WO2023082912A1 - 一种储能装置 - Google Patents

一种储能装置 Download PDF

Info

Publication number
WO2023082912A1
WO2023082912A1 PCT/CN2022/124441 CN2022124441W WO2023082912A1 WO 2023082912 A1 WO2023082912 A1 WO 2023082912A1 CN 2022124441 W CN2022124441 W CN 2022124441W WO 2023082912 A1 WO2023082912 A1 WO 2023082912A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
energy storage
refrigerant
liquid
heat
Prior art date
Application number
PCT/CN2022/124441
Other languages
English (en)
French (fr)
Inventor
郑陈铃
李清
徐来胜
刘越
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023082912A1 publication Critical patent/WO2023082912A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present application relates to the technical field of energy storage, and in particular to an energy storage device.
  • the present application provides an energy storage device, which can solve the problems of poor structural space utilization and low heat exchange efficiency of existing energy storage containers.
  • the present application provides an energy storage device, which includes a plurality of energy storage bins, a refrigerant heat exchange system and a liquid heat exchange circuit.
  • a plurality of energy storage bins are used for accommodating energy storage components.
  • the refrigerant heat exchange system includes a refrigerant unit and a refrigerant circulation pipeline connected with the refrigerant unit, and the refrigerant unit is arranged outside the energy storage bin.
  • the liquid heat exchange circuit is used to accommodate the heat exchange liquid, and the liquid heat exchange circuit can exchange heat with the refrigerant heat exchange system and the energy storage component.
  • the liquid heat exchange circuit includes a first heat exchange part and a second heat exchange part. The heat exchange liquid circulates between the first heat exchange part and the second heat exchange part through the liquid heat exchange circuit.
  • the first heat exchange part is used to communicate with The energy storage element performs heat exchange, and the refrigerant heat exchange system performs heat exchange with the second heat exchange part.
  • the refrigerant circulation pipeline includes a plurality of heat exchangers; each heat exchanger is configured to exchange heat with the second heat exchange portion of at least one liquid heat exchange circuit.
  • each heat exchanger is configured to exchange heat with the second heat exchange portion of at least one liquid heat exchange circuit.
  • the first heat exchange portion of each liquid heat exchange circuit is used for heat exchange with the energy storage element in at least one energy storage bin.
  • the number of liquid heat exchange circuits can be equal to or smaller than the number of energy storage bins, reducing the number of first heat exchange parts, Maximize the heat transfer efficiency of the liquid heat transfer circuit.
  • each energy storage bin is provided with a liquid heat exchange circuit.
  • Each energy storage bin is equipped with a liquid heat exchange circuit, and one liquid heat exchange circuit is used to cool the energy storage parts in one energy storage bin, which facilitates the modular design of the energy storage bin, and the connection between the energy storage bin and the refrigerant heat exchange system
  • the cooling of the energy storage parts in the energy storage bin by the refrigerant heat exchange system can be realized through simple adapters and pipeline connections, which reduces the difficulty of subsequent installation and improves assembly efficiency.
  • multiple heat exchangers are connected in series or in parallel to form a refrigerant branch circuit, and the refrigerant branch circuit communicates with the refrigerant unit through a refrigerant circulation pipeline.
  • a refrigerant branch circuit in parallel and communicating with the refrigerant unit, multiple heat exchangers connected in parallel to the refrigerant branch share one refrigerant unit, thereby improving the utilization rate of the refrigerant unit.
  • the parallel connection makes the refrigerant of the refrigerant unit directly enter each heat exchanger through the refrigerant circulation pipeline instead of passing through the heat exchanger to enter the next heat exchanger, so that each parallel heat exchanger has a strong heat exchange capacity, Thereby improving heat exchange efficiency.
  • a refrigerant branch is formed in series and communicated with the refrigerant unit, so that a plurality of heat exchangers connected in series to the refrigerant branch share a refrigerant unit, thereby improving the utilization rate of the refrigerant unit.
  • the refrigerant circulation system includes a plurality of refrigerant branches, and the plurality of refrigerant branches are connected in parallel with the refrigerant unit through the refrigerant circulation pipeline.
  • the refrigerant unit By connecting multiple refrigerant branches in parallel with the refrigerant unit, it is convenient for the refrigerant unit to deliver refrigerant to multiple heat exchangers at the same time, and by increasing the number of refrigerant branches, the number of heat exchangers that can be cooled by the refrigerant unit can be increased, which can shorten the heat transfer as much as possible
  • the length of the refrigerant circulation pipeline between the refrigerator and the refrigerant unit can reduce the energy loss during the transportation of the refrigerant circulation pipeline, and it can also shorten the cycle period as much as possible and improve the heat exchange efficiency under the condition that the circulation power remains unchanged.
  • multiple refrigerant branches are symmetrically arranged on both sides of the refrigerant unit.
  • the length of the refrigerant branch can be shortened, the refrigerant cycle period can be shortened, and the heat exchange efficiency can be improved while the number of energy storage bins that can be cooled by the refrigerant unit remains the same.
  • the second heat exchange part passes through the inside of the heat exchanger.
  • the second heat exchange part passes through the inside of the heat exchanger, so that the second heat exchange part and the heat exchanger can exchange heat from four directions, speed up the heat exchange rate, and thus improve the effect of the liquid heat exchange circuit on the energy storage in the energy storage bin.
  • the cooling effect of energy components is not limited to
  • the second heat exchange part passes through the outer surface of the heat exchanger.
  • the second heat exchange part and the heat exchanger can conduct heat exchange through surface-to-face contact, thereby simplifying the structure of the heat exchanger and the second heat exchange part, and facilitating the flexible setting of the second heat exchange part, which is convenient by adding heat exchangers and
  • the surface area of the second heat exchange part increases the heat exchange area, thereby increasing the heat exchange efficiency.
  • the liquid heat exchange circuit further includes a pump and a water tank, and the pump and the water tank are connected to the first heat exchange part and the second heat exchange part through the liquid heat exchange circuit.
  • Power is provided by the pump to circulate the liquid in the water tank in the liquid heat exchange circuit, and conduct heat exchange with the heat exchanger in the second heat exchange part, so that the liquid in the liquid heat exchange circuit can be cooled, and in the first heat exchange part and the heat exchanger
  • the energy storage part performs heat exchange, so that the cooled heat exchange liquid can absorb a large amount of heat released by the energy storage part and heat up to achieve the purpose of cooling the energy storage part.
  • the heated heat exchange liquid passes through the second heat exchange part again, it can It is cooled again, and the energy storage parts in the energy storage bin are cooled in such a cycle.
  • the refrigerant unit includes a compressor and a throttling device.
  • the compressor provides power for the refrigerant cycle, and the compressor can cool or heat the refrigerant, and it is only used for cooling the refrigerant in this application.
  • the throttling device is mainly used for cooling and decompression
  • the first heat exchange portion is disposed on the surface of the energy storage element and contacts the energy storage element to exchange heat.
  • the distance between the first heat exchange part and the energy storage part can be reduced, so that the first heat exchange part and the energy storage part can conduct heat exchange in contact, The heat exchange capacity of the first heat exchange part to the energy storage element is improved.
  • the refrigerant unit By arranging the refrigerant unit outside the energy storage bin, the refrigerant unit does not occupy the inner space of the energy storage bin, thus accommodating more energy storage parts, and the space utilization rate is high. At the same time, the combination of liquid heat exchange and refrigerant heat exchange is adopted to improve the heat exchange efficiency.
  • the further independent refrigerant unit can serve multiple energy storage bins at the same time, improve cooling efficiency and reduce cooling cost, and the independent refrigerant unit is easy to maintain and replace when a failure occurs, and it is convenient to back up the refrigerant unit to reduce maintenance costs.
  • Fig. 1 is a simplified structural schematic diagram of an energy storage device according to some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the structure of the refrigerant unit connected to a refrigerant branch in Fig. 1, wherein the heat exchangers are connected in parallel;
  • Fig. 3 is a schematic diagram of the structure of the refrigerant unit in Fig. 1 connected to a refrigerant branch circuit, wherein the heat exchangers are connected in series.
  • 2-refrigerant heat exchange system 21-refrigerant unit, 22-refrigerant branch, 221-refrigerant circulation pipeline, 221a-heat exchanger, 221a1-heat exchanger inlet pipe, 221a2-heat exchanger outlet pipe, 221b - Refrigerant outlet pipe, 221c-refrigerant inlet pipe;
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • Multiple in this application refers to two or more (including two), similarly, “multiple groups” refers to two or more groups (including two), and “multiple pieces” refers to two or more (Includes two tablets).
  • the energy storage container As a device for storing energy storage components 5, the energy storage container is mainly used for energy supply. At present, the energy storage container, as a super-large "power bank", is becoming a source of energy for all walks of life.
  • the energy storage unit 5 in the energy storage container is generally a battery cell or a battery pack. Both the single battery and the battery pack will generate a lot of heat during actual operation, and when the outdoor temperature is high, a large amount of heat will also accumulate, and the accumulated Excessive heat will reduce the charge and discharge rate of the battery, affect the normal operation of the battery, and reduce the service life of the battery. Therefore, heat dissipation becomes the key to the energy storage container.
  • Existing energy storage containers are usually air-cooled, and special air ducts need to be arranged, which takes up space, affects the capacity of the energy storage container, and has low heat exchange efficiency.
  • the present application adopts a combination of liquid heat exchange and refrigerant heat exchange to exchange heat for the energy storage container.
  • the refrigerant unit 21 can be separated, that is, the refrigerant unit 21 is set as an independent module, and is formed by connecting the refrigerant circulation pipeline 221 Refrigerant circulation system.
  • a local liquid heat exchange circuit 3 is provided inside the energy storage container, and the refrigerant circulation pipeline 221 connected to the refrigerant unit 21 performs heat exchange with the local liquid heat exchange circuit 3 to cool the battery inside the energy storage container.
  • This design facilitates the modular design of the energy storage container and the refrigerant circulation system, and improves the heat exchange efficiency and space utilization of the energy storage container. Moreover, when the refrigerant unit 21 breaks down, it is convenient to maintain and backup the refrigerant unit 21 to deal with emergencies.
  • the embodiment of this application proposes an energy storage device, which can not only be used as a supporting energy storage application for wind farms, photovoltaic power plants, thermal power plants, etc., but also provide energy for various power shortages and large power consumers.
  • Supply such as big data centers, cold chain logistics parks, distribution network areas, line sides, multi-station integration, oil depots, commercial areas, hospitals, 5G base stations, etc.
  • the battery cells in the energy storage device may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in this embodiment of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE etc.
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the energy storage device proposed in this application includes a plurality of energy storage bins 1 , a refrigerant heat exchange system 2 and a liquid heat exchange circuit 3 .
  • a plurality of energy storage bins 1 each accommodate energy storage components 5 .
  • the refrigerant heat exchange system 2 includes a refrigerant unit 21 and a refrigerant circulation pipeline 221 communicating with the refrigerant unit 21 .
  • the refrigerant unit 21 is arranged outside the energy storage bin 1 .
  • the liquid heat exchange circuit 3 contains heat exchange liquid, and the liquid heat exchange circuit 3 can exchange heat with the refrigerant heat exchange system 2 and the energy storage element 5 .
  • the liquid heat exchange circuit 3 includes a first heat exchange part (not shown in the figure) and a second heat exchange part (not shown in the figure), and the heat exchange liquid passes through the liquid heat exchange circuit 3 in the first heat exchange part
  • the circulation flows between the second heat exchange part, the first heat exchange part is used for heat exchange with the energy storage element 5, and the refrigerant heat exchange system 2 is used for heat exchange with the second heat exchange part.
  • the energy storage bin 1 is the part framed by the dotted line in FIG. 1 , which can be understood as an energy storage container or an energy storage unit in the energy storage container.
  • the refrigerant unit 21 is arranged outside the energy storage bin 1 , that is, the refrigerant unit 21 is independently installed from the energy storage bin 1 .
  • the refrigerant unit 21 may be an independent module independent of the energy storage container.
  • the refrigerant unit 21 can form an energy storage container together with multiple energy storage bins 1, and the refrigerant unit 21 is used as a module in the energy storage container; or the refrigerant unit 21 can also be set independently of the energy storage container.
  • the refrigerant unit 21 can perform heat exchange with the second heat exchange part of the liquid heat exchange circuit 3.
  • the refrigerant unit 21 releases a refrigerant with a lower temperature.
  • the refrigerant can be cold air, which absorbs the heat exchange liquid and emits The heat generated thereby plays a role in cooling the heat exchange liquid, and the refrigerant unit 21 can continuously output cold air to circulate and cool the heat exchange liquid.
  • the energy storage element 5 exchanges heat with the first heat exchange part of the liquid heat exchange circuit 3, and the cooled heat exchange liquid absorbs the heat released from the surface of the energy storage element 5, thereby cooling the energy storage element 5.
  • the temperature of the heat exchange liquid rises and can be re-cooled by the refrigerant unit 21 when it recirculates to the second heat exchange part. Therefore, the heat exchange liquid is cooled, and the first heat exchange part of the liquid heat exchange circuit 3 exchanges heat with the energy storage element 5 , thereby cooling the energy storage element 5 .
  • It can be an energy storage unit such as a battery cell or a battery pack.
  • the refrigerant unit 21 By setting the refrigerant unit 21 outside the energy storage bin 1, the refrigerant unit 21 does not occupy the internal space of the energy storage bin 1, so that more energy storage components 5 can be accommodated, and the independent refrigerant unit 21 can serve multiple storage units at the same time.
  • Energy storage 1 improves refrigeration efficiency and reduces refrigeration costs, and the independent refrigerant unit 21 is easy to maintain and replace when a failure occurs, and it is convenient to back up the refrigerant unit 21 to reduce maintenance costs.
  • the refrigerant circulation pipeline 221 includes a plurality of heat exchangers 221a; each heat exchanger 221a can perform heat exchange with the second heat exchange part of at least one liquid heat exchange circuit 3 .
  • Each heat exchanger 221a may perform heat exchange with the second heat exchange part of at least one liquid heat exchange circuit 3 including two situations.
  • the first situation Figure 1 shows that each heat exchanger 221a can exchange heat with the second heat exchange part of a liquid heat exchange circuit 3, so when there are multiple liquid heat exchange circuits 3, it is necessary to set the same number The heat exchanger 221a exchanges heat therewith.
  • the second situation each heat exchanger 221a performs heat exchange with the second heat exchange parts of two or more liquid heat exchange circuits 3, so the number of heat exchangers 221a can be appropriately reduced.
  • one refrigerant unit 21 can simultaneously cool the second heat exchange parts of multiple liquid heat exchange circuits 3, reducing refrigeration costs, and by configuring each heat exchanger 221a with two or More than two second heat exchange parts of the liquid heat exchange circuit 3 perform heat exchange, which can also reduce the number of heat exchangers 221a, thereby simplifying the structure of the refrigerant heat exchange system 2 and saving costs.
  • the first heat exchange part of each liquid heat exchange circuit 3 is used for heat exchange with the energy storage element 5 in at least one energy storage bin 1 .
  • the heat exchange between the first heat exchange part of each liquid heat exchange circuit 3 and the energy storage element 5 in at least one energy storage bin 1 also includes two situations.
  • the heat circuit 3 when the energy storage device includes multiple energy storage bins 1, it is necessary to set the same number of liquid heat exchange circuits 3 at the same time.
  • each liquid heat exchange circuit 3 exchanges heat with the energy storage elements 5 in two or more energy storage bins 1, that is, two or more energy storage bins 1 share one liquid heat exchange circuit 3, so the number of liquid heat exchange circuits 3 can be less than the number of energy storage bins 1.
  • the number of liquid heat exchange circuits 3 can be equal to or less than the number of energy storage bins 1, reducing the number of first heat exchange parts
  • the number of settings is such that the heat exchange efficiency of the liquid heat exchange circuit 3 is maximized.
  • each energy storage bin 1 is provided with a liquid heat exchange circuit 3 .
  • each energy storage bin 1 is provided with a liquid heat exchange circuit 3, and one liquid heat exchange circuit 3 is used to cool the energy storage parts 5 in one energy storage bin 1, which facilitates the modularization of the energy storage bin 1 Design, the energy storage bin 1 and the refrigerant heat exchange system 2 can be connected through simple adapters and pipelines to realize the cooling of the energy storage part 5 in the energy storage bin 1 by the refrigerant heat exchange system 2, which reduces the difficulty of subsequent installation and improves assembly efficiency.
  • a plurality of heat exchangers 221 a are connected in series or in parallel to form a refrigerant branch 22 , and the refrigerant branch 22 is connected to the refrigerant unit 21 through a refrigerant circulation pipeline 221 .
  • the refrigerant branch circuit 22 includes a refrigerant circulation pipeline 221 and a plurality of heat exchangers 221a connected to the refrigerant circulation pipeline 221.
  • the heat exchanger 221a and the refrigerant circulation pipeline 221 pass through the heat exchanger liquid inlet pipe 221a1 and the heat exchanger liquid outlet.
  • the pipe 221a2 communicates with the refrigerant circulation pipeline 221, and the refrigerant circulation pipeline 221 includes a refrigerant inlet pipe 221c and a refrigerant outlet pipe 221b.
  • the heat exchangers 221a can be connected in parallel. As shown in FIG.
  • the heat exchangers 221a are connected in parallel.
  • the heat exchangers 221a can also be connected in series. As shown in FIG.
  • the refrigerant enters the upstream heat exchanger inlet pipe 221a1 from the refrigerant outlet pipe 221b, and flows from the upstream heat exchanger.
  • the outlet pipe 221a2 flows out into the downstream heat exchanger inlet pipe 221a1, then enters the refrigerant inlet pipe 221c from the downstream heat exchanger outlet pipe a2, and finally flows back to the refrigerant unit 21 through the refrigerant inlet pipe 221c. so that the two heat exchangers 221a are connected in series.
  • a refrigerant branch 22 is formed in series and communicated with the refrigerant unit 21 , so that multiple heat exchangers 221 a connected in series to the refrigerant branch 22 share one refrigerant unit 21 , improving the utilization rate of the refrigerant unit 21 .
  • the refrigerant circulation system includes a plurality of refrigerant branches 22 , and the plurality of refrigerant branches 22 are connected in parallel with the refrigerant unit 21 through a refrigerant circulation pipeline 221 .
  • the refrigerant unit 21 By connecting multiple refrigerant branches 22 in parallel with the refrigerant unit 21, it is convenient for the refrigerant unit 21 to deliver refrigerant to multiple heat exchangers 221a at the same time, and by increasing the number of refrigerant branches 22, the number of heat exchangers 221a that can be cooled by the refrigerant unit 21 is increased.
  • the number can shorten the length of the refrigerant circulation pipeline 221 between the heat exchanger 221a and the refrigerant unit 21 as much as possible, thereby reducing the energy loss during the transportation of the refrigerant circulation pipeline 221, and it can also be used under the condition that the circulation power remains unchanged. Minimize cycle time and improve heat transfer efficiency.
  • a plurality of refrigerant branches 22 are symmetrically arranged on both sides of the refrigerant unit 21 .
  • each refrigerant branch 22 is connected to two energy storage bins 1.
  • the refrigerant unit 21 has four refrigerant branches 22, that is, one refrigerant unit 21 is connected to eight energy storage bins 1, that is, one refrigerant unit 21 can simultaneously Perform heat exchange with the second heat exchange parts in the eight energy storage bins 1 .
  • the length of the refrigerant branch 22 can be shortened, the cycle of the refrigerant cycle can be shortened, and the energy storage bin 1 that can be cooled by the refrigerant unit 21 can be kept constant, thereby improving the efficiency of energy exchange. Thermal efficiency.
  • the second heat exchange part passes through the inside of the heat exchanger 221a.
  • the inside of the heat exchanger 221a has a cavity through which the second heat exchange part passes, and the second heat exchange part passes through the cavity of the heat exchanger 221a.
  • the heat exchanger 221a exchanges heat with the second heat exchange part from four directions, the four directions are respectively the upper side wall, the lower side wall, the left side wall and the right side wall of the second heat exchange part.
  • the heat exchange rate can be accelerated, thereby improving the cooling effect of the liquid heat exchange circuit 3 on the energy storage element 5 in the energy storage bin 1 .
  • the second heat exchange part passes through the outer surface of the heat exchanger 221a.
  • the second heat exchange part and the heat exchanger 221a perform heat exchange through surface-to-face contact, which can simplify the structure of the heat exchanger 221a and the second heat exchange part, and facilitate the flexible setting of the second heat exchange part, which is convenient
  • the heat exchange area is increased by increasing the surface area of the heat exchanger 221a and the second heat exchange part, thereby increasing the heat exchange efficiency.
  • the liquid heat exchange circuit 3 further includes a pump 4 and a water tank (not shown in the figure), and the pump 4 and the water tank communicate with the first heat exchange part and the second heat exchange part through the liquid heat exchange circuit 3 .
  • the pump 4 is used to drive the circulation of the heat exchange liquid in the liquid heat exchange circuit 3
  • the water tank is used to store the heat exchange liquid
  • the pump 4 and the water tank are connected to the liquid heat exchange circuit 3 .
  • the liquid heat exchange circuit 3 includes a coolant inlet pipe 31 and a coolant outlet pipe 32, defining the coolant inlet pipe 31 as a pipeline that flows out from the second heat exchange part and enters the first heat exchange part, and the coolant outlet
  • the pipe 32 is a pipeline that flows out from the first heat exchange part and returns to the second heat exchange part.
  • the water tank may be located upstream or downstream of the second heat exchange part, or there may be no water tank, and the heat exchange liquid is directly encapsulated in the pipeline.
  • Power is provided by the pump 4 so that the liquid in the water tank circulates in the liquid heat exchange circuit 3, and performs heat exchange with the heat exchanger 221a at the second heat exchange part, so that the liquid in the liquid heat exchange circuit 3 is cooled.
  • the heat exchange part exchanges heat with the energy storage element 5, so that the cooled heat exchange liquid can absorb a large amount of heat released by the energy storage element 5 and heat up to achieve the purpose of cooling the energy storage element 5.
  • the heated heat exchange liquid passes through again
  • the second heat exchange part can be cooled again, so that the energy storage element 5 in the energy storage bin 1 is cooled repeatedly in this way.
  • the refrigerant unit 21 includes a compressor (not shown in the figure) and a throttling device (not shown in the figure).
  • the compressor provides power for the refrigerant cycle, and the compressor can cool or heat the refrigerant, and it is only used for cooling the refrigerant in this application.
  • the throttling device is mainly used for cooling and decompression.
  • the first heat exchange part is disposed on the surface of the energy storage element 5 and contacts the energy storage element 5 for heat exchange.
  • the distance between the first heat exchange part and the energy storage part 5 can be reduced, so that the first heat exchange part and the energy storage part 5 can conduct heat exchange in contact , to improve the heat exchange capacity of the first heat exchange portion to the energy storage element 5 .
  • an energy storage device is provided. As shown in FIG. 21 and the refrigerant circulation pipeline 221 of the heat exchanger 221a.
  • the refrigerant unit 21 is an independent module and is located outside the energy storage bin 1.
  • the refrigerant unit 21 is a power device that continuously delivers refrigerant to the heat exchanger 221a.
  • Each energy storage bin 1 is provided with a liquid heat exchange circuit 3 inside, and the liquid heat exchange circuit 3 includes a first heat exchange part and a second heat exchange part.
  • the heat exchanger 221a exchanges heat with the second heat exchange part, so that the heat exchange liquid in the liquid heat exchange circuit 3 can be cooled at the second heat exchange part, and the first heat exchange part exchanges heat with the energy storage element 5, Therefore, the heat on the surface of the energy storage component 5 can be taken away, and the energy storage component 5 can be cooled. Since the energy storage bin 1 only contains the liquid heat exchange circuit 3, the arrangement of the refrigerant unit 21 is reduced, and more energy storage components 5 can be accommodated, which facilitates the realization of the modular design of the energy storage device.
  • the refrigerant unit 21 is set independently from the energy storage bin 1, which is also conducive to the modular design of the refrigerant unit 21, and it is convenient to back up the refrigerant unit 21 to deal with emergencies. For example, when the refrigerant unit 21 fails suddenly, only The problem can be quickly solved by replacing a spare refrigerant unit 21 .
  • the refrigerant unit 21 can be an independent module independent of the energy storage container; the energy storage device includes a system formed by connecting multiple energy storage containers and a refrigerant unit 21 .
  • the energy storage device can be an energy storage container composed of a refrigerant unit 21 and a plurality of energy storage bins 1, and the refrigerant unit 21 is used as an energy storage unit in the energy storage container.
  • One module; or the refrigerant unit 21 can also be installed independently of the energy storage container, that is, the energy storage device is an energy storage container including a plurality of energy storage bins 1 plus an independent refrigerant unit 21 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及储能技术领域,尤其涉及一种储能装置,包括多个储能仓、冷媒换热系统和液体换热回路。多个储能仓用于容纳储能件。冷媒换热系统包括冷媒机组以及与冷媒机组连通的冷媒循环管路,冷媒机组设于储能仓的外部。液体换热回路用于容纳换热液体,液体换热回路能够与冷媒换热系统和储能件进行换热。液体换热回路包括第一换热部和第二换热部,换热液体通过液体换热回路在第一换热部和第二换热部之间循环流动,第一换热部用于与储能件进行热交换,冷媒换热系统与第二换热部进行热交换。

Description

一种储能装置
本申请要求享有于2021年11月11日提交的名称为“一种储能装置”的中国专利申请202122751805.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及储能技术领域,尤其涉及一种储能装置。
背景技术
近年来,随着人类对新能源的不断探索,储能集装箱的市场需求越来越大。储能集装箱内往往安装有大量的电池设备进行储能及供电,电池设备在工作过程中会产生大量热量,导致集装箱内部的温度升高。因此需要对储能集装箱内部的电池设备进行冷却,现有的储能集装箱通常采用空气冷却,需要布置专门的风道,占用空间,影响储能集装箱的容量,同时换热效率较低。
技术问题
本申请提供一种储能装置,能够解决现有储能集装箱结构空间利用率差、换热效率低的问题。
技术解决方案
本申请提供一种储能装置,包括多个储能仓、冷媒换热系统和液体换热回路。多个储能仓用于容纳储能件。冷媒换热系统包括冷媒机组以及与冷媒机组连通的冷媒循环管路,冷媒机组设于储能仓的外部。液体换热回路用于容纳换热液体,液体换热回路能够与冷媒换热系统和储能件进行换热。液体换热回路包括第一换热部和第二换热部,换热液体通过液体换热回路在第一换热部和第二换热部之间循环流动,第一换热部用于与储能件进行热交换,冷媒换热系统与第二换热部进行热交换。
在一些实施例中,冷媒循环管路包括多个换热器;每个换热器被配置为与至少一个液体换热回路的第二换热部进行热交换。通过设置多个换热器,使得一个冷媒机组能够同时冷却多个液体换热回路的第二换热部,降低制冷成本,且通过配置每个换热器与两个或者两个以上的液体换热回路的第二换热部进行热交换,还可以减少换热器的设置数量,从而简化冷媒换热系统的结构,节约成本。
在一些实施例中,每个液体换热回路的第一换热部用于与至少一个储能仓内的储能件进行热交换。通过将第一换热部与至少一个储能仓内的储能件进行热交换,使得液体换热回路的设置数量能够等于或小于储能仓的数量,减少第一换热部的设置数量,使得液体换热回路的换热效率最大化。
在一些实施例中,各个储能仓内均设有液体换热回路。各个储能仓内均设有液体换热回路,一个液体换热回路用于冷却一个储能仓内的储能件,便于将储能仓进行模块化设计,储能仓与冷媒换热系统之间可以通过简单的转接头以及管路连接实现冷媒换热系统对储能仓内储能件的冷却,降低后续安装难度,提高装配效率。
在一些实施例中,多个换热器串联或者并联形成一个冷媒支路,冷媒支路通过冷媒循环管路与冷媒机组连通。通过并联形成一个冷媒支路并与冷媒机组连通,使得并联于该冷媒支路的多个换热器共用一个冷媒机组,提高冷媒机组的利用率。且并联使得冷媒机组的冷媒直接经过冷媒循环管路进入各个换热器,而不用穿过换热器进入下一个换热器,因此使得并联的各换热器都具有较强的换热能力,从而提高换热效率。通过串联形成一个冷媒支路并与冷媒机组连通,使得串联于该冷媒支路的多个换热器共用一个冷媒机组,提高冷媒机组的利用率。
在一些实施例中,冷媒循环系统包括多个冷媒支路,多个冷媒支路通过冷媒循环管路与冷媒机组并联。通过多个冷媒支路与冷媒机组并联,方便冷媒机组同时向多个换热器输送冷媒,且通过增加冷媒支路的数量而增加冷媒机组可冷却的换热器的数量,能够尽量缩短换热器与冷媒机组之间的冷媒循环管路的长度,从而减少在冷媒循环管路输送过程中的能量损失,而且也可以在循环动力不变的情况下尽量缩短循环周期,提高换热效率。
在一些实施例中,多个冷媒支路对称设置于冷媒机组的两侧。通过在冷媒机组的两侧对称设置多个冷媒支路,冷媒机组可冷却的储能仓数量不变的情况下,能够缩短冷媒支路的长度,缩短冷媒循环周期,提高换热效率。
在一些实施例中,第二换热部从换热器的内部穿过。第二换热部从换热器内部穿过,使得第二换热部与换热器能从四个方向进行热交换,加快热交换速率,从而提高液体换热回路对储能仓内的储能件的冷却效果。
在另一些实施例中,第二换热部经过换热器的外表面。第二换热部与换热器能够通过面面接触进行热交换,从而简化换热器和第二换热部的结构,且方便第二换热部的灵活设置,方便通过增加换热器和第二换热部的表面积而增加换热面积,从而增加热交换效率。
在一些实施例中,液体换热回路还包括泵和水箱,泵和水箱通过液体换热回路与第一换热部和第二换热部连接。通过泵提供动力使得水箱中液体在液体换热回路中循环流动,并在第二换热部与换热器进行热交换,使得液体换热回路中的液体得以冷却,在第一换热部与储能件进行热交换,使得冷却后的换热液体能够大量吸收储能件释放出的热量而升温,达到冷却储能件的目的,升温后的换热液体再次经过第二换热部时能够再次被冷却,如此循环往复对储能仓中储能件进行冷却。
在一些实施例中,冷媒机组包括压缩机和节流装置。压缩机为冷媒循环提供动力,且压缩机能够对冷媒进行制冷或制热,本申请中仅用于对冷媒制冷。节流装置主要用于降温减压
在一些实施例中,第一换热部设置在储能件的表面并与储能件进行接触换热。通过将第一换热部设于储能件的表面,能够减小第一换热部与储能件之间的距离,减小使得第一换热部与储能件能够进行接触换热,提高第一换热部对储能件的换热能力。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
有益效果
通过将冷媒机组设置于储能仓的外部,使得冷媒机组不占用储能仓的内部空间,因此容纳更多的储能件,空间利用率高。同时采用液体换热加冷媒换热相结合的方式,提高了换热效率。进一步的独立出来的冷媒机组可以同时服务多个储能仓,提高制冷效率,降低制冷成本,且独立出来的冷媒机组在出现故障时方便维护与更换,便于对冷媒机组进行备份,降低维护成本。
附图说明
通过阅读对下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
附图说明:
图1为本申请一些实施例的储能装置简化结构示意图;
图2为图1中冷媒机组连接一个冷媒支路的结构示意图,其中,换热器之间并联;
图3为图1中冷媒机组连接一个冷媒支路的结构示意图,其中,换热器之间串联。
1-储能仓;
2-冷媒换热系统,21-冷媒机组,22-冷媒支路,221-冷媒循环管路,221a-换热器,221a1-换热器进液管,221a2-换热器出液管,221b-冷媒出液管,221c-冷媒进液管;
3-液体换热回路,31-冷却液进液管,32-冷却液出液管;
4-泵;
5-储能件。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
储能集装箱作为存放储能件5的装置,主要用作能量供给。目前,储能集装箱作为一个超大“充电宝”正在成为各界的能量之源。
储能集装箱内的储能件5一般为电池单体或者电池包,无论是单体电池还是电池包在实际工作时都会产生大量的热量,而且当户外温度高时也会积聚大量的热量,积累过多的热量后会导致电池的充放电倍率降低,影响电池的正常工作,并且降低电池的使用寿命,因此散热成为储能集装箱的关键。现有的储能集装箱通常采用空气冷却,需要布置专门的风道,占用空间,影响储能集装箱的容量,同时换热效率较低。
为了提高换热效率,本申请采用了液体换热加冷媒换热相结合的方式对储能集装箱进行换热。为了提高储能集装箱的空间利用率,并方便在冷媒机组21出现故障时进行维修,可以将冷媒机组21独立出来,即将冷媒机组21设置成一个独立的模块,并通过连接冷媒循环管路221形成冷媒循环系统。相应地,在储能集装箱内部设置局部液体换热回路3,冷媒机组21连接的冷媒循环管路221与局部液体换热回路3进行热交换,从而对储能集装箱内部电池进行冷却。该设计方便对储能集装箱以及冷媒循环系统的模块化设计,提高了储能集装箱的换热效率和空间利用率。并且在冷媒机组21出现故障时,便于进行维修,且便于对冷媒机组21进行备份处理,以应对紧急突发状况。
针对上述问题,本申请实施例提出一种储能装置,该储能装置不仅可以作为风电场、光伏电站、火电厂等配套储能的应用,还可以为各种缺电、用电大户提供能源供给,比如大数据中心、冷链物流园区、配网台区、线路侧、多站融合、油库、商业区、医院、5G基站等。
储能装置中的电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为 PP 或 PE 等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
如图1所示,本申请提出的储能装置包括多个储能仓1、冷媒换热系统2和液体换热回路3。多个储能仓1均容纳有储能件5,冷媒换热系统2包括冷媒机组21以及与冷媒机组21连通的冷媒循环管路221,冷媒机组21设于储能仓1的外部。液体换热回路3中容纳有换热液体,液体换热回路3能够与冷媒换热系统2和储能件5进行换热。具体地,液体换热回路3包括第一换热部(图中未示出)和第二换热部(图中未示出),换热液体通过液体换热回路3在第一换热部和第二换热部之间循环流动,第一换热部用于与储能件5进行热交换,冷媒换热系统2与第二换热部进行热交换。
储能仓1即为图1中虚线框出的部分,可以理解为一个储能集装箱或者储能集装箱内的一个储能单元。冷媒机组21设于储能仓1的外部,即冷媒机组21独立于储能仓1而单独设置。当储能仓1为一个储能集装箱时,冷媒机组21可以为独立于储能集装箱之外的一个独立的模块。当储能仓1为储能集装箱内的一个储能单元时,冷媒机组21可以与多个储能仓1共同组成一个储能集装箱,冷媒机组21作为储能集装箱内的一个模块;或者冷媒机组21也可独立于储能集装箱之外设置。冷媒机组21能够与液体换热回路3的第二换热部进行热交换,在本实施例中,冷媒机组21释放温度更低的冷媒,比如冷媒可以是冷空气,冷空气吸收换热液体散发出来的热量,从而起到冷却换热液体的作用,冷媒机组21能够源源不断的输出冷空气,从而循环冷却换热液体。储能件5与液体换热回路3的第一换热部进行热交换,冷却后的换热液体吸收储能件5表面释放的热量,从而起到冷却储能件5的作用,吸收热量后的换热液体升温,能够再循环流动至第二换热部时重新被冷媒机组21冷却。从而起到冷却换热液体的作用,液体换热回路3的第一换热部与储能件5进行热交换,从而起到冷却储能件5的作用。可以为电池单体或者电池包等储能单元。
通过将冷媒机组21设置于储能仓1的外部,使得冷媒机组21不占用储能仓1的内部空间,因此容纳更多的储能件5,独立出来的冷媒机组21可以同时服务多个储能仓1,提高制冷效率,降低制冷成本,且独立出来的冷媒机组21在出现故障时方便维护与更换,便于对冷媒机组21进行备份,降低维护成本。
根据本申请的实施例,如图1所示,冷媒循环管路221包括多个换热器221a;每个换热器221a可以与至少一个液体换热回路3的第二换热部进行热交换。
每个换热器221a可以与至少一个液体换热回路3的第二换热部进行热交换包括两种情形。第一种情形:图1示出了每个换热器221a可以与一个液体换热回路3的第二换热部进行热交换,因此当有多个液体换热回路3时,需要设置同等数量的换热器221a与其进行热交换。第二种情形:每个换热器221a与两个或两个以上的液体换热回路3的第二换热部进行热交换,因此可以适当减少换热器221a的设置数量。
因此,通过设置多个换热器221a,使得一个冷媒机组21能够同时冷却多个液体换热回路3的第二换热部,降低制冷成本,且通过配置每个换热器221a与两个或者两个以上的液体换热回路3的第二换热部进行热交换,还可以减少换热器221a的设置数量,从而简化冷媒换热系统2的结构,节约成本。
根据本申请的实施例,如图1所示,每个液体换热回路3的第一换热部用于与至少一个储能仓1内的储能件5进行热交换。
每个液体换热回路3的第一换热部与至少一个储能仓1内的储能件5进行热交换同样包括两种情形。第一种情形:图1中示出了每个液体换热回路3的第一换热部与一个储能仓1内的储能件5进行热交换,即一个储能仓1对应一个液体换热回路3,当储能装置包含多个储能仓1时,就需要同时设置同等数量的液体换热回路3。第二种情形:每个液体换热回路3的第一换热部与两个或两个以上储能仓1内的储能件5进行热交换,即两个或两个以上的储能仓1共用一个液体换热回路3,因此液体换热回路3的数量可以少于储能仓1的数量。
通过将第一换热部与至少一个储能仓1内的储能件5进行热交换,使得液体换热回路3的设置数量能够等于或小于储能仓1的数量,减少第一换热部的设置数量,使得液体换热回路3的换热效率最大化。
根据本申请的实施例,如图1所示,各个储能仓1内均设有液体换热回路3。
本实施例中,各个储能仓1内均设有液体换热回路3,一个液体换热回路3用于冷却一个储能仓1内的储能件5,便于将储能仓1进行模块化设计,储能仓1与冷媒换热系统2之间可以通过简单的转接头以及管路连接实现冷媒换热系统2对储能仓1内储能件5的冷却,降低后续安装难度,提高装配效率。
根据本申请的实施例,如图2、图3所示,多个换热器221a串联或者并联连形成一个冷媒支路22,冷媒支路22通过冷媒循环管路221与冷媒机组21连接。
冷媒支路22包括冷媒循环管路221以及与冷媒循环管路221连接的多个换热器221a,换热器221a与冷媒循环管路221通过换热器进液管221a1和换热器出液管221a2与冷媒循环管路221连通,冷媒循环管路221包括冷媒进液管221c和冷媒出液管221b。换热器221a之间可以是并联,如图2所示,换热器进液管221a1均与冷媒出液管221b连通,换热器出液管221a2均与冷媒进液管221c连通,使得多个换热器221a并联。换热器221a之间也可以是串联,如图3所示,沿冷媒的流动方向,冷媒由冷媒出液管221b进入位于上游的换热器进液管221a1,并从位于上游的换热器出液管221a2流出进入位于下游的换热器进液管221a1,然后从位于下游的换热器出液管a2进入冷媒进液管221c,最后经冷媒进液管221c流回至冷媒机组21,以使两个换热器221a串联。
通过并联形成一个冷媒支路22并与冷媒机组21连通,使得并联于该冷媒支路22的多个换热器221a共用一个冷媒机组21,提高冷媒机组21的利用率。且并联使得冷媒机组21的冷媒直接经过冷媒循环管路221进入各个换热器221a,而不用穿过换热器221a进入下一个换热器221a,因此使得并联的各换热器221a都具有较强的换热能力,从而提高换热效率。
通过串联形成一个冷媒支路22并与冷媒机组21连通,使得串联于该冷媒支路22的多个换热器221a共用一个冷媒机组21,提高冷媒机组21的利用率。
根据本申请的实施例,如图1所示,冷媒循环系统包括多个冷媒支路22,多个冷媒支路22通过冷媒循环管路221与冷媒机组21并联。
通过多个冷媒支路22与冷媒机组21并联,方便冷媒机组21同时向多个换热器221a输送冷媒,且通过增加冷媒支路22的数量而增加冷媒机组21可冷却的换热器221a的数量,能够尽量缩短换热器221a与冷媒机组21之间的冷媒循环管路221的长度,从而减少在冷媒循环管路221输送过程中的能量损失,而且也可以在循环动力不变的情况下尽量缩短循环周期,提高换热效率。
根据本申请的实施例,多个冷媒支路22对称设置于冷媒机组21的两侧。
如图1所示,图中共示意了四个冷媒支路22,其中两个冷媒支路22位于冷媒机组21的左侧,另外两个冷媒支路22位于冷媒机组21的右侧,且左侧和右侧的两个冷媒支路22上下间隔布置。每个冷媒支路22连接了两个储能仓1,当冷媒机组21具有四个冷媒支路22时,即一个冷媒机组21连接了八个储能仓1,也就是一个冷媒机组21可以同时与八个储能仓1内的第二换热部进行热交换。
通过在冷媒机组21的两侧对称设置多个冷媒支路22,冷媒机组21可冷却的储能仓1数量不变的情况下,能够缩短冷媒支路22的长度,缩短冷媒循环周期,提高换热效率。
根据本申请的实施例,第二换热部从换热器221a的内部穿过。
本实施例中,换热器221a内部具有供第二换热部穿过的空腔,第二换热部穿过该换热器221a的空腔。换热器221a从四个方向与第二换热部进行热交换,该四个方向分别为第二换热部的上侧壁、下侧壁、左侧壁和右侧壁。
通过换热器221a与第二换热部的四个方向进行热交换,能够加快热交换速率,从而提高液体换热回路3对储能仓1内的储能件5的冷却效果。
根据本申请的另一实施例,第二换热部经过换热器221a的外表面。
本实施例中,第二换热部与换热器221a通过面面接触进行热交换,能够简化换热器221a和第二换热部的结构,且方便第二换热部的灵活设置,方便通过增加换热器221a和第二换热部的表面积而增加换热面积,从而增加热交换效率。
根据本申请的实施例,液体换热回路3还包括泵4和水箱(图中未示出),泵4和水箱通过液体换热回路3与第一换热部和第二换热部连通。
泵4用于驱动液体换热回路3中换热液体循环流动,水箱用于存储换热液体,泵4和水箱连通于液体换热回路3中。液体换热回路3包括冷却液进液管31和冷却液出液管32,定义冷却液进液管31为从第二换热部流出并进入第一换热部的管路,冷却液出液管32为从第一换热部流出流回到第二换热部的管路。水箱可以位于第二换热部上游或者下游,或者可以不设有水箱,换热液体直接封装在管路中。
通过泵4提供动力使得水箱中液体在液体换热回路3中循环流动,并在第二换热部与换热器221a进行热交换,使得液体换热回路3中的液体得以冷却,在第一换热部与储能件5进行热交换,使得冷却后的换热液体能够大量吸收储能件5释放出的热量而升温,达到冷却储能件5的目的,升温后的换热液体再次经过第二换热部时能够再次被冷却,如此循环往复对储能仓1中储能件5进行冷却。
根据本申请的实施例,冷媒机组21包括压缩机(图中未示出)和节流装置(图中未示出)。
压缩机为冷媒循环提供动力,且压缩机能够对冷媒进行制冷或制热,本申请中仅用于对冷媒制冷。节流装置主要用于降温减压。
根据本申请的实施例,第一换热部设置在储能件5的表面并与储能件5进行接触换热。
通过将第一换热部设于储能件5的表面,能够减小第一换热部与储能件5之间的距离,使得第一换热部与储能件5能够进行接触换热,提高第一换热部对储能件5的换热能力。
根据本申请的实施例,提供了一种储能装置,如图1所示,储能装置包括多个储能仓1,冷媒换热系统2包括冷媒机组21、换热器221a以及连接冷媒机组21和换热器221a的冷媒循环管路221,冷媒机组21为一个独立的模块,并设于储能仓1的外部,冷媒机组21为动力装置,为换热器221a源源不断的输送冷媒。每个储能仓1内部均设有液体换热回路3,液体换热回路3包括第一换热部和第二换热部。换热器221a与第二换热部进行热交换,从而能够将液体换热回路3中的换热液体在第二换热部进行冷却,第一换热部与储能件5进行热交换,从而能够带走储能件5表面的热量,起到冷却储能件5的作用。由于储能仓1内仅包含液体换热回路3,减少了冷媒机组21的设置,能够容纳更多的储能件5,便于实现储能装置的模块化设计。同时,冷媒机组21独立于储能仓1单独设置,也有利于冷媒机组21的模块化设计,方便对冷媒机组21进行备份,以应对紧急突发状况,比如冷媒机组21突然出现故障时,只需换上一个备用冷媒机组21即可快速解决问题。
当储能仓1为一个储能集装箱时,冷媒机组21可以为独立于储能集装箱之外的一个独立的模块;储能装置包括多个储能集装箱和一个冷媒机组21连接后组成的系统。
当储能仓1为储能集装箱内的一个储能单元时,储能装置可以为由冷媒机组21和多个储能仓1共同组成的一个储能集装箱,冷媒机组21作为储能集装箱内的一个模块;或者冷媒机组21也可独立于储能集装箱之外设置,即储能装置为一个包括多个储能仓1的储能集装箱加一个独立的冷媒机组21。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种储能装置,其中,所述储能装置包括:
    多个储能仓(1),多个所述储能仓(1)用于容纳储能件(5);
    冷媒换热系统(2),所述冷媒换热系统(2)包括冷媒机组(21)以及与所述冷媒机组(21)连通的冷媒循环管路(221),所述冷媒机组(21)设于所述储能仓(1)的外部;
    液体换热回路(3),用于容纳换热液体,所述液体换热回路(3)被配置为与所述冷媒换热系统(2)和所述储能件(5)进行换热;所述液体换热回路(3)包括第一换热部和第二换热部,所述换热液体通过所述液体换热回路(3)在所述第一换热部和所述第二换热部之间循环流动,所述第一换热部用于与所述储能件(5)进行热交换,所述冷媒换热系统(2)与所述第二换热部进行热交换。
  2. 根据权利要求1所述的储能装置,其中,所述冷媒循环管路(221)包括多个换热器(221a);每个所述换热器(221a)被配置为与至少一个所述液体换热回路(3)的所述第二换热部进行热交换。
  3. 根据权利要求1所述的储能装置,其中,每个所述液体换热回路(3)的所述第一换热部用于与至少一个所述储能仓(1)内的所述储能件(5)进行热交换。
  4. 根据权利要求3所述的储能装置,其中,各个所述储能仓(1)内均设有所述液体换热回路(3)。
  5. 根据权利要求2所述的储能装置,其中,多个所述换热器(221a)串联或者并联形成一个冷媒支路(22),所述冷媒支路(22)通过所述冷媒循环管路(221)与所述冷媒机组(21)连通。
  6. 根据权利要求5所述的储能装置,其中,所述冷媒换热系统(2)包括多个所述冷媒支路(22),多个所述冷媒支路(22)通过所述冷媒循环管路(221)与所述冷媒机组(21)并联。
  7. 根据权利要求6所述的储能装置,其中,多个所述冷媒支路(22)对称设置于所述冷媒机组(21)的两侧。
  8. 根据权利要求2、5-7中任一项所述的储能装置,其中,所述第二换热部从所述换热器(221a)的内部穿过。
  9. 根据权利要求2、5-7中任一项所述的储能装置,其中,所述第二换热部经过所述换热器(221a)的外表面。
  10. 根据权利要求1-7中任一项所述的储能装置,其中,所述液体换热回路(3)还包括泵(4)和水箱,所述泵(4)和水箱通过所述液体换热回路(3)与所述第一换热部和所述第二换热部连接。
  11. 根据权利要求1-7中任一项所述的储能装置,其中,所述冷媒机组(21)包括压缩机和节流装置。
  12. 根据权利要求1-7中任一项所述的储能装置,其中,所述第一换热部设置在所述储能件(5)的表面并与所述储能件(5)进行接触换热。
PCT/CN2022/124441 2021-11-11 2022-10-10 一种储能装置 WO2023082912A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122751805.8 2021-11-11
CN202122751805.8U CN216720053U (zh) 2021-11-11 2021-11-11 一种储能装置

Publications (1)

Publication Number Publication Date
WO2023082912A1 true WO2023082912A1 (zh) 2023-05-19

Family

ID=81879650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124441 WO2023082912A1 (zh) 2021-11-11 2022-10-10 一种储能装置

Country Status (2)

Country Link
CN (1) CN216720053U (zh)
WO (1) WO2023082912A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216720053U (zh) * 2021-11-11 2022-06-10 宁德时代新能源科技股份有限公司 一种储能装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203323455U (zh) * 2013-05-24 2013-12-04 江苏西格玛电器有限公司 全热回收多循环多用空调机组
WO2018086606A1 (zh) * 2016-11-11 2018-05-17 蔚来汽车有限公司 模块化可扩展的温度调节系统
CN111207466A (zh) * 2020-01-14 2020-05-29 珠海格力电器股份有限公司 空调系统及其控制方法
CN111952510A (zh) * 2020-09-21 2020-11-17 王业林 浸没式液冷储能系统
CN213426761U (zh) * 2020-11-06 2021-06-11 中国联合网络通信集团有限公司 一种末端冷却装置及冷媒循环系统
CN213636112U (zh) * 2020-12-24 2021-07-06 深圳市英维克科技股份有限公司 冷水机组与储能系统
CN216720053U (zh) * 2021-11-11 2022-06-10 宁德时代新能源科技股份有限公司 一种储能装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203323455U (zh) * 2013-05-24 2013-12-04 江苏西格玛电器有限公司 全热回收多循环多用空调机组
WO2018086606A1 (zh) * 2016-11-11 2018-05-17 蔚来汽车有限公司 模块化可扩展的温度调节系统
CN111207466A (zh) * 2020-01-14 2020-05-29 珠海格力电器股份有限公司 空调系统及其控制方法
CN111952510A (zh) * 2020-09-21 2020-11-17 王业林 浸没式液冷储能系统
CN213426761U (zh) * 2020-11-06 2021-06-11 中国联合网络通信集团有限公司 一种末端冷却装置及冷媒循环系统
CN213636112U (zh) * 2020-12-24 2021-07-06 深圳市英维克科技股份有限公司 冷水机组与储能系统
CN216720053U (zh) * 2021-11-11 2022-06-10 宁德时代新能源科技股份有限公司 一种储能装置

Also Published As

Publication number Publication date
CN216720053U (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US10096869B2 (en) Battery module, battery temperature managing system and vehicle comprising the same
WO2022021065A1 (zh) 一种电芯模组液冷结构及应用其的电池包
CN111312954B (zh) 一种电动汽车电池热管理装置及热管理方法
CN108075081A (zh) 电池组、电池包及具有该电池包的车辆
WO2023082912A1 (zh) 一种储能装置
CN214625171U (zh) 一种基于氟化液的新型高密度储能电池热管理液冷系统
CN114267901A (zh) 一种电池模组及电池包
CN207883761U (zh) 电池组、电池包及具有该电池包的车辆
CN217545366U (zh) 用于储能电站电池房的多级冷却结构
CN216903111U (zh) 一种用于储能电池的混合外冷却系统
CN216814668U (zh) 换热系统
CN216054964U (zh) 一种基于锂电池的安全储能系统
CN115377564A (zh) 电池模组冷却系统、电池箱及储能设备
CN212230578U (zh) 内均温外散热的储能模组
CN220604779U (zh) 一种高效散热的电池
CN114039122A (zh) 一种用于电动汽车用动力蓄电池的冷却系统
CN209675409U (zh) 一种穿管翅片式圆柱电池模组
TWM599477U (zh) 鋰電池智能內循環散熱裝置
CN113328168B (zh) 一种基于水冷板的电池组冷却结构及其冷却方法
CN213150876U (zh) 一种锂电池模块及锂电池储能装置
CN218299953U (zh) 电池模组冷却系统、电池箱及储能设备
CN220021285U (zh) 一种蛋托式动力电池热管理装置
CN219226396U (zh) 新能源电池热管理系统及新能源车辆
CN220138421U (zh) 一种电池储能柜风冷系统
CN117352901B (zh) 一种储能柜冷却系统和冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891713

Country of ref document: EP

Kind code of ref document: A1