WO2024010054A1 - 摩擦材 - Google Patents

摩擦材 Download PDF

Info

Publication number
WO2024010054A1
WO2024010054A1 PCT/JP2023/025047 JP2023025047W WO2024010054A1 WO 2024010054 A1 WO2024010054 A1 WO 2024010054A1 JP 2023025047 W JP2023025047 W JP 2023025047W WO 2024010054 A1 WO2024010054 A1 WO 2024010054A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
average particle
friction material
titanate
particle diameter
Prior art date
Application number
PCT/JP2023/025047
Other languages
English (en)
French (fr)
Inventor
克稔 近田
春香 栗原
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2024010054A1 publication Critical patent/WO2024010054A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Definitions

  • the present invention relates to a friction material used for brake pads, brake linings, clutch facings, etc. of automobiles, railway vehicles, industrial machines, etc.
  • Friction materials used in brakes such as disc brakes and drum brakes, or clutches, etc. consist of a fiber base material that provides reinforcement, a friction modifier that provides friction and adjusts its friction performance, and these components. It consists of raw materials such as binding materials that integrate the
  • Conventional friction materials have used materials containing copper components, such as copper fibers and copper powder, for various purposes.
  • the copper component has high ductility and malleability, so when the friction material and the mating material (disc rotor) are braking, the components of the friction material composition are transferred to the surface of the mating material, forming a transfer film. easy to form. It is thought that this transferred film acts as a protective film, thereby maintaining the friction coefficient and suppressing wear of the mating material. Controlling the formation of the transferred film is thus important from the viewpoint of improving brake characteristics.
  • Patent Document 1 and Patent Document 2 are intended to increase the amount of a transferred film on the surface of the mating material in order to compensate for the role of copper. is not listed.
  • the transfer film is too restricted, stabilization of the coefficient of friction and suppression of wear will be impaired, so it is desired to obtain a friction material that forms a uniform and appropriate transfer film.
  • brake vibration is likely to occur due to uneven temperature rise on the surface of the mating material.
  • the cause of brake vibration is that the surface pressure of the friction material increases locally due to the vibration of the disc rotor, and there is concern that the transfer and adhesion friction to the surface of the mating material will become uneven.
  • an object of the present invention is to provide a friction material that can appropriately form a transfer film and suppress the occurrence of brake vibration even though it does not substantially contain a copper component.
  • the present inventors solved the above problem by not containing inorganic particles having a specific particle size and specific hardness, but by containing inorganic particles having a specific particle size and specific hardness, and containing titanate having a specific particle size. I found out what I can do. That is, the present invention is as follows. [1] A friction material containing a friction modifier, a binder, and a fiber base material, Does not contain inorganic particles with an average particle diameter of 3 ⁇ m or less and a Mohs hardness of 6 or more, Contains inorganic particles with an average particle diameter of 15 to 60 ⁇ m and a Mohs hardness of 6 or more, A friction material containing titanate having an average particle diameter of 20 ⁇ m or more and containing no copper component.
  • the degree of transfer of the titanate transfer film formed instead of the copper component transfer film can be controlled by the titanate having a relatively large average particle size. Furthermore, by containing inorganic particles with a large average particle size as the abrasive material without containing inorganic particles with a small average particle size that are easily incorporated into the transfer film, the occurrence of local adhesion on the surface of the mating material is suppressed. can. As a result, a transfer film can be appropriately formed and a friction material having high wear characteristics can be obtained even if it does not substantially contain a copper component.
  • the friction material of the present invention does not contain a copper component.
  • "contains no copper component” means that the copper component is not substantially contained as an active component for exerting functions such as wear resistance. This does not mean that even a small amount of copper components, such as impurities, are not included.
  • the copper component mixed as an impurity etc. is 0.5% by mass or less.
  • the friction material of the present invention contains a friction modifier, a fiber base material, and a binder.
  • Friction modifiers are used to impart desired friction properties such as wear resistance, heat resistance, and fade resistance to friction materials.
  • the inorganic particles having a Mohs hardness of 6 or more function as an abrasive among the friction modifiers, and the titanate functions as an inorganic filler among the friction modifiers.
  • abrasive material is a component that is blended for the purpose of grinding the mating disc rotor and increasing the coefficient of friction.
  • the smaller the average particle diameter the milder the abrasive, but if it is too small, it becomes difficult to obtain the effect as an abrasive, and it is necessary to use a large amount of the abrasive in order to obtain the abrasive effect.
  • the smaller the average particle diameter the easier the abrasive material is incorporated into the transfer film, and when the abrasive material is incorporated into the transfer film, the friction coefficient between the surface of the mating material with and without the transfer film increases. Differences are likely to occur. From this viewpoint, the friction material of the present invention does not contain inorganic particles (hereinafter also referred to as inorganic particles (A)) having an average particle diameter of 3 ⁇ m or less and a Mohs hardness of 6 or more.
  • inorganic particles (A) having an average particle diameter of 3 ⁇ m or less and a
  • the friction material of the present invention contains inorganic particles (hereinafter also referred to as inorganic particles (C)) having an average particle diameter of 15 to 60 ⁇ m and a Mohs hardness of 6 or more.
  • inorganic particles having a specific large particle size as the abrasive, a transfer film is appropriately formed during braking, and the abrasive material has high wear characteristics and is appropriately given aggressiveness to the mating material.
  • the average particle diameter of the inorganic particles (C) is preferably 17 to 50 ⁇ m, more preferably 20 to 40 ⁇ m.
  • the content of the inorganic particles (C) in the friction material is preferably 1 to 10% by mass, more preferably 2 to 8% by mass. When the content of inorganic particles with large particle diameters is within the above range, the thickness of the transfer film will be sufficient.
  • the friction material of the present invention further contains inorganic particles (hereinafter also referred to as inorganic particles (B)) having an average particle diameter of more than 3 ⁇ m and a Mohs hardness of 7 or more as an abrasive material.
  • inorganic particles (C) having a large particle size and inorganic particles (B) with a medium particle size in combination, it is possible to both ensure an appropriate thickness of the transferred film and appropriate attack properties on the mating material. be.
  • the average particle diameter of the inorganic particles (B) is more preferably 3.5 to 10 ⁇ m.
  • the content of the inorganic particles (B) in the friction material is preferably 1 to 20% by mass, more preferably 5 to 15% by mass. When the content of inorganic particles with a medium particle size is within the above range, the stability of the friction coefficient is improved.
  • the total content of the abrasive in the friction material is preferably 5 to 30% by mass from the viewpoint of stable transfer film formation and wear resistance.
  • Inorganic particles used as abrasives include alumina (Mohs hardness: 9), silica (Mohs hardness: 7), magnesium oxide (Mohs hardness: 6), zirconium oxide (Mohs hardness: 7), and zirconium silicate (Mohs hardness: 7.5), chromium oxide (Mohs hardness: 6 to 7), triiron tetraoxide (Fe 3 O 4 ) (Mohs hardness: 6), and chromite (Mohs hardness: 5.5). Each of these may be used alone or in combination of two or more.
  • the inorganic particles (C) must be one or more selected from magnesium oxide, zirconium oxide, zirconium silicate, and triiron tetroxide (Fe 3 O 4 ) from the viewpoint of forming a transfer film on the surface of the mating material. is preferred.
  • the inorganic particles (B) are preferably one or more selected from zirconium oxide and zirconium silicate from the viewpoint of improving the coefficient of friction.
  • the numerical value of the particle diameter equivalent to 50% cumulative percentage on a volume basis (D50) measured by a laser diffraction particle size distribution method is used.
  • the friction material of the present invention contains a titanate (hereinafter also referred to as titanate (A)) having an average particle diameter of 20 ⁇ m or more.
  • the titanate extends to the friction interface due to braking and contributes to the formation of a transferred film.
  • a titanate having a large particle size with an average particle size of 20 ⁇ m or more a transfer film is actively formed on the surface of the mating material, and high wear characteristics can be obtained.
  • the titanate (A) it is preferable to use a combination of two or more types having different particle sizes, since a dense transfer film with an appropriate thickness can be formed.
  • the difference in average particle size between the two is preferably 15 to 60 ⁇ m.
  • the average particle diameter of the titanate is preferably 200 ⁇ m or less.
  • the friction material of the present invention preferably contains a titanate (A1) with an average particle size of 20 to 60 ⁇ m, and in addition to the titanate (A1), a titanate with an average particle size of 40 to 160 ⁇ m. It is more preferable to further include titanate (A2).
  • the content of titanate (A) in the friction material is preferably 1 to 30% by mass. Including the titanate (A) having a large particle size within the above range is preferable because it is sufficient to improve the stability of the friction coefficient and to form a transfer film by the titanate.
  • the content of titanate (A) is more preferably 5 to 25% by mass.
  • the mixing ratio of the two should be 1:3 to 3:1 (by mass) from the viewpoint of uniform transfer film formation. ratio) is preferred.
  • the friction material of the present invention may contain a titanate having an average particle diameter of less than 20 ⁇ m, but from the viewpoint of securing a friction coefficient, the content in the friction material is preferably 7% by mass or less.
  • the numerical value of the particle diameter equivalent to 50% cumulative percentage on a volume basis (D50) measured by a laser diffraction particle size distribution method is used.
  • the particle shape of the titanate is preferably scale-like (layered), columnar, plate-like, flat, needle-like, spherical, or amoeboid, and particularly preferably at least one of columnar and spherical. . It is preferable that the titanate is columnar or spherical because it facilitates the formation of a transfer film on the surface of the mating material. Furthermore, when two or more types of titanates are used, it is more preferable to combine columnar and spherical titanates from the viewpoint of uniform transfer film formation.
  • the columnar shape refers to a substantially columnar shape such as a rod shape, a cylinder shape, a prismatic shape, a rectangular shape, a substantially cylindrical shape, a substantially rectangular shape, etc., and is distinguished from a needle shape or the like.
  • spherical means that the surface is uneven or the cross section is approximately spherical, such as elliptical, and is distinguished from plate-like and the like.
  • the particle shape can be observed using a scanning electron microscope (SEM) or the like.
  • potassium titanate lithium titanate, lithium potassium titanate, sodium titanate, calcium titanate, magnesium titanate, magnesium potassium titanate, etc.
  • potassium titanate is particularly preferred from the viewpoint of improving the strength of the transferred film.
  • the inorganic filler may also include inorganic fillers commonly used in friction materials, such as barium sulfate, calcium carbonate, calcium hydroxide, vermiculite, mica, and the like. Further, the content of the inorganic filler in the friction material is preferably 20 to 60% by mass, more preferably 30 to 50% by mass.
  • friction modifier in addition to abrasive materials and inorganic fillers, friction modifiers commonly used for friction materials can be used, such as organic fillers, solid lubricants, metal powders, and the like.
  • organic filler examples include various rubber powders (raw rubber powder, tire powder, etc.), cashew dust, melamine dust, and the like. Each of these may be used alone or in combination of two or more. Further, the content of the organic filler in the friction material is preferably 1 to 20% by mass, more preferably 1 to 10% by mass based on the entire friction material.
  • solid lubricant examples include graphite, phosphate-coated graphite, antimony trisulfide, molybdenum disulfide, tin sulfide, and fluorine-based polymers. Each of these may be used alone or in combination of two or more.
  • Phosphate-coated graphite is graphite used as a solid lubricant coated with phosphate. By coating graphite with phosphate, it is possible to increase the transfer at high temperatures and reduce the amount of wear.
  • the metal constituting the salt be a metal belonging to Group 1, Group 2, Group 12, or Group 13 of the periodic table (long period type).
  • preferred examples include Na and K belonging to Group 1; Mg belonging to Group 2; Zn belonging to Group 12; and Al belonging to Group 13.
  • These phosphates are preferably hydrogen phosphates from the viewpoint of water solubility, pH, and the like.
  • the method of coating graphite with a phosphate for example, a known method described in Japanese Patent Application Publication No. 2018-138652 can be used.
  • the content of phosphate-coated graphite in the friction material is preferably 1 to 10% by mass from the viewpoint of obtaining an appropriate thickness of the transfer layer.
  • the content of the solid lubricant in the friction material is preferably 1 to 25% by mass, more preferably 3 to 20% by mass.
  • the metal powder examples include metal powders such as aluminum, tin, and zinc. Each of these may be used alone or in combination of two or more. Further, the content of metal powder in the friction material is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass.
  • the fiber base material is used to reinforce the friction material.
  • various commonly used organic fibers, inorganic fibers, and metal fibers are used, but it is preferable not to use copper fibers or bronze fibers containing a copper component.
  • organic fibers include aromatic polyamide (aramid) fibers and flame-resistant acrylic fibers.
  • inorganic fibers include ceramic fibers, biosoluble inorganic fibers, glass fibers, carbon fibers, and rock wool.
  • examples of metal fibers include steel fibers. These fiber base materials may be used alone or in combination of two or more.
  • friction materials containing steel fibers as metal fibers tend to generate metal catches in which wear particles (metallic components) of the mating material transfer to the sliding surface of the friction material during braking, so friction materials on the surface of the mating material tend to occur. This may be a cause of inhibiting the formation of a transferred film due to the transfer of components of the material composition. This is because the steel fibers are more likely to grind the mating material, such as a disc rotor, due to adhesive friction with cast iron.
  • the friction material of the present invention preferably does not contain metal fibers or uses a small amount of metal fibers, and the content of metal fibers in the friction material is preferably less than 2% by mass.
  • the content of the fiber base material in the friction material is preferably 1 to 20% by mass, more preferably 3 to 15% by mass based on the total amount of the fiber base material.
  • the binder is blended for the purpose of integrating the filler, fiber base material, etc. contained in the friction material composition and imparting strength to the friction material.
  • various commonly used binders can be used. Specifically, thermosetting resins such as straight phenol resins, various modified phenol resins such as elastomers, melamine resins, epoxy resins, and polyimide resins are mentioned. Among these, elastomer-modified phenolic resins are preferred from the viewpoint of imparting flexibility and water repellency to the friction material.
  • the elastomer-modified phenol resin examples include acrylic rubber-modified phenol resin, silicone rubber-modified phenol resin, and nitrile rubber (NBR)-modified phenol resin. Note that these binders can be used alone or in combination of two or more. Further, the content of the binder in the friction material is preferably 1 to 20% by mass, more preferably 3 to 15% by mass based on the entire friction material.
  • a specific embodiment of the method for manufacturing the friction material according to the present invention can be carried out by a known manufacturing process.
  • the above components are blended, and the blend is preformed, thermoformed, Friction materials can be produced through processes such as heating and polishing.
  • the general steps in manufacturing brake pads with friction material are shown below.
  • thermoforming step in which the preformed body and the pressure plate coated with adhesive are fixed together by applying a predetermined temperature and pressure (molding temperature: 130-180°C, molding pressure: 30-80 MPa) , molding time 2-10 minutes), (e) After-curing (150-300°C, 1-5 hours) and finally applying finishing treatments such as polishing, surface baking, and painting.
  • a friction material containing a friction modifier, a binder, and a fiber base material Does not contain inorganic particles with an average particle diameter of 3 ⁇ m or less and a Mohs hardness of 6 or more, Contains inorganic particles with an average particle diameter of 15 to 60 ⁇ m and a Mohs hardness of 6 or more, A friction material containing titanate having an average particle diameter of 20 ⁇ m or more and containing no copper component.
  • the titanate has at least one of a spherical shape and a columnar shape.
  • Examples 1 to 12, Comparative Examples 1 to 4 Raw materials having a friction material composition shown in Table 1 described below were mixed in a mixer for 5 minutes, the mixed stirring material was put into a mold, and preforming and heating and pressure molding were performed to produce a friction material. Preforming was carried out at room temperature by applying a pressure of 5 MPa for 10 seconds. This preformed body was subjected to heating and pressure molding at a pressure of 40 MPa and a molding temperature of 150° C. for 6 minutes to create a thermoformed body. The thermoformed bodies were subjected to after-curing at a temperature of 250° C. for 3 hours, processed to a predetermined thickness, polished, and painted to produce each friction material.
  • Triiron tetroxide (average particle size 35 ⁇ m, Mohs hardness 6): manufactured by Powder Tech Co., Ltd., G1R348A Triiron tetroxide (average particle size 0.4 ⁇ m, Mohs hardness 6): TAROX synthetic iron oxide BL100, manufactured by Titanium Industries Co., Ltd.
  • Phosphate-coated graphite (aluminum phosphate treatment) was obtained by the following procedure with reference to Japanese Patent Application Publication No. 2018-138652.
  • Aluminum dihydrogen phosphate was dissolved in pure water to prepare an aqueous solution having a concentration of 1% by mass.
  • 42 parts by mass of artificial graphite manufactured by Tokai Carbon Co., Ltd., G-152A, average particle size 700 ⁇ m
  • a rotary blade stirrer manufactured by As One Corporation, PM-203 (model name) was added. The mixture was stirred at a temperature of 50° C. for 1 hour.
  • the resulting mixture was dried in the air for 24 hours, crushed, and then heat-treated at 800° C. for 3 hours in a vacuum. After the heat treatment, the powder was crushed in a mortar to obtain graphite powder (phosphate-coated graphite) whose particle surfaces were coated with aluminum dihydrogen phosphate.
  • ⁇ Friction material evaluation test> The vibration characteristics of the friction materials of Examples and Comparative Examples produced above were evaluated by measuring the amount of torque fluctuation. The test was conducted using a full-size dynamometer in accordance with the AMS fade test. The amount of torque fluctuation during 10 brakings of the AMS fade section was measured, and the maximum value of the amount of torque fluctuation was evaluated. The rotor runout was set to 50 ⁇ 5 ⁇ m. The temperature at each position was measured with thermocouples inserted into the rotor every 90 degrees. Table 1 shows the evaluation results based on the following criteria.
  • Criteria for determining temperature difference during one rotation ⁇ : Less than 15°C ⁇ : 15°C or more, less than 20°C ⁇ : 20°C or more, less than 30°C ⁇ : 30°C or more
  • zirconium silicate with an average particle size of 1.1 ⁇ m and Mohs hardness of 7.5 and triiron tetroxide with an average particle size of 0.4 ⁇ m and Mohs hardness of 6 were not included.
  • the friction materials of Examples 1 to 12 containing iron trioxide and potassium titanate having an average particle size of 40 ⁇ m or 85 ⁇ m have no problems with either torque fluctuation or temperature difference during one rotation of the rotor. It was at the level. Among them, the friction materials of Examples 11 and 12 containing two types of potassium titanate with different average particle diameters and shapes had particularly small torque fluctuations and temperature differences during one rotation of the rotor, giving good results. became.
  • Example 3 and Comparative Example 3 which have different conditions for the abrasive
  • Example 3 and Comparative Example 4 which have different conditions for potassium titanate
  • the Mohs hardness and average particle size of the abrasives were It is important to reduce the amount of torque fluctuation and reduce the temperature difference during one rotation of the rotor by containing an abrasive with a specific Mohs hardness and average particle diameter, and containing potassium titanate with a specific average particle diameter. I understand that there is something.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

本発明は、摩擦調整材、結合材及び繊維基材を含む摩擦材であって、平均粒子径が3μm以下でモース硬度が6以上の無機粒子を含有せず、平均粒子径が15~60μmでモース硬度が6以上の無機粒子を含有し、平均粒子径が20μm以上のチタン酸塩を含有し、銅成分を含有しない、摩擦材に関する。

Description

摩擦材
 本発明は、自動車、鉄道車両、産業機械等のブレーキパッド、ブレーキライニング、クラッチフェーシング等に用いられる摩擦材に関する。
 ディスクブレーキやドラムブレーキなどのブレーキ、或いはクラッチなどに使用される摩擦材は、補強作用をする繊維基材、摩擦作用を与え、且つ、その摩擦性能を調整する摩擦調整材、及び、これらの成分を一体化する結合材などの原材料からなっている。
 従来の摩擦材には、種々の目的で銅繊維や銅粉など銅成分を含む材料が使用されてきた。たとえば、銅成分は延性・展性が高いため、摩擦材と相手材(ディスクロータ)との制動時に、相手材表面に摩擦材組成物の成分が移着して移着膜(トランスファーフィルム)が形成されやすい。この移着膜が保護膜として作用することで、摩擦係数を維持し、相手材の摩耗を抑制できるものと考えられる。このように移着膜形成の制御はブレーキの特性向上の観点から重要である。
 しかしながら、近年、環境汚染問題や人体への有害性の観点から、銅成分を実質的に含有しない摩擦材が望まれている。
 移着膜形成に関与する摩擦材成分としては、各種有機物やチタン酸塩等が知られている。ここで、特許文献1に記載される摩擦材では、板状チタン酸塩と含水珪酸マグネシウムを併用することにより、移着被膜を適度な厚さに制御できることが記載されている。また、特許文献2に記載される摩擦材では、低速での軽負荷制動時において有機充填材の分解物とチタン酸塩の転延物により良好なトランスファーフィルムが形成されることが記載されている。
日本国特開2012-197352号公報 日本国特開2017-2186号公報
 しかしながら、特許文献1および特許文献2に記載の摩擦材は、銅の役割を補うために相手材表面への移着膜を増加させることを目的にしているが、移着膜形成の均一化については記載されていない。一方、移着膜を制限し過ぎると摩擦係数の安定化や摩耗の抑制が損なわれるため、均一かつ適度な移着膜を形成する摩擦材が得られることが望まれる。
 また、高温制動において、相手材表面の不均一な温度上昇により、ブレーキ振動が発生しやすいという問題がある。ブレーキ振動の発生の原因としては、ディスクロータの振れによって摩擦材の面圧が局所的に高くなり、相手材表面への移着や凝着摩擦が不均一になることが懸念される。相手材表面への移着や凝着摩擦が増えた部分が温度上昇し相手材表面が不均一に熱膨張することで、相手材表面に肉厚差が生じる。相手材表面に肉厚差が生じることにより、摩擦材と相手材の接触が不均一となり、ブレーキ振動の発生の一因となりうる。
 したがって、本発明は、銅成分を実質的に含まずとも、適切に移着膜が形成され、ブレーキ振動の発生を抑制できる摩擦材を提供することを目的とする。
 本発明者らは、特定粒子径かつ特定硬度の無機粒子を含有せず、特定粒子径かつ特定硬度の無機粒子を含有し、特定粒子径のチタン酸塩を含有することで、上記課題を解決できることを見出した。
 すなわち本発明は以下のとおりのものである。
〔1〕摩擦調整材、結合材及び繊維基材を含む摩擦材であって、
 平均粒子径が3μm以下でモース硬度が6以上の無機粒子を含有せず、
 平均粒子径が15~60μmでモース硬度が6以上の無機粒子を含有し、
 平均粒子径が20μm以上のチタン酸塩を含有し、銅成分を含有しない、摩擦材。
 本発明によれば、銅成分による移着膜の代わりに形成された、チタン酸塩による移着膜の移着の程度を、平均粒子径が比較的大きい粒子径のチタン酸塩によって制御できる。さらに、移着膜に取り込まれやすい平均粒子径が小さい無機粒子を含有せず、平均粒子径が大きい無機粒子を研削材として含有することで、相手材表面の局所的な移着の発生を抑制できる。これにより銅成分を実質的に含まずとも、適切に移着膜が形成され、高い摩耗特性を有する摩擦材を得ることができる。
 以下、本発明について詳述するが、これらは望ましい実施態様の一例を示すものであり、これらの内容に特定されるものではない。
 本発明の摩擦材は銅成分を含有しない。なお、「銅成分を含有しない」とは、銅成分を、耐摩耗性などの機能を発現させるための有効成分としては実質的に含有しないという意味であり、例えば、摩擦材中に不可避的にわずかに含まれる不純物等としての銅成分をも含まないことまでを意味するものではない。なお、環境負荷の観点から不純物等として混入する銅成分は0.5質量%以下であることが好ましい。
 本発明の摩擦材は、摩擦調整材、繊維基材、結合材を含有する。
 摩擦調整材は、耐摩耗性、耐熱性、耐フェード性等の所望の摩擦特性を摩擦材に付与するために用いられる。本発明におけるモース硬度が6以上の無機粒子は、摩擦調整材のうちの、研削材として機能し、チタン酸塩は、摩擦調整材のうち無機充填材として機能する。
<摩擦調整材:研削材>
 研削材は相手材となるディスクロータを研削して摩擦係数を高める目的で配合させる成分である。平均粒子径が小さいほどマイルドな研削材となるが、小さすぎると研削材としての効果が得られにくくなり、研削効果を得るためには多量の研削材を使用する必要がある。また、平均粒子径が小さいほど研削材が移着膜に取り込まれやすく、研削材が移着膜に取り込まれると、相手材表面の移着膜を有する面と有さない面での摩擦係数に差が生じやすい。かかる観点から、本発明の摩擦材は、平均粒子径が3μm以下でモース硬度が6以上の無機粒子(以下、無機粒子(A)とも記載する。)を含有しない。
 さらに、本発明の摩擦材は、平均粒子径が15~60μmでモース硬度が6以上の無機粒子(以下、無機粒子(C)とも記載する。)を含有する。粒子径の大きい特定粒子径の無機粒子を研削材として含むことで、制動時に適切に移着膜が形成され、高い摩耗特性を有すると共に、相手材への攻撃性が適切に付与される。
 無機粒子(C)の平均粒子径は、好ましくは17~50μm、より好ましくは20~40μmである。
 また、無機粒子(C)の摩擦材における含有量は、好ましくは1~10質量%、より好ましくは2~8質量%である。粒子径の大きい無機粒子の含有量が上記範囲であることにより、移着膜の厚みが十分となる。
 本発明の摩擦材は、研削材として、平均粒子径が3μmを超え、モース硬度が7以上の無機粒子(以下、無機粒子(B)とも記載する。)をさらに含有することが好ましい。粒子径が大きい無機粒子(C)と、粒子径が中程度の無機粒子(B)を併用することで、適度な移着膜の厚みの確保と適切な相手材攻撃性との両立が可能である。
 無機粒子(B)の平均粒子径は、より好ましくは3.5~10μmである。
 無機粒子(B)の摩擦材における含有量は、好ましくは1~20質量%、より好ましくは5~15質量%である。粒子径が中程度の無機粒子の含有量が上記範囲であることにより、摩擦係数の安定性が向上する。
 また、摩擦材における研削材全体の含有量は、安定した移着膜の形成と耐摩耗性の観点から、好ましくは5~30質量%である。
 研削材として用いる無機粒子としては、アルミナ(モース硬度:9)、シリカ(モース硬度:7)、酸化マグネシウム(モース硬度:6)、酸化ジルコニウム(モース硬度:7)、ケイ酸ジルコニウム(モース硬度:7.5)、酸化クロム(モース硬度:6~7)、四三酸化鉄(Fe)(モース硬度:6)、クロマイト(モース硬度:5.5)等が挙げられる。これらは各々単独、または2種以上組み合わせて用いられる。
 無機粒子(C)としては、相手材表面への移着膜形成の観点から、酸化マグネシウム、酸化ジルコニウム、ケイ酸ジルコニウム、四三酸化鉄(Fe)から選ばれる1種以上であることが好ましい。
 無機粒子(B)としては、摩擦係数を向上させるという観点から、酸化ジルコニウム、ケイ酸ジルコニウムから選ばれる1種以上であることが好ましい。
 研削材の平均粒子径は、レーザー回折粒度分布法により測定した体積基準の累積百分率50%相当粒子径(D50)の数値を用いる。
<摩擦調整材:無機充填材>
(チタン酸塩)
 本発明の摩擦材は、平均粒子径が20μm以上のチタン酸塩(以下、チタン酸塩(A)とも記載する。)を含有する。チタン酸塩は、制動によって摩擦界面に延び、移着膜形成に寄与する。平均粒子径が20μm以上の粒子径の大きいチタン酸塩を含有することで、相手材表面に移着膜が積極的に形成され、高い摩耗特性が得られる。また、チタン酸塩(A)としては、粒子径の異なる2種以上を組み合わせて用いることで、適度な厚さかつ緻密な移着膜を形成でき好ましい。粒子径の異なる2種のチタン酸塩を用いる場合、両者の平均粒子径の差は15~60μmであることが好ましい。また、移着膜の厚さを適度な範囲とする観点から、チタン酸塩の平均粒子径は200μm以下が好ましい。
 上記種々の観点から、本発明の摩擦材は、平均粒子径が20~60μmのチタン酸塩(A1)を含むことが好ましく、チタン酸塩(A1)に加え、平均粒子径が40~160μmのチタン酸塩(A2)をさらに含むことがより好ましい。
 摩擦材におけるチタン酸塩(A)の含有量は、好ましくは1~30質量%である。粒子径の大きいチタン酸塩(A)を上記範囲で含むことにより、摩擦係数の安定性向上とチタン酸塩による移着膜形成が十分であり好ましい。チタン酸塩(A)の含有量は、より好ましくは5~25質量%である。
 また、上記粒子径の異なるチタン酸塩(A1)とチタン酸塩(A2)を併用する場合、両者の混合比率は、移着膜形成の均一化の観点から1:3~3:1(質量比)が好ましい。
 なお、本発明の摩擦材は、平均粒子径が20μm未満のチタン酸塩を含んでもよいが、摩擦係数の確保の観点から摩擦材における含有量は7質量%以下であることが好ましい。
 チタン酸塩の平均粒子径は、レーザー回折粒度分布法により測定した体積基準の累積百分率50%相当粒子径(D50)の数値を用いる。
 チタン酸塩の粒子形状としては、鱗片状(層状)、柱状、板状、扁平状、針状、球状、アメーバ状であることが好ましく、中でも、柱状および球状の少なくとも一方であることが特に好ましい。チタン酸塩が柱状または球状であることで、相手材表面への移着膜形成が容易となり好ましい。また、チタン酸塩を2種以上用いる場合、柱状および球状を組み合わせることが、移着膜形成の均一化の観点から、より好ましい。なお、柱状とは、棒状、円柱状、角柱状、短冊状、略円柱形状、略短冊状などの、形状が略柱状のものであることを意味し、針状等とは区別される。また球状とは、表面に凹凸のあるものや断面が楕円状などの略球状のものであることを意味し、板状等とは区別される。また、粒子形状は、走査型電子顕微鏡(SEM)などで観察することができる。
 チタン酸塩としては、チタン酸カリウム、チタン酸リチウム、チタン酸リチウムカリウム、チタン酸ナトリウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸マグネシウムカリウム等を用いることができる。なかでも、移着膜の強度を向上させるという観点から、チタン酸カリウムが特に好ましい。
 無機充填材としては、チタン酸塩以外に、硫酸バリウム、炭酸カルシウム、水酸化カルシウム、バーミキュライト、マイカ等の、通常摩擦材に使用される無機充填材を含んでもよい。
 また、摩擦材における無機充填材の含有量は、好ましくは20~60質量%、より好ましくは30~50質量%である。
<摩擦調整材:その他>
 摩擦調整材としては、研削材、無機充填材以外に、通常摩擦材に使用される摩擦調整材を用いることができ、たとえば有機充填材、固体潤滑材、金属粉末等が挙げられる。
 有機充填材としては、各種ゴム粉末(生ゴム粉末、タイヤ粉末等)、カシューダスト、メラミンダスト等が挙げられる。これらは各々単独、または2種以上組み合わせて用いられる。
 また、摩擦材における有機充填材の含有量は、摩擦材全体中、好ましくは1~20質量%、より好ましくは1~10質量%である。
 固体潤滑材としては、黒鉛、リン酸塩被覆黒鉛、三硫化アンチモン、二硫化モリブデン、硫化スズ、フッ素系ポリマー等が挙げられる。これらは各々単独、または2種以上組み合わせて用いられる。
 リン酸塩被覆黒鉛は、固体潤滑材として用いられる黒鉛をリン酸塩で被覆したものである。リン酸塩で黒鉛を被覆することにより、高温時の移着を高め、摩耗量を低減することができる。
 黒鉛を被覆するリン酸塩としては、その塩を構成する金属が、周期表(長周期型)の1族、2族、12族または13族に属する金属であることが好ましい。具体的には1族に属するNa、K;2族に属するMg;12族に属するZn;13族に属するAl;などを好ましく挙げることができる。具体的には、リン酸アルミニウム類、リン酸マグネシウム類、リン酸カルシウム類、リン酸カリウム類、リン酸ナトリウム類およびリン酸亜鉛類からなる群より選ばれる少なくとも1種を用いることが好ましい。これらのリン酸塩は、水溶性やpHなどの観点から、リン酸水素塩が好ましい。
 リン酸塩を用いて黒鉛を被覆する方法については、例えば日本国特開2018-138652号公報に記載の公知の方法を用いることができる。
 摩擦材におけるリン酸塩被覆黒鉛の含有量は適切な移着層の厚みを得る観点から1~10質量%が好ましい。
 また、摩擦材における固体潤滑材の含有量は、好ましくは1~25質量%、より好ましくは3~20質量%である。
 金属粉末としては、例えば、アルミニウム、錫、亜鉛等の金属粉末が挙げられる。これらは各々単独、または2種以上組み合わせて用いられる。
 また、摩擦材における金属粉末の含有量は、好ましくは0.5~10質量%、より好ましくは1~5質量%である。
<繊維基材>
 繊維基材は、摩擦材を補強するために用いられる。
 繊維基材としては、通常用いられる種々の有機繊維、無機繊維、金属繊維が使用されるが、銅成分を含む銅繊維や青銅繊維は使用しないことが好ましい。
 有機繊維としては、例えば芳香族ポリアミド(アラミド)繊維、耐炎性アクリル繊維が挙げられる。
 無機繊維としては、例えばセラミック繊維、生体溶解性無機繊維、ガラス繊維、カーボン繊維、ロックウール等が挙げられる。
 また、金属繊維としては、例えばスチール繊維が挙げられる。
 これら繊維基材は、各々単独で、または2種以上組み合わせて用いられる。
 ここで、金属繊維としてスチール繊維を含有する摩擦材は、ブレーキ制動時に相手材の摩耗粉(金属成分)が摩擦材摺動面へ移着するメタルキャッチが生成しやすいため、相手材表面に摩擦材組成物成分が移着して移着膜が形成されるのを阻害する原因となりうる。これはスチール繊維がディスクロータ等の相手材である鋳鉄との凝着摩擦により相手材をより研削しやすいためである。本発明の摩擦材では金属繊維を含まないか、少量で使用することが好ましく、摩擦材における金属繊維の含有量は、2質量%未満であることが好ましい。
 摩擦材における繊維基材の含有量は、充分な機械強度を確保するため、繊維基材全量で、好ましくは1~20質量%、より好ましくは3~15質量%である。
<結合材>
 結合材は、摩擦材組成物に含まれる充填材および繊維基材等を一体化して、摩擦材に強度を与える目的で配合される。
 本発明に係る摩擦材に含まれる結合材としては、通常用いられる種々の結合材を用いることができる。具体的には、ストレートフェノール樹脂、エラストマー等による各種変性フェノール樹脂、メラミン樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂が挙げられる。なかでも、摩擦材に柔軟性や撥水性を付与するという観点からエラストマー変性フェノール樹脂が好ましい。エラストマー変性フェノール樹脂としては、アクリルゴム変性フェノール樹脂やシリコーンゴム変性フェノール樹脂、ニトリルゴム(NBR)変性フェノール樹脂等が挙げられる。なお、これらの結合材は単独または2種以上組み合わせて用いることができる。
 また、摩擦材における結合材の含有量は、摩擦材全体中、好ましくは1~20質量%、より好ましくは3~15質量%である。
 本発明に係る摩擦材の製造方法の具体的な態様としては、公知の製造工程により行うことができ、例えば、上記各成分を配合し、その配合物を通常の製法に従って予備成形、熱成形、加熱、研摩等の工程を経て摩擦材を作製することができる。
 摩擦材を備えたブレーキパッドの製造における一般的な工程を以下に示す。
(a)板金プレスによりプレッシャプレートを所定の形状に成形する工程、
(b)上記プレッシャプレートに脱脂処理、化成処理及びプライマー処理を施し、接着剤を塗布する工程、
(c)繊維基材、摩擦調整材、及び結合材等の原料を配合し、撹拌により十分に均質化して、常温にて所定の圧力で成形して予備成形体を作製する工程、
(d)上記予備成形体と接着剤が塗布されたプレッシャプレートとを、所定の温度及び圧力を加えて両部材を一体に固着する熱成形工程(成形温度130~180℃、成形圧力30~80MPa、成形時間2~10分間)、
(e)アフターキュア(150~300℃、1~5時間)を行って、最終的に研摩、表面焼き、及び塗装等の仕上げ処理を施す工程。
 上記の通り、本明細書は下記の摩擦材を開示する。
〔1〕摩擦調整材、結合材及び繊維基材を含む摩擦材であって、
 平均粒子径が3μm以下でモース硬度が6以上の無機粒子を含有せず、
 平均粒子径が15~60μmでモース硬度が6以上の無機粒子を含有し、
 平均粒子径が20μm以上のチタン酸塩を含有し、銅成分を含有しない、摩擦材。
〔2〕前記チタン酸塩の形状が、球状および柱状の少なくとも一方である、〔1〕に記載の摩擦材。
〔3〕前記チタン酸塩の含有量が1~30質量%である、〔1〕又は〔2〕に記載の摩擦材。
〔4〕平均粒子径が3μmを超え、モース硬度が7以上の無機粒子を含有する、〔1〕~〔3〕のいずれかに記載の摩擦材。
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
(実施例1~12、比較例1~4)
 後述する表1に示す摩擦材配合組成の原材料を、ミキサーにて5分間混合し、混合された攪拌材料を金型に投入し、予備成形及び加熱加圧成形を実施し摩擦材を作製した。
 予備成形は、常温下、圧力5MPaにて10秒間加圧することによって実施した。
 この予備成形体を圧力40MPa、成形温度150℃にて6分間加熱加圧成形を行い、熱成形体を作成した。
 熱成形体に対し温度250℃にて3時間のアフターキュアを実施し、所定の厚さに加工、研摩、塗装を実施して、各摩擦材を作製した。
<原材料>
 チタン酸カリウム(平均粒子径40μm、柱状):大塚化学株式会社製、TERRACESS JSL-R
 チタン酸カリウム(平均粒子径85μm、球状):大塚化学株式会社製、TERRACESS DP-R101
 チタン酸カリウム(平均粒子径7μm、板状):大塚化学株式会社製、TERRACESS TF-S
 酸化ジルコニウム(平均粒子径3.5μm、モース硬度7):SAINT-GOBAIN ZIRPRO社製、CC10
 ケイ酸ジルコニウム(平均粒子径1.1μm、モース硬度7.5):第一稀元素化学工業株式会社製、MZ-1000B
 四三酸化鉄(平均粒子径35μm、モース硬度6):パウダーテック株式会社製、G1R348A
 四三酸化鉄(平均粒子径0.4μm、モース硬度6):チタン工業株式会社製、TAROX合成酸化鉄BL100
 リン酸塩被覆黒鉛(リン酸アルミニウム処理)は日本国特開2018-138652号公報を参考に以下の手順により得た。
 リン酸二水素アルミニウムを純水で溶解し、濃度1質量%の水溶液を調製した。この水溶液100質量部に対し、人造黒鉛(東海カーボン株式会社製、G-152A、平均粒子径700μm)42質量部を加え、回転翼式攪拌機(アズワン社製、PM-203(機種名))により、温度50℃にて1時間攪拌した。得られた混合物を大気中で24時間乾燥後、解砕したのち、真空中で800℃にて3時間熱処理を行った。熱処理後、乳鉢にて粉砕し、粒子表面がリン酸二水素アルミニウムで被覆された黒鉛粉末(リン酸塩被覆黒鉛)を得た。
<摩擦材の評価試験>
 上記で作製した実施例および比較例の摩擦材について、トルク変動量を計測することにより振動特性を評価した。
 AMSフェード試験に準拠し、フルサイズのダイナモメータを用い、試験を行った。AMSフェードセクションの10回制動におけるトルク変動量を測定し、トルク変動量の最大値で評価した。ロータの振れは50±5μmに設定した。
 ロータに90度ごとに打ち込んだ熱電対で位置別の温度を計測した。
 下記判断基準に基づいた評価結果を、表1に示す。
トルク変動量判断基準:
 ◎:50N・m未満
 〇:50N・m以上、80N・m未満
 △:80N・m以上、100N・m未満
 ×:100N・m以上
1回転中の温度差判断基準:
 ◎:15℃未満
 〇:15℃以上、20℃未満
 △:20℃以上、30℃未満
 ×:30℃以上
Figure JPOXMLDOC01-appb-T000001
 上記結果より、平均粒子径1.1μm、モース硬度7.5のケイ酸ジルコニウムおよび平均粒子径0.4μm、モース硬度6の四三酸化鉄を含まず、平均粒子径35μm、モース硬度6の四三酸化鉄を含有し、平均粒子径が40μmまたは85μmのチタン酸カリウムを含有する実施例1~12の摩擦材は、いずれも、トルク変動量およびロータ1回転中の温度差のいずれも問題ないレベルであった。
 なかでも、平均粒子径および形状が異なる2種類のチタン酸カリウムを含有する実施例11および実施例12の摩擦材は、トルク変動量およびロータ1回転中の温度差が特に小さく、良好な結果となった。
 平均粒子径1.1μm、モース硬度7.5のケイ酸ジルコニウムおよび平均粒子径0.4μm、モース硬度6の四三酸化鉄を含み、平均粒子径35μm、モース硬度6の四三酸化鉄を含有しない比較例1~3の摩擦材、および平均粒子径が7μmのチタン酸カリウムを含む比較例4の摩擦材は、トルク変動量およびロータ1回転中の温度差のいずれも基準値を上回った。
 特に、研削材の条件が異なる実施例3と比較例3との対比、およびチタン酸カリウムの条件が異なる実施例3と比較例4との対比から、モース硬度および平均粒子径が特定の研削材を含まず、モース硬度および平均粒子径が特定の研削材を含み、平均粒子径が特定のチタン酸カリウムを含むことが、トルク変動量の低減およびロータ1回転中の温度差の低減に肝要であることが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2022年7月6日出願の日本特許出願(特願2022-109182)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (4)

  1.  摩擦調整材、結合材及び繊維基材を含む摩擦材であって、
     平均粒子径が3μm以下でモース硬度が6以上の無機粒子を含有せず、
     平均粒子径が15~60μmでモース硬度が6以上の無機粒子を含有し、
     平均粒子径が20μm以上のチタン酸塩を含有し、銅成分を含有しない、摩擦材。
  2.  前記チタン酸塩の粒子形状が、球状および柱状の少なくとも一方である、請求項1に記載の摩擦材。
  3.  前記チタン酸塩の含有量が1~30質量%である、請求項1又は2に記載の摩擦材。
  4.  平均粒子径が3μmを超え、モース硬度が7以上の無機粒子を含有する、請求項1又は2に記載の摩擦材。
PCT/JP2023/025047 2022-07-06 2023-07-05 摩擦材 WO2024010054A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109182 2022-07-06
JP2022109182A JP2024007831A (ja) 2022-07-06 2022-07-06 摩擦材

Publications (1)

Publication Number Publication Date
WO2024010054A1 true WO2024010054A1 (ja) 2024-01-11

Family

ID=89453561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025047 WO2024010054A1 (ja) 2022-07-06 2023-07-05 摩擦材

Country Status (2)

Country Link
JP (1) JP2024007831A (ja)
WO (1) WO2024010054A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255053A (ja) * 2011-06-07 2012-12-27 Hitachi Chemical Co Ltd ノンアスベスト摩擦材組成物
JP2017002186A (ja) * 2015-06-10 2017-01-05 日立化成株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
WO2019074012A1 (ja) * 2017-10-11 2019-04-18 日立化成株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
JP2020158568A (ja) * 2019-03-25 2020-10-01 日立化成株式会社 摩擦部材、摩擦材組成物、摩擦材及び車
WO2021125144A1 (ja) * 2019-12-19 2021-06-24 曙ブレーキ工業株式会社 摩擦材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255053A (ja) * 2011-06-07 2012-12-27 Hitachi Chemical Co Ltd ノンアスベスト摩擦材組成物
JP2017002186A (ja) * 2015-06-10 2017-01-05 日立化成株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
WO2019074012A1 (ja) * 2017-10-11 2019-04-18 日立化成株式会社 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
JP2020158568A (ja) * 2019-03-25 2020-10-01 日立化成株式会社 摩擦部材、摩擦材組成物、摩擦材及び車
WO2021125144A1 (ja) * 2019-12-19 2021-06-24 曙ブレーキ工業株式会社 摩擦材

Also Published As

Publication number Publication date
JP2024007831A (ja) 2024-01-19

Similar Documents

Publication Publication Date Title
JP6304984B2 (ja) 摩擦材
JP6037918B2 (ja) 摩擦材
JP4040552B2 (ja) 摩擦材
US10927912B2 (en) Frictional material composition, frictional material, and friction member
JP5981839B2 (ja) 摩擦材
EP2937397B1 (en) Friction material
JP6208505B2 (ja) 摩擦材
JP6157108B2 (ja) 摩擦材
WO2015072440A1 (ja) 摩擦材
WO2019031557A1 (ja) 摩擦材
JP7128323B2 (ja) 摩擦材
JP6568612B2 (ja) 摩擦材
WO2021125144A1 (ja) 摩擦材
WO2024010054A1 (ja) 摩擦材
JP6254424B2 (ja) 摩擦材
WO2021125143A1 (ja) 摩擦材
JP6828791B2 (ja) 摩擦材組成物、摩擦材組成物を用いた摩擦材および摩擦部材
JP2005008865A (ja) 摩擦材
JP6370421B2 (ja) 摩擦材
WO2022209400A1 (ja) 摩擦材
WO2023189976A1 (ja) 摩擦材
JP6730045B2 (ja) 摩擦材用α−アルミナ粒子及びα−アルミナ粒子の製造方法
WO2023085287A1 (ja) 摩擦材
WO2023145597A1 (ja) 摩擦材
JP2018021157A (ja) 乾式摩擦材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835585

Country of ref document: EP

Kind code of ref document: A1