WO2024011735A1 - 一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫 - Google Patents

一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫 Download PDF

Info

Publication number
WO2024011735A1
WO2024011735A1 PCT/CN2022/117078 CN2022117078W WO2024011735A1 WO 2024011735 A1 WO2024011735 A1 WO 2024011735A1 CN 2022117078 W CN2022117078 W CN 2022117078W WO 2024011735 A1 WO2024011735 A1 WO 2024011735A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyurethane foam
spray
parts
environmentally friendly
Prior art date
Application number
PCT/CN2022/117078
Other languages
English (en)
French (fr)
Inventor
信延垒
任丽
任洁洁
吴菲
Original Assignee
上海玓墨节能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海玓墨节能科技有限公司 filed Critical 上海玓墨节能科技有限公司
Publication of WO2024011735A1 publication Critical patent/WO2024011735A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/54Polycondensates of aldehydes
    • C08G18/544Polycondensates of aldehydes with nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1825Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4027Mixtures of compounds of group C08G18/54 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to a spray-type environmentally friendly polyurethane foam, in particular to a polyurethane foam used for container modular building insulation, and belongs to the technical field of organic material synthesis.
  • Containers have been Stahled by architects and designers to give full play to their flexibility and adaptability, showcasing a series of creative container modular buildings.
  • the outer shell of the container is a metal structure with a large thermal conductivity, and container module buildings are usually exposed to the outdoor environment, which is very detrimental to the indoor living environment. Therefore, compared with traditional building structure types, container module buildings must be thermally insulated and transformed to ensure a good indoor thermal environment.
  • Commonly used insulation materials include rock wool, polystyrene, glass wool, polyurethane, etc. Among them, polyurethane is the material with the best insulation performance.
  • the purpose of the present invention is to overcome the above shortcomings and provide a spray-type environmentally friendly polyurethane foam used for thermal insulation of container modular buildings, which greatly improves the safety and comfort of container modular buildings.
  • a spray-type environmentally friendly polyurethane foam used for container modular building insulation which is prepared by spraying component A and component B through spraying equipment, wherein component A includes the following components in parts by weight: 100 parts of polyol, 1-5 parts of surfactant, 2-10 parts of catalyst, 0.5-1.0 part of water, 20-30 parts of physical foaming agent, 10-20 parts of flame retardant; the polyol is melamine resin polyol and polyester Polyol, the weight ratio of the two is 30-50:50-70;
  • Component B is polyphenyl polymethylene polyisocyanate
  • the weight ratio of component A to component B is 100 ⁇ 102:100.
  • the melamine resin polyol in component A has a viscosity of 5000-15000mPa.s (25°C) and a hydroxyl value of 120-220mgKOH/g; the polyester polyol has a viscosity of 10000-15000mPa.s (25°C) , hydroxyl value is 150-200mgKOH/g.
  • the melamine resin polyol is selected from one of EDS-5083H and EDS-5083L of Jiangsu Changneng Energy Saving New Material Technology Co., Ltd. or a mixture of the two in any proportion.
  • the polyester polyol is selected from PS-3175 of Zibo Ruinuo Chemical Technology Co., Ltd.
  • the catalyst is a composite of foaming, gel and trimerization catalysts.
  • the foaming catalyst is a reactive amine catalyst, such as dimethylaminoethoxyethanol (DMAEE), dimethylethanolamine (DMEA). ), trimethylhydroxyethylpropanediamine, trimethylhydroxyethylethylenediamine (Dabco T), etc.; for gel catalysts, choose environmentally friendly organic bismuth catalysts, such as bismuth isooctanoate, bismuth neodecanoate, and lauric acid.
  • alkali metal catalysts such as potassium acetate, potassium oleate, potassium isooctanoate (K-15), etc.; trimethylhydroxyethylethylenediamine, bismuth isooctanoate and potassium isooctanoate are further preferred.
  • the best ratio is 3:1:2.
  • the water is preferably deionized water.
  • the physical foaming agent is an environmentally friendly fourth-generation HFO foaming agent, such as one or a mixture of two of monochlorotrifluoropropylene (LBA) and hexafluorobutene (FEA-1100).
  • LBA monochlorotrifluoropropylene
  • FEA-1100 hexafluorobutene
  • the surfactant is a non-silicon surfactant, and the LS series products of Shanghai Maihao New Material Technology Co., Ltd. and the LK series products of Evonik Group can be selected, and LS-6650 of Shanghai Maihao New Material Technology Co., Ltd. is further preferred. .
  • the flame retardants are TCPP (tris (2-chloropropyl) phosphate), TCEP (tris (2-chloroethyl) phosphate), TEP (triethyl phosphate), DMMP (dimethylphosphonate). Methyl ester), preferably a mixture of TCPP and TEP, with a preferred mass ratio of 1:1.
  • the polyphenyl polymethylene polyisocyanate has a viscosity of 150-700mPa.s (25°C) and an NCO mass fraction of 30-32%. It can be selected from Wanhua Group’s PM200, PM400, and PM700, and BASF’s M20S and M70L. Huntsman 5005, 5888, Covestro’s 44V20, 44V40, 44V70, South Korea’s Kumho M200, SR500, etc.
  • the above-mentioned preparation method of polyurethane foam adopts conventional methods.
  • component A it is only necessary to mix its components evenly in a mixing kettle with a stirring speed of 500 rpm with a safety device.
  • the mixing is preferably carried out in a stainless steel mixing kettle.
  • the mixing time is 0.5-1 hour, and after standing for 0.5-1 hour to defoaming, the component A is obtained by releasing.
  • the component A and component B are sprayed on the container corrugated enclosure by a polyurethane spraying machine.
  • the spraying equipment is preferably the American Graco A series, E series or H series, and the H series sprayer is further preferred; according to the operations well known to the spraying construction technicians, the pipeline heating temperature is set to 35-45°C, and the pipeline pressure is set to 1200- 1800psi.
  • Melamine resin polyol which is a polyol started from melamine.
  • the triazine ring and nitrogen element in the structure give the polyurethane foam good mechanical properties, flame retardancy and low smoke generation;
  • Phosphorus and chlorine compound flame retardant system improves the flame retardancy of the foam and reduces the amount of smoke generated when the foam burns
  • a reactive amine catalyst is used, which is incorporated into the polyurethane resin during the foam molding process, making it non-volatile; at the same time, non-toxic potassium and bismuth metal catalysts are used to ensure the safety of the internal environment of the building;
  • the fourth generation environmentally friendly foaming with zero ozone depletion (ODP) and low greenhouse gas effect (GWP) is used as a physical foaming agent.
  • the present invention ensures that the polyurethane foam material meets good mechanical properties and low thermal conductivity properties. , greatly improving the fire resistance, safety and comfort of the material.
  • the flame retardant performance of the polyurethane foam produced is judged to be B1 level according to the GB 8624-2012 combustion performance classification of building materials and products; according to ISO5660-1 fire reaction test - heat release, smoke production and mass loss rate, the 1st Part: Heat release rate (cone calorimeter method), test time 900 seconds, total heat release less than 20MJ/m2, total smoke generation less than 100m2/m2; thermal conductivity coefficient (K value) of polyurethane foam less than 0.0205W/ m ⁇ k, the thermal resistance value (R value) is greater than 7.0ft2 ⁇ h ⁇ °F/BTU.
  • Melamine resin polyol a EDS-5083L, hydroxyl value 200-220mgKOH/g, viscosity 5000-7000mPa.s, purchased from Jiangsu Changneng Energy Saving New Material Technology Co., Ltd.;
  • Polyester polyol b PS-3175, hydroxyl value 175-195mgKOH/g, viscosity 10000-12000mPa.s, purchased from Zibo Ruinuo New Materials Co., Ltd.;
  • Polyether polyol A SD-8345, hydroxyl value 430-470mgKOH/g, viscosity 6000-8000mPa.s, purchased from Shanghai Dongda Chemical Co., Ltd.
  • Polyester polyol PS-2412, hydroxyl value 240mgKOH/g, viscosity 4500mPa.s, purchased from Stepan Nanjing Chemical Co., Ltd.;
  • Surfactant LS-6650 was purchased from Shanghai Maihao Chemical Technology Co., Ltd.;
  • Polyurethane composite catalyst Dabco T, bismuth isooctanoate and K-15 were purchased from EVONIK;
  • the flame retardant TCPP was purchased from Jiangsu Falik Chemical Co., Ltd.;
  • the flame retardant TEP was purchased from Zhangjiagang Yarui Chemical Co., Ltd.;
  • Physical foaming agent LBA was purchased from Sinochem Blue Sky Honeywell New Materials Co., Ltd.;
  • Polyphenyl polymethylene polyisocyanate PM200 and PM700 were purchased from Wanhua Chemical.
  • component A consists of the following: melamine resin polyol, polyester polyol, surfactant, Catalyst, water, physical foaming agent, flame retardant; component B is polyphenyl polymethylene polyisocyanate; the specific weight ratio composition is shown in Table 1.
  • Preparation method Mix the raw materials of component A evenly in a mixing kettle with a safety device with a stirring speed of 500 rpm. It is best to mix in a stainless steel mixing kettle. The mixing time is 1 hour. Leave it for 1 hour to defoaming and then release. That is, component A is obtained. Component A and component B are sprayed on dry wooden boards or cement boards through a high-pressure polyurethane spraying machine to prepare polyurethane foam. Various properties were tested after the foam was matured for 48 hours.
  • a spray-type environmentally friendly polyurethane foam used for container module building insulation is prepared by reacting component A and component B.
  • the specific composition is as follows in Table 1.
  • the preparation method is the same as in Example 1.
  • Examples 1-6 of spray-type environmentally friendly polyurethane foam used for container module building insulation are as follows in Table 1.
  • a spray-type polyurethane foam is produced by the reaction of component A and component B;
  • component A consists of the following: polyether polyol, polyester polyol, surfactant, catalyst, water, physical foaming agent, resist Fuel agent;
  • Component B is polyphenylpolymethylene polyisocyanate; the specific weight ratio composition is shown in Table 2.
  • Preparation method Mix the raw materials of component A evenly in a mixing kettle with a safety device with a stirring speed of 500 rpm. It is best to mix in a stainless steel mixing kettle. The mixing time is 1 hour. Leave it for 1 hour to defoaming and then release. That is, component A is obtained. Component A and component B are sprayed on dry wooden boards or cement boards through a high-pressure polyurethane spraying machine to prepare polyurethane foam. Various properties were tested after the foam was matured for 48 hours.
  • a spray-type polyurethane foam is prepared by reacting component A and component B.
  • the specific composition is as follows in Table 2.
  • the preparation method is the same as Comparative Example 1.
  • the foam density adopts ASTM D1622, the compressive strength adopts ASTM D1621, the tensile strength adopts ASTM D1623, the closed cell ratio adopts ASTM D6226, the thermal conductivity adopts ASTM C518, the combustion performance classification adopts GB/T 8624-2012, and the total heat release adopts ISO 5660-1, the total smoke volume adopts ISO 5660-1.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Foam density, kg/m 3 43.5 42.2 42.7 43.8 42.5 41.5 Compressive strength, kPa 241 295 279 252 223 344 Tensile strength, kPa 286 335 308 297 273 386 Closed cell ratio, % 95.7 96.2 95.6 95.1 95.5 96.1 Thermal conductivity, mW/m.k (20°C) 19.82 20.21 20.17 20.34 20.45 20.03 Thermal resistance value, ft2 ⁇ h ⁇ °F/BTU 7.26 7.13 7.14 7.08 7.04 7.19 Combustion performance classification B1 B1 B1 B1 B1 Total heat release, MJ/m 2 12.3 17.6 15.8 16.9 17.5 8.7 Total smoke generation, m 2 /m 2 47.6 56.9 50.2 76.3 85.6 35.1
  • Comparative example 1 Comparative example 2 Comparative example 3
  • Compressive strength kPa 175 158 218
  • Tensile strength kPa 236 192 241 Closed cell ratio, % 96.2 95.7 95.9 Thermal conductivity, mW/m.k (20°C) 20.13 20.05 20.20
  • Thermal resistance value ft2 ⁇ h ⁇ °F/BTU 7.15 7.18 7.13
  • the polyurethane foam materials prepared in Examples 1-6 have good mechanical properties and low thermal conductivity, and the foam combustion performance reaches GB 8624B1 level; the total heat release during the foam combustion process is less than 20MJ/m 2 , the total smoke generation is less than 100m 2 /m 2 .
  • the fireproof performance of the polyurethane foam prepared by the invention meets the requirements of the domestic regulations "Code for Fire Protection Design of Buildings" GB 50016, and simultaneously meets the requirements of Australian and New Zealand market regulations, and is exported to New Zealand for container modular building insulation.
  • the combustion performance value of the polyurethane foam prepared in Comparative Examples 1-3 reaches B2 or B3, and the heat release during the combustion process is high and a large amount of smoke is generated, which cannot meet the requirements, and the strength of the polyurethane foam is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,由组分A和组分B经喷涂设备喷涂制得,其中组分A包括按照重量份数计的如下成分:多元醇100份、表面活性剂1-5份、催化剂2-10份、水0.5-1.0份、物理发泡剂20-30份、阻燃剂10-20份;所述的多元醇为密胺树脂多元醇和聚酯多元醇,两者重量比例为30-50:50-70;组分B为多苯基多亚甲基多异氰酸酯。本发明通过加入密胺树脂多元醇、复合阻燃剂、三类复合催化剂、环保物理发泡剂及改变原料组分比例,在保证聚氨酯泡沫材料满足良好的机械性能、低导热系数性能的基础上,大大提高了材料的防火性、安全性和舒适性。

Description

一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫 技术领域
本发明涉及一种喷涂型环保聚氨酯泡沫,特别涉及一种用于集装箱模块化建筑保温的聚氨酯泡沫,属于有机材料合成技术领域。
背景技术
随着经济的发展,集装箱行业也迎来了前所未有的发展机遇,但是发展过程中也难免出现亟待解决的难题,如空置的集装箱占用大面积的土地、维护费用高、废旧集装箱的回收利用等问题。为了能够安全、低碳、环保、节约、高效地解决这些问题,人们通常将废旧的集装箱改造成供人们居住和生活的模块化建筑房屋。
集装箱经过建筑师和设计师重新改造,充分发挥其灵活性和适应性强的特质,展示出一系列富有创造力的集装箱模块化建筑。如集装箱酒店、集装箱博物馆、集装箱学生公寓、军营等。而集装箱的外围护构件为金属结构,其导热系数很大,且集装箱模块建筑通常是暴露在室外环境中,对室内的居住环境非常不利。因此,较之传统的建筑结构类型,必须对集装箱模块建筑进行保温隔热改造,以保证良好的室内热环境。常用的保温材料有岩棉、聚苯乙烯、玻璃棉、聚氨酯等,其中聚氨酯是保温性能最优的材料。经喷涂施工可制得连续、无缝隙的整体保温体系,有效防止冷热桥和冷凝现象,且保温层与基材100%粘接。现有的喷涂型聚氨酯泡沫材料有不少,但它是易燃有机材料,一般通过添加阻燃剂来提高聚氨酯泡沫的阻燃性,但对于集装箱维护的聚氨酯材料不仅机械性能要求高,难燃级别要求也高需满足建筑防火规范要求,还要使用环保、无毒的原料,确保室内居住环境的安全性和舒适性,通常能满足利用的力学等方面性能要求的聚氨酯材料直接加阻燃剂很难实现。
发明内容
本发明的目的是克服上述不足而提供一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,大大提高了集装箱模块建筑的安全性和舒适性。
本发明采取的技术方案为:
一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,由组分A和组分B经喷涂设备喷涂制得,其中组分A包括按照重量份数计的如下成分:多元醇100份、表面活性剂1-5份、催化剂2-10份、水0.5-1.0份、物理发泡剂20-30份、阻燃剂10-20份;所述的多元醇为密胺树脂多元醇和聚酯多元醇,两者重量比例为30-50:50-70;
组分B为多苯基多亚甲基多异氰酸酯;
组分A与组分B的重量比例为100~102:100。
所述的组分A中密胺树脂多元醇,粘度为5000-15000mPa.s(25℃),羟值为120-220mgKOH/g;聚酯多元醇,粘度为10000-15000mPa.s(25℃),羟值为150-200mgKOH/g。
所述的密胺树脂多元醇选江苏长能节能新材料科技有限公司的EDS-5083H、EDS-5083L中的一种或者两种的任意比例混合物。
所述的聚酯多元醇选自淄博瑞诺化工科技有限公司的PS-3175。
所述的催化剂为发泡型、凝胶型和三聚型催化剂三者复合,发泡型催化剂选反应型胺类催化剂,如二甲氨基乙氧基乙醇(DMAEE)、二甲基乙醇胺(DMEA)、三甲基羟乙基丙二胺、三甲基羟乙基乙二胺(Dabco T)等;凝胶型催化剂选环保型有机铋催化剂,如异辛酸铋、新癸酸铋、月桂酸铋等;三聚型催化剂选碱金属催化剂,如醋酸钾、油酸钾、异辛酸钾(K-15)等;进一步优选三甲基羟乙基乙二胺、异辛酸铋和异辛酸钾三者复配,较佳的比例为3:1:2。
所述的水优选为去离子水。
所述的物理发泡剂为环保型第四代HFO发泡剂,如一氯三氟丙烯(LBA)、六氟丁烯(FEA-1100)中的一种或两种的混合物。
所述的表面活性剂为非硅表面活性剂,可选上海麦豪新材料科技有限公司的LS系列产品、赢创集团的LK系列产品,进一步优选上海麦豪新材料科技有限公司的LS-6650。
所述的阻燃剂为TCPP(三(2-氯丙基)磷酸酯)、TCEP(三(2-氯乙基)磷酸酯)、TEP(磷酸三乙酯)、DMMP(甲基膦酸二甲酯)中的一种或几种,较佳的为TCPP与TEP混合物,优选质量比为1:1。
所述的多苯基多亚甲基多异氰酸酯,粘度150-700mPa.s(25℃),NCO质量分数30-32%,可选万华集团的PM200、PM400、PM700,巴斯夫的M20S、M70L,亨斯迈5005、5888,科思创的44V20、44V40、44V70,韩国锦湖的M200,SR500等。
上述的聚氨酯泡沫的制备方法采用常规方法,组分A在制备时只需将其各成分在具有安全装置的搅拌速度为500rpm的混合釜中均匀混合,混合时最好在不锈钢混合釜内进行,混合时间0.5-1小时,静置0.5-1小时消泡后,放出即得组分A;将组分A和组分B经聚氨酯喷涂机器喷涂在集装箱波纹围护板上制备而成。喷涂设备优选美国固瑞克A系、E系或H系,进一步优选H系喷涂机;按照喷涂施工工艺员熟知的操作,管路加热温度设定35-45℃,管路压力设定1200-1800psi。
本发明的优势在于:
1)采用密胺树脂多元醇,其为三聚氰胺起始的多元醇,结构中的三嗪环体和氮元素赋予聚氨酯泡沫良好的机械性能、阻燃性和低生烟量;
2)磷、氯复合的阻燃剂体系,提高泡沫的阻燃性,降低泡沫燃烧时的生烟量;
3)采用反应型胺催化剂,在泡沫成型过程中结合到聚氨酯树脂中,从而无挥发性;同时采用无毒的钾和铋金属催化剂,保证了建筑内环境的安全性;
4)采用低羟值多元醇和低水量,提高泡沫的NCO指数,形成异氰脲酸酯六元环状结构,提高泡沫的耐火焰贯穿能力和降低泡沫燃烧时的生烟量;
5)采用了零臭氧消耗(ODP)、低温室气体效应(GWP)的第四代环保发泡为物理发泡剂。
本发明通过加入密胺树脂多元醇、复合阻燃剂、三类复合催化剂、环保物理发泡剂及改变原料组分比例,在保证聚氨酯泡沫材料满足良好的机械性能、低导热系数性能的基础上,大大提高了材料的防火性、安全性和舒适性。制得的聚氨酯泡沫的阻燃性能依据GB 8624-2012建筑材料及制品燃烧性能分级判定可燃性为B1级;依据ISO5660-1对火反应试验—热释放、产烟量及质量损失率,第1部分:热释放速率(锥形量热仪法),测试时间900秒,总热释放量小于20MJ/m2,总生烟量小于100m2/m2;聚氨酯泡沫的导热系数(K值)小于0.0205W/m·k,热阻值(R值)大于7.0ft2·h·℉/BTU。
具体实施方式
为了能够详细地阐述本发明的技术方案,下面结合典型实施例对本发明做进一步说明。
以下实施例中所用到的原料来源如下:
密胺树脂多元醇a:EDS-5083L,羟值200-220mgKOH/g,粘度5000-7000mPa.s,购于江苏长能节能新材料科技有限公司;
聚酯多元醇b:PS-3175,羟值175-195mgKOH/g,粘度10000-12000mPa.s,购于淄博瑞诺新材料股份有限公司;
聚醚多元醇A:SD-8345,羟值430-470mgKOH/g,粘度6000-8000mPa.s,购于上海东大化学有限公司
聚酯多元醇:PS-2412,羟值240mgKOH/g,粘度4500mPa.s,购于斯泰潘南京化学有限公司;
表面活性剂LS-6650,购于上海麦豪化工科技有限公司;
聚氨酯复合催化剂Dabco T、异辛酸铋和K-15购于EVONIK;
阻燃剂TCPP购于江苏法力克化工有限公司;
阻燃剂TEP购于张家港雅瑞化工有限公司;
物理发泡剂LBA购于中化蓝天霍尼韦尔新材料有限公司;
多苯基多亚甲基多异氰酸酯PM200、PM700购于万华化学。
实施例1
一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,由组分A和组分B反应制得;其中组分A组成如下:密胺树脂多元醇、聚酯多元醇、表面活性剂、催化剂、水、物理发泡剂、阻燃剂;组分B为多苯基多亚甲基多异氰酸酯;具体重量份比组成见表1。
制备方法:将组分A各原料在具有安全装置的搅拌速度为500rpm的混合釜中均匀混合,混合时最好在不锈钢混合釜内进行,混合时间1小时,静置1小时消泡后,放出即得组分A。将组分A和组分B经聚氨酯高压喷涂机器喷涂在干燥的木板或者水泥板上制备聚氨酯泡沫。泡沫熟化48小时后测试各项性能。
实施例2-6
一种用于集装箱模块建筑保温的喷涂型环保聚氨酯泡沫,由组分A和组分B反应制得,具体组成如下表1,制备方法同实施例1。
制备用于集装箱模块建筑保温的喷涂型环保聚氨酯泡沫实施例1-6的配方如下表1。
表1
Figure PCTCN2022117078-appb-000001
对比例1
一种喷涂型聚氨酯泡沫,由组分A和组分B反应制得;其中组分A组成如下:聚醚多元 醇、聚酯多元醇、表面活性剂、催化剂、水、物理发泡剂、阻燃剂;组分B为多苯基多亚甲基多异氰酸酯;具体重量份比组成见表2。
制备方法:将组分A各原料在具有安全装置的搅拌速度为500rpm的混合釜中均匀混合,混合时最好在不锈钢混合釜内进行,混合时间1小时,静置1小时消泡后,放出即得组分A。将组分A和组分B经聚氨酯高压喷涂机器喷涂在干燥的木板或者水泥板上制备聚氨酯泡沫。泡沫熟化48小时后测试各项性能。
对比例2-3
一种喷涂型聚氨酯泡沫,由组分A和组分B反应制得,具体组成如下表2,制备方法同对比例1。
制备喷涂型聚氨酯泡沫对比例1-3的配方如下表2。
表2
Figure PCTCN2022117078-appb-000002
制得的聚氨酯泡沫的性能测试采用以下标准:
泡沫密度采用ASTM D1622,抗压强度采用ASTM D1621,拉伸强度采用ASTM D1623,闭孔率采用ASTM D6226,导热系数采用ASTM C518,燃烧性能分级采用GB/T 8624-2012,总热释放量采用ISO 5660-1,总生烟量采用ISO 5660-1。
实施例1-6制得的聚氨酯泡沫的性能如下表3。
表3
项目 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
泡沫密度,kg/m 3 43.5 42.2 42.7 43.8 42.5 41.5
抗压强度,kPa 241 295 279 252 223 344
拉伸强度,kPa 286 335 308 297 273 386
闭孔率,% 95.7 96.2 95.6 95.1 95.5 96.1
导热系数,mW/m.k(20℃) 19.82 20.21 20.17 20.34 20.45 20.03
热阻值,ft2·h·℉/BTU 7.26 7.13 7.14 7.08 7.04 7.19
燃烧性能分级 B1 B1 B1 B1 B1 B1
总热释放量,MJ/m 2 12.3 17.6 15.8 16.9 17.5 8.7
总生烟量,m 2/m 2 47.6 56.9 50.2 76.3 85.6 35.1
对比例1-3制得的聚氨酯泡沫的性能如下表4。
表4
项目 对比例1 对比例2 对比例3
泡沫密度,kg/m 3 44.3 43.7 43.5
抗压强度,kPa 175 158 218
拉伸强度,kPa 236 192 241
闭孔率,% 96.2 95.7 95.9
导热系数,mW/m.k(20℃) 20.13 20.05 20.20
热阻值,ft2·h·℉/BTU 7.15 7.18 7.13
燃烧性能分级 B2 B2 B3
总热释放量,MJ/m 2 31.6 25.8 35.3
总生烟量,m 2/m 2 375.1 307.4 483.7
经测试,实施例1-6所制备的聚氨酯泡沫材料能具有良好的机械性能、低导热系数,且泡沫的燃烧性能达到了GB 8624B1级;泡沫燃烧过程中的总热释放量小于20MJ/m 2,总生烟量小于100m 2/m 2。本发明制备的聚氨酯泡沫防火性能满足国内法规《建筑设计防火规范》GB 50016要求,同时满足澳新市场法规要求,并出口至新西兰用于集装箱模块化建筑保温。而对比例1-3所制备的聚氨酯泡沫燃烧性能值达到B2或者B3,且燃烧过程的热释放量高,并生成大量的烟,不能满足要求,且聚氨酯泡沫的强度较低。
上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,由组分A和组分B经喷涂设备喷涂制得,其特征是,其中组分A包括按照重量份数计的如下成分:多元醇100份、表面活性剂1-5份、催化剂2-10份、水0.5-1.0份、物理发泡剂20-30份、阻燃剂10-20份;所述的多元醇为密胺树脂多元醇和聚酯多元醇,两者重量比例为30-50:50-70;
    组分B为多苯基多亚甲基多异氰酸酯;
    组分A与组分B的重量比例为100~102:100。
  2. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的组分A中密胺树脂多元醇,粘度为5000-15000mPa.s(25℃),羟值为120-220mgKOH/g;聚酯多元醇,粘度为10000-15000mPa.s(25℃),羟值为150-200mgKOH/g。
  3. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的催化剂为发泡型、凝胶型和三聚型催化剂三者复合,发泡型催化剂选反应型胺类催化剂,凝胶型催化剂选环保型有机铋催化剂,三聚型催化剂选碱金属催化剂。
  4. 根据权利要求3所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的催化剂为三甲基羟乙基乙二胺、异辛酸铋和异辛酸钾三者复配。
  5. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的物理发泡剂为环保型第四代HFO发泡剂一氯三氟丙烯、六氟丁烯中的一种或两种混合。
  6. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的阻燃剂为TCPP、TCEP、TEP、DMMP中的一种或几种。
  7. 根据权利要求6所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的阻燃剂为TCPP与TEP的混合物。
  8. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的多苯基多亚甲基多异氰酸酯,粘度为150-700mPa.s(25℃),NCO质量分数30-32%。
  9. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,所述的表面活性剂为非硅表面活性剂。
  10. 根据权利要求1所述的一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫,其特征是,组分A在制备时只需将其各成分在具有安全装置的搅拌下的混合釜中均匀混合,混合时间0.5-1小时,静置0.5-1小时消泡后,放出即得组分A;将组分A和组分B经聚氨酯喷涂机器喷涂在集装箱波纹围护板上制备而成。
PCT/CN2022/117078 2022-07-14 2022-09-05 一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫 WO2024011735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210824619.9A CN115073695B (zh) 2022-07-14 2022-07-14 一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫
CN202210824619.9 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024011735A1 true WO2024011735A1 (zh) 2024-01-18

Family

ID=83258796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117078 WO2024011735A1 (zh) 2022-07-14 2022-09-05 一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫

Country Status (2)

Country Link
CN (1) CN115073695B (zh)
WO (1) WO2024011735A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284649B (zh) * 2023-04-10 2024-04-05 上海玓墨节能科技有限公司 一种防火封堵聚氨酯泡沫及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947362A (zh) * 2010-04-21 2013-02-27 陶氏环球技术有限责任公司 泡沫体绝缘装置
CN105906777A (zh) * 2016-05-08 2016-08-31 南通紫鑫实业有限公司 聚氨酯pir泡沫材料
CN105968302A (zh) * 2016-05-27 2016-09-28 江苏长顺高分子材料研究院有限公司 用于超低温lng储罐储保冷用聚氨酯喷涂组合料及其制备方法
CN108727551A (zh) * 2017-04-19 2018-11-02 科思创德国股份有限公司 一种硬质聚氨酯泡沫及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2970571B1 (en) * 2013-03-15 2020-11-25 Stepan Company Polyester polyols imparting improved flammability properties
CN104130368B (zh) * 2014-07-21 2016-09-21 万华节能科技集团股份有限公司 一种阻燃聚氨酯浇注硬质泡沫塑料板材
CN109306050A (zh) * 2017-07-26 2019-02-05 北京市建筑工程研究院有限责任公司 一种有砟轨道用阻燃聚氨酯道砟胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947362A (zh) * 2010-04-21 2013-02-27 陶氏环球技术有限责任公司 泡沫体绝缘装置
CN105906777A (zh) * 2016-05-08 2016-08-31 南通紫鑫实业有限公司 聚氨酯pir泡沫材料
CN105968302A (zh) * 2016-05-27 2016-09-28 江苏长顺高分子材料研究院有限公司 用于超低温lng储罐储保冷用聚氨酯喷涂组合料及其制备方法
CN108727551A (zh) * 2017-04-19 2018-11-02 科思创德国股份有限公司 一种硬质聚氨酯泡沫及其制备方法与应用

Also Published As

Publication number Publication date
CN115073695B (zh) 2023-03-21
CN115073695A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN102464880B (zh) 一种阻燃型聚氨酯材料、制备方法及其应用
US9834638B2 (en) Process for preparing rigid polyisocyanurate foams using natural-oil polyols
CA2737162C (en) Polyurethane foam compositions and process for making same
CN103183806B (zh) 一种高阻燃硬质聚氨酯泡沫材料及其制备方法
CN102167949B (zh) HFC-365mfc/227型环保聚氨酯喷涂组合料及其制备方法
CN102229697B (zh) 一种太阳能聚氨酯保温材料
CN108164737A (zh) 一种组合聚醚、聚氨酯原料组合物、聚氨酯泡沫及其制备方法
WO2024011735A1 (zh) 一种用于集装箱模块化建筑保温的喷涂型环保聚氨酯泡沫
CN115536801B (zh) 一种保冷高阻燃喷涂型硬质聚氨酯泡沫及其制备方法
CN109749613A (zh) 一种环境友好型喷涂用组合聚醚、聚氨酯泡沫及其原料组合物和制备方法
CN105384902B (zh) 一种建筑保温用新型环保阻燃聚氨酯材料
CN109749039A (zh) 阻燃型热水器水箱用组合聚醚、阻燃聚氨酯保温泡沫及其制备方法
CN109354669A (zh) 一种接入磷杂菲基团的高效阻燃硬质聚氨酯泡沫材料
CN110845697B (zh) 一种聚氨酯阻燃泡沫材料
CN104892892A (zh) 用于地下车库喷涂的聚氨酯组合料及其制备方法
CN115093553B (zh) 四溴双酚a聚醚酯多元醇及制备方法、聚氨酯硬泡及制备方法
CN107400351A (zh) 聚氨酯硬泡外墙阻燃保温材料及其制备方法
CN105061715A (zh) 一种用于板材聚氨酯塑料的HFC-245eb型组合聚醚及其制备方法
CN104311788A (zh) 聚异氰脲酸酯改性高阻燃聚氨酯喷涂材料及其制备方法
CN114316187A (zh) 一种低密度低烟毒性高阻燃聚氨酯硬质泡沫及其制备方法
CN114479006A (zh) 适用于冷库滑雪场建筑内保温的结构性阻燃聚氨酯泡沫材料
Naruse et al. Development of all water-blown polyisocyanurate foam system for metal-faced continuous sandwich panels
CN107266902A (zh) 一种改性喷涂阻燃型硬泡聚氨酯材料及其制备方法
CN105906775A (zh) 超低gwp环保型工程喷涂聚氨酯保温材料及制备方法
CN109438664A (zh) 家电用阻燃性硬泡聚氨酯材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950846

Country of ref document: EP

Kind code of ref document: A1