WO2024009762A1 - 基板液処理方法及び基板液処理装置 - Google Patents

基板液処理方法及び基板液処理装置 Download PDF

Info

Publication number
WO2024009762A1
WO2024009762A1 PCT/JP2023/022850 JP2023022850W WO2024009762A1 WO 2024009762 A1 WO2024009762 A1 WO 2024009762A1 JP 2023022850 W JP2023022850 W JP 2023022850W WO 2024009762 A1 WO2024009762 A1 WO 2024009762A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
wiring
recess
wafer
substrate
Prior art date
Application number
PCT/JP2023/022850
Other languages
English (en)
French (fr)
Inventor
啓一 藤田
光秋 岩下
裕樹 菊地
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024009762A1 publication Critical patent/WO2024009762A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Definitions

  • the present disclosure relates to a substrate liquid processing method and a substrate liquid processing apparatus.
  • Electroless plating can be used to form fine wiring on semiconductor wafers (also simply referred to as "wafers").
  • Patent Document 1 discloses an apparatus that uses electroless plating to fill vias (recesses) in a wafer with metal wiring.
  • the present disclosure provides advantageous techniques for depositing plating metal on a substrate.
  • One aspect of the present disclosure is a process of preparing a substrate including a wiring and a laminate provided on the wiring and including an insulating film, the laminate having a recess that penetrates to the wiring and exposes the wiring. a step of scattering the exposed portion of the wiring in the recess by reverse sputtering and adhering it as a plating seed body to the surface of the laminate including partition surfaces that partition the recess; The process of coating the partition surface with plating metal deposited by electroless plating process while the partition surface is covered with the plating metal, and the process of electroless plating process and electroplating process in the state that the partition surface is covered with plating metal.
  • the present invention relates to a method for processing a substrate liquid, including a step of embedding plated metal in a recessed portion.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a multilayer interconnection forming system.
  • FIG. 2 is a diagram showing a configuration example of a plating processing unit.
  • FIG. 3 is a diagram showing a configuration example of a heat treatment unit.
  • FIG. 4A is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4B is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4A is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4B is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4C is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4D is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4E is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 4F is a diagram for explaining an example of a substrate liquid processing method, and shows an enlarged cross section of a wafer (particularly a location near one recess).
  • FIG. 1 is a diagram showing a schematic configuration example of a multilayer wiring forming system 1. As shown in FIG. 1, the X-axis, Y-axis, and Z-axis are orthogonal to each other, the X-axis and Y-axis extend horizontally, and the positive direction of the Z-axis is a vertically upward direction.
  • a multilayer wiring forming system (substrate liquid processing system) 1 shown in FIG. 1 includes a loading/unloading station 2, a processing station 3, and a control device 4.
  • the loading/unloading station 2 includes a carrier mounting section 11 and a first transport section 12.
  • a plurality of carriers C are placed on the carrier placement section 11, and each carrier C supports one or more wafers (substrates) W in a horizontal state.
  • the first transport section 12 is provided adjacent to the carrier mounting section 11 and includes a first substrate transport device 13 and a transfer section 14 .
  • the first substrate transport device 13 transports the wafer W between each carrier C and the transfer section 14.
  • the first substrate transfer device 13 of this example can move the wafer W in the horizontal and vertical directions while holding the wafer W, and rotate (spin) the wafer W around the vertical axis. It is possible.
  • the transfer unit 14 temporarily supports the wafer W received from the first substrate transfer device 13 or temporarily supports the wafer W scheduled to be transferred to the first substrate transfer device 13.
  • the wafer W transferred from the transfer unit 14 to the first substrate transfer device 13 is returned from the first substrate transfer device 13 to the corresponding carrier C.
  • the processing station 3 is provided adjacent to the loading/unloading station 2 (particularly the first transport section 12) in the X direction, and includes a second transport section 15 and a plurality of processing units 16.
  • the second transport unit 15 includes a second substrate transport device 20 that is movable on the transport path.
  • the second substrate transfer device 20 can move the wafer W in the horizontal and vertical directions, and can rotate (spin) the wafer W around a vertical axis.
  • the second transport section 15 transports the wafer W received from the delivery section 14 to a desired processing unit 16, transports the wafer W between the processing units 16, and transports the wafer W from the processing unit 16 to the delivery section 14. I do things.
  • the plurality of processing units 16 included in the processing station 3 are arranged on both sides of the transport path of the second substrate transport device 20 (in the example shown in FIG. 1, the transport path extends in the X direction).
  • the arrangement form and number of these processing units 16 are not limited to the example shown in FIG. 1, and any number of processing units 16 can be arranged in any form.
  • a substrate liquid processing apparatus that performs liquid processing and other processing on each wafer W includes one or more processing units 16. Although the specific processing performed by each processing unit 16 is not limited, in this embodiment, processing units 16 that work as at least a plating processing unit 17, a reverse sputtering processing unit 18, and a heat processing unit 19 are provided.
  • the plating unit 17 of this embodiment is configured as an electroless plating unit that performs electroless plating on the wafer W.
  • the reverse sputtering unit 18 performs reverse sputtering on the wafer W.
  • the heat treatment unit 19 performs heat treatment on the wafer W. Details of the electroless plating, reverse sputtering, and heat treatment performed in each of the plating unit 17, reverse sputtering unit 18, and heat treatment unit 19 will be described later.
  • the plurality of processing units 16 provided in the processing station 3 may include a CMP processing unit and a cleaning processing unit in addition to the plating processing unit 17, the reverse sputtering processing unit 18, and the heat processing unit 19.
  • the CMP (Chemical Mechanical Polishing) processing unit performs CMP processing on the wafer W.
  • the cleaning processing unit performs cleaning processing on the wafer W, and includes, for example, a spin cleaning type cleaning device.
  • the control device 4 is, for example, a computer, and includes a control section 21 and a storage section 22.
  • the control unit 21 includes a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input/output port, and various other circuits.
  • the CPU of the microcomputer controls the first transport section 12, the second transport section 15, and each processing unit 16 by reading and executing a program stored in the ROM.
  • the program stored in the storage unit 22 of the control device 4 may be one that has been recorded on a computer-readable storage medium, and may be installed in the storage unit 22 from the storage medium.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
  • the storage unit 22 can be realized by, for example, a semiconductor memory device such as a RAM, a flash memory, or a storage device such as a hard disk or an optical disk.
  • FIG. 2 is a diagram showing an example of the configuration of the plating processing unit 17.
  • FIG. 2 shows the inner configuration of the housing 30 in a transparent manner.
  • the plating processing unit 17 shown in FIG. 2 is configured as a single-wafer type processing unit 16 that processes wafers W one by one, and includes a housing 30, a substrate rotation holding mechanism 31, at least a part of which is provided inside the housing 30, A processing liquid supply mechanism 32 and a cup 33 are provided.
  • the housing 30 has an opening/closing loading/unloading section (not shown).
  • the wafer W transported by the second substrate transport device 20 (see FIG. 1) is carried into the inside of the housing 30 through the loading/unloading section in an open state, and is unloaded from the inside of the housing 30 through the loading/unloading section in an open state. be done.
  • the loading/unloading section is kept in a closed state, and the loading/unloading section of the housing 30 is kept closed. The inflow of outside air into the interior is restricted.
  • the substrate rotation and holding mechanism 31 is provided to hold the wafer W and to be rotatable together with the wafer W.
  • the substrate rotation and holding mechanism 31 includes a hollow cylindrical rotation shaft 31a, a turntable 31b, a wafer chuck 31c, and a first rotation drive section (not shown).
  • the length of the rotating shaft 31a in the vertical direction inside the housing 30 is changed by a second elevating mechanism (not shown) that is driven under the control of the control device 4 (see FIG. 1).
  • the turntable 31b is attached to the upper end of the rotating shaft 31a.
  • the wafer chuck 31c is provided on the outer periphery of the upper surface of the turntable 31b, and supports the wafer W.
  • the first rotation drive unit transmits rotational power from a drive source such as a motor to the rotation shaft 31a, and rotates the rotation shaft 31a, the turntable 31b, and the wafer chuck 31c integrally.
  • the substrate rotation holding mechanism 31 is driven under the control of the control device 4 (see FIG. 1), and the rotating shaft 31a, turntable 31b, and wafer chuck 31c are rotated by the rotational power transmitted from the first rotation driving section, and in turn, the wafer chuck The wafer W supported by 31c is rotated.
  • the processing liquid supply mechanism 32 is driven under the control of the control device 4 (see FIG. 1), and supplies a processing liquid (for example, an electroless plating solution) to the surface of the wafer W held by the substrate rotation and holding mechanism 31.
  • the processing liquid supply mechanism 32 of this example includes a processing liquid supply section 32a, an ejection head 32b, an ejection nozzle 32c, an arm 32d, a support shaft 32e, and a processing liquid supply path 32f.
  • the processing liquid supply section 32a supplies the processing liquid to the ejection head 32b via the processing liquid supply path 32f.
  • the processing liquid supplied to the ejection head 32b is ejected from the ejection nozzle 32c attached to the ejection head 32b, and is applied to the processing surface (upper surface) of the wafer W, for example.
  • the discharge head 32b and the discharge nozzle 32c are attached to the tip of the arm 32d and move integrally with the arm 32d.
  • the arm 32d is supported by a support shaft 32e so as to be movable up and down, and is provided inside the housing 30 so as to be movable in the up and down direction.
  • the arm 32d is provided so as to be able to rotate (swivel) integrally with the support shaft 32e and move in the horizontal direction.
  • the support shaft 32e is rotated around a central axis extending in the vertical direction by a second rotation drive unit (not shown).
  • the processing liquid supply mechanism 32 having the above-described configuration can discharge the processing liquid toward any location on the processing surface (upper surface) of the wafer W from the discharge nozzle 32c positioned at a desired height position.
  • the cup 33 has two discharge ports 33a and 33b arranged at different positions in the vertical direction, and receives the processing liquid scattered from the wafer W.
  • the cup 33 is provided so as to be movable in the vertical direction by a second elevating mechanism (not shown) driven under the control of the control device 4 (see FIG. 1), and is located at the height of the two discharge ports 33a and 33b. is variable.
  • the two discharge ports 33a and 33b are connected to liquid discharge mechanisms 34 and 35, respectively.
  • the liquid discharge mechanisms 34 and 35 discharge the processing liquid collected at the two discharge ports 33a and 33b to the outside of the housing 30.
  • the liquid discharge mechanism 34 has a recovery channel 34b and a waste channel 34c that are connected to the discharge port 33a via a channel switch 34a.
  • the flow path switching device 34a switches the flow path into which the processing liquid from one discharge port 33a can flow, between the recovery flow path 34b and the waste flow path 34c.
  • the recovery channel 34b is a channel for reusing the processing liquid recovered from one of the discharge ports 33a, and is provided with a cooling buffer 34d for cooling the processing liquid.
  • the waste channel 34c is a channel for discarding the processing liquid recovered from one of the discharge ports 33a.
  • the liquid discharge mechanism 35 has a waste channel 35a connected to the other discharge port 33b.
  • the waste channel 35a is a channel for discarding the processing liquid recovered from the other outlet 33b.
  • the processing liquid supply section 32a is provided to be able to supply the electroless plating solution and other processing liquids (for example, cleaning liquid and rinsing liquid) to the ejection head 32b and the ejection nozzle 32c as the processing liquid.
  • the processing liquid supply mechanism 32 can perform a cleaning process using a cleaning liquid, a rinsing process using a rinsing liquid, or another liquid process on the wafer W before and after applying the electroless plating liquid to the wafer W. .
  • processing liquid supply mechanism 32 is simply shown in FIG. 2, and one processing liquid supply section 32a, one processing liquid supply path 32f, one ejection head 32b, and one ejection nozzle 32c are shown.
  • the number and configuration of the processing liquid supply section 32a, the processing liquid supply path 32f, the ejection head 32b, and the ejection nozzle 32c are not limited.
  • a plurality of processing liquid supply sections 32a, processing liquid supply paths 32f, ejection heads 32b, and/or ejection nozzles 32c may be provided.
  • a dedicated processing liquid supply section 32a, a processing liquid supply path 32f, a discharge head 32b, and/or a discharge nozzle 32c are provided.
  • a dedicated processing liquid supply section 32a, processing liquid supply path 32f, ejection head 32b, and/or ejection nozzle 32c may be provided only for one or more specific types of processing liquid.
  • the processing liquid supply section 32a, the processing liquid supply path 32f, the ejection head 32b, and/or the ejection nozzle 32c are shared.
  • FIG. 3 is a diagram showing an example of the configuration of the heat treatment unit 19.
  • FIG. 3 shows a perspective view of the inner structure of the housing 19a.
  • the heat treatment unit 19 shown in FIG. 3 is configured as a single-wafer processing unit 16 that processes wafers W one by one, and includes a housing 19a and a hot plate 19b disposed inside the housing 19a.
  • the housing 19a has an opening/closing loading/unloading section (not shown).
  • the wafer W transported by the second substrate transport device 20 (see FIG. 1) is carried into the inside of the housing 19a through the loading/unloading section in the open state, and is unloaded from the inside of the housing 19a through the loading/unloading section in the open state. be done.
  • the loading/unloading section is kept closed and the inflow of outside air into the inside of the housing 19a is restricted. Ru.
  • the housing 19a is provided with a gas supply path 19c that supplies reducing gas into the housing 19a, and a gas exhaust path 19d that exhausts atmospheric gas from inside the housing 19a.
  • the specific composition of the reducing gas supplied into the housing 19a is not limited, and for example, forming gas containing nitrogen gas and hydrogen gas is used as the reducing gas.
  • the hydrogen gas concentration in the forming gas is usually about 3 to 4%.
  • the wafer W is carried into the housing 19a via the carry-in/out section and placed on the hot plate 19b. Then, a reducing gas is supplied from a gas supply source (not shown) into the housing 19a through the gas supply path 19c, and while the inside of the housing 19a is filled with the reducing gas, the wafer W is heated by the hot plate 19b. and then heat treated (reduction annealing treatment). Atmospheric gas within the housing 19a is exhausted through a gas exhaust path 19d and recovered by a gas recovery section (not shown). While the heat treatment of the wafer W is being performed, the supply of reducing gas from the gas supply path 19c into the housing 19a and the discharge of the atmospheric gas inside the housing 19a through the gas exhaust path 19d are continuously performed. It may be stopped or it may be stopped.
  • the wafer W is carried out of the housing 19a via the carry-in/out section.
  • Substrate liquid processing method 4A to 4F are diagrams for explaining an example of a substrate liquid processing method, and show enlarged cross sections of a wafer W (particularly a location near one recess 43).
  • the substrate liquid processing method described below is executed by appropriately driving various devices of the multilayer wiring forming system 1 under the control of the control device 4.
  • a wafer W including a wiring 41 and a laminate 42 provided on the wiring 41 and including an insulating film is prepared, and the wafer W is placed in the reverse sputtering unit 18 (processing unit 16 (see FIG. 1)). (see FIG. 4A).
  • the laminate 42 has a large number of recesses 43, and each recess 43 penetrates to the wiring 41 to expose the wiring 41.
  • the wafer W undergoes reverse sputtering in the reverse sputtering unit 18. That is, the reverse sputtering unit 18 uses the wafer W as a target and applies a high voltage to the wafer W to generate glow discharge, thereby ionizing the reverse sputtering gas G filled around the wafer W. It collides with the wiring 41 exposed in the recess 43 (see FIG. 4B).
  • the vicinity of the exposed surface of the wiring 41 exposed in the recess 43 is repelled by the reverse sputtering gas G, and a fresh surface (new surface) of the wiring 41 is exposed at the bottom of the recess 43 (see FIG. 4C).
  • the portion of the wiring 41 that is exposed in the recess 43 and is scattered by the reverse sputtering gas G is coated with a plating seed material on the surface 50 of the laminate 42 (including the dividing surface 51 that partitions the recess 43). It attaches as 45.
  • the reverse sputtering unit 18 can perform the above-described reverse sputtering process using, for example, an apparatus adapted from a known sputtering apparatus that includes a voltage application device and a reverse sputtering gas supply device.
  • the specific composition of the reverse sputtering gas G is also not limited.
  • argon (Ar) can be used as the reverse sputtering gas G, but any other gas (for example, a rare gas element other than argon or nitrogen) may be used. may be used.
  • the wafer W is carried out from the reverse sputtering processing unit 18 and carried into the heat processing unit 19 (see FIG. 3) (see FIG. 4D).
  • the wafer W undergoes heat treatment in a reducing gas atmosphere in the heat treatment unit 19 .
  • the plating seed body 45 is attached to the surface of the laminate 42 including the section surface 51 and before the section surface 51 is coated with the plating metal, the plating is performed under a reducing gas atmosphere.
  • the wafer W is then subjected to heat treatment.
  • the wafer W is carried out from the heat processing unit 19 and carried into the plating processing unit 17 (see FIG. 2).
  • the heat treatment of the wafer W in the heat treatment unit 19 described above may not be performed.
  • the wafer W (see FIG. 4C) carried out from the reverse sputtering processing unit 18 is carried into the plating processing unit 17 without being carried into the heat processing unit 19.
  • the wafer W undergoes electroless plating in the plating unit 17, and plating metal 47 is embedded in each recess 43 (see FIGS. 4E and 4F).
  • the electroless plating process here includes a step of covering the surface 50 (including the partition surface 51) of the laminate 42 with the plating metal 47, and a step of embedding and filling each recess 43 with the plating metal 47.
  • the plating seed body 45 attached to the surface 50 of the laminate 42 including the section surface 51, the surface 50 of the laminate 42 (the section surface 51) is coated with the plating metal 47 deposited by electroless plating. ) are coated (see Figure 4E). At this time, the plating seed body 45 acts as a seed and promotes the precipitation of the plating metal 47. Thereafter, with the surface 50 (including the partition surface 51) of the laminate 42 covered with the plated metal 47, the plated metal 47 is embedded in the entirety of each recess 43 by electroless plating (see FIG. 4F). .
  • the process of covering the surface 50 of the laminate 42 with the plated metal 47 and the process of embedding the plated metal 47 in the entirety of each recess 43 are performed by a common electroless plating process in a common plating unit 17. , performed continuously without interruption. Therefore, the plated metal 47 that covers the surface 50 (including the partition surface 51) of the laminate 42 and the plated metal 47 that is embedded in the entirety of each recess 43 have the same composition.
  • the wafer W is subjected to any treatment (for example, heat treatment, CMP treatment, and/or cleaning treatment) in another treatment unit 16 as necessary. , and is returned to the corresponding carrier C.
  • any treatment for example, heat treatment, CMP treatment, and/or cleaning treatment
  • compositions of the plating metal 47 and the wiring 41 embedded in each recess 43 are not limited, and they may contain a common metal component or may not contain a common metal component.
  • the wiring 41 may contain at least one of cobalt (Co), nickel (Ni), ruthenium (Ru), copper (Cu), tungsten (W), and other conductive metals.
  • Co cobalt
  • Ni nickel
  • Ru ruthenium
  • Cu copper
  • W tungsten
  • other conductive metals such as ruthenium
  • ruthenium may be deposited in each recess 43 as the plating metal 47.
  • the surface 50 of the laminate 42 may be made of a barrier layer (not shown) containing a barrier material such as nickel (Ni).
  • a portion of the wiring 41 that is scattered by the reverse sputtering process and adheres to the surface 50 of the stacked body 42 is attached as a plating seed body 45 on the barrier layer.
  • the inventor of the present invention actually performed an electroless plating process to embed plating metal 47 in each recess 43 of wafer W, and obtained SEM (scanning electron microscope) images (specifically, SE (secondary electron) images and BSE images). The embedded state of the plated metal 47 was observed through a (backscattered electron) image).
  • the embedding state of the plated metal 47 in the wafer W (first example) that has undergone reverse sputtering, heat treatment, and electroless plating in sequence according to FIGS. 4A to 4F described above is visually visualized using an SEM image. confirmed.
  • the embedded state of the plated metal 47 of the wafer W (second example) which was sequentially subjected to heat treatment and electroless plating treatment without being subjected to reverse sputtering treatment (FIGS. 4B and 4C) was visually confirmed by the SEM image. It was done.
  • the processing and environmental conditions other than the reverse sputtering process were made the same between the wafer W of the first example and the wafer W of the second example.
  • the wafer W of the first embodiment and the wafer W of the second embodiment are provided with ruthenium wiring 41, and electroless plating treatment for depositing ruthenium plating metal 47 in each recess 43 is performed on the wafer W of the first embodiment and the wafer W of the second embodiment. This was performed on the wafer W of the second example.
  • the exposed surface of the wiring 41 in each recess 43 was exposed to the etching gas used for etching each recess 43 for a predetermined period of time.
  • argon was used as the reverse sputtering gas G.
  • the plating seed body 45 (ruthenium wiring 41 It was confirmed that there were particles (spattered particles) attached. Further, in the wafer W of the first example, it was confirmed in the SEM image after the electroless plating process that a sufficient amount of plating metal 47 was deposited in all the recesses 43 and that each recess 43 was filled with the plating metal 47. It was done.
  • the scattered material can be suitably used as a seed for electroless plating. can.
  • the deposition of the plating metal 47 is promoted in the subsequent electroless plating process, which is very advantageous for embedding the plating metal 47 in each recess 43 of the wafer W.
  • each wafer W is basically subjected to the reverse sputtering process only once, but each wafer W may be subjected to the reverse sputtering process multiple times.
  • a preliminary reverse sputtering process is performed, and after the preliminary reverse sputtering process, the laminate 42 is A process of cleaning the surface 50 may also be performed. That is, by the preliminary reverse sputtering process, the portions of the wiring 41 exposed in each recess 43 are scattered, and the substance constituting the wiring 41 that has adhered to the surface 50 of the laminate 42 by the preliminary reverse sputtering process is then removed. may be removed by a cleaning process.
  • the reverse sputtering process (see FIGS. 4B and 4C) is performed with fresh portions of the wiring 41 exposed in each recess 43, and the fresh portions are used as plating seeds 45 to cover the surface 50 of the laminate 42. be attached to.
  • the precipitation of the plating metal 47 in the subsequent plating process is improved.
  • the step of covering the partition surface 51 of each recess 43 with the plated metal 47 and the step of embedding the plated metal 47 in each recess 43 are performed by the same electroless plating process, but are performed separately. It may be performed by a plating process.
  • the plated metal 47 may be embedded in each of the recesses 43 by an electroless plating process different from the electroless plating process for covering the partition surface 51 of each of the recesses 43 with the plated metal 47.
  • electroless plating is performed to cover the partition surface 51 of each recess 43 with the plating metal 47
  • an electroplating process is performed in which electricity is passed through the wafer W in order to fill the plating metal 47 into each recess 43. May be done.
  • the step of covering the partition surface 51 with the plated metal 47 and the step of embedding the plated metal 47 in each recess 43 are performed by separate plating processes, even if both processes are performed in the same plating unit 17.
  • the plating may be performed in separate plating processing units 17. That is, with the plating seed body 45 attached to the partition surface 51, the step of covering the partition surface 51 with the plating metal 47 deposited by electroless plating may be performed in the first plating unit.
  • the step of embedding the plating metal 47 in each recess 43 by either electroless plating or electroplating in a state where the partition surface 51 is covered with the plating metal 47 is a second plating process. It may also be done in units.
  • These first plating processing unit and second plating processing unit may be the same processing unit 16 or may be separate processing units 16.
  • the reverse sputtering treatment, heat treatment, and electroless plating treatment are performed in the same substrate liquid processing system (multilayer interconnection forming system 1) in the above example, they may be performed in separate substrate liquid processing systems.
  • the substrate liquid processing system referred to herein may refer to a general system including a loading/unloading station 2 and a processing station 3 as shown in FIG. 1, for example.
  • the wafer W is sent from the loading/unloading station 2 to the processing station 3, and then undergoes reverse sputtering, heat treatment, and no treatment in the processing unit 16 of the processing station 3 without being returned to the loading/unloading station 2. It may also be subjected to electrolytic plating treatment. In this case, the wafer W may be returned to the loading/unloading station 2 after being subjected to reverse sputtering, heat treatment, and electroless plating to fill each recess 43 with plating metal 47.
  • the process of attaching the plating seed body 45 to the surface 50 of the laminate 42, the process of covering the partition surface 51 with the plated metal 47, and the process of embedding the plated metal 47 in the recess 43 can be carried out in a short time and efficiently. It can be carried out in a specific manner.
  • the technical categories that embody the above-mentioned technical ideas are not limited.
  • the device described above may be applied to other devices.
  • the above-mentioned technical idea may be embodied by a computer program for causing a computer to execute one or more procedures (steps) included in the above-described method.
  • the above-mentioned technical idea may be embodied by a computer-readable non-transitory recording medium on which such a computer program is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

基板液処理方法は、配線と、配線上に設けられ且つ絶縁膜を含む積層体と、を備える基板を準備する工程であって、積層体は、配線まで貫通して配線を露出させる凹部を有する工程と、配線のうち凹部において露出する部分を、逆スパッタ処理により飛散させて、凹部を区画する区画面を含む積層体の表面にめっきシード体として付着させる工程と、区画面にめっきシード体が付着している状態で、無電解めっき処理により析出されるめっき金属によって区画面を被覆する工程と、区画面がめっき金属によって被覆されている状態で、無電解めっき処理及び電気めっき処理のうちのいずれかによって、凹部にめっき金属を埋め込む工程と、を含む。

Description

基板液処理方法及び基板液処理装置
 本開示は、基板液処理方法及び基板液処理装置に関する。
 半導体ウェハ(単に「ウェハ」とも称する)に微細配線を形成するために無電解めっきを利用できる。特許文献1には、無電解めっきを利用して、ウェハにおけるビア(凹部)を金属配線で埋める装置が開示される。
国際公開第2019/163531号
 本開示は、基板上にめっき金属を析出させるのに有利な技術を提供する。
 本開示の一態様は、配線と、配線上に設けられ且つ絶縁膜を含む積層体と、を備える基板を準備する工程であって、積層体は、配線まで貫通して配線を露出させる凹部を有する工程と、配線のうち凹部において露出する部分を、逆スパッタ処理により飛散させて、凹部を区画する区画面を含む積層体の表面にめっきシード体として付着させる工程と、区画面にめっきシード体が付着している状態で、無電解めっき処理により析出されるめっき金属によって区画面を被覆する工程と、区画面がめっき金属によって被覆されている状態で、無電解めっき処理及び電気めっき処理のうちのいずれかによって、凹部にめっき金属を埋め込む工程と、を含む、基板液処理方法に関する。
 本開示によれば、基板上にめっき金属を析出させるのに有利である。
図1は、多層配線形成システムの概略構成例を示す図である。 図2は、めっき処理ユニットの構成例を示す図である。 図3は、熱処理ユニットの構成例を示す図である。 図4Aは、基板液処理方法の一例を説明するための図であり、ウェハ(特に1つの凹部の近傍の箇所)の拡大断面を示す。 図4Bは、基板液処理方法の一例を説明するための図であり、ウェハ(特に1つの凹部の近傍の箇所)の拡大断面を示す。 図4Cは、基板液処理方法の一例を説明するための図であり、ウェハ(特に1つの凹部の近傍の箇所)の拡大断面を示す。 図4Dは、基板液処理方法の一例を説明するための図であり、ウェハ(特に1つの凹部の近傍の箇所)の拡大断面を示す。 図4Eは、基板液処理方法の一例を説明するための図であり、ウェハ(特に1つの凹部の近傍の箇所)の拡大断面を示す。 図4Fは、基板液処理方法の一例を説明するための図であり、ウェハ(特に1つの凹部の近傍の箇所)の拡大断面を示す。
 添付図面を参照して本開示の具体的な実施形態を説明する。以下の実施形態は、本開示の技術思想を具現化した基板液処理方法及び基板液処理装置の例に過ぎず、本開示の技術思想を限定しない。各図面に示される各要素は簡略化して示されている。各図面における各要素の寸法や形状及び要素間寸法比は、必ずしも現実の装置の対応要素と一致せず、また図面間において必ずしも一致しない。
 図1は、多層配線形成システム1の概略構成例を示す図である。図1において、X軸、Y軸及びZ軸はお互いに直交しており、X軸及びY軸は水平に延び、Z軸の正方向は鉛直上向き方向である。
 図1に示す多層配線形成システム(基板液処理システム)1は、搬入出ステーション2、処理ステーション3及び制御装置4を備える。
 搬入出ステーション2は、キャリア載置部11及び第1搬送部12を含む。キャリア載置部11にはキャリアCが複数載置され、各キャリアCは1又は複数のウェハ(基板)Wを水平状態で支持する。第1搬送部12は、キャリア載置部11に隣り合って設けられ、第1基板搬送装置13及び受渡部14を含む。
 第1基板搬送装置13は、各キャリアCと受渡部14との間でウェハWを搬送する。本例の第1基板搬送装置13は、ウェハWを保持しつつ、当該ウェハWを水平方向及び鉛直方向に移動させたり、鉛直軸線を中心に当該ウェハWを回転(旋回)させたりすることが可能である。受渡部14は、第1基板搬送装置13から受け取ったウェハWを一時的に支持したり、第1基板搬送装置13に受け渡される予定のウェハWを一時的に支持したりする。受渡部14から第1基板搬送装置13に受け渡されたウェハWは、第1基板搬送装置13から対応のキャリアCに戻される。
 処理ステーション3は、搬入出ステーション2(特に第1搬送部12)に対してX方向に隣り合って設けられ、第2搬送部15及び複数の処理ユニット16を含む。
 第2搬送部15は、搬送路において移動可能な第2基板搬送装置20を具備する。第2基板搬送装置20は、ウェハWを水平方向及び鉛直方向へ移動させたり、鉛直軸を中心にウェハWを回転(旋回)させたりすることが可能である。第2搬送部15は、受渡部14から受け取ったウェハWを所望の処理ユニット16に搬送したり、処理ユニット16間でウェハWを搬送したり、処理ユニット16から受渡部14にウェハWを搬送したりする。
 処理ステーション3に含まれる複数の処理ユニット16は、第2基板搬送装置20の搬送路(図1に示す例ではX方向に延びる搬送路)の両側に並べられる。これらの処理ユニット16の配置形態及び数は図1に示す例には限定されず、任意の数の処理ユニット16が任意の形態で配置可能である。
 各ウェハWに対して液処理及びその他の処理を行う基板液処理装置は、1又は複数の処理ユニット16を含む。各処理ユニット16で行われる具体的な処理は限定されないが、本実施形態では少なくともめっき処理ユニット17、逆スパッタ処理ユニット18及び熱処理ユニット19として働く処理ユニット16が設けられる。本実施形態のめっき処理ユニット17は、ウェハWに対して無電解めっき処理を行う無電解めっき処理ユニットとして構成される。逆スパッタ処理ユニット18は、ウェハWに対して逆スパッタ処理を行う。熱処理ユニット19は、ウェハWに対して熱処理を行う。めっき処理ユニット17、逆スパッタ処理ユニット18及び熱処理ユニット19のそれぞれで行われる無電解めっき処理、逆スパッタ処理及び熱処理の詳細は、後述される。
 一例として、処理ステーション3に設けられる複数の処理ユニット16は、めっき処理ユニット17、逆スパッタ処理ユニット18及び熱処理ユニット19に加え、CMP処理ユニット及び洗浄処理ユニットを含んでもよい。CMP(Chemical Mechanical Polishing:化学機械研磨)処理ユニットは、ウェハWに対してCMP処理を行う。洗浄処理ユニットは、ウェハWに対して洗浄処理を行い、例えばスピン洗浄方式の洗浄装置を含む。
 制御装置4は、例えばコンピュータであり、制御部21及び記憶部22を備える。制御部21は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。マイクロコンピュータのCPUは、ROMに記憶されているプログラムを読み出して実行することにより、第1搬送部12、第2搬送部15及び各処理ユニット16の制御を行う。
 制御装置4の記憶部22に記憶されるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から記憶部22にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、及びメモリカードなどがある。記憶部22は、例えば、RAM、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、ハードディスク及び光ディスクなどの記憶装置によって実現可能である。
[めっき処理ユニット]
 図2は、めっき処理ユニット17の構成例を示す図である。図2には、筺体30の内側の構成が透視的に示されている。
 図2に示すめっき処理ユニット17は、ウェハWを1枚ずつ処理する枚葉式の処理ユニット16として構成され、筺体30と、少なくとも一部が筺体30の内側に設けられる基板回転保持機構31、処理液供給機構32及びカップ33を備える。
 筺体30は、図示しない開閉式の搬出入部を有する。第2基板搬送装置20(図1参照)によって搬送されるウェハWは、開状態の搬出入部を通って筺体30の内側に搬入され、また開状態の搬出入部を通って筺体30の内側から搬出される。一方、筺体30の内側でウェハWが各種処理(無電解めっき処理を含む)を受ける間及び筺体30の内側で何らの処理も行われない間、搬出入部は閉状態に置かれ、筺体30の内側への外気の流入が制限される。
 基板回転保持機構31は、ウェハWを保持し、当該ウェハWとともに回転可能に設けられる。基板回転保持機構31は、中空円筒形状の回転軸31a、ターンテーブル31b、ウェハチャック31c及び第1回転駆動部(図示省略)を有する。回転軸31aは、制御装置4(図1参照)の制御下で駆動される第2昇降機構(図示省略)によって、筺体30の内側における上下方向長さが変えられる。ターンテーブル31bは、回転軸31aの上端部に取り付けられる。ウェハチャック31cは、ターンテーブル31bの上面外周部に設けられ、ウェハWを支持する。回転軸31aの上下方向長さが変わることで、ターンテーブル31b及びウェハチャック31cの高さ位置(上下方向位置)が一体的に変わる。第1回転駆動部は、モータ等の駆動源からの回転動力を回転軸31aに伝え、回転軸31a、ターンテーブル31b及びウェハチャック31cを一体的に回転させる。
 基板回転保持機構31は制御装置4(図1参照)の制御下で駆動され、第1回転駆動部から伝えられる回転動力によって回転軸31a、ターンテーブル31b及びウェハチャック31cが回転され、ひいてはウェハチャック31cが支持するウェハWが回転される。
 処理液供給機構32は制御装置4(図1参照)の制御下で駆動され、基板回転保持機構31によって保持されるウェハWの表面に処理液(例えば無電解めっき液)を供給する。本例の処理液供給機構32は、処理液供給部32a、吐出ヘッド32b、吐出ノズル32c、アーム32d、支持軸32e及び処理液供給路32fを有する。
 処理液供給部32aは、処理液供給路32fを介して吐出ヘッド32bに処理液を供給する。吐出ヘッド32bに供給された処理液は、吐出ヘッド32bに取り付けられた吐出ノズル32cから吐出されて、例えばウェハWの処理面(上面)に付与される。吐出ヘッド32b及び吐出ノズル32cはアーム32dの先端部に取り付けられ、アーム32dと一体的に移動する。アーム32dは、上下動可能なように支持軸32eによって支持され、筺体30の内側において上下方向へ移動可能に設けられる。またアーム32dは、支持軸32eと一体的に回転(旋回)して、水平方向へ移動可能に設けられる。支持軸32eは、図示しない第2回転駆動部によって、上下方向に延びる中心軸線の周りで回転させられる。
 上述の構成を有する処理液供給機構32は、ウェハWの処理面(上面)の任意箇所に向けて、所望の高さ位置に位置づけられた吐出ノズル32cから処理液を吐出させることができる。
 カップ33は、上下方向に異なる位置に配置される2つの排出口33a、33bを有し、ウェハWから飛散した処理液を受ける。カップ33は、制御装置4(図1参照)の制御下で駆動される第2昇降機構(図示省略)によって上下方向に移動可能に設けられており、2つの排出口33a、33bの高さ位置は可変である。2つの排出口33a、33bは、それぞれ液排出機構34、35に接続されている。
 液排出機構34、35は、2つの排出口33a、33bに集められた処理液を筺体30の外部に排出する。
 液排出機構34は、流路切換器34aを介して排出口33aに接続される回収流路34b及び廃棄流路34cを有する。流路切換器34aは、一方の排出口33aからの処理液が流入可能な流路を、回収流路34bと廃棄流路34cとの間で切り換える。回収流路34bは、一方の排出口33aから回収される処理液を再利用するための流路であり、処理液を冷却するための冷却バッファ34dが設けられる。廃棄流路34cは、一方の排出口33aから回収される処理液を廃棄するための流路である。
 液排出機構35は、他方の排出口33bに接続される廃棄流路35aを有する。廃棄流路35aは、他方の排出口33bから回収される処理液を廃棄するための流路である。
 処理液供給部32aは、無電解めっき液及び他の処理液(例えば洗浄液やリンス液)を、処理液として吐出ヘッド32b及び吐出ノズル32cに供給可能に設けられる。これにより処理液供給機構32は、ウェハWに対する無電解めっき液の付与の前後に、洗浄液を使う洗浄処理、リンス液を使うリンス処理、或いは他の液処理をウェハWに施すことが可能である。
 なお図2には、処理液供給機構32が簡略的に示されており、処理液供給部32a、処理液供給路32f、吐出ヘッド32b及び吐出ノズル32cが1つずつ示されている。ただし処理液供給部32a、処理液供給路32f、吐出ヘッド32b及び吐出ノズル32cの数や構成は限定されない。
 例えば、処理液供給部32a、処理液供給路32f、吐出ヘッド32b及び/又は吐出ノズル32cが複数設けられてもよい。この場合、例えば、処理液供給機構32からウェハWに供給される複数種類の処理液の各々に関して、専用の処理液供給部32a、処理液供給路32f、吐出ヘッド32b及び/又は吐出ノズル32cが設けられてもよい。或いは、特定の1種類以上の処理液に関してのみ、専用の処理液供給部32a、処理液供給路32f、吐出ヘッド32b及び/又は吐出ノズル32cが設けられてもよい。この場合、他の種類の処理液に関しては、処理液供給部32a、処理液供給路32f、吐出ヘッド32b及び/又は吐出ノズル32cが共用される。
[熱処理ユニット]
 図3は、熱処理ユニット19の構成例を示す図である。図3には、筺体19aの内側の構成が透視的に示されている。
 図3に示す熱処理ユニット19は、ウェハWを1枚ずつ処理する枚葉式の処理ユニット16として構成され、筺体19aと、筺体19aの内部に配置されたホットプレート19bと、を備える。
 筺体19aは、図示しない開閉式の搬出入部を有する。第2基板搬送装置20(図1参照)によって搬送されるウェハWは、開状態の搬出入部を通って筺体19aの内側に搬入され、また開状態の搬出入部を通って筺体19aの内側から搬出される。一方、筺体19aの内側でウェハWが熱処理を受ける間及び筺体19aの内側で何らの処理も行われない間、搬出入部は閉状態に置かれ、筺体19aの内側への外気の流入が制限される。
 筺体19aには、筺体19a内に還元性ガスを供給するガス供給路19cと、筺体19a内から雰囲気ガスを排出するガス排出路19dとが設けられる。
 筺体19a内に供給される還元性ガスの具体的な組成は限定されず、例えば窒素ガス及び水素ガスを含有するフォーミングガスが還元性ガスとして用いられる。フォーミングガス中の水素ガス濃度は通常3~4%程度である。フォーミングガス雰囲気中でウェハWを例えば400℃程度の高温に加熱することで、ウェハWを効果的に還元することができ、ウェハWの酸化の影響を抑制できる。
 ウェハWは、搬出入部を介して筺体19a内に搬入されてホットプレート19bに載置される。そしてガス供給源(図示省略)からガス供給路19cを介して筺体19a内に還元性ガスが供給され、筺体19a内が還元性ガスによって充満している状態で、ウェハWはホットプレート19bにより加熱されて熱処理(還元アニール処理)される。筺体19a内の雰囲気ガスは、ガス排出路19dを介して排出されてガス回収部(図示省略)に回収される。ウェハWの熱処理が行われている間、ガス供給路19cから筺体19a内への還元性ガスの供給と、筺体19a内の雰囲気ガスのガス排出路19dを介した排出とは、継続的に行われてもよいし、停止されていてもよい。
 ウェハWの熱処理が終了した後、ウェハWは搬出入部を介して筺体19a外に搬出される。
[基板液処理方法]
 図4A~図4Fは、基板液処理方法の一例を説明するための図であり、ウェハW(特に1つの凹部43の近傍の箇所)の拡大断面を示す。以下に説明する基板液処理方法は、制御装置4の制御下で多層配線形成システム1の各種装置が適宜駆動されることで、実行される。
 まず配線41と、配線41上に設けられ且つ絶縁膜を含む積層体42と、を備えるウェハWが準備され、当該ウェハWが逆スパッタ処理ユニット18(処理ユニット16(図1参照))内に配置される(図4A参照)。積層体42は多数の凹部43を有し、各凹部43は、配線41まで貫通して配線41を露出させる。
 その後、ウェハWは、逆スパッタ処理ユニット18において逆スパッタ処理を受ける。すなわち逆スパッタ処理ユニット18は、ウェハWをターゲットとして使用し、当該ウェハWに高電圧をかけてグロー放電を発生させることで、ウェハWの周囲に充満させた逆スパッタガスGをイオン化させて、凹部43で露出する配線41に衝突させる(図4B参照)。
 その結果、凹部43において露出する配線41の露出面近傍部が逆スパッタガスGによってはじき飛ばされ、凹部43の底部において配線41のフレッシュな表面(新たな表面)が露出する(図4C参照)。一方、配線41のうち凹部43において露出する部分であって逆スパッタガスGによって飛散させられた部分は、積層体42の表面50(凹部43を区画する区画面51を含む)に、めっきシード体45として付着する。
 なお逆スパッタ処理ユニット18が具備する具体的な装置は限定されない。逆スパッタ処理ユニット18は、一例として、電圧印加デバイス及び逆スパッタガス供給デバイスを備える既知のスパッタリング装置を応用した装置を使って、上述の逆スパッタ処理を行うことが可能である。逆スパッタガスGの具体的な組成も限定されず、例えばアルゴン(Ar)を逆スパッタガスGとして用いることが可能であるが、他の任意のガス(例えばアルゴン以外の希ガス元素或いは窒素)が用いられてもよい。
 その後、ウェハWは、逆スパッタ処理ユニット18から搬出されて、熱処理ユニット19(図3参照)内に搬入される(図4D参照)。ウェハWは、熱処理ユニット19において、還元性ガスの雰囲気下で熱処理を受ける。このように本実施形態では、区画面51を含む積層体42の表面にめっきシード体45が付着している状態で且つ区画面51がめっき金属によって被覆される前に、還元性ガスの雰囲気下でウェハWの熱処理が行われる。
 その後、ウェハWは、熱処理ユニット19から搬出されて、めっき処理ユニット17(図2参照)内に搬入される。なお上述の熱処理ユニット19におけるウェハWの熱処理は行われなくてもよい。その場合、逆スパッタ処理ユニット18から搬出されたウェハW(図4C参照)は、熱処理ユニット19に搬入されることなく、めっき処理ユニット17内に搬入される。
 ウェハWは、めっき処理ユニット17において無電解めっき処理を受けて、各凹部43にめっき金属47が埋め込まれる(図4E及び図4F参照)。ここでの無電解めっき処理は、めっき金属47によって積層体42の表面50(区画面51を含む)を被覆する工程と、各凹部43にめっき金属47を埋め込んで充填する工程と、を含む。
 すなわち、まず区画面51を含む積層体42の表面50にめっきシード体45が付着している状態で、無電解めっき処理により析出されるめっき金属47によって積層体42の表面50(区画面51を含む)が被覆される(図4E参照)。この際、めっきシード体45がシードとして働き、めっき金属47の析出を促す。その後、積層体42の表面50(区画面51を含む)がめっき金属47によって被覆されている状態で、無電解めっき処理によって、各凹部43の全体にめっき金属47が埋め込まれる(図4F参照)。
 本実施形態では、めっき金属47によって積層体42の表面50が被覆される工程及び各凹部43の全体にめっき金属47が埋め込まれる工程が、共通のめっき処理ユニット17で共通の無電解めっき処理によって、中断無く連続的に行われる。したがって積層体42の表面50(区画面51を含む)を被覆するめっき金属47と、各凹部43の全体に埋め込まれるめっき金属47と、は同じ組成を有する。
 このようにして各凹部43にめっき金属47が埋め込まれた後のウェハWは、必要に応じて他の処理ユニット16で任意の処理(例えば熱処理、CMP処理及び/又は洗浄処理)を受けた後、対応のキャリアCに戻される。
 なお各凹部43に埋め込まれるめっき金属47及び配線41の具体的な組成は限定されず、お互いに共通の金属成分を含んでいてもよいし、お互いに共通の金属成分を含まなくてもよい。
 例えば配線41は、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)、銅(Cu)、タングステン(W)、及びその他の導電性金属のうちの少なくともいずれかを含んでいてもよい。一例として、配線41がルテニウムで構成される場合、ルテニウムをめっき金属47として各凹部43に析出させてもよい。
 銅やタングステンによって配線41が構成される場合、積層体42の表面50(区画面51を含む)は、ニッケル(Ni)などのバリア材料を含むバリア層(図示省略)によって構成されてもよい。この場合、配線41のうち逆スパッタ処理により飛散して積層体42の表面50に付着する部分は、バリア層上にめっきシード体45として付着する。このようにしてバリア層上にめっきシード体45が付着することで、めっきシード体45が銅やタングステンにより構成されていても、めっきシード体45が絶縁膜中に拡散するのを防げる。
 本件発明者は実際に、ウェハWの各凹部43にめっき金属47を埋め込むための無電解めっき処理を行って、SEM(走査電子顕微鏡)画像(具体的にはSE(二次電子)画像及びBSE(後方散乱電子)画像)を介してめっき金属47の埋め込み状態を観察した。
 具体的には、上述の図4A~図4Fに従って逆スパッタ処理、熱処理及び無電解めっき処理を順次受けたウェハW(第1実施例)におけるめっき金属47の埋め込み状態が、SEM画像によって視覚的に確認された。また逆スパッタ処理(図4B及び図4C)が行われずに、熱処理及び無電解めっき処理を順次受けたウェハW(第2実施例)のめっき金属47の埋め込み状態が、SEM画像によって視覚的に確認された。
 第1実施例のウェハWと第2実施例のウェハWとの間において、逆スパッタ処理以外の処理や環境の条件は同じにそろえられた。第1実施例のウェハW及び第2実施例のウェハWはルテニウムの配線41を備え、各凹部43にルテニウムのめっき金属47を堆積させるための無電解めっき処理が第1実施例のウェハW及び第2実施例のウェハWに対して行われた。第1実施例のウェハW及び第2実施例のウェハWにおいて、各凹部43における配線41の露出面は、各凹部43のエッチング加工に用いられたエッチンガスに所定時間晒された。第1実施例のウェハWに対する逆スパッタ処理では、アルゴンが逆スパッタガスGとして使用された。
 その結果、無電解めっき処理に先立って逆スパッタ処理が行われなかった第2実施例のウェハWでは、各凹部43においてめっき金属47が適切に堆積せず、各凹部43をめっき金属47で埋めることができなかった。
 一方、第1実施例のウェハWでは、逆スパッタ処理後且つ無電解めっき処理前のSEM画像において、積層体42の表面50(区画面51を含む)にめっきシード体45(ルテニウム製の配線41の飛散物)が付着しているのが確認された。また第1実施例のウェハWでは、無電解めっき処理後のSEM画像において、全ての凹部43において十分量のめっき金属47が堆積され、各凹部43がめっき金属47によって充填されていることが確認された。
 以上説明したように逆スパッタ処理によって配線41の一部を飛散させて各凹部43の区画面51に付着させることで、当該飛散物を無電解めっき処理のためのシードとして好適に利用することができる。その結果、その後に行われる無電解めっき処理においてめっき金属47の析出が促進され、そのことはウェハWの各凹部43にめっき金属47を埋め込むのに非常に有利である。
 特に、逆スパッタ処理によって、各凹部43では配線41の新たな部分(フレッシュな部分)が露出するため、各凹部43における配線41の露出面(すなわち各凹部43の底面)の無電解めっき触媒性及びめっき金属47の析出性が改善される。その結果、各凹部43におけるめっき金属47のボトムアップ成長性の向上も期待されうる。
[変形例]
 上述の例(図4A~図4F参照)では、各ウェハWは逆スパッタ処理を基本的に1度のみ受けるが、各ウェハWに対して複数回の逆スパッタ処理が行われてもよい。
 一例として、逆スパッタ処理によってめっきシード体45(図4C参照)を積層体42の表面50に付着させるのに先立って、予備的な逆スパッタ処理と、当該予備的な逆スパッタ処理後に積層体42の表面50を洗浄する処理とが行われてもよい。すなわち予備的な逆スパッタ処理によって、配線41のうち各凹部43において露出する部分を飛散させ、当該予備的な逆スパッタ処理によって積層体42の表面50に付着した配線41を構成する物質が、その後の洗浄処理によって除去されてもよい。
 この場合、各凹部43において配線41のフレッシュな部分が露出した状態で、逆スパッタ処理(図4B及び図4C参照)が行われ、当該フレッシュな部分がめっきシード体45として積層体42の表面50に付着させられる。その結果、その後のめっき処理におけるめっき金属47の析出性が改善される。
 また上述の例では、各凹部43の区画面51をめっき金属47によって被覆するための工程と、各凹部43にめっき金属47を埋め込む工程とが、同じの無電解めっき処理によって行われるが、別々のめっき処理によって行われてもよい。一例として、各凹部43の区画面51をめっき金属47によって被覆するための無電解めっき処理とは別の無電解めっき処理によって、各凹部43にめっき金属47が埋め込まれてもよい。また各凹部43の区画面51をめっき金属47によって被覆するために無電解めっき処理を行う一方で、その後に各凹部43にめっき金属47が埋め込むためにウェハWに電気が流される電気めっき処理が行われてもよい。
 区画面51をめっき金属47によって被覆するための工程と、各凹部43にめっき金属47を埋め込む工程とが別々のめっき処理により行われる場合、両工程は同一のめっき処理ユニット17で行われてもよいし、別々のめっき処理ユニット17で行われてもよい。すなわち区画面51にめっきシード体45が付着している状態で、無電解めっき処理により析出されるめっき金属47によって区画面51を被覆する工程が、第1めっき処理ユニットで行われてもよい。その一方で、区画面51がめっき金属47によって被覆されている状態で、無電解めっき処理及び電気めっき処理のうちのいずれかによって、各凹部43にめっき金属47を埋め込む工程が、第2めっき処理ユニットで行われてもよい。これらの第1めっき処理ユニット及び第2めっき処理ユニットは、同一の処理ユニット16であってもよいし、別々の処理ユニット16であってもよい。
 また逆スパッタ処理、熱処理及び無電解めっき処理は、上述の例では同じ基板液処理システム(多層配線形成システム1)において行われるが、別々の基板液処理システムで行われてもよい。
 ただし無電解めっき処理を品質良く行う観点からは、逆スパッタ処理~無電解めっき処理の間において、経過時間を短くすることが好ましく、ウェハWの移動距離を短くすることが好ましく、塵等の異物を含みうる外気へのウェハWの露出を抑えることが好ましい。したがって逆スパッタ処理、熱処理及び無電解めっき処理は、別々の基板液処理システムで行われるよりも、同じ基板液処理システムで行われる方が、無電解めっき処理によってウェハW上に堆積させるめっき金属の高品質化を期待できる。
 ここで言う基板液処理システムは、例えば図1に示すような搬入出ステーション2及び処理ステーション3を備えるシステム全般を指しうる。ウェハWは、ある基板液処理システムにおいて、搬入出ステーション2から処理ステーション3に送られた後、搬入出ステーション2に戻されることなく、処理ステーション3の処理ユニット16で逆スパッタ処理、熱処理及び無電解めっき処理を受けてもよい。この場合、ウェハWは、逆スパッタ処理、熱処理及び無電解めっき処理が行われて、各凹部43にめっき金属47が埋め込まれた後、搬入出ステーション2に戻されてもよい。これにより、積層体42の表面50にめっきシード体45が付着させられる処理、めっき金属47によって区画面51が被覆される処理、及び凹部43にめっき金属47が埋め込まれる処理を、短時間且つ効率的に実施することができる。
 本明細書で開示されている実施形態及び変形例は全ての点で例示に過ぎず限定的には解釈されないことに留意されるべきである。上述の実施形態及び変形例は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態での省略、置換及び変更が可能である。例えば上述の実施形態及び変形例が部分的に又は全体的に組み合わされてもよく、また上述以外の実施形態が上述の実施形態又は変形例と部分的に又は全体的に組み合わされてもよい。
 また上述の技術的思想を具現化する技術的カテゴリーは限定されない。例えば上述の装置が他の装置に応用されてもよい。また上述の方法に含まれる1又は複数の手順(ステップ)をコンピュータに実行させるためのコンピュータプログラムによって、上述の技術的思想が具現化されてもよい。またそのようなコンピュータプログラムが記録されたコンピュータが読み取り可能な非一時的(non-transitory)な記録媒体によって、上述の技術的思想が具現化されてもよい。

Claims (7)

  1.  配線と、前記配線上に設けられ且つ絶縁膜を含む積層体と、を備える基板を準備する工程であって、前記積層体は、前記配線まで貫通して前記配線を露出させる凹部を有する工程と、
     前記配線のうち前記凹部において露出する部分を、逆スパッタ処理により飛散させて、前記凹部を区画する区画面を含む前記積層体の表面にめっきシード体として付着させる工程と、
     前記区画面に前記めっきシード体が付着している状態で、無電解めっき処理により析出されるめっき金属によって前記区画面を被覆する工程と、
     前記区画面がめっき金属によって被覆されている状態で、無電解めっき処理及び電気めっき処理のうちのいずれかによって、前記凹部にめっき金属を埋め込む工程と、を含む、
     基板液処理方法。
  2.  前記配線は、コバルト、ニッケル、ルテニウム及び銅のうちの少なくともいずれかを含む請求項1に記載の基板液処理方法。
  3.  前記めっき金属及び前記配線は、共通の金属成分を含む請求項1又は2に記載の基板液処理方法。
  4.  前記区画面に前記めっきシード体が付着している状態で且つ前記区画面がめっき金属によって被覆される前に、還元性ガスの雰囲気下で前記基板の熱処理を行う工程を含む請求項1又は2に記載の基板液処理方法。
  5.  前記逆スパッタ処理によって前記めっきシード体を前記積層体の表面に付着させるのに先立って、
      前記配線のうち前記凹部において露出する部分を、予備的な逆スパッタ処理により飛散させる工程と、
      前記予備的な逆スパッタ処理によって前記積層体の表面に付着した前記配線を構成する物質を除去する工程と、
     が行われる請求項1又は2に記載の基板液処理方法。
  6.  基板液処理システムは、搬入出ステーション及び処理ステーションを備え、
     前記基板は、
     前記搬入出ステーションから前記処理ステーションに送られた後、前記搬入出ステーションに戻されることなく、前記処理ステーションにおいて、前記積層体の表面に前記めっきシード体が付着させられる処理、めっき金属によって前記区画面が被覆される処理、及び前記凹部にめっき金属が埋め込まれる処理を受け、
     前記凹部にめっき金属が埋め込まれた後、前記搬入出ステーションに戻される請求項1又は2に記載の基板液処理方法。
  7.  配線と、前記配線上に設けられ且つ絶縁膜を含む積層体と、を含む基板であって、前記配線まで貫通して前記配線を露出させる凹部を有する基板に対して逆スパッタ処理を行うことで、前記配線のうち前記凹部において露出する部分を飛散させて、前記凹部を区画する区画面を含む前記積層体の表面にめっきシード体として付着させる逆スパッタ処理ユニットと、
     前記区画面に前記めっきシード体が付着している状態で、無電解めっき処理により析出されるめっき金属によって前記区画面を被覆し、前記区画面がめっき金属によって被覆されている状態で、無電解めっき処理及び電気めっき処理のうちのいずれかによって、前記凹部にめっき金属を埋め込む1以上のめっき処理ユニットと、を備える、
     基板液処理装置。
PCT/JP2023/022850 2022-07-05 2023-06-21 基板液処理方法及び基板液処理装置 WO2024009762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-108538 2022-07-05
JP2022108538 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024009762A1 true WO2024009762A1 (ja) 2024-01-11

Family

ID=89453256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022850 WO2024009762A1 (ja) 2022-07-05 2023-06-21 基板液処理方法及び基板液処理装置

Country Status (2)

Country Link
TW (1) TW202409344A (ja)
WO (1) WO2024009762A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183160A (ja) * 1998-12-11 2000-06-30 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2001316809A (ja) * 2000-01-21 2001-11-16 Applied Materials Inc ボールト形状のターゲット及び高磁界マグネトロン
JP2003124214A (ja) * 2001-10-15 2003-04-25 Ebara Corp 配線形成方法及びその装置
JP2003158145A (ja) * 2001-11-21 2003-05-30 Seiko Epson Corp バンプの形成方法、フリップチップ及び半導体装置並びにこれらの製造方法、回路基板並びに電子機器
JP2008041700A (ja) * 2006-08-01 2008-02-21 Tokyo Electron Ltd 成膜方法、成膜装置及び記憶媒体
WO2019163531A1 (ja) * 2018-02-21 2019-08-29 東京エレクトロン株式会社 多層配線の形成方法および記憶媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183160A (ja) * 1998-12-11 2000-06-30 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2001316809A (ja) * 2000-01-21 2001-11-16 Applied Materials Inc ボールト形状のターゲット及び高磁界マグネトロン
JP2003124214A (ja) * 2001-10-15 2003-04-25 Ebara Corp 配線形成方法及びその装置
JP2003158145A (ja) * 2001-11-21 2003-05-30 Seiko Epson Corp バンプの形成方法、フリップチップ及び半導体装置並びにこれらの製造方法、回路基板並びに電子機器
JP2008041700A (ja) * 2006-08-01 2008-02-21 Tokyo Electron Ltd 成膜方法、成膜装置及び記憶媒体
WO2019163531A1 (ja) * 2018-02-21 2019-08-29 東京エレクトロン株式会社 多層配線の形成方法および記憶媒体

Also Published As

Publication number Publication date
TW202409344A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US8062955B2 (en) Substrate processing method and substrate processing apparatus
US6742279B2 (en) Apparatus and method for rinsing substrates
WO2021060037A1 (ja) 基板液処理方法及び基板液処理装置
WO2024009762A1 (ja) 基板液処理方法及び基板液処理装置
JP6903171B2 (ja) 多層配線の形成方法および記憶媒体
JP6910528B2 (ja) 多層配線の形成方法および記憶媒体
WO2021177047A1 (ja) 基板処理装置および基板処理方法
JP6479641B2 (ja) 基板処理装置および基板処理方法
TW201736639A (zh) 基板處理裝置及基板處理方法
WO2024004682A1 (ja) 基板液処理方法及び基板液処理装置
WO2022168614A1 (ja) めっき処理方法およびめっき処理装置
WO2022220168A1 (ja) 基板処理方法、基板処理装置および記憶媒体
JP7221414B2 (ja) 基板液処理方法および基板液処理装置
JP7267470B2 (ja) 基板処理方法および基板処理装置
JP7090710B2 (ja) 基板液処理装置および基板液処理方法
JP6910480B2 (ja) 多層配線の形成方法、多層配線形成装置および記憶媒体
WO2022153914A1 (ja) めっき処理方法およびめっき処理装置
WO2024154609A1 (ja) めっき処理方法およびめっき処理装置
WO2021070659A1 (ja) 基板液処理装置及び基板液処理方法
WO2020031679A1 (ja) 基板処理装置および基板処理方法
WO2019107331A1 (ja) 基板液処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835296

Country of ref document: EP

Kind code of ref document: A1