WO2022021065A1 - 一种电芯模组液冷结构及应用其的电池包 - Google Patents

一种电芯模组液冷结构及应用其的电池包 Download PDF

Info

Publication number
WO2022021065A1
WO2022021065A1 PCT/CN2020/105171 CN2020105171W WO2022021065A1 WO 2022021065 A1 WO2022021065 A1 WO 2022021065A1 CN 2020105171 W CN2020105171 W CN 2020105171W WO 2022021065 A1 WO2022021065 A1 WO 2022021065A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling structure
cooling
pipelines
liquid
cell module
Prior art date
Application number
PCT/CN2020/105171
Other languages
English (en)
French (fr)
Inventor
戴少峰
占莉
王安
于林
包德荣
Original Assignee
威睿电动汽车技术(宁波)有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威睿电动汽车技术(宁波)有限公司, 浙江吉利控股集团有限公司 filed Critical 威睿电动汽车技术(宁波)有限公司
Priority to KR1020237006740A priority Critical patent/KR20230036158A/ko
Priority to CN202080101357.2A priority patent/CN115769415A/zh
Priority to PCT/CN2020/105171 priority patent/WO2022021065A1/zh
Publication of WO2022021065A1 publication Critical patent/WO2022021065A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery pack cooling, and in particular, to a liquid cooling structure for a cell module and a battery pack using the same.
  • the battery module is a sub-component of the power battery. It is a combination of several battery cells that are combined in series or in parallel, and can directly provide electrical energy after protecting the circuit board and the shell. Each battery cell will generate a lot of heat when charging or discharging, and the service life and capacity decay of the battery are closely related to its temperature, which in turn affects the life of the battery module and even the power battery. With high-efficiency cooling structure.
  • the compact battery pack of the hybrid system especially the extended-range power system, has a small battery pack space and is prone to generate a large amount of heat accumulation when it is continuously working. Therefore, the technical problem of how to dissipate the generated heat in a limited space as soon as possible to improve the heat dissipation efficiency of the battery pack needs to be solved urgently.
  • This application aims to solve the technical problem of how to improve the heat dissipation efficiency of the battery pack.
  • a liquid cooling structure for a cell module including a bottom cooling structure, a first side cooling structure, and a second side cooling structure opposite to the first side cooling structure;
  • the first side cooling structure, the bottom cooling structure and the second side cooling structure are sequentially connected to form a cooling circuit
  • At least one of the first side cooling structure, the second side cooling structure, and the bottom cooling structure includes a flow splitting structure.
  • the bottom cooling structure includes a collecting part, a first cooling part and a second cooling part; the first cooling part and the second cooling part are both communicated with the collecting part, and the first side surface
  • the cooling structure communicates with the first cooling portion, and the second side cooling structure communicates with the second cooling portion.
  • the flow dividing structure is a plurality of pipelines arranged side by side.
  • both the first side cooling structure and the first cooling part include a plurality of pipelines side by side, and each pipeline in the first side cooling structure corresponds to a corresponding one in the first cooling structure.
  • the pipeline is formed by bending the integrally formed metal pipeline;
  • Both the second side cooling structure and the second cooling part include a plurality of pipelines side by side, and each pipeline in the second side cooling structure and the corresponding pipeline in the second cooling structure are The integrally formed metal pipeline is formed by bending;
  • the side-by-side directions of the plurality of pipelines in the first side cooling structure and the second side cooling structure are all parallel to the side surface of the battery module; the multiple pipes in the first cooling part and the second cooling part
  • the side-by-side directions of the circuits are all parallel to the bottom surface of the battery module.
  • first side cooling structure is a first liquid cooling plate
  • second side cooling structure is a second liquid cooling plate
  • Both the first cooling part and the second cooling part include a plurality of parallel pipelines, and the parallel direction of the multiple pipelines in the first cooling part and the second cooling part is the same as that of the battery core module. the bottom is parallel;
  • the first liquid cooling plate is communicated with a plurality of pipelines of the first cooling part, and the second liquid cooling plate is communicated with a plurality of pipelines of the second cooling part.
  • both the first side cooling structure and the second side cooling structure include a plurality of pipelines side by side, and the parallel direction of the multiple pipelines in the first side cooling structure and the second side cooling structure All are parallel to the side of the cell module;
  • the first cooling part is a third liquid cooling plate, and the second cooling part is a fourth liquid cooling plate;
  • the plurality of pipelines of the first side cooling structure are all communicated with the third liquid cooling plate, and the plurality of pipelines of the second side cooling structure are all communicated with the fourth liquid cooling plate.
  • one of the first side cooling structure and the second side cooling structure includes a plurality of pipelines side by side, and the other is a liquid cooling plate;
  • the first cooling part and/or the second cooling part comprise a plurality of pipelines side by side.
  • a heat conducting portion is provided between the first side cooling structure, the second side cooling structure, and the bottom cooling structure and the cell module.
  • first heat insulation part and a second heat insulation part
  • the first heat insulation portion is arranged between the cell and the end plate of the cell module, and the second heat insulation portion is arranged on the lower surface of the end plate of the cell module.
  • a second aspect of the present application provides a battery pack, including the battery module liquid cooling structure.
  • the liquid cooling structure of the cell module provided by the present application adopts a three-sided cooling structure, which can effectively increase the contact area and enhance the overall heat exchange efficiency of the cell module.
  • at least one of the first side cooling structure, the second side cooling structure and the bottom cooling structure includes a split structure, and the split structure is a plurality of pipelines arranged side by side, and this design can effectively reduce the overall liquid flow rate. Pressure loss in the cooling system.
  • FIG. 1 is a schematic diagram of a liquid cooling structure of a cell module according to an embodiment of the application
  • FIG. 2 is a schematic diagram of a liquid cooling structure of a cell module according to an embodiment of the present application
  • FIG. 3 is an assembly schematic diagram of a liquid cooling structure of a cell module according to an embodiment of the present application.
  • references herein to "one embodiment” or “an embodiment” refers to a particular feature, structure, or characteristic that may be included in at least one implementation of the present application.
  • the orientations or positional relationships indicated by the terms “upper”, “lower”, “top”, “bottom”, etc. are based on the orientations or positional relationships shown in the drawings, only It is for the convenience of describing the present application and to simplify the description, rather than indicating or implying that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. Also, the terms “first,” “second,” etc. are used to distinguish between similar objects, and are not necessarily used to describe a particular order or precedence. It is to be understood that data so used may be interchanged under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein.
  • FIG. 1 is a schematic diagram of a liquid cooling structure of a cell module according to an embodiment of the present application.
  • the liquid cooling structure of the cell module in FIG. 1 includes a bottom cooling structure, a first side cooling structure 1, and a first side cooling structure 1. a second side cooling structure 2 opposite to the side cooling structure 1;
  • the first side cooling structure 1, the bottom cooling structure and the second side cooling structure 2 are connected in sequence to form a cooling circuit;
  • At least one of the first side cooling structure 1 , the second side cooling structure 2 and the bottom cooling structure includes a flow splitting structure.
  • the flow splitting structure is a plurality of pipelines arranged side by side, that is, the cooling structure adopts multiple pipelines
  • the parallel structure can effectively reduce the pressure loss of the entire liquid cooling system.
  • the liquid cooling structure of the cell module provided by the present application adopts a three-sided cooling structure, which can effectively increase the contact area and enhance the overall heat exchange efficiency of the cell module.
  • the bottom cooling structure includes a collecting part 5, a first cooling part 3 and a second cooling part 4; the first cooling part 3 and the second cooling part 4 are both communicated with the collecting part 5, and the first side is cooled
  • the structure 1 communicates with the first cooling part 3
  • the second side cooling structure 2 communicates with the second cooling part 4 .
  • a cooling part 3 includes a plurality of pipelines side by side, each pipeline in the first side cooling structure and the corresponding pipeline in the first cooling structure are integrally formed by bending a metal pipeline; the second side cooling structure is formed by bending.
  • Both the structure 2 and the second cooling part 4 include a plurality of pipelines side by side, and each pipeline in the second side cooling structure 2 and the corresponding pipeline in the second cooling structure are formed by bending an integrally formed metal pipeline. ;
  • the side-by-side directions of the multiple pipelines in the first side cooling structure 1 and the second side cooling structure 2 are all parallel to the side surface of the cell module; the side-by-side directions of the multiple pipelines in the first cooling part 3 and the second cooling part 4 All are parallel to the bottom surface of the cell module.
  • the piping system adopts a bending process, which is simple to form and low in cost, and there is only one bend in the height direction of the module in the embodiment of the present application, which effectively increases the heat dissipation contact area.
  • the length of the pipeline can be adjusted according to actual needs.
  • the first side cooling structure 1 is a first liquid cooling plate;
  • the second side cooling structure 2 is a second liquid cooling plate;
  • Both the first cooling part 3 and the second cooling part 4 include a plurality of pipelines side by side, and the parallel directions of the multiple pipelines in the first cooling part 3 and the second cooling part 4 are all parallel to the bottom surface of the cell module;
  • the first liquid cooling plate communicates with a plurality of pipelines of the first cooling unit 3
  • the second liquid cooling plate communicates with a plurality of pipelines of the second cooling unit 4 .
  • both the first side cooling structure 1 and the second side cooling structure 2 include a plurality of pipelines side by side, and the plurality of pipelines in the first side cooling structure 1 and the second side cooling structure 2
  • the side-by-side directions are all parallel to the side of the cell module;
  • the first cooling part 3 is a third liquid cooling plate, and the second cooling part 4 is a fourth liquid cooling plate;
  • the multiple pipelines of the first side cooling structure 1 are all communicated with the third liquid cooling plate, and the multiple pipelines of the second side cooling structure 2 are all communicated with the fourth liquid cooling plate.
  • one of the first side cooling structure 1 and the second side cooling structure 2 includes a plurality of pipelines side by side, and the other is a liquid cooling plate;
  • Both the first cooling part 3 and the second cooling part 4 include a plurality of parallel pipelines, or one of the first cooling part 3 and the second cooling part 4 includes a plurality of parallel pipelines, and the other adopts a liquid cooling plate.
  • the first side cooling structure 1, the second side cooling structure 2, the bottom cooling structure and the cell module are all provided with heat conducting parts.
  • the liquid cooling structure of the cell module further includes a first heat insulating portion 6 and a second heat insulating portion 7;
  • the first heat insulation portion 6 is provided between the cell and the end plate 8 of the cell module, and the second heat insulation portion 7 is provided on the lower surface of the end plate 8 of the cell module.
  • the first and second heat insulating parts can be made of heat insulating material, and heat insulating material is added between the most edge cells of the module and the end plate 8, and the lower surface of the end plate 8 is pasted with heat insulating material, which not only prevents the battery core from being moulded.
  • the heat of the group is conducted to the outside through the end plate 8, and the external heat is also prevented from being conducted to the cell module through the end plate 8, so as to ensure the consistency of the temperature of the cell module (temperature uniformity).
  • FIG. 3 is an assembly schematic diagram of a liquid cooling structure of a cell module according to an embodiment of the present application.
  • the liquid cooling structure of the battery module further includes a liquid outlet 9 and a liquid inlet 10 .
  • the liquid outlet 9 is communicated with the first side cooling structure 1
  • the liquid inlet 10 is connected to the first side cooling structure 1 .
  • the second side cooling structures 2 communicate with each other.
  • Embodiments of the present application further provide a battery pack, including the above-mentioned liquid cooling structure for the battery cell module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供一种电芯模组液冷结构及应用其的电池包,该电芯模组液冷机构包括底部冷却结构、第一侧面冷却结构和与所述第一侧面冷却结构相对的第二侧面冷却结构;所述第一侧面冷却结构、所述底部冷却结构和所述第二侧面冷却结构依次连接形成冷却回路;所述第一侧面冷却结构、所述第二侧面冷却结构和所述底部冷却结构中的至少一个包括分流结构。本申请提供的电芯模组液冷结构采用三面冷却结构,能够有效增大接触面积,增强电芯模组的整体换热效率。且所述第一侧面冷却结构、所述第二侧面冷却结构和所述底部冷却结构中的至少一个包括分流结构,所述分流结构为多个并排设置的管路,该设计能够有效降低整个液冷系统的压损。

Description

一种电芯模组液冷结构及应用其的电池包 技术领域
本申请涉及电池包冷却技术领域,特别涉及一种电芯模组液冷结构及应用其的电池包。
背景技术
随着人们环保意识的提高,电动汽车已经越来越普及。动力电池作为其动力来源,已大量配备于电动汽车及其他交通领域。
电池模组是动力电池的子部件,是由若干个电池单体由串联方式或并联方式组合,再加以保护线路板、外壳后能够直接提供电能的组合体。每个电池单体在充电或者放电时均会产生大量的热量,而电池的使用寿命以及容量衰减均与其温度有着密切联系,进而关系电池模组乃至动力电池的寿命,因此需要在电池模组上搭配高效率的冷却结构。
混动系统的紧凑型电池包,特别是增程式动力系统,其电池包空间狭小、连续工作时,容易产生大量的热累积。因此如何在有限的空间内将产生的热量尽快散出去,提高电池包的散热效率的技术问题亟待解决。
发明内容
本申请要解决是如何提高电池包的散热效率的技术问题。
为解决上述技术问题,本申请一方面公开了一种电芯模组液冷结构,包括底部冷却结构、第一侧面冷却结构和与所述第一侧面冷却结构相对的第二侧面冷却结构;
所述第一侧面冷却结构、所述底部冷却结构和所述第二侧面冷却结构依次连接形成冷却回路;
所述第一侧面冷却结构、所述第二侧面冷却结构和所述底部冷却结构中的至少一个包括分流结构。
进一步地,所述底部冷却结构包括集流部、第一冷却部和第二冷却部;所述第一冷却部和所述第二冷却部均与所述集流部连通,所述第一侧面冷却结构与所述第一冷却部连通,所述第二侧面冷却结构与所述第二冷却部连通。
进一步地,所述分流结构为多个并排设置的管路。
进一步地,所述第一侧面冷却结构与所述第一冷却部均包括多个并排的管路,所述第一侧面冷却结构中的每根管路与所述第一冷却结构中的对应的管路为一体成型的金属管路弯折形成;
所述第二侧面冷却结构与所述第二冷却部均包括多个并排的管路,所述第二侧面冷却结构中的每根管路与所述第二冷却结构中的对应的管路为一体成型的金属管路弯折形成;
所述第一侧面冷却结构和所述第二侧面冷却结构中多个管路的并排方向均与电芯模组的侧面平行;所述第一冷却部和所述第二冷却部中多个管路的并排方向均与电芯模组的底面平行。
进一步地,所述第一侧面冷却结构为第一液冷板;所述第二侧面冷却结构为第二液冷板;
所述第一冷却部和所述第二冷却部均包括多个并排的管路,所述第一冷却部和所述第二冷却部中多个管路的并排方向均与电芯模组的底面平行;
所述第一液冷板与所述第一冷却部的多个管路连通,所述第二液冷板与所述第二冷却部的多个管路连通。
进一步地,所述第一侧面冷却结构与所述第二侧面冷却结构均包括多个并排的管路,所述第一侧面冷却结构和所述第二侧面冷却结构中多个管路的并排方向均与电芯模组的侧面平行;
所述第一冷却部为第三液冷板,所述第二冷却部为第四液冷板;
所述第一侧面冷却结构的多个管路均与所述第三液冷板连通,所述第二侧面冷却结构的多个管路均与所述第四液冷板连通。
进一步地,所述第一侧面冷却结构与所述第二侧面冷却结构中的其中一个包括多个并排的管路,另一个为液冷板;
所述第一冷却部和/或所述第二冷却部包括多个并排的管路。
进一步地,所述第一侧面冷却结构、所述第二侧面冷却结构和所述底部冷却结构与电芯模组之间均设有导热部。
进一步地,还包括第一隔热部和第二隔热部;
所述第一隔热部设于电芯模组的电芯与端板之间,所述第二隔热部设于所述电芯模组的端板的下表面。
本申请第二方面提供一种电池包,包括所述电芯模组液冷结构。
采用上述技术方案,本申请具有如下有益效果:
本申请提供的电芯模组液冷结构采用三面冷却结构,能够有效增大接触面积,增强电芯模组的整体换热效率。且所述第一侧面冷却结构、所述第二侧面冷却结构和所述底部冷却结构中的至少一个包括分流结构,所述分流结构为多个并排设置的管路,该设计能够有效降低整个液冷系统的压损。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一种电芯模组液冷结构的示意图;
图2为本申请实施例一种电芯模组液冷结构的示意图;
图3为本申请实施例一种电芯模组液冷结构的装配示意图。
以下对附图作补充说明:
1-第一侧面冷却结构;2-第二侧面冷却结构;3-第一冷却部;4-第二冷却部;5-集流部;6-第一隔热部;7-第二隔热部;8-端板;9-出液口;10-进液口。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进 行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请实施例的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
请参见图1,图1为本申请实施例一种电芯模组液冷结构的示意图,图1中的电芯模组液冷结构包括底部冷却结构、第一侧面冷却结构1和与第一侧面冷却结构1相对的第二侧面冷却结构2;
第一侧面冷却结构1、底部冷却结构和第二侧面冷却结构2依次连接形成冷却回路;
第一侧面冷却结构1、第二侧面冷却结构2和底部冷却结构中的至少一个包括分流结构,本申请实施例中,分流结构为多个并排设置的管路,即冷却结构采用多个管路并联结构,能够有效降低整个液冷系统的压损。本申请提供的电芯模组液冷结构采用三面冷却结构,能够有效增大接触面积,增强电芯模组的整体换热效率。
本申请实施例中,底部冷却结构包括集流部5、第一冷却部3和第二冷却部4;第一冷却部3和第二冷却部4均与集流部5连通,第一侧面冷却结构1与第一冷却部3连通,第二侧面冷却结构2与第二冷却部4连通。
本申请实施例中,电芯模组液冷结构的设计方案有多种,下面举例介绍其中的几种,一种可实施的方案中,如图1所示,第一侧面冷却结构1与第一冷却部3均包括多个并排的管路,第一侧面冷却结构中的每根管路与第一冷却结构中的对应的管路为一体成型的金属管路弯折形成;第二侧面冷却结构2与第二冷却部4均包括多个并排的管路,第二侧面冷却结构2中的每根管路与第二冷却结构中的对应的管路为一体成型的金属管路弯折形成;
第一侧面冷却结构1和第二侧面冷却结构2中多个管路的并排方向均与电芯模组的侧面平行;第一冷却部3和第二冷却部4中多个管路的并排方向均与电芯模组的底面平行。管路系统采用折弯工艺,成型简单,成本较低,且本申请实施例在模组高度方向只有一道折弯,有效使得散热接触面积大。管路的长度可以根据实际需求调整。
第二种可实施的方案中,第一侧面冷却结构1为第一液冷板;第二侧面冷却结构2为第二液冷板;
第一冷却部3和第二冷却部4均包括多个并排的管路,第一冷却部3和第二冷却部4中多个管路的并排方向均与电芯模组的底面平行;
第一液冷板与第一冷却部3的多个管路连通,第二液冷板与第二冷却部4的多个管路连通。
第三种可实施的方案中,第一侧面冷却结构1与第二侧面冷却结构2均包括多个并排的管路,第一侧面冷却结构1和第二侧面冷却结构2中多个管路的并排方向均与电芯模组的侧面平行;
第一冷却部3为第三液冷板,第二冷却部4为第四液冷板;
第一侧面冷却结构1的多个管路均与第三液冷板连通,第二侧面冷却结构2的多个管路均与第四液冷板连通。
第四种可实施的方案中,第一侧面冷却结构1与第二侧面冷却结构2中的其中一个包括多个并排的管路,另一个为液冷板;
第一冷却部3和第二冷却部4均包括多个并排的管路,或第一冷却部3和第二冷却部4的其中一个包括多个并排的管路,另一个采用液冷板。
本申请实施例中,第一侧面冷却结构1、第二侧面冷却结构2和底部冷 却结构与电芯模组之间均设有导热部。
本申请实施例中,该电芯模组液冷结构还包括第一隔热部6和第二隔热部7;
如图2所示,第一隔热部6设于电芯模组的电芯与端板8之间,第二隔热部7设于电芯模组的端板8的下表面。第一和第二隔热部可以为隔热材料制成,在模组最边缘电芯与端板8之间增加隔热材料,端板8下表面贴付隔热材料,既防止电芯模组的热通过端板8热传导给外部,也防止外部的热通过端板8传导给电芯模组,保障电芯模组温度的一致性(均温效果)。图3为本申请实施例一种电芯模组液冷结构的装配示意图。
本申请实施例中,该电芯模组液冷结构还包括出液口9和进液口10,如图1所示,出液口9与第一侧面冷却结构1连通,进液口10与第二侧面冷却结构2连通。
本申请实施例还提供一种电池包,包括上述电芯模组液冷结构。
以上仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电芯模组液冷结构,其特征在于,包括底部冷却结构、第一侧面冷却结构(1)和与所述第一侧面冷却结构(1)相对的第二侧面冷却结构(2);
    所述第一侧面冷却结构(1)、所述底部冷却结构和所述第二侧面冷却结构(2)依次连接形成冷却回路;
    所述第一侧面冷却结构(1)、所述第二侧面冷却结构(2)和所述底部冷却结构中的至少一个包括分流结构。
  2. 根据权利要求1所述的电芯模组液冷结构,其特征在于,所述底部冷却结构包括集流部(5)、第一冷却部(3)和第二冷却部(4);所述第一冷却部(3)和所述第二冷却部(4)均与所述集流部(5)连通,所述第一侧面冷却结构(1)与所述第一冷却部(3)连通,所述第二侧面冷却结构(2)与所述第二冷却部(4)连通。
  3. 根据权利要求2所述的电芯模组液冷结构,所述分流结构为多个并排的管路。
  4. 根据权利要求3所述的电芯模组液冷结构,其特征在于,所述第一侧面冷却结构(1)与所述第一冷却部(3)均包括多个并排的管路,所述第一侧面冷却结构中的每根管路与所述第一冷却结构中的对应的管路为一体成型的金属管路弯折形成;
    所述第二侧面冷却结构(2)与所述第二冷却部(4)均包括多个并排的管路,所述第二侧面冷却结构(2)中的每根管路与所述第二冷却结构中的对应的管路为一体成型的金属管路弯折形成;
    所述第一侧面冷却结构(1)和所述第二侧面冷却结构(2)中多个管路的并排方向均与电芯模组的侧面平行;所述第一冷却部(3)和所述第二冷却部(4)中多个管路的并排方向均与电芯模组的底面平行。
  5. 根据权利要求3所述的电芯模组液冷结构,其特征在于,所述第一侧面冷却结构(1)为第一液冷板;所述第二侧面冷却结构(2)为第二液冷板;
    所述第一冷却部(3)和所述第二冷却部(4)均包括多个并排的管路,所述第一冷却部(3)和所述第二冷却部(4)中多个管路的并排方向均与电芯模组的底面平行;
    所述第一液冷板与所述第一冷却部(3)的多个管路连通,所述第二液冷板与所述第二冷却部(4)的多个管路连通。
  6. 根据权利要求3所述的电芯模组液冷结构,其特征在于,所述第一侧面冷却结构(1)与所述第二侧面冷却结构(2)均包括多个并排的管路,所述第一侧面冷却结构(1)和所述第二侧面冷却结构(2)中多个管路的并排方向均与电芯模组的侧面平行;
    所述第一冷却部(3)为第三液冷板,所述第二冷却部(4)为第四液冷板;
    所述第一侧面冷却结构的多个管路均与所述第三液冷板连通,所述第二侧面冷却结构(2)的多个管路均与所述第四液冷板连通。
  7. 根据权利要求3所述的电芯模组液冷结构,其特征在于,所述第一侧面冷却结构(1)与所述第二侧面冷却结构(2)中的其中一个包括多个并排的管路,另一个为液冷板;
    所述第一冷却部(3)和/或所述第二冷却部(4)包括多个并排的管路。
  8. 根据权利要求1所述的电芯模组液冷结构,其特征在于,所述第一侧面冷却结构(1)、所述第二侧面冷却结构(2)和所述底部冷却结构与电芯模组之间均设有导热部。
  9. 根据权利要求1所述的电芯模组液冷结构,其特征在于,还包括第 一隔热部(6)和第二隔热部(7);
    所述第一隔热部(6)设于电芯模组的电芯与端板(8)之间,所述第二隔热部(7)设于所述电芯模组的端板(8)的下表面。
  10. 一种电池包,其特征在于,包括权利要求1-9任一项所述电芯模组液冷结构。
PCT/CN2020/105171 2020-07-28 2020-07-28 一种电芯模组液冷结构及应用其的电池包 WO2022021065A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237006740A KR20230036158A (ko) 2020-07-28 2020-07-28 셀 모듈 액체 냉각 구조 및 이를 응용하는 배터리 팩
CN202080101357.2A CN115769415A (zh) 2020-07-28 2020-07-28 一种电芯模组液冷结构及应用其的电池包
PCT/CN2020/105171 WO2022021065A1 (zh) 2020-07-28 2020-07-28 一种电芯模组液冷结构及应用其的电池包

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105171 WO2022021065A1 (zh) 2020-07-28 2020-07-28 一种电芯模组液冷结构及应用其的电池包

Publications (1)

Publication Number Publication Date
WO2022021065A1 true WO2022021065A1 (zh) 2022-02-03

Family

ID=80037976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105171 WO2022021065A1 (zh) 2020-07-28 2020-07-28 一种电芯模组液冷结构及应用其的电池包

Country Status (3)

Country Link
KR (1) KR20230036158A (zh)
CN (1) CN115769415A (zh)
WO (1) WO2022021065A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614154A (zh) * 2022-03-23 2022-06-10 欣旺达电动汽车电池有限公司 电池包
CN115117540A (zh) * 2022-06-27 2022-09-27 楚能新能源股份有限公司 一种pack箱体结构
CN115275435A (zh) * 2022-09-05 2022-11-01 楚能新能源股份有限公司 一种具有散热缓冲结构的电池模组及电池包
CN115528347A (zh) * 2022-10-24 2022-12-27 重庆储安科技创新中心有限公司 一种电池模组以及温控方法
WO2024045754A1 (zh) * 2023-05-24 2024-03-07 惠州亿纬锂能股份有限公司 电池模组及电池箱
WO2024078177A1 (zh) * 2022-10-11 2024-04-18 欣旺达动力科技股份有限公司 电池模组、电池包及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218724A1 (de) * 2012-10-15 2014-04-17 Continental Automotive Gmbh Anordnung und System zum Temperieren eines Energiespeichers, Batteriemodul mit einem solchen System und Verfahren zum Herstellen einer solchen Anordnung und eines solchen Systems
CN107453007A (zh) * 2017-09-06 2017-12-08 南通市阳光节能科技有限公司 车载电池热管理装置
CN208589514U (zh) * 2018-08-10 2019-03-08 宁德时代新能源科技股份有限公司 一种动力电池的电池包及其热管理单元
CN209496981U (zh) * 2019-03-11 2019-10-15 浙江吉利汽车研究院有限公司 一种电池模组的冷却结构
CN209730111U (zh) * 2019-05-29 2019-12-03 重庆电子工程职业学院 电动汽车电池组热管理设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218724A1 (de) * 2012-10-15 2014-04-17 Continental Automotive Gmbh Anordnung und System zum Temperieren eines Energiespeichers, Batteriemodul mit einem solchen System und Verfahren zum Herstellen einer solchen Anordnung und eines solchen Systems
CN107453007A (zh) * 2017-09-06 2017-12-08 南通市阳光节能科技有限公司 车载电池热管理装置
CN208589514U (zh) * 2018-08-10 2019-03-08 宁德时代新能源科技股份有限公司 一种动力电池的电池包及其热管理单元
CN209496981U (zh) * 2019-03-11 2019-10-15 浙江吉利汽车研究院有限公司 一种电池模组的冷却结构
CN209730111U (zh) * 2019-05-29 2019-12-03 重庆电子工程职业学院 电动汽车电池组热管理设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614154A (zh) * 2022-03-23 2022-06-10 欣旺达电动汽车电池有限公司 电池包
CN114614154B (zh) * 2022-03-23 2023-07-14 欣旺达电动汽车电池有限公司 电池包
CN115117540A (zh) * 2022-06-27 2022-09-27 楚能新能源股份有限公司 一种pack箱体结构
CN115117540B (zh) * 2022-06-27 2023-04-14 楚能新能源股份有限公司 一种pack箱体结构
CN115275435A (zh) * 2022-09-05 2022-11-01 楚能新能源股份有限公司 一种具有散热缓冲结构的电池模组及电池包
WO2024078177A1 (zh) * 2022-10-11 2024-04-18 欣旺达动力科技股份有限公司 电池模组、电池包及用电装置
CN115528347A (zh) * 2022-10-24 2022-12-27 重庆储安科技创新中心有限公司 一种电池模组以及温控方法
CN115528347B (zh) * 2022-10-24 2023-08-04 重庆储安科技创新中心有限公司 一种电池模组以及温控方法
WO2024045754A1 (zh) * 2023-05-24 2024-03-07 惠州亿纬锂能股份有限公司 电池模组及电池箱

Also Published As

Publication number Publication date
CN115769415A (zh) 2023-03-07
KR20230036158A (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2022021065A1 (zh) 一种电芯模组液冷结构及应用其的电池包
CN210073975U (zh) 一种高效散热的软包电池模组
CN108832222A (zh) 一种集成式电池包冷却装置
CN114267901A (zh) 一种电池模组及电池包
CN109004302A (zh) 一种翅片穿孔式圆柱电池组、电池组组合和电池组阵列
CN109216827A (zh) 散热装置、电池模组组件、电池包和车辆
CN209526150U (zh) 单体电池及电池模组
CN218769754U (zh) 一种汽车用动力电池导热散热装置
CN217158331U (zh) 一种逆流式圆柱电池堆及其电池热管理系统
CN215771268U (zh) 一种新能源汽车电池管理用散热机构
CN210866417U (zh) 一种快速散热电池模组
CN210576325U (zh) 一种散热效果好的锂电池
CN209929443U (zh) 电池包热交换系统
CN109786884B (zh) 快充型锂电池包及其热管理及冷却装置
CN111916874A (zh) 电池导热结构及电池模组
CN208782498U (zh) 一种电网串联负载隔离式的电池成组系统
CN212848570U (zh) 单体电池
CN110690529A (zh) 一种快速散热电池模组
CN219658907U (zh) 一种电池包的电信号传输结构及引出端子
CN218569142U (zh) 一种异形电芯集成结构及其电池包
CN217114534U (zh) 一种电池模组及电池包
CN218996859U (zh) 液冷电池组件、动力电池和电动车辆
CN219163493U (zh) 电池模块
CN219144264U (zh) 一种换热装置
CN221080118U (zh) 一种电芯和电池模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006740

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20946978

Country of ref document: EP

Kind code of ref document: A1