜、运输及使用。放在20GP集装箱可运输10个储能电池柜1,放在40GP集装箱可以运输20个储能电池柜1,运输成本明显降低。
根据本公开的一些具体实施例,如图3所示,多个电芯200组成多个电芯层组210。多个电芯层组210沿柜体100的高度方向堆叠。每个电芯层组210在柜体100的宽度方向和深度方向中的一个方向上包括至少一个电芯200,且在柜体100的宽度方向和深度方向中的另一个方向上包括多个电芯200。
储能电池柜1在实际应用中,柜体100的高度方向一般为竖直方向,每个电芯层组210的底面与其下方电芯层组210的顶面止抵。而且在重力的作用下,除了最下方的电芯层组210,其余每个电芯层组210都会压到与其相邻的下方的电芯层组210。如此设置,多个电芯层组210之间的止抵可靠,从而多个电芯层组210之间相互限位,以实现多个电芯层组210在柜体100内的稳定定位,保证电连接的安全性。
相比与相关技术中通过设置支架或者壳体等结构固定电芯层组位置的储能电池柜,本公开的储能电池柜1通过多个电芯层组210自身限位,无需额外设置限位固定结构,减少了零件数量,从而储能电池柜1内的空间可以更多地用来布置电芯200,提高了储能电池柜1的能量密度和电芯200体积利用率。
根据本公开的一些具体实施例,如图2-图5所示,电芯200的长度方向沿柜体100的宽度方向布置。电芯200的厚度方向沿柜体100的深度方向布置。电芯200的宽度方向沿柜体100的高度方向布置。
电芯200的长度一般大于电芯200的厚度和电芯200的宽度。通过将电芯200的长 度沿柜体100的宽度方向布置,在满足电气安全要求的前提下,电芯200的长度可以和柜体100的宽度大致相同,从而使电芯200在柜体100的宽度方向尽量填充满柜体100。而且,可以根据电的厚度与柜体100的深度之间的关系,确定每个电芯层组210沿柜体100的深度方向布置电芯200的数量,也使电芯200能够在柜体100的深度方向上尽量填充满柜体100,从而可以提高储能电池柜1的电芯体积利用率和能量密度。
根据本公开的一些具体实施例,如图2-图5所示,电芯层组210的数量为8~18个。
由于电芯层组210之间需要相互支撑,在储能电池柜1应用时,最外侧的两个电芯层组210中的一个必然承担了其余电芯层组210的压力。因此,通过设置电芯层组210的数量不大于18,能够避免最外侧的电芯层组210受到压力而折断,保证了每个电芯层组210的使用寿命。而且,电芯层组210的数量不小于8,能够增大储能电池柜1的电芯200体积利用率,延长储能电池柜1的供电时长。
根据本公开的一些具体实施例,如图2-图5所示,多个电芯层组210在柜体100的高度方向上排布后的整体宽度为W2、深度为D2、高度为H2。其中,W2、D2和H2分别满足:500mm≤W2≤1100mm,450mm≤D2≤1000mm,1150mm≤H2≤2450mm。
如此设置,一方面,多个电芯层组210的整体尺寸不会过大,适用于不同的使用场景,并且采用本公开的多个电芯层组210的储能电池柜1也易于挪动和拆装。另一方面,多个电芯层组210的整体尺寸也不会太小,因此多个电芯层组210存储的电量能够满足大部分情况的使用,续航能力强。而且,电芯层组210的整体尺寸与柜体100的匹配性更高,体积利用率也更高。
根据本公开的一些具体实施例,如图3-图6所示,多个电芯层组210构成一个电芯单元220,或多个电芯层组210构成多个电芯单元220。多个电芯单元220在柜体100的高度方向上排布。其中,每个电芯单元220包括多个电芯层组210,且每个电芯单元220的相邻两个电芯层组210彼此止抵。
由此,每个电芯层组210的电芯200之间无需额外设置保护结构,从而减少了储能电池柜1中的零件数量,储能电池柜1内的空间可以更多地用于布置电芯200,也达到提高储能电池柜1的电芯体积利用率和能量密度的目的。
根据本公开的一些具体实施例,如图3-图6所示,每个电芯单元220的相邻两个电芯层组210的电芯200之间具有风道间隙230。由此,相邻的两个电芯层组210的电芯200之间不会直接相互传递热量,能够避免电芯200之间的热量堆积,且每个电芯层组210的电芯200与储能电池柜1中的空气换热面积更大,提高电芯200的散热能力。
根据本公开的一些具体实施例,如图3-图6所示,在柜体100的高度方向上、风道间隙230的尺寸为5mm~20mm。
如此设置,两个电芯层组210的电芯200之间的距离不小于5mm,能够便于每个电芯层组210的电芯200的充分散热,避免热量堆积导致热失控的情况发生。而且,两个电芯层组210的电芯200之间的距离不大于20mm,能够保证储能电池柜11的电芯体积利用率能量密度。
根据本公开的一些具体实施例,如图3-图6、图8所示,每个电芯层组210还包括第一底板240和第二底板250。第一底板240和第二底板250沿柜体100的宽度方向和柜体100的深度方向中的一个方向间隔设置。对于每个电芯单元220的相邻的两个电芯层组210,其中一个电芯层组210的第一底板240和第二底板250与另一个电芯层组210的电芯200止抵。第一底板240和第二底板250之间形成风道间隙230。
由此,第一底板240和第二底板250的设置,一方面,能够支撑相邻的电芯层组210,从而多个电芯层组210能够依靠第一底板240和第二底板250相互限位以及支撑,固定多个电芯层组210之间的相对位置。另一方面,第一底板240和第二底板250能够进入风道间隙230内的气体进行导向,从而提高气体对电芯200的散热效率,电芯200更不易受热损坏,延长储能电池柜1的使用寿命。
根据本公开的一些具体实施例,如图3-图6所示,每个电芯单元220包括底座260且该电芯单元220的多个电芯200支撑于底座260。其中,每个底座260可以直接和柜体100连接。
由此,当电芯单元220为多个时,底座260的数量与电芯单元220的数量一一对应,从而可以减小每个电芯单元220内的电芯层组210的受到的最大压力,能够提高储能电池柜1内的电芯单元220的数量,减小每个电芯单元220内的电芯层组210的损坏概率。
根据本公开的一些具体实施例,如图3-图6所示,每个电芯单元220的上方设有至少一个拘束带270。每个拘束带270的两端分别连接有拉杆280,每个拉杆280的下端与该电芯单元220的底座260相连。
其中,拉杆280可以沿柜体100的高度方向延伸,拉杆280在柜体100的宽度方向或者深度方向上位于电芯层组210的相对两侧。也就是说,若拉杆280在柜体100的宽度方向位于电芯层组210的两侧,此时拘束带270可以沿柜体100的宽度方向延伸,拉杆280能够在柜体100的宽度方向上对电芯层组210进行固定和限位。若拉杆280在柜体100的深度方向位于电芯层组210的两侧,此时拘束带270可以沿柜体100的深度方 向延伸,拉杆280能够在柜体100的深度方向上对电芯层组210进行固定和限位。
另外,通过拘束带270和拉杆280的配合,能够在柜体100的高度方向上对电芯层组210进行固定和限位,电芯层组210的位置不易改变,保证了电芯200的电连接的可靠性,有利于提高储能电池柜1的安全性以及结构稳定性。而且,至少两个电芯层组210的之间无需额外设置固定结构,因此,储能电池柜1内有更大空间用于布置电芯层组210,电芯200体积利用率会得到更大幅度提升。
根据本公开的一些具体实施例,如图9所示,每个电芯层组210还包括第一侧板400和第二侧板500。第一侧板400和第二侧板500分别位于电芯层组210的两侧。第一侧板400和第二侧板500沿柜体100的宽度方向和深度方向的另一个方向上相对设置。第一底板240的两端分别与第一侧板400的一端和第二侧板500的一端相连。第二底板250的两端分别与第一侧板400的另一端和第二侧板500的另一端相连。
其中,对于在柜体100的高度方向上相邻的两个电芯层组210,一个电芯层组210的第一底板240分别与另一个电芯层组210的第一侧板400和第二侧板500止抵,且上述一个电芯层组210的第二底板250分别与另一个电芯层组210的第一侧板400和第二侧板500止抵。
如此设置,相邻的两个电芯层组210无需直接通过电芯200进行止抵,从而能够降低电芯200受力折断的几率。而且,第一侧板400和第二侧板500位于电芯层组210的相对两侧,能够防止相邻的两个电芯层组210之间受力而发生偏转,电芯层组210的布置更为稳定。
在本公开的一些具体实施例中,如图9所示,在第一底板240和第二底板250均设有限位柱600和限位孔700中的一种,第一侧板400和第二侧板500均设有限位柱600和限位孔700中的另一种。
其中,对于在柜体100的高度方向上相邻的两个电芯层组210,一个电芯层组210的限位柱600配合于另一个电芯层组210的限位孔700。
通过限位孔700和限位柱600的配合,能够固定相邻的电芯层组210之间的位置,防止相邻的电芯层组210之间相对转动,定位精度更高,组装和电连接更为可靠,安全性高。
在本公开的一些具体实施例中,如图9所示,限位柱600和限位孔700中的上述一种分布于第一底板240的两端和第二底板250的两端,限位柱600和限位孔700中的上述另一种分布于第一侧板400的两端和第二侧板500的两端。
由此,相邻的电芯层组210之间的固定点位更多,进一步地提高了相邻的电芯层组210之间定位精度更高,组装和电连接更为可靠,安全性高。
在本公开的一些具体实施例中,如图6和图9所示,在对于在柜体100的高度方向上相邻的两个电芯层组210,另一个电芯层组210的第一侧板400通过第一紧固件410与一个电芯层组210的第一底板240和第二底板250紧固。上述另一个电芯层组210的第二侧板500通过第二紧固件510与一个电芯层组210的第一底板240和第二底板250紧固。其中,第一紧固件410和第二紧固件510可以为螺纹紧固件。
如此设置,能够固定相邻的电芯层组210之间的相对位置,防止在搬运过程中或者组装过程中相邻的电芯层组210之间发生分离,从而使相邻的电芯层组210之间可以整体拆装,不仅装配效率高,而且整个运输和装配过程中,都能够保证相邻的电芯层组210之间定位精度,从而储能电池柜1整体的组装精度更高,组装和电连接更为可靠,安全性高。
在本公开的一些具体实施例中,如图6和图9所示,第一紧固件410分布于第一侧板400的两端,第二紧固件510分布于第二侧板500的两端。
由此,相邻的电芯层组210之间的相对位置之间具有多个固定点位,相邻的电芯层组210之间更不易发生分离,能够更可靠地保证相邻的电芯层组210之间定位精度,从而储能电池柜1整体的组装精度更高,且组装和电连接更为可靠,安全性高。
根据本公开的一些具体实施例,如图2、图5和图6所示,储能电池柜1还包括制冷单元300。制冷单元300安装于柜体100内且在柜体100的深度方向上位于柜体100的一侧。制冷单元300具有出风口310和回风口320。柜体100在柜体100的高度方向上的一侧构造有与出风口连通的散热风道120,在柜体100的高度方向上相邻的两个电芯层组210的电芯200之间具有风道间隙230。其中,气流从出风口310流入散热风道120后,从柜体100的深度方向上的另一侧以及柜体100的宽度方向上的两侧流经多个电芯层组210,并通过风道间隙230流入回风口320。
通过设置制冷单元300,驱动储能电池柜1内的气体循环流动,能够与储能电池柜1内的气体进行换热,降低储能电池柜1内的气体的温度,从而储能电池柜1内的低温气体可以对储能电池柜1内的电芯200进行降温散热,避免储能电池柜1的电芯200的热量堆积导致热失控,提高了储能电池柜1的安全性。
由于相邻的两个电芯层组210的电芯200之间具有风道间隙230,使储能电池柜1的气体与每个电芯200的换热面积更大,提高了换热效率。而且,制冷单元300在柜体 100的深度方向上位于柜体100的一侧,因此,制冷单元300不会影响对电芯层组210沿柜体100的高度的排布,能够使电芯层组210的设置数量更多,从而电芯200的数量也可以更多,以提高储能电池柜1的电芯200体积利用率。
根据本公开的一些具体实施例,如图1、图2和图5所示,柜体100在其深度方向上的一侧具有柜门110。储能电池柜1还包括制冷单元300,制冷单元300安装于柜体100内。其中,制冷单元300安装于柜门110,多个电芯层组210通过打开柜门110进出柜体100。
通过设置制冷单元300,驱动储能电池柜1内的气体循环流动,能够与储能电池柜1内的气体进行换热,降低储能电池柜1内的气体的温度,从而储能电池柜1内的低温气体可以对储能电池柜1内的电芯200进行降温散热,避免储能电池柜1的电芯200的热量堆积导致热失控,提高了储能电池柜1的安全性。
另外,打开柜门110就能够直接接触到制冷单元300,便于后期对制冷单元300进行维修。而且,制冷单元300并非安装于柜体100,也不会干涉到电芯层组210的拆装,降低了拆装难度。
根据本公开的一些具体实施例,如图1、图2和图5所示,柜门110设有外循环进风口130、外循环出风口140和排气装置150。
如此设置,能够对柜体100内的空气进行更换,防止热气在柜体100内进行堆积,从而降低电芯200过热而出现热失控的现象。此外,外循环进风口130、外循环出风口140和排气装置150直接安装于柜门110,因此在打开柜门110时就可以对外循环进风口130的两端、外循环出风口140的两端和排气装置150的两端进行清洁,清洁更为方便。
另外,外循环进风口130、外循环出风口140和排气装置150沿柜体100的高度方向排布,因此便于区分外循环进风口130、外循环出风口140和排气装置150,在组装时更为方便。
根据本公开的一些具体实施例,如图1、图2和图5所示,柜门110设有相对于其可打开和关闭的维护门160。维护门160在柜体100的高度方向上位于柜门110的下部。
其中,维护门160可以用于对储能电池柜1内的控制电路进行维护,在后续对储能电池柜1进行维护时,无需打开柜门110的主体,从而电芯200不会直接暴露在空气中,安全性能够得到极大地提高。而且,由于维护门160在柜体100的高度方向上位于柜门110的下部,因此柜门110的高度较高,便于打开和关闭,能够方便放入或者取出电芯 200。
下面参考附图描述根据本公开实施例的储能系统2,如图7所示,储能系统2包括至少一个根据本公开实施例的储能电池柜1。
根据本公开实施例的储能系统2,通过利用根据本公开上述实施例的储能电池柜1,控制柜体100的尺寸参数和电芯200的尺寸参数,具有能量密度高和电芯体积利用率大等优点,还可以兼顾储能系统2的输出电压。
根据本公开实施例的储能电池柜1和具有其的储能系统2的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“具体实施例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (27)

  1. 一种储能电池柜(1),其特征在于,包括:
    柜体(100),所述柜体(100)的宽度W1、所述柜体(100)的深度D1和所述柜体(100)的高度H1满足:0.8≤W1/D1≤1.2,0.8≤(W1+D1)/H1≤1.2;
    多个电芯(200),多个所述电芯(200)设于所述柜体(100)内,所述电芯(200)的长度L、所述电芯(200)的厚度D和所述电芯(200)的宽度H满足:(D+H)/L≤0.2;
    其中,每个所述电芯(200)的体积V1和所述柜体(100)的体积V3满足:0.0004≤V1/V3≤0.001。
  2. 根据权利要求1所述的储能电池柜(1),其特征在于,所述电芯(200)构造成长方体形。
  3. 根据权利要求1或2所述的储能电池柜(1),其特征在于,多个所述电芯(200)的体积之和V2与所述柜体(100)的体积V3满足:0.35≤V2/V3≤0.5。
  4. 根据权利要求1-3中任一项所述的储能电池柜(1),其特征在于,所述L、D和H分别满足:400mm≤L≤1200mm,10mm≤D≤40mm,60mm≤H≤150mm。
  5. 根据权利要求1-4中任一项所述的储能电池柜(1),其特征在于,所述L、D和H分别满足:800mm≤L≤970mm,10mm≤D≤30mm,80mm≤H≤130mm。
  6. 根据权利要求1-5中任一项所述的储能电池柜(1),其特征在于,所述W1、D1和H1分别满足:600mm≤W1≤1200mm,700mm≤D1≤1250mm,1300mm≤H1≤2600mm。
  7. 根据权利要求1-6中任一项所述的储能电池柜(1),其特征在于,所述L和W1满足:0.35≤L/W1<1。
  8. 根据权利要求1-7中任一项所述的储能电池柜(1),其特征在于,还包括:
    多个电芯层组(210),多个所述电芯层组(210)沿所述柜体(100)的高度方向堆叠,每个所述电芯层组(210)在所述柜体(100)的宽度方向和深度方向中的一个方向上包括至少一个所述电芯(200),且在所述柜体(100)的宽度方向和深度方向中的另一个方向上包括多个所述电芯(200)。
  9. 根据权利要求8所述的储能电池柜(1),其特征在于,所述电芯(200)的长度方向沿所述柜体(100)的宽度方向布置,所述电芯(200)的厚度方向沿所述柜体(100)的深度方向布置,所述电芯(200)的宽度方向沿所述柜体(100)的高度方向布置。
  10. 根据权利要求8或9所述的储能电池柜(1),其特征在于,所述电芯层组(210)的数量为8~18个。
  11. 根据权利要求8-10中任一项所述的储能电池柜(1),其特征在于,多个所述电芯层组(210)在所述柜体(100)的高度方向上排布后的整体宽度为W2、深度为D2、高度为H2,其中,所述W2、D2和H2分别满足:500mm≤W2≤1100mm;450mm≤D2≤1000mm;1150mm≤H2≤2450mm。
  12. 根据权利要求8-11中任一项所述的储能电池柜(1),其特征在于,多个所述电芯层组(210)构成一个电芯单元(220);或
    多个所述电芯层组(210)构成多个电芯单元(220),多个所述电芯单元(220)在所述柜体(100)的高度方向上排布;
    其中,每个所述电芯单元(220)包括多个所述电芯层组(210),且每个所述电芯单元(220)的相邻两个电芯层组(210)彼此止抵。
  13. 根据权利要求12中任一项所述的储能电池柜(1),其特征在于,每个所述电芯单元(220)的相邻两个电芯层组(210)的电芯(200)之间具有风道间隙(230)。
  14. 根据权利要求13所述的储能电池柜(1),其特征在于,在所述柜体(100)的高度方向上,所述风道间隙(230)的尺寸为5mm~20mm。
  15. 根据权利要求12-14中任一项所述的储能电池柜(1),其特征在于,每个所述电芯层组(210)还包括:
    第一底板(240)和第二底板(250),所述第一底板(240)和所述第二底板(250)沿所述柜体(100)的宽度方向和所述柜体(100)的深度方向中的一个方向间隔设置,对于每个所述电芯单元(220)的相邻的两个所述电芯层组(210),其中一个所述电芯层组(210)的第一底板(240)和第二底板(250)与另一个所述电芯层组(210)的电芯(200)止抵,所述第一底板(240)和所述第二底板(250)之间形成风道间隙(230)。
  16. 根据权利要求15所述的储能电池柜(1),其特征在于,每个所述电芯层组(210)还包括:
    第一侧板(400)和第二侧板(500),所述第一侧板(400)和所述第二侧板(500)沿所述柜体(100)的宽度方向和所述柜体(100)的深度方向中的另一个方向间隔设置,所述第一底板(240)的两端分别与所述第一侧板(400)的一端和所述第二侧板(500)的一端相连,所述第二底板(250)的两端分别与所述第一侧板(400)的另一端和所述第二侧板(500)的另一端相连;
    其中,对于在所述柜体(100)的高度方向上相邻的两个所述电芯层组(210),一个电芯层组(210)的第一底板(240)分别与另一个电芯层组(210)的第一侧板(400)和第二侧板(500)止抵,且所述一个电芯层组(210)的第二底板(250)分别与另一个电芯层组(210)的第一侧板(400)和第二侧板(500)止抵。
  17. 根据权利要求16所述的储能电池柜(1),其特征在于,所述第一底板(240)和所述第二底板(250)均设有限位柱(600)和限位孔(700)中的一种,所述第一侧板(400)和所述第二侧板(500)均设有所述限位柱(600)和所述限位孔(700)中的另一种;
    其中,对于在所述柜体(100)的高度方向上相邻的两个所述电芯层组(210),一个电芯层组(210)的限位柱(600)配合于另一个电芯层组(210)的限位孔(700)。
  18. 根据权利要求17所述的储能电池柜(1),其特征在于,所述限位柱(600)和所述限位孔(700)中的所述一种分布于所述第一底板(240)的两端和所述第二底板(250)的两端;
    所述限位柱(600)和所述限位孔(700)中的所述另一种分布于所述第一侧板(400)的两端和所述第二侧板(500)的两端。
  19. 根据权利要求16-18中任一项所述的储能电池柜(1),其特征在于,对于在所述 柜体(100)的高度方向上相邻的两个所述电芯层组(210),所述另一个电芯层组(210)的第一侧板(400)通过第一紧固件(410)与所述一个电芯层组(210)的第一底板(240)和第二底板(250)紧固,所述另一个电芯层组(210)的第二侧板(500)通过第二紧固件(510)与所述一个电芯层组(210)的第一底板(240)和第二底板(250)紧固。
  20. 根据权利要求19所述的储能电池柜(1),其特征在于,所述第一紧固件(410)分布于所述第一侧板(400)的两端;
    所述第二紧固件(510)分布于所述第二侧板(500)的两端。
  21. 根据权利要求12-20中任一项所述的储能电池柜(1),其特征在于,每个所述电芯单元(220)包括底座(260)且该电芯单元(220)的多个电芯(200)支撑于所述底座(260)。
  22. 根据权利要求21所述的储能电池柜(1),其特征在于,每个所述电芯单元(220)的上方设有至少一个拘束带(270),每个所述拘束带(270)的两端分别连接有拉杆(280),每个所述拉杆(280)的下端与该电芯单元(220)的底座(260)相连。
  23. 根据权利要求8-22中任一项所述的储能电池柜(1),其特征在于,还包括:
    制冷单元(300),所述制冷单元(300)安装于所述柜体(100)内且在所述柜体(100)的深度方向上位于所述柜体(100)的一侧,所述制冷单元(300)具有出风口(310)和回风口(320),所述柜体(100)在所述柜体(100)的高度方向上的一侧构造有与所述出风口(310)连通的散热风道(120),在所述柜体(100)的高度方向上相邻的两个所述电芯层组(210)的电芯(200)之间具有风道间隙(230);
    其中,气流从所述出风口(310)流入所述散热风道(120)后,从所述柜体(100)的深度方向上的另一侧以及所述柜体(100)的宽度方向上的两侧流经所述多个电芯层组(210),并通过所述风道间隙(230)流入所述回风口(320)。
  24. 根据权利要求8-22中任一项所述的储能电池柜(1),其特征在于,所述柜体(100)的深度方向上的一侧具有柜门(110);
    所述储能电池柜(1)还包括制冷单元(300),所述制冷单元(300)安装于所述柜体(100)内;
    其中,所述制冷单元(300)安装于所述柜门(110),所述多个电芯层组(210)通过打开所述柜门(110)进出所述柜体(100)。
  25. 根据权利要求24所述的储能电池柜(1),其特征在于,所述柜门(110)设有外循环进风口(130)、外循环出风口(140)和排气装置(150),所述外循环进风口(130)、所述外循环出风口(140)和所述排气装置(150)沿所述柜体(100)的高度方向排布。
  26. 根据权利要求24或25所述的储能电池柜(1),其特征在于,所述柜门(110)设有相对于所述柜门(110)可打开和关闭的维护门(160),在所述柜体(100)的高度方向上,所述维护门(160)位于所述柜门(110)的下部。
  27. 一种储能系统(2),其特征在于,包括至少一个根据权利要求1-26中任一项所述的储能电池柜(1)。
PCT/CN2023/104725 2022-07-15 2023-06-30 储能电池柜和具有其的储能系统 WO2024012264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210833933.3 2022-07-15
CN202210833933.3A CN117438712A (zh) 2022-07-15 2022-07-15 储能电池柜和具有其的储能系统

Publications (1)

Publication Number Publication Date
WO2024012264A1 true WO2024012264A1 (zh) 2024-01-18

Family

ID=89535465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104725 WO2024012264A1 (zh) 2022-07-15 2023-06-30 储能电池柜和具有其的储能系统

Country Status (2)

Country Link
CN (1) CN117438712A (zh)
WO (1) WO2024012264A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117396A1 (de) * 2014-11-27 2016-06-02 Conti Temic Microelectronic Gmbh Batteriezellenmodul
CN212209567U (zh) * 2020-04-20 2020-12-22 蜂巢能源科技有限公司 电池包以及储能设备
CN212648398U (zh) * 2020-08-14 2021-03-02 傲普(上海)新能源有限公司 储能电池柜
US20210175572A1 (en) * 2019-01-09 2021-06-10 Byd Company Limited Battery pack, vehicle and energy storage device
CN213584024U (zh) * 2020-10-22 2021-06-29 湖北亿纬动力有限公司 一种电池模组及电池箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117396A1 (de) * 2014-11-27 2016-06-02 Conti Temic Microelectronic Gmbh Batteriezellenmodul
US20210175572A1 (en) * 2019-01-09 2021-06-10 Byd Company Limited Battery pack, vehicle and energy storage device
CN212209567U (zh) * 2020-04-20 2020-12-22 蜂巢能源科技有限公司 电池包以及储能设备
CN212648398U (zh) * 2020-08-14 2021-03-02 傲普(上海)新能源有限公司 储能电池柜
CN213584024U (zh) * 2020-10-22 2021-06-29 湖北亿纬动力有限公司 一种电池模组及电池箱

Also Published As

Publication number Publication date
CN117438712A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2012028059A1 (en) Energy storage device
CN216903105U (zh) 一种方形壳体和方形电池
CN108075081A (zh) 电池组、电池包及具有该电池包的车辆
CN108832222A (zh) 一种集成式电池包冷却装置
WO2024016908A1 (zh) 电池包及包括其的电动装置
WO2024012264A1 (zh) 储能电池柜和具有其的储能系统
CN210984776U (zh) 一种电池组件和具有其的电动汽车
CN216213699U (zh) 一种模块化控制散热的储能系统
CN218242075U (zh) 储能电池柜和具有其的储能系统
CN217009385U (zh) 一种储能电池柜
WO2024012090A1 (zh) 储能电池柜和具有其的储能系统
WO2024012403A1 (zh) 储能电池柜和具有其的储能系统
CN207883761U (zh) 电池组、电池包及具有该电池包的车辆
CN113675497B (zh) 一种浸没式液冷储能电池箱
WO2023082912A1 (zh) 一种储能装置
CN115425326A (zh) 一种电池箱及包含其的电池化成分容设备
CN111725585B (zh) 一种5v锂电池降温机构
CN117438730A (zh) 储能电池柜和具有其的储能系统
CN203250834U (zh) 一种电动汽车动力电池水冷散热器
CN219717000U (zh) 一种用于电池簇的液冷柜
CN111554999A (zh) 一种电池组散热装置及一种电池系统
CN220585352U (zh) 一种大容量电池
CN112038519A (zh) 自冷却储能柜
CN219106297U (zh) 冷却系统和电池
CN219759727U (zh) 模组固定架及电池模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838756

Country of ref document: EP

Kind code of ref document: A1