WO2024011793A1 - 旋转自锁机构、自锁可逆夹紧装置及夹紧方法 - Google Patents

旋转自锁机构、自锁可逆夹紧装置及夹紧方法 Download PDF

Info

Publication number
WO2024011793A1
WO2024011793A1 PCT/CN2022/129515 CN2022129515W WO2024011793A1 WO 2024011793 A1 WO2024011793 A1 WO 2024011793A1 CN 2022129515 W CN2022129515 W CN 2022129515W WO 2024011793 A1 WO2024011793 A1 WO 2024011793A1
Authority
WO
WIPO (PCT)
Prior art keywords
locking
rotating
magnetic field
self
hole
Prior art date
Application number
PCT/CN2022/129515
Other languages
English (en)
French (fr)
Inventor
崔树森
柳溪林
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2024011793A1 publication Critical patent/WO2024011793A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12009Implements for ligaturing other than by clamps or clips, e.g. using a loop with a slip knot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00212Electrical control of surgical instruments using remote controls
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00411Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like actuated by application of energy from an energy source outside the body

Definitions

  • the present disclosure relates to the technical field of biomedical engineering, and specifically to a rotating self-locking mechanism, a self-locking reversible clamping device and a clamping method.
  • ischemia-reperfusion models cortisol, brain, spinal cord, kidney and intestine
  • spinal cord nerve compression or peripheral nerve injury it is necessary to establish animal models through acute and chronic compression of animal blood vessels or nerves. Models are used to simulate corresponding conditions to verify the effectiveness of drugs or treatments.
  • the traditional modeling method is to use sutures to ligate the blood vessels or nerves that need to be compressed in the animal's body through surgery or to place a hose with a diameter smaller than the blood vessels or nerves to build a compression model.
  • the suture compression method is to use surgical thread to ligate the selected blood vessels or nerves in four ways.
  • the distance between each ligation is about 1mm.
  • the amount of compression is artificially judged, and the blood supply is not cut off to build an acute entrapment model;
  • the construction of the chronic entrapment model uses catgut instead of surgical wire.
  • the catgut is used as a water-absorbing and swelling material. After absorbing body fluids, it will gradually expand to increase the amount of compression.
  • the compression speed is affected by the secretion rate of body fluids.
  • the hose compression method is to surgically implant a silicone hose smaller than the diameter of blood vessels or nerves at a selected location to create acute compression; the chronic compression model is constructed by using the outer wall of blood vessels or nerves to be implanted with silicone.
  • the irritation of the hose will cause inflammatory reaction and congestion and swelling, which will cause internal compression when the outer wall is restricted by the hose.
  • the amount of compression will vary depending on the degree of inflammatory response of the individual immune system to the hose.
  • the compression rate of the chronic compression model is uncontrollable and is determined by the individual's body fluid secretion speed or inflammatory response speed. For some special individuals, due to the excessive speed of body fluid secretion, it will be impossible to construct chronic compression that is slow enough, thus limiting the experimental methods and objects.
  • Chronic compression methods are irreversible. Due to the irreversibility of water-absorbing swelling materials and the uncontrollable inflammation and swelling, all chronic compression modeling methods can only achieve a gradual increase in the degree of compression, but cannot achieve a gradual reduction of compression. Therefore, it is impossible to simulate the process of relieving compression symptoms, thus limiting the symptoms targeted by the experiment.
  • the purpose of the present disclosure is to provide a self-locking reversible clamping device that can construct an animal model of reversible compression of a target object and avoid the impact of stress stimulation such as surgery on experimental results.
  • the present disclosure provides a self-locking reversible clamping device, which includes a fixed bracket for fixing the self-locking reversible clamping device in the body of an experimental animal, and a rotatably mounted on the fixed bracket.
  • the driving locking mechanism includes a magnet and a locking assembly. The magnet can respond to an applied external rotating magnetic field to provide a mechanism for driving the rotating mechanism to rotate.
  • the locking component can respond to the applied external rotating magnetic field to unlock the rotating mechanism, the locking component locks the rotating mechanism after the external rotating magnetic field is removed so that the rotating mechanism cannot rotate, and the clamping mechanism can In response to the rotation of the rotation mechanism, the target object that needs to be clamped and compressed is clamped and compressed or released.
  • the locking assembly includes an iron core, a reset piece, a lock head and a lock hole.
  • the iron core can drive the lock head away from the lock hole under the action of an external rotating magnetic field to unlock all the locks.
  • the reset member drives the iron core to insert into the lock hole to lock the rotating mechanism.
  • the keyhole is a tapered counterbore.
  • the return member is a spring.
  • the fixed bracket includes a rotating shaft
  • the rotating mechanism includes a rotating disk
  • the rotating disk is rotatably installed on the rotating shaft
  • the magnet is installed on the rotating disk
  • the magnet is located on the rotating shaft. The outer part of the turntable.
  • the turntable is provided with an outer through hole and an inner through hole, the outer through hole and the inner through hole are coaxially arranged, the magnet is fixedly installed in the outer through hole, and the The iron core is slidably installed in the inner through hole, the lock head is fixed on the iron core, the reset piece is arranged between the iron core and the magnet, and the lock hole is opened on the rotating shaft
  • the lock holes are evenly distributed around the axis of the rotating shaft.
  • the rotating mechanism further includes a rotating drum.
  • the rotating drum is rotatably mounted on the rotating shaft.
  • the rotating drum is fixedly connected to the rotating disk and is arranged coaxially.
  • the rotating drum The outer diameter is smaller than the outer diameter of the turntable.
  • the self-locking reversible clamping device further includes a housing, the housing is fixed on the fixed bracket, and the rotating mechanism is provided in the housing.
  • the clamping mechanism includes a locking strap
  • the locking strap can be wrapped around the outside of the target object, a slit is opened on the housing, and one end of the locking strap is connected to On the inside of the housing or at the edge of the slit, the other end of the locking strap passes through the slit and is connected to the rotating mechanism.
  • the locking strap is made of biocompatible resin.
  • the fixed bracket includes a leg and a rotating shaft fixedly installed on the leg, and the leg is provided with a pinhole for suturing and fixing the leg in the animal body.
  • the locking component responds to the external rotating magnetic field by applying a positive external rotating magnetic field outside the animal body, Unlock the rotating mechanism.
  • the rotating mechanism can rotate on the fixed bracket.
  • the magnet will generate a magnetic induction force under the action of the external rotating magnetic field.
  • the direction is the direction of the maximum magnetic field line pointing to the external magnetic field, that is, a force is generated to drive the magnetic pole of the magnet.
  • the direction is consistent with the external magnetic field, thereby driving the rotating mechanism to rotate.
  • the rotating mechanism drives the clamping mechanism to clamp and compress the target object (such as blood vessels or nerve pressure) while rotating.
  • the locking component is locked.
  • the rotating mechanism stops rotating. Since the clamping mechanism is connected to the rotating mechanism, the clamping mechanism also remains stationary. At this time, a specific amount of pressure can be continuously applied to the target object; when it is necessary to change the pressure on the target object.
  • the amount of compression is high, only a reverse rotating magnetic field is applied.
  • the self-locking reversible clamping device provided by the present disclosure can construct an animal model of reversible target object compression.
  • the self-locking reversible clamping device provided by the present disclosure gradually compresses the target object through non-contact application of an external rotating magnetic field. By applying compression, stress stimulation such as surgery can be avoided from affecting the experimental results.
  • Another object of the present disclosure is to provide a rotary self-locking mechanism that can be applied to a self-locking reversible clamping device to construct an animal model of reversible target object compression.
  • a rotating self-locking mechanism includes a rotating shaft, a rotating mechanism rotatably mounted on the rotating shaft, and a driving locking mechanism.
  • the driving locking mechanism includes a magnet and a locking assembly.
  • the magnet can respond to an applied external rotating magnetic field to Providing a force that drives the rotating mechanism to rotate, the locking component is capable of unlocking the rotating mechanism in response to an applied external rotating magnetic field, and the locking component locks the rotating mechanism after the external rotating magnetic field is removed so that the rotating mechanism Cannot rotate.
  • the locking assembly includes an iron core, a reset piece, a lock head and a lock hole.
  • the iron core can drive the lock head away from the lock hole under the action of an external rotating magnetic field to unlock all the locks.
  • the reset member drives the iron core to insert into the lock hole to lock the rotating mechanism.
  • the lock hole is a tapered counterbore; the return member is a spring.
  • the rotating mechanism includes a turntable, the turntable is rotatably mounted on the rotating shaft, the magnet is installed on the turntable, and the magnet is located on an outer part of the turntable.
  • the turntable is provided with an outer through hole and an inner through hole, the outer through hole and the inner through hole are coaxially arranged, the magnet is fixedly installed in the outer through hole, and the The iron core is slidably installed in the inner through hole, the lock head is fixed on the iron core, the reset piece is arranged between the iron core and the magnet, and the lock hole is opened on the rotating shaft
  • the lock holes are evenly distributed around the axis of the rotating shaft.
  • the rotary self-locking mechanism has the same technical advantages as the above-mentioned self-locking reversible clamping device over the existing technology, and will not be described again here.
  • the present disclosure also provides a clamping method that can achieve reversible compression of the target object.
  • a clamping method for clamping and compressing a target object including the following steps:
  • the clamping device includes a magnet, a locking component and a clamping mechanism.
  • the clamping mechanism is arranged outside the target object;
  • the clamping device is the above-mentioned self-locking reversible clamping device.
  • the clamping mechanism by controlling the rotation direction of the applied external magnetic field, the clamping mechanism can be caused to clamp or loosen the target object, so that reversible clamping and compression of the target object can be achieved.
  • Figure 1 is a schematic diagram of a self-locking reversible clamping device in an exemplary embodiment of the present disclosure
  • Figure 2 is a front view of the self-locking reversible clamping device shown in Figure 1;
  • Figure 3 is a cross-sectional view along the A-A direction in Figure 2;
  • Figure 4 is a cross-sectional view along the B-B direction in Figure 2;
  • Figure 5 is an enlarged view of position C in Figure 4, a schematic structural diagram of the driving locking mechanism in an unlocked state;
  • Figure 6 is an enlarged view of position C in Figure 4, a schematic structural view of the driving locking mechanism in a locked state;
  • Figure 7 is a flow chart of a clamping method in another exemplary embodiment of the present disclosure.
  • FIG. 1 A schematic diagram of a layer structure according to an embodiment of the present disclosure is shown in the accompanying drawings.
  • the drawings are not drawn to scale, with certain details exaggerated for clarity and may have been omitted.
  • the shapes of the various regions and layers shown in the figures, as well as the relative sizes and positional relationships between them are only exemplary. In practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art will base their judgment on actual situations. Additional regions/layers with different shapes, sizes, and relative positions can be designed as needed.
  • the basic embodiment of the self-locking reversible clamping device includes a fixing bracket 1 for fixing the self-locking reversible clamping device in the body of an experimental animal.
  • the rotating mechanism 2 on the fixed bracket 1, the driving locking mechanism 3 and the clamping mechanism are drivingly connected to the rotating mechanism 2.
  • the fixed bracket 1 can be fixed in the body of the experimental animal through various existing appropriate methods.
  • the fixed bracket 1 includes legs 11, and the number of the legs 11 can be one or more.
  • the multiple legs 11 are radially distributed around the axis.
  • FIG. 1 shows an embodiment with three legs 11 .
  • the legs 11 are preferably provided with needle holes 12 for suturing and fixing the legs 11 in the animal body, so that when the legs 11 are fixed in the animal body through surgical sutures, the surgical sutures can be firmly fixed in the animal body.
  • the number of pinholes 12 provided on each leg 11 may also be one or more.
  • the fixed bracket 1 is provided with a part for mounting the rotating mechanism 2.
  • the fixed bracket 1 includes a rotating shaft 14, and the rotating mechanism 2 is rotatably mounted on the rotating shaft 14.
  • the rotating mechanism 2 and the rotating shaft 14 Bearings and other parts can be placed between them.
  • the rotating shaft 14 is fixedly connected to the supporting leg 11 , that is, the rotating shaft 14 is fixed relative to the supporting leg 11 .
  • the plurality of supporting legs 11 are evenly distributed around the axis of the rotating shaft 14 .
  • the driving locking mechanism 3 includes a magnet 31 and a locking assembly, and the magnet 31 can respond to an applied external rotating magnetic field to provide a force that drives the rotating mechanism 2 to rotate.
  • the magnet 31 is a magnetized permanent magnet, preferably a cylindrical permanent magnet.
  • the magnet 31 will generate a magnetic induction force, the direction of which is the direction of the maximum magnetic field line pointing to the external magnetic field, that is, a force will be generated to drive the magnet 31
  • the direction of the magnetic pole is consistent with the external magnetic field, thereby driving the rotating mechanism 2 to rotate together with the rotation of the external magnetic field.
  • the locking component is capable of unlocking the rotating mechanism 2 in response to an applied external rotating magnetic field, and the locking component locks the rotating mechanism 2 so that the rotating mechanism 2 cannot rotate after the external rotating magnetic field is removed. That is, when an external magnetic field is applied, the locking component unlocks the rotating mechanism 2 under the action of the external magnetic field. At this time, the rotating mechanism 2 can rotate under the drive of the magnet 31; when the applied external magnetic field is removed, the locking component locks the rotating mechanism 2. Locked together with the fixed bracket 1, the rotating mechanism 2 cannot rotate at this time, thereby preventing the clamping mechanism from loosening.
  • the clamping mechanism can respond to the rotation of the rotating mechanism 2 to clamp and compress or release the target object 6 that needs to be clamped and compressed.
  • the transmission connection between the clamping mechanism and the rotating mechanism 2 means that when the rotating mechanism 2 rotates, it can drive the clamping mechanism to clamp or loosen the target object 6, and when the rotating mechanism 2 does not rotate, the clamping mechanism maintains synchronization It does not move, that is, the clamping and pressing state of the target object 6 is maintained.
  • the self-locking reversible clamping device When using the self-locking reversible clamping device provided based on the above embodiments, the self-locking reversible clamping device is first installed in the experimental animal through surgery, and then the locking component is activated by a positive external rotating magnetic field applied outside the animal's body.
  • the external rotating magnetic field should be used to unlock the rotating mechanism 2.
  • the rotating mechanism 2 can rotate on the fixed bracket 1.
  • the magnet 31 will generate a magnetic induction force under the action of the external rotating magnetic field, the direction of which is directed towards the external magnetic field.
  • the direction of the maximum magnetic force line that is, a force is generated to drive the magnetic pole direction of the magnet 31 to be consistent with the external magnetic field, thereby driving the rotating mechanism 2 to rotate.
  • the rotating mechanism 2 drives the clamping mechanism to clamp the target object (such as blood vessels or nerve pressure) while rotating.
  • the target object such as blood vessels or nerve pressure
  • the rotating mechanism 2 rotates with the rotation of the external magnetic field, the amount of compression exerted by the clamping mechanism on the target object 6 can be precisely controlled by controlling the rotation angle and number of turns of the external magnetic field to ensure the control accuracy of the compression amount.
  • the locking assembly locks the rotating mechanism 2 so that the rotating mechanism 2 no longer rotates. Since the clamping mechanism is transmission connected with the rotating mechanism 2, the clamping mechanism also remains stable. At this time, a specific amount of pressure can be continuously applied to the target object 6. When it is necessary to change the amount of pressure on the target object, just apply a rotating magnetic field outside the animal's body again. By controlling the rotation angle and number of turns of the rotating magnetic field, the pressure exerted on the target object by the control clamping mechanism can be accurately adjusted; when needed To reduce the amount of compression on the target object, simply apply a rotating magnetic field in the opposite direction.
  • the locking component can adopt various existing locking devices that can be controlled without contact.
  • the locking assembly includes an iron core 33 , a reset member 32 , a lock head 34 and a lock hole 13 .
  • the lock head 34 can be inserted into the lock hole 13 to achieve the locking function, and when the lock head 34 is removed from the lock hole 13, the unlocking function is achieved.
  • the lock head 34 is driven by the iron core 33, and the lock head 34 and the iron core 33 can be connected in transmission, or the lock head 34 can be fixed on the iron core 33, or as shown in Figure 5, the iron core 33 and the lock head 34 can be an integrated structure. .
  • the iron core 33 will generate a magnetic induction force under the action of an external magnetic field, and the magnitude and direction of the magnetic induction force are determined by the applied magnetic field. Therefore, when the magnetic induction force generated by the external magnetic field on the iron core 33 is greater than the force of the reset member 32 on the iron core 33, the iron core 33 drives the lock head 34 to leave the lock hole 13, that is, the iron core 33 rotates under the influence of the external rotating magnetic field. The lock head 34 is driven to leave the lock hole 13 and the rotating mechanism 2 is unlocked. Referring to FIG. 6 , when the external magnetic field is removed, the magnetic field intensity on the iron core 33 decreases, and the reset member 32 drives the iron core 33 to insert into the lock hole 13 to lock the rotating mechanism 2 . Therefore, the iron core 33 can respond to changes in the magnetic field and drive the lock head 34 to achieve self-locking and unlocking functions.
  • the position and number of the lock holes 13 can be set as needed, as long as the lock head 34 can be inserted into the lock hole 13 when the rotating mechanism 2 rotates to a set angle.
  • the lock holes 13 are evenly distributed around the rotating axis of the rotating mechanism 2 , and adjacent lock holes 13 are in contact with each other, and the lock holes 13 are in contact with each other.
  • Hole 13 is a counterbore.
  • the lock hole 13 is a tapered counterbore, that is, the outside (upper end) of the lock hole 13 is larger than the inside (bottom of the hole). Setting the lock hole 13 as a tapered counterbore can avoid the situation that the lock head 34 cannot be inserted into the lock hole 13 when the actual rotation angle of the rotating mechanism 2 deviates from the set angle.
  • the reset member 32 can use various components that can provide force (such as elastic force, magnetic force, etc.) that drives the lock head 34 to move toward the lock hole 13 .
  • the return member 32 is a spring, and the spring can adjust the sensitivity of the iron core 33 to changes in the external magnetic field.
  • the return member 32 shown in Figure 5 is a compression spring.
  • the rotating mechanism 2 may adopt various structures capable of rotating on the fixed bracket 1 .
  • the rotating mechanism 2 includes a turntable 21, the turntable 21 is rotatably installed on the rotating shaft 14, and the magnet 31 is installed on the turntable 21, The magnet 31 is located on the outer part of the turntable 21 .
  • the outer side of the turntable 21 refers to the side of the turntable 21 that is far away from the rotation axis of the turntable 21 .
  • the magnet 31 can have a larger distance from the rotating bearing, and can operate under the same driving force. Produces larger torque and reduces the requirements for the magnetic field strength of the external rotating magnetic field.
  • an outer through hole 24 and an inner through hole 23 are provided on the turntable 21, and the outer through hole 24 and the inner through hole 23 are coaxially arranged.
  • the inner through hole 23 is located inside the turntable 21, and its diameter is slightly larger than the iron core 33 and smaller than the magnet 31, and can provide guidance for the iron core 33 and the lock head 34;
  • the hole 24 is located outside the turntable 21 , has a diameter slightly larger than that of the magnet 31 , and is used for installing the magnet 31 .
  • the sealant 4 can be installed on the outer end of the outer through hole 24 to fix the magnet 31 on the turntable 21 to prevent the magnet 31 from falling off when the external magnetic field changes.
  • the outer end of the outer through hole 24 can also be blocked in other ways, such as bolt plugs.
  • the iron core 33 is slidably installed in the inner through hole 23, the lock head 34 is fixed on the iron core 33, and the reset member 32 is provided between the iron core 33 and the magnet 31.
  • the lock holes 13 are opened on the rotating shaft 14 , and the lock holes 13 are evenly distributed around the axis of the rotating shaft 14 .
  • the rotating mechanism 2 further includes a rotating drum 22 , and the rotating drum 22 is rotatably sleeved on the rotating shaft 14 .
  • the rotating drum 22 is fixedly connected to the turntable 21 and arranged coaxially.
  • the outer diameter of the rotating drum 22 is smaller than the outer diameter of the turntable 21 .
  • the magnet 31 can drive the rotating drum 22 to rotate with a smaller force.
  • the clamping mechanism is used to convert rotational motion into clamping compression or release of the target object.
  • Different types of clamping mechanisms can be used according to actual experimental needs.
  • the clamping mechanism includes a locking band 7, the locking band 7 can be wrapped around the outside of the target object 6, and one end of the locking band 7 can Connected to the fixed bracket 1 , the other end of the locking belt 7 is connected to the rotating mechanism 2 .
  • the locking belt 7 is preferably made of biocompatible resin, so that the locking belt 7 has good ductility and a certain elasticity, can produce elastic deformation under the action of external force, and restore the original shape after the external force is removed, so that The clamping mechanism can better release the compression force on blood vessels or nerves after reverse rotation.
  • the self-locking reversible clamping device also includes a shell 5, which is fixed on the fixed bracket 1. Specifically, the shell 5 can Connect to the fixed bracket 1 through glue.
  • the rotating mechanism 2 is arranged in the housing 5 .
  • a slit 51 is opened in the housing 5 , and one end of the locking band 7 is connected to the inside of the housing 5 or the edge of the slit 51 .
  • the other end of the locking band 7 passes through the slit 51 and is connected to the rotating mechanism 2 , that is, the other end of the locking band 7 passes through the slit 51 from outside the housing 5 and is connected to the rotating mechanism 2 inside the housing 5 . connect.
  • the embodiment of the present disclosure provides a self-locking reversible clamping device controlled by a rotating magnetic field, including a fixed bracket 1, a rotating mechanism 2, a housing 5, a driving locking mechanism 3 and a clamping mechanism.
  • the fixed bracket 1 includes a support leg 11 and a rotating shaft 14 fixedly connected to the support leg 11 .
  • a rotating mechanism 2 is installed on the outside of the rotating shaft 14, and the rotating mechanism 2 can rotate on the rotating shaft 14.
  • the rotating mechanism 2 includes a rotating disk 21 and a rotating drum 22.
  • the rotating disk 21 and the rotating drum 22 are rotatably installed on the rotating shaft 14.
  • the rotating drum 22 is coaxially arranged with the rotating disk 21 and is fixedly connected to the rotating disk 21, so that the rotating disk 21 can follow the rotating magnetic field. Turn.
  • the turntable 21 is provided with an inner through hole 23 and an outer through hole 24 for driving the locking mechanism 3;
  • the driving locking mechanism 3 includes a magnet 31 and a locking component, and the locking component includes a reset member 32 (such as spring), iron core 33, lock head 34 and lock hole (13).
  • the magnet 31 is fixed in the outer through hole 24 of the turntable 21 through the sealant 4, and is connected to the iron core 33 through a spring; the rotating shaft 14 has a uniform annular arrangement of lock holes 13; the top of the iron core 33 is connected to the lock head 34, and the iron core 33
  • a magnetic induction force will be generated, and the magnitude and direction of the magnetic induction force are determined by the superimposed magnetic field; as shown in Figure 5, when the direction of the external magnetic field is consistent with the direction of the magnetic field of the magnet 31, the iron core 33
  • the magnetic induction force is the largest, which will compress the spring, causing the lock head 34 to leave the lock hole 13, thereby allowing the turntable 21 to rotate; when the external magnetic field rotates, the magnet 31 will generate a magnetic induction force, the direction of which is the direction of the maximum magnetic force line pointing to the external magnetic field, that is A force is generated to drive the magnetic pole direction of the magnet 31 to be consistent with the external magnetic field,
  • the outer shell 5 is wrapped around the outside of the rotating mechanism 2 to protect target objects 6 such as blood vessels or nerves from possible effects of the rotating mechanism 2 .
  • the clamping mechanism includes a locking belt 7.
  • One end of the locking belt 7 is fixed inside the housing 5, and the other end is wrapped around the target object 6 such as blood vessels or nerves and connected to the rotating drum 22 through the slit 51 on the housing 5; when the rotating disk 21 and When the rotating drum 22 rotates forward, the locking belt 7 is tightened, thereby compressing the blood vessels or nerves; the degree of compression is determined by the rotation angle and number of turns of the rotating disk 21 and the rotating drum 22; when the rotating disk 21 and the rotating drum 22 rotate in the reverse direction , releasing the locking band 7, thereby reducing compression on blood vessels or nerves, and therefore can be used to simulate the relief of compression symptoms.
  • the present disclosure also provides a rotational self-locking mechanism, which can be used to provide driving force for performing operations such as clamping and compression in the animal body.
  • the rotating self-locking mechanism includes a rotating shaft 14 , a rotating mechanism 2 rotatably installed on the rotating shaft 14 and a driving locking mechanism 3 .
  • the rotating shaft 14 is used to provide the supporting shaft required for rotation of the rotating mechanism 2, and can be fixed in the animal body through structures such as legs.
  • the rotating mechanism 2 can be installed on the rotating shaft 14 through bearings and other components to provide rotational motion.
  • the drive locking mechanism 3 responds to the applied external rotating magnetic field, provides a force to drive the rotating mechanism 2, and provides the function of locking the position of the rotating mechanism 2 after the external rotating magnetic field is removed;
  • the drive locking mechanism 3 includes a magnet 31 and a locking assembly, the magnet 31 can respond to an applied external rotating magnetic field to provide a force that drives the rotation mechanism 2 to rotate.
  • the magnet 31 is a magnetized permanent magnet, preferably a cylindrical permanent magnet, installed in the rotating mechanism 2 for responding to an external magnetic field. As the direction of the external magnetic field changes, a rotating force will be generated to drive the rotating mechanism 2 Turn.
  • the locking component can unlock the rotating mechanism 2 in response to an applied external rotating magnetic field, and the locking component locks the rotating mechanism 2 so that the rotating mechanism 2 cannot rotate after the external rotating magnetic field is removed.
  • the locking assembly includes an iron core 33, a reset piece 32, a lock head 34 and a lock hole 13.
  • the iron core 33 can drive the lock head under the action of an external rotating magnetic field. 34 leaves the lock hole 13 to unlock the rotating mechanism 2.
  • the reset member drives the iron core 33 to insert into the lock hole 13 to lock the rotating mechanism 2.
  • the iron core 33 can be installed in the rotating mechanism 2, with one end connected to the return member 32 (such as a spring), and the other end connected to the lock head 34, for responding to changes in magnetic field intensity, as the external magnetic field and the superimposed magnetic field of the magnet 31 change. Magnetic induction forces of different sizes will be generated to push the lock head 34 to move.
  • the spring is located between the magnet 31 and the iron core 33 to generate a thrust force to push the iron core 33 away from the magnet 31 .
  • the lock hole 13 is preferably provided on the rotating shaft 14 and is a countersunk hole arranged in a uniform annular shape to provide the fixing force required for driving the locking mechanism 3 when locking.
  • the rotating mechanism 2 includes a turntable 21, the turntable 21 is rotatably installed on the rotating shaft 14, the magnet 31 is installed on the turntable 21, the magnet 31 is located on the turntable. 21 outer part.
  • the larger diameter of the turntable 21 can generate larger torque under the same driving force.
  • the turntable 21 can be used to accommodate the drive locking mechanism 3.
  • the turntable 21 is provided with an outer through hole 24 and an inner through hole 23.
  • the outer through hole 24 and the inner through hole 23 are coaxially arranged.
  • the inner through hole 23 is located inside the turntable 21 (the direction close to the rotation axis of the turntable is inward, and the direction away from the rotation axis of the turntable is outward). Its diameter is slightly larger than the iron core 33 and smaller than the magnet 31. It is used to provide the iron core 33 and The lock head 34 provides guidance; the outer through hole 24 is located outside the turntable 21 and is concentric with the inner through hole 23. Its diameter is slightly larger than that of the magnet 31 and is used to install the magnet 31. The magnet 31 is fixedly installed in the outer through hole 24 , and the outer end opening of the outer through hole 24 is blocked by the sealant 4 .
  • the iron core 33 is slidably installed in the inner through hole 23, the lock head 34 is fixed on the iron core 33, and the reset member 32 is provided between the iron core 33 and the magnet 31.
  • the lock holes 13 are opened on the rotating shaft 14 , and the lock holes 13 are evenly distributed around the axis of the rotating shaft 14 .
  • the reset piece 32 is between the magnet 31 and the iron core 33, and generates thrust to push the iron core 33 away from the magnet 31.
  • the reset member 32 When the reset force is 32, the reset member 32 is compressed by the iron core 33, and the lock head 34 on the iron core 33 leaves the lock hole 13, allowing the turntable 21 to rotate freely.
  • the iron core 33 When the external magnetic field is removed, the iron core 33 is only attracted by the magnet 31, and its The magnetic induction force is smaller than the reset force of the reset member 32, and the lock head 34 will be pushed into the lock hole 13 to form a self-locking.
  • the return member 32 may be a spring.
  • a rotating drum 22 can also be installed at one end of the rotating disk 21.
  • the rotating drum 22 is installed outside the rotating shaft 14, fixed on the side of the rotating disk 21, and rotates together with the rotating disk 21 to output rotational motion.
  • the present disclosure also provides a clamping method for clamping and compressing a target object in an experimental animal, including the following steps:
  • a clamping device is fixedly installed in the body of the experimental animal through surgery.
  • the clamping device includes a magnet, a locking component and a clamping mechanism.
  • the clamping mechanism is arranged outside the target object.
  • step S20 different external magnetic fields can be set according to the type of the clamping device.
  • the external magnetic field is a rotating magnetic field
  • the clamping device is the self-locking reversible clamping device described in the above embodiment.
  • the self-locking reversible clamping device and method provided by the present disclosure can be surgically implanted into living experimental animals, and can be gradually clamped by non-contact application of an external rotating magnetic field after the experimental animals recover after surgery, thereby It can avoid the impact of stress stimulation such as surgery on the experimental results; after the external magnetic field is removed, its internal self-locking device will automatically lock the position, so that it can still maintain the clamping state without an external magnetic field, and thus can Experimental animals undergo long-term chronic compression experiments; the compression amount of the clamp can be accurately controlled by controlling the rotation angle and number of turns of the external rotating magnetic field, thereby ensuring the control accuracy of the compression amount and avoiding the artificial ligation caused by traditional surgical methods. error, making the experimental results more stable and reliable; due to high repeatability, the degree and time of compression can be controlled, which can greatly reduce the number of experimental animals required, thereby improving the experimental speed and efficiency, and greatly reducing the human resources required for the experiment. and cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Reproductive Health (AREA)
  • Power Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Clamps And Clips (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

一种旋转自锁机构、自锁可逆夹紧装置及夹紧方法,自锁可逆夹紧装置包括固定支架(1)、旋转机构(2)、驱动锁定机构(3)和夹紧机构,驱动锁定机构(3)包括磁铁(31)和锁定组件,磁铁(31)响应于施加的外部旋转磁场以提供驱动旋转机构(2)旋转的作用力,锁定组件响应于施加的外部旋转磁场以解锁旋转机构(2),锁定组件在外部旋转磁场撤除后锁定旋转机构(2)以使得旋转机构(2)不能转动,夹紧机构响应于旋转机构(2)的旋转以夹紧压迫或释放需要被夹紧压迫的目标对象(6)。旋转自锁机构、自锁可逆夹紧装置及夹紧方法可以构建可逆的目标对象(6)压迫的动物模型,能够避免手术等应激刺激对实验结果造成影响。

Description

旋转自锁机构、自锁可逆夹紧装置及夹紧方法 技术领域
本公开涉及生物医学工程技术领域,具体涉及一种旋转自锁机构、自锁可逆夹紧装置及夹紧方法。
背景技术
在急慢性缺血、缺血再灌注模型(心、脑、脊髓、肾脏及肠道)、脊髓神经压迫或周围神经损伤等科研过程中,需要通过对动物血管或神经进行急慢性压迫来建立动物模型用于模拟相应病症,进而验证药物或治疗的效果。
传统的建模方法是通过手术在动物体内需要制造压迫的血管或神经周围用缝合线进行结扎或者放置直径比血管或神经更小的软管,构建压迫模型。其中缝合线压迫法,是用手术线对选定的血管或神经做4道结扎,每道结扎之间间距1mm左右,人为判断压迫量,以不切断血供为准,构建急性卡压模型;慢性卡压模型的构建则用肠线替代手术线,利用肠线为吸水膨胀材料,在吸收体液后会逐渐膨胀增加压迫量,压迫速度受到体液的分泌速度影响。其中软管压迫法,是通过手术方法在选定的位置植入比血管或神经直径更小的硅胶软管,用于构建急性压迫;慢性卡压模型的构建利用血管或神经外壁受到植入硅胶软管的刺激,会发生炎症反应而充血肿胀,从而在外壁受到软管限制的情况下对内产生压迫,压迫量会由个体免疫系统对软管的炎症反应程度差别而异。
目前现有急性或慢性压迫模型的构建,普遍具有以下不足:
1.血管或神经的压迫模型的构建受到人为因素影响较大。由于传统急性压迫模型通常由手术完成,且压迫量有操作员人为决定,缺少量化指标。 而且卡压自手术时就发生,同时还会伴有手术操作过程所导致的一部分血管或神经损伤,无法排除手术过程中的损伤对实验结果的影响,因此增加了实验结果的不可靠性。
2.血管或神经的慢性压迫模型的构建受到个体因素影响较大。无论是体液分泌速率还是外壁肿胀速度,都会因为实验动物的个体差异而不同,因此慢性压迫量无法精确设计或测量,从而增加了实验中的不可控因素。
3.慢性压迫模型的压迫速率不可控,是由个体的体液分泌速度或炎症反应速度所决定的,对于有些特殊个体,由于体液分泌速度过快,会无法构建速度足够缓慢的慢性压迫,从而限制了实验方法和对象。
4.慢性压迫方法不可逆。由于吸水膨胀材料的不可逆性以及炎症肿大的不可控,所有的慢性压迫建模手段都只能实现逐步增加压迫程度,而无法实现压迫的逐步减轻,因此无法模拟压迫症状缓解的过程,从而限制了实验所针对的症状。
通常为了避免人为因素和动物个体差异的影响,往往需要使用大量的实验动物样本来弱化个体差异引起的实验结果的偏差,因此会耗费大量实验资源和成本。而对于压迫程度不可逆的缺陷,目前还没有可靠的技术手段来实现。
发明内容
一方面,本公开的目的是提供一种自锁可逆夹紧装置,可以构建可逆的目标对象压迫的动物模型,并且能够避免手术等应激刺激对实验结果造成影响。
为了实现上述目的,本公开提供了一种自锁可逆夹紧装置,包括用于将所述自锁可逆夹紧装置固定在实验动物体内的固定支架、可转动地安装在所述固定支架上的旋转机构、驱动锁定机构和与所述旋转机构传动连接的夹紧机构,所述驱动锁定机构包括磁铁和锁定组件,所述磁铁能够响应于施加的外部旋转磁场以提供驱动所述旋转机构旋转的作用力,所述锁定组件能够响应于施加的外部旋转磁场以解锁所述旋转机构,所述锁定组件 在外部旋转磁场撤除后锁定所述旋转机构以使得旋转机构不能转动,所述夹紧机构能够响应于所述旋转机构的旋转以夹紧压迫或释放需要被夹紧压迫的目标对象。
在一个优选的实施例中,所述锁定组件包括铁芯、复位件、锁头和锁孔,所述铁芯能够在外部旋转磁场的作用下驱动所述锁头离开所述锁孔以解锁所述旋转机构,当所述外部旋转磁场撤除后所述复位件驱动所述铁芯插入所述锁孔中以锁定所述旋转机构。
在一个优选的实施例中,所述锁孔为锥形沉孔。
在一个优选的实施例中,所述复位件为弹簧。
在一个优选的实施例中,所述固定支架包括转轴,所述旋转机构包括转盘,所述转盘可转动地安装在所述转轴上,所述磁铁安装在所述转盘上,所述磁铁位于所述转盘的外侧部分。
在一个优选的实施例中,所述转盘上设置有外侧通孔和内侧通孔,所述外侧通孔与内侧通孔同轴设置,所述磁铁固定安装在所述外侧通孔中,所述铁芯可滑动地安装在所述内侧通孔中,所述锁头固定在所述铁芯上,所述复位件设置在所述铁芯和磁铁之间,所述锁孔开设在所述转轴上,所述锁孔围绕所述转轴的轴线均布。
在一个优选的实施例中,所述旋转机构还包括转筒,所述转筒可转动地套装在所述转轴上,所述转筒与所述转盘固定连接并且同轴设置,所述转筒的外径小于所述转盘的外径。
在一个优选的实施例中,所述自锁可逆夹紧装置还包括外壳,所述外壳固定在所述固定支架上,所述旋转机构设置在所述外壳内。
在一个优选的实施例中,所述夹紧机构包括锁紧带,所述锁紧带能够包裹在所述目标对象的外侧,所述外壳上开设有狭缝,所述锁紧带的一端连接在所述外壳的内侧或者狭缝边缘,所述锁紧带的另一端穿过所述狭缝与所述旋转机构连接。
在一个优选的实施例中,所述锁紧带采用生物相容性树脂制作。
在一个优选的实施例中,所述固定支架包括支腿和固定安装在所述支 腿上的转轴,所述支腿上开设有用于将所述支腿缝合固定在动物体内的过针孔。
本公开与现有技术的不同之处在于,本公开提供的自锁可逆夹紧装置安装在实验动物体内后,通过在动物体外部施加的正向外部旋转磁场,锁定组件响应该外部旋转磁场,解锁旋转机构,此时旋转机构能够在固定支架上旋转,同时磁铁在该外部旋转磁场的作用下会产生一个磁感应力,其方向为指向外部磁场的最大磁力线方向,即产生一个力驱使磁铁的磁极方向同外部磁场一致,从而驱动旋转机构旋转,旋转机构在旋转的同时驱动夹紧机构对目标对象(例如血管或神经压)施加夹紧压迫,当该外部旋转磁场被撤销时,锁紧组件锁定旋转机构,从而使得旋转机构不再转动,由于夹紧机构与旋转机构传动连接,因此夹紧机构也保持不动,此时可以对目标对象持续施加特定的压迫量;当需要改变对目标对象的压迫量时,只需再次在动物体外施加旋转磁场,通过控制旋转磁场的转动角度和圈数就可以精确调整控制夹紧机构施加在目标对象上的压迫力;例如,当需要减小目标对象所受到的压迫量时,只需施加反向的旋转磁场即可。因此,本公开提供的自锁可逆夹紧装置可以构建可逆的目标对象压迫的动物模型,同时,由于本公开提供的自锁可逆夹紧装置是通过非接触式施加外部旋转磁场来逐步对目标对象进行压迫,因此能够避免手术等应激刺激对实验结果造成影响。
本公开的另一个目的是提供一种旋转自锁机构,能够应用于自锁可逆夹紧装置,从而构建可逆的目标对象压迫的动物模型。
为了达到上述目的,本公开的技术方案是这样实现的:
一种旋转自锁机构,包括转轴、可转动地安装在所述转轴上的旋转机构和驱动锁定机构,所述驱动锁定机构包括磁铁和锁定组件,所述磁铁能够响应于施加的外部旋转磁场以提供驱动所述旋转机构旋转的作用力,所述锁定组件能够响应于施加的外部旋转磁场以解锁所述旋转机构,所述锁定组件在外部旋转磁场撤除后锁紧所述旋转机构以使得旋转机构不能转动。
在一个优选的实施例中,所述锁定组件包括铁芯、复位件、锁头和锁 孔,所述铁芯能够在外部旋转磁场的作用下驱动所述锁头离开所述锁孔以解锁所述旋转机构,当所述外部旋转磁场撤除后所述复位件驱动所述铁芯插入所述锁孔中以锁定所述旋转机构。
在一个优选的实施例中,所述锁孔为锥形沉孔;所述复位件为弹簧。
在一个优选的实施例中,所述旋转机构包括转盘,所述转盘可转动地安装在所述转轴上,所述磁铁安装在所述转盘上,所述磁铁位于所述转盘的外侧部分。
在一个优选的实施例中,所述转盘上设置有外侧通孔和内侧通孔,所述外侧通孔与内侧通孔同轴设置,所述磁铁固定安装在所述外侧通孔中,所述铁芯可滑动地安装在所述内侧通孔中,所述锁头固定在所述铁芯上,所述复位件设置在所述铁芯和磁铁之间,所述锁孔开设在所述转轴上,所述锁孔围绕所述转轴的轴线均布。
所述旋转自锁机构与上述的自锁可逆夹紧装置对于现有技术所具有的技术优势相同,在此不再赘述。
另一方面,本公开还提供了一种夹紧方法,能够对目标对象实现可逆的压迫。
为了达到上述目的,本公开的技术方案是这样实现的:
一种夹紧方法,用于目标对象的夹紧压迫,包括以下步骤:
S10、通过手术在实验动物体内固定安放夹紧装置,所述夹紧装置包括磁铁、锁定组件和夹紧机构,所述夹紧机构设置在所述目标对象的外侧;
S20、施加外部磁场,所述锁定组件响应于施加的外部磁场以解锁所述夹紧机构,同时所述磁铁响应于施加的外部磁场以提供作用力驱动所述夹紧机构夹紧或松开所述目标对象;
S30、撤除所述外部磁场,所述锁定组件锁紧所述夹紧机构。
在一些优选的实施例中,所述夹紧装置为上述的自锁可逆夹紧装置。
在本公开提供的夹紧方法中,通过控制施加的外部磁场的旋转方向,可以使得夹紧机构夹紧或松开目标对象,从而可以对目标对象实现可逆的夹紧压迫。
附图说明
图1是本公开一示例性实施例中一种自锁可逆夹紧装置示意图;
图2是图1所示的自锁可逆夹紧装置的主视图;
图3是图2中沿A-A方向的剖视图;
图4是图2中沿B-B方向的剖视图;
图5是图4中C处的放大图,驱动锁定机构处于解锁状态的结构示意图;
图6是图4中C处的放大图,驱动锁定机构处于锁定状态的结构示意图;
图7是本公开另一示例性实施例中一种夹紧方法的流程框图;
图中,1、固定支架;2、旋转机构;3、驱动锁定机构;4、封胶;5、外壳;6、目标对象;7、锁紧带;11、支腿;12、过针孔;13、锁孔;14、转轴;21、转盘;22、转筒;23、内侧通孔;24、外侧通孔;31、磁铁;32、复位件;33、铁芯;34、锁头;51、狭缝。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本公开进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的层结构示意图。这些图并非是按比例绘制的,其中为了清楚的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。 基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
下面结合附图,通过具体的实施例及其应用场景对本公开实施例提供的方案进行详细地说明。
参考图1、图2所示,本公开提供的基本实施例的自锁可逆夹紧装置包括用于将所述自锁可逆夹紧装置固定在实验动物体内的固定支架1、可转动地安装在所述固定支架1上的旋转机构2、驱动锁定机构3和与所述旋转机构2传动连接的夹紧机构。
其中所述固定支架1可以通过现有的各种适当方式固定在实验动物体内,为了便于固定支架1固定,所述固定支架1包括支腿11,支腿11的数量可以为1个或多个,当支腿11为多个时,多个支腿11围绕轴线呈放射状分布,例如图1中示出了具有3个支腿11的实施例。在所述支腿11上优选开设有用于将所述支腿11缝合固定在动物体内的过针孔12,以便通过手术缝合线将支腿11固定在动物体内时,手术缝合线可以牢固固定在支腿11上。其中每个支腿11上设置的过针孔12的数量也可以为1个或多个。
所述固定支架1设置有安装所述旋转机构2的部分,优选地,所述固定支架1包括转轴14,所述旋转机构2可转动地安装在转轴14上,所述旋转机构2和转轴14之间可以设置轴承等零件。所述转轴14与所述支腿11固定连接,即所述转轴14相对于所述支腿11固定不动。当支腿11的数量为多个时,多个支腿11围绕转轴14的轴线均布。
所述驱动锁定机构3包括磁铁31和锁定组件,所述磁铁31能够响应于施加的外部旋转磁场以提供驱动所述旋转机构2旋转的作用力。其中所述磁铁31为磁化的永磁体,优选为圆柱形永磁体,当外部磁场旋转时,磁 铁31会产生一个磁感应力,其方向为指向外部磁场的最大磁力线方向,即产生一个力驱使磁铁31的磁极方向同外部磁场一致,进而驱动旋转机构2随外部磁场的旋转一起旋转。
所述锁定组件能够响应于施加的外部旋转磁场以解锁所述旋转机构2,所述锁定组件在外部旋转磁场撤除后锁定所述旋转机构2以使得旋转机构2不能转动。即当施加外部磁场时,在外部磁场的作用下,锁定组件解锁旋转机构2,此时旋转机构2能够在磁铁31的驱动下旋转;当撤除施加的外部磁场后,锁定组件锁定将旋转机构2和固定支架1锁定在一起,此时旋转机构2不能转动,从而可以防止夹紧机构松弛。
所述夹紧机构能够响应于所述旋转机构2的旋转以夹紧压迫或释放需要被夹紧压迫的目标对象6。其中所述夹紧机构与旋转机构2传动连接,是指当旋转机构2旋转时,能够驱动夹紧机构夹紧或松开目标对象6,并且当旋转机构2不转动时,夹紧机构同步保持不动,即保持对目标对象6的夹紧压迫状态。
基于上述实施例提供的自锁可逆夹紧装置在使用时,首先通过手术,将自锁可逆夹紧装置安装在实验动物体内,然后通过在动物体外部施加的正向外部旋转磁场,锁定组件响应该外部旋转磁场,解锁旋转机构2,此时旋转机构2能够在固定支架1上旋转,与此同时,磁铁31在该外部旋转磁场的作用下会产生一个磁感应力,其方向为指向外部磁场的最大磁力线方向,即产生一个力驱使磁铁31的磁极方向同外部磁场一致,从而驱动旋转机构2旋转,旋转机构2在旋转的同时驱动夹紧机构对目标对象(例如血管或神经压)施加夹紧压迫,由于旋转机构2随着外部磁场的旋转而旋转,因此可以通过控制外部磁场的转动角度和圈数来精确控制夹紧机构对目标对象6施加的压迫量,保证压迫量的控制精度。
当该外部旋转磁场被撤销时,即没有外部磁场时,锁紧组件锁定旋转机构2,从而使得旋转机构2不再转动,由于夹紧机构与旋转机构2传动连接,因此夹紧机构也保持不动,此时可以对目标对象6持续施加特定的压迫量。当需要改变对目标对象的压迫量时,只需再次在动物体外施加旋 转磁场,通过控制旋转磁场的转动角度和圈数就可以精确调整控制夹紧机构施加在目标对象上的压迫力;当需要减小目标对象所受到的压迫量时,只需施加反向的旋转磁场即可。
在本公开中,所述锁定组件可以采用现有的各种可以非接触控制的锁定装置。在本公开的一个优选实施例中,参见图4、图5所示,所述锁定组件包括铁芯33、复位件32、锁头34和锁孔13。其中锁头34可以插入锁孔13中,以实现锁定功能,当锁头34从锁孔13中离开时,实现解锁功能。锁头34通过铁芯33驱动,锁头34与铁芯33可以传动连接,或者锁头34可以固定在铁芯33上,或者如图5所示,铁芯33和锁头34可以为一体结构。铁芯33会在外部磁场的作用下产生磁感应力,磁感应力的大小和方向由施加的磁场决定。因此,当外部磁场在铁芯33上产生的磁感应力大于复位件32对铁芯33的作用力时,铁芯33带动锁头34离开所述锁孔13,即铁芯33在外部旋转磁场的作用下驱动所述锁头34离开所述锁孔13,解锁所述旋转机构2。参考图6所示,当所述外部磁场撤除后,铁芯33上的磁场强度降低,所述复位件32驱动所述铁芯33插入所述锁孔13中,锁定所述旋转机构2。所以铁芯33能够响应磁场变化,带动锁头34实现自锁和解锁功能。
其中锁孔13的位置和数量可以根据需要设定,只要能够满足旋转机构2转动到设定的角度时,锁头34能够插入锁孔13即可。为了提高自锁可逆夹紧装置的可操作性,优选地,参考图5、图6所示,所述锁孔13围绕旋转机构2的转轴均布,相邻的锁孔13之间接触,锁孔13为沉孔。
进一步优选地,所述锁孔13为锥形沉孔,即锁孔13的外部(上端)大于内部(孔底)。将所述锁孔13设置为锥形沉孔,可以避免当旋转机构2实际转动角度与设定角度存在偏差时锁头34无法插入锁孔13的情况。
在本公开中,所述复位件32可以采用各种能够提供驱动锁头34向锁孔13移动的作用力(例如弹力、磁力等)的零部件。优选地,所述复位件32为弹簧,弹簧可以调整铁芯33对外部磁场变化的敏感度。图5中示出的复位件32为压簧。
在本公开中,所述旋转机构2可以采用能够在固定支架1上旋转的各种结构。在一个优选的实施例中,如图3所示,所述旋转机构2包括转盘21,所述转盘21可转动地安装在所述转轴14上,所述磁铁31安装在所述转盘21上,所述磁铁31位于所述转盘21的外侧部分。其中所述转盘21的外侧是指转盘21上离转盘21的旋转轴线较远的一侧。在本实施例中,通过将旋转机构2设置为转盘21,并将磁铁31安装在转盘21的外侧部分上,使得磁铁31可以与旋转轴承之间具有较大的距离,能够在相同驱动力下产生较大的扭矩,降低对外部旋转磁场的磁场强度的要求。
如图5、图6所示,在本公开的具体实施例中,在所述转盘21上设置有外侧通孔24和内侧通孔23,所述外侧通孔24与内侧通孔23同轴设置。其中内侧通孔23处于所述转盘21内侧位置,其直径比所述铁芯33稍大,比所述磁铁31小,能够给所述铁芯33和所述锁头34提供导向;其中外侧通孔24处于所述转盘21外侧位置,其直径比所述磁铁31稍大,用于安装所述磁铁31。在外侧通孔24的外端可以安装封胶4,将磁铁31固定在转盘21上,以防止磁铁31在外部磁场的变化时脱落。当然,外侧通孔24的外端也可以采用其他方式封堵,例如螺栓塞等。
所述铁芯33可滑动地安装在所述内侧通孔23中,所述锁头34固定在所述铁芯33上,所述复位件32设置在所述铁芯33和磁铁31之间,所述锁孔13开设在所述转轴14上,所述锁孔13围绕所述转轴14的轴线均布。
在上述实施例的基础上,进一步优选地,如图3、图4所示,所述旋转机构2还包括转筒22,所述转筒22可转动地套装在所述转轴14上,所述转筒22与所述转盘21固定连接并且同轴设置,所述转筒22的外径小于所述转盘21的外径。所述转筒22与转轴14之间可以具有间隙,或者通过轴承的零部件连接。在本实施例中,通过设置转筒22并使得转筒22具有较小的外径,当转筒22驱动夹紧机构时,使得磁铁31可以以较小的力驱动转筒22旋转。
在本公开中,所述夹紧机构用于将旋转运动转换成对目标对象的夹紧压迫或释放。根据实际实验需求,可以采用不同类型的夹紧机构。
在本公开中,优选地,如图1、图3所示,所述夹紧机构包括锁紧带7,锁紧带7能够包裹在所述目标对象6的外侧,锁紧带7的一端可以与固定支架1相连,所述锁紧带7的另一端与所述旋转机构2连接。当锁紧带7被收紧后可以对目标对象6形成卡压。所述锁紧带7优选地采用生物相容性树脂制作,使得锁紧带7具有较好的延展性和一定的弹性,在外力作用下产生弹性变形,在外力撤去后恢复初始形状,从而使得所述夹紧机构在反向旋转后能够更好地释放对血管或神经的压迫力。
为了减少旋转机构2的转动对动物体内的组织产生的影响,优选地所述自锁可逆夹紧装置还包括外壳5,所述外壳5固定在所述固定支架1上,具体地,外壳5可以通过胶水与固定支架1连接。所述旋转机构2设置在所述外壳5内。优选地,如图3所示,所述外壳5上开设有狭缝51,所述锁紧带7的一端连接在所述外壳5的内侧或者狭缝51边缘。所述锁紧带7的另一端穿过所述狭缝51与所述旋转机构2连接,即锁紧带7的另一端从外壳5外部经过狭缝51后与位于外壳5内部的旋转机构2连接。
为了更好的理解本公开,以下对本公开的一个较佳的实施例做具体说明。
如图1所示,本公开实施例提供一种自锁可逆夹紧装置,由旋转磁场控制,包括固定支架1、旋转机构2、外壳5、驱动锁定机构3和夹紧机构。固定支架1包括支腿11和与支腿11固定连接的转轴14。在支腿11上有过针孔12,可用手术缝合线将支腿11固定在动物体内,转轴14外侧装有旋转机构2,旋转机构2可以在转轴14上转动。
旋转机构2包括转盘21和转筒22,转盘21和转筒22可转动地安装在转轴14上,转筒22与转盘21同轴设置并且固定连接在转盘21上,使得转盘21可以随旋转磁场转动。
如图3-图5所示,转盘21上开设有内侧通孔23和外侧通孔24,用于驱动锁定机构3;驱动锁定机构3包括磁铁31和锁定组件,锁定组件包括复位件32(如弹簧)、铁芯33和锁头34和锁孔(13)。
其中磁铁31通过封胶4固定在转盘21的外侧通孔24内,并且通过弹 簧连接铁芯33;转轴14上有均匀环形排列的锁孔13;铁芯33顶端连接锁头34,铁芯33受到磁铁31和外部磁场的叠加磁场作用时,会产生磁感应力,且磁感应力的大小和方向由叠加磁场决定;如图5所示,当外部磁场方向和磁铁31磁场方向一致时,铁芯33的磁感应力最大,会压缩弹簧,使得锁头34离开锁孔13,从而允许转盘21转动;当外部磁场旋转时,磁铁31会产生一个磁感应力,其方向为指向外部磁场的最大磁力线方向,即产生一个力驱使磁铁31的磁极方向同外部磁场一致,进而驱动转盘21随外部磁场的旋转一起旋转;如图6所示,当撤去外部磁场后,铁芯33上的磁场强度降低,其磁感应力小于弹簧推力,弹簧推动铁芯33远离磁铁31,使得锁头34插入锁孔13,形成自锁,进而锁定夹紧机构。
外壳5包裹在旋转机构2外侧,用于保护血管或神经等目标对象6不会受到旋转机构2的可能存在的影响。
夹紧机构包括锁紧带7,锁紧带7一端固定在外壳5内侧,另一端包裹在血管或神经等目标对象6之后通过外壳5上的狭缝51连接到转筒22;当转盘21和转筒22正向旋转时,收紧锁紧带7,从而对血管或神经产生压迫;压迫程度由转盘21和转筒22的旋转角度和圈数决定;当转盘21和转筒22逆向旋转时,释放锁紧带7,从而减少对血管或神经的压迫,因此可以用于模拟压迫症状的缓解。
基于上述实施例提供的自锁可逆夹紧装置,本公开还提供了一种旋转自锁机构,可以用于在动物体内提供实施夹紧压迫等操作的驱动力。请参考图4,该旋转自锁机构包括转轴14、可转动地安装在所述转轴14上的旋转机构2和驱动锁定机构3。转轴14用于为所述旋转机构2提供转动所需的支撑轴,可以通过支腿等结构固定在动物体内。
请继续参考图4,其中所述旋转机构2可以通过轴承等零部件安装在转轴14上,用于提供旋转运动。所述驱动锁定机构3响应于施加的外部旋转磁场,提供驱动所述旋转机构2的力,并在外部旋转磁场撤除后提供锁定所述旋转机构2位置的功能;所述驱动锁定机构3包括磁铁31和锁定组件,所述磁铁31能够响应于施加的外部旋转磁场以提供驱动所述旋转机构 2旋转的作用力。磁铁31为磁化的永磁体,优选为圆柱形永磁体,安装在所述旋转机构2中,用于响应外部磁场,随着外部磁场方向的变化,会产生旋转力,以驱动所述旋转机构2转动。
所述锁定组件能够响应于施加的外部旋转磁场以解锁所述旋转机构2,所述锁定组件在外部旋转磁场撤除后锁紧所述旋转机构2以使得旋转机构2不能转动。
优选地,请参考图5和图6,所述锁定组件包括铁芯33、复位件32、锁头34和锁孔13,所述铁芯33能够在外部旋转磁场的作用下驱动所述锁头34离开所述锁孔13以解锁所述旋转机构2,当所述外部旋转磁场撤除后所述复位件驱动所述铁芯33插入所述锁孔13中以锁定所述旋转机构2。铁芯33可以安装在所述旋转机构2中,一端连接复位件32(例如弹簧),另一端连接锁头34,用于响应磁场强度变化,随着外部磁场和磁铁31的叠加磁场的变化,会产生不同大小的磁感应力,推动锁头34移动。弹簧处于所述磁铁31和铁芯33之间,产生推力将铁芯33推离磁铁31。锁孔13优选设置在转轴14上,为均匀环形排列的沉孔,为驱动锁定机构3提供锁定时所需要的固定力,其形状为外部大于内部的椎体沉孔。
请继续参考图5和图6,在上述结构中,当外部磁场施加到一定大小和方向后,铁芯33上的叠加磁场变大,磁感应力大于弹簧力时,弹簧被铁芯33压缩,所述铁芯33上的锁头34离开锁孔13,允许旋转机构2自由转动,当外部磁场撤除后,所述铁芯33仅受到磁铁31吸引,其磁感应力小于弹簧推力,锁头34会被推入锁孔13中,形成自锁。
如图3所示,所述旋转机构2包括转盘21,所述转盘21可转动地安装在所述转轴14上,所述磁铁31安装在所述转盘21上,所述磁铁31位于所述转盘21的外侧部分。转盘21的较大的直径可以使得相同驱动力下产生较大的扭矩。所述转盘21可以用于容纳所述驱动锁定机构3,具体地,所述转盘21上设置有外侧通孔24和内侧通孔23,所述外侧通孔24与内侧通孔23同轴设置。
内侧通孔23处于所述转盘21内侧位置(靠近转盘旋转轴线方向为内, 远离转盘旋转轴线方向为外),其直径比铁芯33稍大,比磁铁31小,用于给铁芯33和锁头34提供导向;外侧通孔24处于转盘21外侧位置,同所述内侧通孔23同心,其直径比磁铁31稍大,用于安装所述磁铁31。所述磁铁31固定安装在所述外侧通孔24中,外侧通孔24的外端开口通过封胶4封堵。
所述铁芯33可滑动地安装在所述内侧通孔23中,所述锁头34固定在所述铁芯33上,所述复位件32设置在所述铁芯33和磁铁31之间,所述锁孔13开设在所述转轴14上,所述锁孔13围绕所述转轴14的轴线均布。复位件32处于磁铁31和铁芯33之间,产生推力将铁芯33推离磁铁31,当外部磁场施加到一定大小和方向后,铁芯33上的叠加磁场变大,磁感应力大于复位件32的复位力时,复位件32被铁芯33压缩,铁芯33上的锁头34离开锁孔13,允许转盘21自由转动,当外部磁场撤除后,铁芯33仅受到磁铁31吸引,其磁感应力小于复位件32的复位力,锁头34会被推入锁孔13,形成自锁。其中复位件32可以为弹簧。
在转盘21的一端还可以安装转筒22,转筒22安装在转轴14外部,固定在转盘21侧面,随转盘21一起转动,以输出旋转运动。
同时,如图7所示,本公开还提供了一种夹紧方法,用于实验动物体内的目标对象的夹紧压迫,包括以下步骤:
S10、通过手术在实验动物体内固定安放夹紧装置,所述夹紧装置包括磁铁、锁定组件和夹紧机构,所述夹紧机构设置在所述目标对象的外侧。
S20、施加外部磁场,所述锁定组件响应于施加的外部磁场以解锁所述夹紧机构,同时所述磁铁响应于施加的外部磁场以提供作用力驱动所述夹紧机构夹紧或松开所述目标对象。
S30、撤除所述外部磁场,所述锁定组件锁紧所述夹紧机构。
其中在步骤S20中,可以根据夹紧装置的类型设置不同的外部磁场。优选地,所述外部磁场为旋转磁场,所述夹紧装置为上述实施例中记载的自锁可逆夹紧装置。通过施加外部旋转磁场,可以正向或者逆向驱动其内部旋转部件,对外部目标物体产生程度可控的压迫卡压或者释放。
综上,本公开的上述技术方案具有如下有益的技术效果:
本公开提供的自锁可逆夹紧装置和方法,可以通过手术植入到活体实验动物体内,并且可以等到实验动物在术后恢复后再通过非接触式施加外部旋转磁场来逐步进行夹紧,从而可以避免手术等应激刺激对实验结果造成的影响;在撤去外部磁场后,其内部的自锁装置会将位置自动锁定,从而使得在没有外部磁场的情况下仍然保持夹紧状态,进而能够对实验动物进行长时间慢性卡压实验;可以通过控制外部旋转磁场的转动角度和圈数来精确控制夹紧器的压迫量,从而保证压迫量的控制精度,避免了传统手术方法中人为结扎所产生的误差,使得实验结果更加稳定可靠;由于可重复性高,卡压程度和时间均可控,可以大大减少实验动物所需要的数量,从而提高实验速度和效率,并大大减少实验所需人力资源和成本。
以上实施方式的先后顺序仅为便于描述,不代表实施方式的优劣。
最后应说明的是:以上实施方式仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施方式对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施方式技术方案的精神和范围。

Claims (18)

  1. 一种自锁可逆夹紧装置,其特征在于,包括用于将所述自锁可逆夹紧装置固定在实验动物体内的固定支架(1)、可转动地安装在所述固定支架(1)上的旋转机构(2)、驱动锁定机构(3)和与所述旋转机构(2)传动连接的夹紧机构,所述驱动锁定机构(3)包括磁铁(31)和锁定组件,所述磁铁(31)能够响应于施加的外部旋转磁场以提供驱动所述旋转机构(2)旋转的作用力,所述锁定组件能够响应于施加的外部旋转磁场以解锁所述旋转机构(2),所述锁定组件在外部旋转磁场撤除后锁定所述旋转机构(2)以使得旋转机构(2)不能转动,所述夹紧机构能够响应于所述旋转机构(2)的旋转以夹紧压迫或释放需要被夹紧压迫的目标对象(6)。
  2. 根据权利要求1所述的自锁可逆夹紧装置,其特征在于,所述锁定组件包括铁芯(33)、复位件(32)、锁头(34)和锁孔(13),所述铁芯(33)能够在外部旋转磁场的作用下驱动所述锁头(34)离开所述锁孔(13)以解锁所述旋转机构(2),当所述外部旋转磁场撤除后所述复位件(32)驱动所述铁芯(33)插入所述锁孔(13)中以锁定所述旋转机构(2)。
  3. 根据权利要求2所述的自锁可逆夹紧装置,其特征在于,所述锁孔(13)为锥形沉孔。
  4. 根据权利要求2所述的自锁可逆夹紧装置,其特征在于,所述复位件(32)为弹簧。
  5. 根据权利要求2所述的自锁可逆夹紧装置,其特征在于,所述固定支架包括转轴(14),所述旋转机构(2)包括转盘(21),所述转盘(21)可转动地安装在所述转轴(14)上,所述磁铁(31)安装在所述转盘(21)上,所述磁铁(31)位于所述转盘(21)的外侧部分。
  6. 根据权利要求5所述的自锁可逆夹紧装置,其特征在于,所述转盘(21)上设置有外侧通孔(24)和内侧通孔(23),所述外侧通孔(24)与内侧通孔(23)同轴设置,所述磁铁(31)固定安装在所述外侧通孔(24)中,所述铁芯(33)可滑动地安装在所述内侧通孔(23)中,所述锁头(34)固定在所述铁芯(33)上,所述复位件(32)设置在所述铁芯(33)和磁铁(31)之间,所述锁孔(13)开设在所述转轴(14)上,所述锁孔(13)围绕所述转轴(14)的轴线均布。
  7. 根据权利要求6所述的自锁可逆夹紧装置,其特征在于,所述旋转机构(2)还包括转筒(22),所述转筒(22)可转动地套装在所述转轴(14)上,所述转筒(22)与所述转盘(21)固定连接并且同轴设置,所述转筒(22)的外径小于所述转盘(21)的外径。
  8. 根据权利要求1所述的自锁可逆夹紧装置,其特征在于,所述自锁可逆夹紧装置还包括外壳(5),所述外壳(5)固定在所述固定支架(1)上,所述旋转机构(2)设置在所述外壳(5)内。
  9. 根据权利要求8所述的自锁可逆夹紧装置,其特征在于,所述夹紧机构包括锁紧带(7),所述锁紧带(7)能够包裹在所述目标对象的外侧,所述外壳(5)上开设有狭缝(51),所述锁紧带(7)的一端连接在所述外壳(5)的内侧或者狭缝(51)边缘,所述锁紧带(7)的另一端穿过所述狭缝(51)与所述旋转机构(2)连接。
  10. 根据权利要求9所述的自锁可逆夹紧装置,其特征在于,所述锁紧带(7)采用生物相容性树脂制作。
  11. 根据权利要求1所述的自锁可逆夹紧装置,其特征在于,所述固定支架(1)包括支腿(11)和固定安装在所述支腿(11)上的转轴(14),所述支腿(11)上开设有用于将所述支腿(11)缝合固定在动物体内的过针孔(12)。
  12. 一种旋转自锁机构,其特征在于,包括转轴(14)、可转动地安装在所述转轴(14)上的旋转机构(2)和驱动锁定机构(3),所述驱动锁定机构(3)包括磁铁(31)和锁定组件,所述磁铁(31)能够响应于施加的外部旋转磁场以提供驱动所述旋转机构(2)旋转的作用力,所述锁定组件能够响应于施加的外部旋转磁场以解锁所述旋转机构(2),所述锁定组件在外部旋转磁场撤除后锁紧所述旋转机构(2)以使得旋转机构(2)不能转动。
  13. 根据权利要求12所述的旋转自锁机构,其特征在于,所述锁定组件包括铁芯(33)、复位件(32)、锁头(34)和锁孔(13),所述铁芯(33)能够在外部旋转磁场的作用下驱动所述锁头(34)离开所述锁孔(13)以解锁所述旋转机构(2),当所述外部旋转磁场撤除后所述复位件(32)驱动所述铁芯(33)插入所述锁孔(13)中以锁定所述旋转机构(2)。
  14. 根据权利要求13所述的旋转自锁机构,其特征在于,所述锁孔(13)为锥形沉孔;所述复位件(32)为弹簧。
  15. 根据权利要求13所述的旋转自锁机构,其特征在于,所述旋转机构(2)包括转盘(21),所述转盘(21)可转动地安装在所述转轴(14)上,所述磁铁(31)安装在所述转盘(21)上,所述磁铁(31)位于所述转盘(21)的外侧部分。
  16. 根据权利要求15所述的旋转自锁机构,其特征在于,所述转盘(21)上设置有外侧通孔(24)和内侧通孔(23),所述外侧通孔(24)与内侧通孔(23)同轴设置,所述磁铁(31)固定安装在所述外侧通孔(24)中,所述铁芯(33)可滑动地安装在所述内侧通孔(23)中,所述锁头(34)固定在所述铁芯(33)上,所述复位件(32)设置在所述铁芯(33)和磁铁(31)之间,所述锁孔(13)开设在所述转轴(14)上,所述锁孔(13)围绕所述转轴(14)的轴线均布。
  17. 一种夹紧方法,用于目标对象(6)的夹紧压迫,其特征在于,包括以下步骤:
    S10、通过手术在实验动物体内固定安放夹紧装置,所述夹紧装置包括磁铁、锁定组件和夹紧机构,所述夹紧机构设置在所述目标对象的外侧;
    S20、施加外部磁场,所述锁定组件响应于施加的外部磁场以解锁所述夹紧机构,同时所述磁铁响应于施加的外部磁场以提供作用力驱动所述夹紧机构夹紧或松开所述目标对象(6);
    S30、撤除所述外部磁场,所述锁定组件锁紧所述夹紧机构。
  18. 根据权利要求17所述的夹紧方法,其特征在于,所述夹紧装置为根据权利要求1所述的自锁可逆夹紧装置。
PCT/CN2022/129515 2022-07-12 2022-11-03 旋转自锁机构、自锁可逆夹紧装置及夹紧方法 WO2024011793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210815021.3 2022-07-12
CN202210815021.3A CN114948059B (zh) 2022-07-12 2022-07-12 旋转自锁机构、自锁可逆夹紧装置及夹紧方法

Publications (1)

Publication Number Publication Date
WO2024011793A1 true WO2024011793A1 (zh) 2024-01-18

Family

ID=82969598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129515 WO2024011793A1 (zh) 2022-07-12 2022-11-03 旋转自锁机构、自锁可逆夹紧装置及夹紧方法

Country Status (2)

Country Link
CN (1) CN114948059B (zh)
WO (1) WO2024011793A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114948059B (zh) * 2022-07-12 2022-09-30 吉林大学 旋转自锁机构、自锁可逆夹紧装置及夹紧方法
CN116637305B (zh) * 2023-06-20 2023-10-13 吉林大学 一种磁脉冲控制夹紧装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634678A (zh) * 2017-09-02 2018-01-26 王秀兰 一种可以在打开状态自锁的磁性夹紧器
CN211473703U (zh) * 2019-11-29 2020-09-11 徐志克 磁性锁
CN112357254A (zh) * 2020-11-11 2021-02-12 青岛龙泰科服饰有限公司 一种衣物自动折叠及复位装置
CN113042732A (zh) * 2021-03-09 2021-06-29 吉林大学 可植入生物体的3d打印磁控变形夹持装置及方法
US20210338299A1 (en) * 2020-04-29 2021-11-04 Smith & Nephew, Inc. Anatomical structure mounting apparatuses
CN114948059A (zh) * 2022-07-12 2022-08-30 吉林大学 旋转自锁机构、自锁可逆夹紧装置及夹紧方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513962C2 (sv) * 1997-10-02 2000-12-04 Rso Corp Stöldskyddsanordning
JP3356086B2 (ja) * 1998-11-30 2002-12-09 日本電気株式会社 ディスクのクランプ装置
US7390035B2 (en) * 2004-02-24 2008-06-24 D&D Group Pty Limited Self-latching magnetic latching device
JP2007284170A (ja) * 2006-04-13 2007-11-01 Kobelco Cranes Co Ltd 作業機械の旋回ロック装置
CN101611207B (zh) * 2007-01-06 2011-07-13 索斯科公司 磁性闩锁机构
DE102008045781A1 (de) * 2008-09-04 2010-03-11 Franz Haimer Maschinenbau Kg Induktive Spannvorrichtung für das Ein- und Ausspannen von Werkzeugen
JP5437413B2 (ja) * 2012-02-20 2014-03-12 タキゲン製造株式会社 管体把持金具及び管体把持装置
AU2014234963A1 (en) * 2013-03-22 2015-11-12 Perry John Underwood A magnetic clamping device
CN107610876A (zh) * 2017-09-03 2018-01-19 王秀兰 一种可以自锁的磁性夹紧器
DE202020105406U1 (de) * 2020-09-22 2020-10-07 Burg F.W. Lüling KG Verriegelungsvorrichtung
CN215033894U (zh) * 2021-05-07 2021-12-07 浙江三鸥机械股份有限公司 一种带锁的自紧夹头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634678A (zh) * 2017-09-02 2018-01-26 王秀兰 一种可以在打开状态自锁的磁性夹紧器
CN211473703U (zh) * 2019-11-29 2020-09-11 徐志克 磁性锁
US20210338299A1 (en) * 2020-04-29 2021-11-04 Smith & Nephew, Inc. Anatomical structure mounting apparatuses
CN112357254A (zh) * 2020-11-11 2021-02-12 青岛龙泰科服饰有限公司 一种衣物自动折叠及复位装置
CN113042732A (zh) * 2021-03-09 2021-06-29 吉林大学 可植入生物体的3d打印磁控变形夹持装置及方法
CN114948059A (zh) * 2022-07-12 2022-08-30 吉林大学 旋转自锁机构、自锁可逆夹紧装置及夹紧方法

Also Published As

Publication number Publication date
CN114948059A (zh) 2022-08-30
CN114948059B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024011793A1 (zh) 旋转自锁机构、自锁可逆夹紧装置及夹紧方法
US7479146B2 (en) Cranial burr hole plug and insertion tool
EP3060271B1 (en) Anchored mounting ring
JP3814538B2 (ja) 埋め込み型補聴器の改良された位置決め装置および方法
KR101415280B1 (ko) 이식물 연결장치
US10881868B2 (en) Torque limiting mechanism between a medical device and its implantation accessory
JP2016527033A (ja) 心外膜アンカーデバイス及び方法
WO2015195660A1 (en) Connector ring clamp and associated methods of use
CN104248457A (zh) 一种人工腱索装置、穿引元件及套件
CN105615953A (zh) 一种磁性吻合环
JPH11508175A (ja) 医療機器用クランプ
CN107374715B (zh) 一种固定紧密的颅骨锁
WO2023241534A1 (zh) 植入假体的递送设备、系统及制造方法
US10292700B2 (en) Anchor or staple with barbs
CN106362237A (zh) 一种注射泵用注射器夹紧装置
CN116943016A (zh) 一种心脏植入设备用固定器及其安装工具
JP2005534394A (ja) 生体壁の穴を閉塞するためのデバイスならびにそのようなデバイスを挿入するためのユニット
DE2310354A1 (de) Einstellmechanismus fuer herzschrittmacherrate unter anwenden einer magnetischen kopplung
CN204121092U (zh) 一种人工腱索装置、穿引元件及套件
CN216148287U (zh) 心尖垫片用系绳固定结构
CN114680983A (zh) 一种可选配组装的植入器械
CN113648108A (zh) 植入物输送手柄、植入物系统、输送系统及其工作方法
US20230380839A1 (en) Arteriovenous fistula banding device
US20190209852A1 (en) Lead anchor and suture device
US10039552B2 (en) Magnetically actuated gating devices, systems, kits, and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022950901

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022950901

Country of ref document: EP

Effective date: 20240318