WO2024009564A1 - ステンレス継目無鋼管およびその製造方法 - Google Patents

ステンレス継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2024009564A1
WO2024009564A1 PCT/JP2023/008928 JP2023008928W WO2024009564A1 WO 2024009564 A1 WO2024009564 A1 WO 2024009564A1 JP 2023008928 W JP2023008928 W JP 2023008928W WO 2024009564 A1 WO2024009564 A1 WO 2024009564A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
stainless steel
seamless
phase
Prior art date
Application number
PCT/JP2023/008928
Other languages
English (en)
French (fr)
Inventor
祐一 加茂
信介 井手
光喜 須加原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023537602A priority Critical patent/JP7409569B1/ja
Publication of WO2024009564A1 publication Critical patent/WO2024009564A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a stainless steel seamless pipe suitable for use in oil and gas wells (hereinafter simply referred to as oil wells).
  • the present invention provides seamless stainless steel pipes that have improved corrosion resistance, especially in high-temperature, severe corrosive environments containing carbon dioxide gas (CO 2 ) and chlorine ions (Cl ⁇ ), and environments containing hydrogen sulfide (H 2 S). Regarding.
  • Seamless stainless steel pipes are widely used for applications such as steel pipes for oil wells.
  • steel pipes for oil wells are also required to have excellent low-temperature toughness due to the recent development of oil fields in cold regions.
  • 13Cr martensitic stainless steel pipes have been generally used as oil well steel pipes used for mining in oil and gas fields in environments containing CO 2 and Cl 2 - , etc.
  • oil wells with higher temperatures up to 200° C.
  • 13Cr martensitic stainless steel pipes sometimes lack corrosion resistance. Therefore, there is a demand for oil well steel pipes that can be used even in such environments and have even higher corrosion resistance.
  • Patent Document 1 states that in mass %, C: 0.05% or less, Si: 1.0% or less, Mn: 0.01 to 1.0%, P: 0.05 % or less, S: less than 0.002%, Cr: 16-18%, Mo: 1.8-3%, Cu: 1.0-3.5%, Ni: 3.0-5.5%, Co :0.01 to 1.0%, Al: 0.001 to 0.1%, O: 0.05% or less, and N: 0.05% or less, and contains Cr, Ni, Mo, and Cu. Oil well stainless steels have been proposed that have compositions that satisfy specific relationships.
  • Patent Document 2 in mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.50%, Mn: 0.20 to 1.80%, P: 0.030% Below, S: 0.005% or less, Cr: 12.0-17.0%, Ni: 4.0-7.0%, Mo: 0.5-3.0%, Al: 0.005-0 .10%, V: 0.005-0.20%, Co: 0.01-1.0%, N: 0.005-0.15%, O: 0.010% or less, Cr, A high-strength seamless stainless steel pipe for oil wells having a composition in which Ni, Mo, Cu, C, Si, Mn, and N satisfy a specific relationship has been proposed.
  • Patent Document 3 in mass %, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15 to 1.0%, P: 0.030% or less, S: 0. 005% or less, Cr: 14.5-17.5%, Ni: 3.0-6.0%, Mo: 2.7-5.0%, Cu: 0.3-4.0%, W: Contains 0.1 to 2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15% or less, B: 0.0005 to 0.0100%, C, Si, Mn, Cr, Ni, Mo, Cu, N, and W have a composition that satisfies a specific relationship, and in terms of volume fraction, the main phase is more than 45% martensitic phase, and the second phase is ferrite.
  • a high-strength seamless stainless steel pipe for oil wells has been proposed, which has a structure containing 10 to 45% phase and 30% or less retained austenite phase.
  • a high-strength seamless stainless steel pipe for oil wells that has a yield strength of 862 MPa or more and exhibits sufficient corrosion resistance even in high-temperature and severe corrosive environments containing CO 2 , Cl ⁇ , and H 2 S. It is said that it will be done.
  • Patent Document 4 in mass %, C: 0.06% or less, Si: 1.0% or less, P: 0.05% or less, S: 0.005% or less, Cr: more than 15.7%. 18.0% or less, Mo: 1.8% or more and 3.5% or less, Cu: 1.5% or more and 3.5% or less, Ni: 2.5% or more and 6.0% or less, Al: 0.10 % or less, N: 0.10% or less, O: 0.010% or less, W: 0.5% or more and 2.0% or less, Co: 0.01% or more and 1.5% or less, C, Si, Mn, Cr, Ni, Mo, Cu, and N have a composition that satisfies a specific relationship, and the volume percentage is 25% or more of martensite phase, 65% or less of ferrite phase, and 40% of retained austenite phase.
  • a high-strength seamless stainless steel pipe for oil wells has been proposed, which has a structure containing % or less.
  • a high-strength stainless steel seamless steel tube for oil wells that has a yield strength of 758 MPa or more and exhibits sufficient corrosion resistance even in high-temperature and severe corrosive environments containing CO 2 , Cl ⁇ , and H 2 S. It is said that it will be done.
  • Patent Document 5 in mass %, C: 0.06% or less, Si: 1.0% or less, Mn: 0.01% or more and 1.0% or less, P: 0.05% or less, S: 0.005% or less, Cr: 15.2% or more and 18.5% or less, Mo: 1.5% or more and 4.3% or less, Cu: 1.1% or more and 3.5% or less, Ni: 3.0 % or more and 6.5% or less, Al: 0.10% or less, N: 0.10% or less, O: 0.010% or less, Sb: 0.001% or more and 1.000% or less, C, Si, Mn, Cr, Ni, Mo, Cu, and N have a composition that satisfies a specific relationship, and the volume percentage is 30% or more of martensite phase, 65% or less of ferrite phase, and 40% of retained austenite phase.
  • a high-strength seamless stainless steel pipe for oil wells has been proposed, which has a structure containing % or less.
  • a high-strength stainless steel seamless steel tube for oil wells that has a yield strength of 758 MPa or more and exhibits sufficient corrosion resistance even in high-temperature and severe corrosive environments containing CO 2 , Cl ⁇ , and H 2 S. It is said that it will be done.
  • oil well steel pipes are required to have not only excellent yield strength and low-temperature toughness, but also high corrosion resistance that can withstand use in severe corrosive environments.
  • steel pipes for oil wells are required to have excellent resistance to corrosion in carbon dioxide environments (CO 2 corrosion resistance), and in particular, they are required to have excellent resistance to corrosion in carbon dioxide environments. You are required to be excellent at.
  • steel pipes for oil wells are required to have characteristics (SSC resistance) that do not cause sulfide stress cracking (SSC) in a hydrogen sulfide environment.
  • SSC resistance characteristics that do not cause sulfide stress cracking (SSC) in a hydrogen sulfide environment.
  • SSC sulfide stress cracking
  • the properties (mainly permeability) of the layer in which oil is stored (reservoir) may be poor and sufficient production cannot be obtained, or there may be unforeseen circumstances such as clogging in the reservoir. In some cases, the desired production volume may not be obtained. Therefore, as one method for improving productivity, acidizing, which involves injecting an acid such as hydrochloric acid into the reservoir, is sometimes performed. Therefore, steel pipes for oil wells are also required to have excellent corrosion resistance in acid environments.
  • Patent Document 5 the technology described in Patent Document 5 is said to be able to provide high strength, corrosion resistance at high temperatures, and corrosion resistance in acid environments, but the sulfide stress cracking resistance was not necessarily sufficient.
  • the reasons for this are thought to be as follows. That is, if the phase fraction during manufacture of the steel pipe is not appropriate, hot workability will be insufficient, and cracks and fractures will occur on the inner and outer surfaces of the steel pipe. When such steel pipes are used in oil wells, corrosive ions remain inside the flaws and become concentrated as corrosion progresses, resulting in insufficient SSC resistance.
  • the purpose of the present invention is to solve the problems of the prior art and provide a seamless stainless steel pipe that has a high yield strength of 758 MPa (110 ksi) or more and excellent low-temperature toughness and corrosion resistance. do.
  • excellent corrosion resistance refers to being excellent in all of “carbon dioxide corrosion resistance at high temperatures,” “SSC resistance at low temperatures,” and “corrosion resistance in acid environments.” .
  • excellent carbon dioxide corrosion resistance at high temperatures means that the test liquid: 20% by mass NaCl aqueous solution (liquid temperature: 200°C, 30 atm CO 2 gas atmosphere) held in an autoclave, It means that the corrosion rate when the test piece is immersed for 336 hours is 0.127 mm/y or less.
  • having excellent "SSC resistance at low temperatures” means that a 0.165% by mass NaCl aqueous solution (liquid temperature: 7°C, 0.995 atm CO 2 gas, 0.005 atm H 2 S atmosphere), A C-shaped test piece conforming to NACE TM0177 Method C was immersed in an aqueous solution adjusted to pH: 3.0 by adding acetic acid + sodium acetate, the immersion time was 720 hours, and 100% of the yield stress was This means that no cracks occur in the test piece after the test is applied as a load stress.
  • Excellent "corrosion resistance in an acid environment” means that the corrosion rate is 600 mm/y or less when a test piece is immersed in a 15% by mass hydrochloric acid solution heated to 80°C for 40 minutes. shall be said.
  • Excellent low-temperature toughness means that the Charpy absorbed energy vE -10 at -10°C is 40 J or more.
  • the Charpy absorbed energy vE -10 is measured by the following procedure. First, in accordance with the ASTM E23 regulations, a V-notch test piece (10 mm thick), in which the longitudinal direction of the test piece is perpendicular to the tube axis and the notch is in a plane perpendicular to the tube axis, was assembled into a stainless steel seamless piece. Collect 3 pieces per steel pipe. Next, using these test pieces, a Charpy impact test is conducted at a test temperature of -10°C, and the lowest value of the absorbed energy of the three test pieces is defined as the Charpy absorbed energy vE -10 at -10°C.
  • the present inventors have intensively studied various factors that affect the corrosion resistance of stainless steel, particularly SSC resistance and corrosion resistance in an acid environment. As a result, it has been found that excellent corrosion resistance can be obtained by containing Cr, Mo, Sb, Co, and Ca in a predetermined amount or more and by limiting the amount of Ni, which affects the phase fraction of steel, to a predetermined range.
  • the present invention was completed based on such knowledge and further studies. That is, the gist of the present invention is as follows.
  • the component composition is in mass%, Nb: 0.07% or less, Ti: 0.2% or less, W: 0.9% or less, B: 0.01% or less, Ta: 0.3% or less, Zr: 0.3% or less, REM: 0.3% or less,
  • Martensitic phase is more than 50%
  • the ferrite phase is 50% or less
  • the retained austenite phase is 25% or less
  • Martensitic phase is more than 50%, The ferrite phase is 50% or less, and the retained austenite phase is 25% or less, 4.
  • C 0.06% or less
  • C is an element that is unavoidably contained in the steelmaking process.
  • the C content is preferably 0.05% or less, more preferably 0.04% or less, and still more preferably 0.03% or less.
  • the lower the C content the better, so the lower limit of the C content is not particularly limited.
  • the C content is preferably 0.002% or more, more preferably 0.003% or more, and even more preferably 0.005% or more.
  • Si 1.0% or less Si is an element that acts as a deoxidizing agent. However, if Si exceeds 1.0%, hot workability and corrosion resistance will decrease. Therefore, the Si content is set to 1.0% or less, preferably 0.7% or less, more preferably 0.5% or less, and still more preferably 0.4% or less.
  • the lower limit of the Si content is not particularly limited, but from the viewpoint of enhancing the deoxidizing effect, the Si content is preferably 0.03% or more, more preferably 0.05% or more, More preferably, the content is 0.1% or more.
  • Mn 0.01-1.0%
  • Mn is an element that acts as a deoxidizing agent and a desulfurizing agent and improves hot workability.
  • the Mn content is 0.01% or more, preferably 0.03% or more, more preferably 0.05% or more, and even more preferably 0. .1% or more.
  • the Mn content is set to 1.0% or less, preferably 0.8% or less, more preferably 0.6% or less, even more preferably 0.4% or less.
  • P 0.05% or less
  • P is an element that reduces carbon dioxide corrosion resistance and SSC resistance.
  • the P content should be 0.05% or less, preferably 0.04% or less, more preferably 0.03% or less.
  • the lower limit of the P content is not particularly limited and may be 0%. However, excessive reduction causes an increase in cost, so from the viewpoint of cost, the P content is preferably 0.005% or more, and more preferably 0.010% or more.
  • S 0.005% or less
  • S is an element that significantly reduces hot workability and inhibits stable operation of the hot pipe forming process. Furthermore, S exists as sulfide inclusions in steel and reduces corrosion resistance. Therefore, the S content is set to 0.005% or less, preferably 0.004% or less, more preferably 0.003% or less, and still more preferably 0.002% or less.
  • the lower limit of the S content is not particularly limited and may be 0%. However, excessive reduction causes an increase in cost, so from the viewpoint of cost, the S content is preferably 0.0003% or more, and more preferably 0.0005% or more.
  • Cr 15.2-18.0% Cr is an element that forms a protective film on the surface of the steel pipe and contributes to improving corrosion resistance. If the Cr content is less than 15.2%, desired carbon dioxide corrosion resistance and sulfide stress cracking resistance cannot be ensured. Therefore, the Cr content is set to 15.2% or more, preferably 15.5% or more, more preferably 16.0% or more, and still more preferably 16.30% or more. On the other hand, if the Cr content exceeds 18.0%, the ferrite fraction becomes too high, making it impossible to ensure the desired strength. Therefore, the Cr content is set to 18.0% or less, preferably 17.5% or less, more preferably 17.2% or less, even more preferably 17.0% or less.
  • Mo 1.5-4.3%
  • Mo stabilizes the protective film on the surface of the steel pipe and increases resistance to pitting corrosion caused by Cl - and low pH, thereby increasing corrosion resistance.
  • the Mo content is set to 1.5% or more, preferably 1.8% or more, more preferably 2.0% or more, and still more preferably 2.3% or more.
  • the Mo content is set to 4.3% or less, preferably 4.0% or less, more preferably 3.5% or less, and still more preferably 3.0% or less.
  • Cu 1.2-3.5%
  • Cu has the effect of strengthening the protective film on the surface of the steel pipe and improving carbon dioxide corrosion resistance and sulfide stress cracking resistance.
  • the Cu content is set to 1.2% or more, preferably 1.8% or more, more preferably 2.0% or more, and even more preferably 2.3%. % or more.
  • the Cu content is 3.5% or less, preferably 3.2% or less, more preferably 3.0% or less, even more preferably 2.7% or less.
  • Ni 3.5-5.2% Ni improves the low temperature toughness of steel. Further, since Ni contributes to an increase in the austenite fraction, it affects hot workability during hot rolling. In order to obtain the desired toughness, the Ni-containing layer should be at least 3.5%, preferably at least 3.8%, more preferably at least 4.0%, even more preferably at least 4.3%. On the other hand, when the Ni content exceeds 5.2%, the austenite fraction becomes too high and the hot workability of the steel decreases. Furthermore, as a result, flaws are likely to occur during hot rolling, and desired sulfide stress cracking resistance may not be obtained. Therefore, the Ni content is 5.2% or less, preferably 5.0% or less.
  • V 0.5% or less
  • V is an element that increases strength without impairing toughness by forming carbonitrides. Further, V also has the effect of improving corrosion resistance. This is because V preferentially forms carbonitrides, which prevents corrosion-resistant elements such as Cr from forming carbonitrides and reducing the effective amount that is effective for corrosion resistance. However, even if V is contained in an amount exceeding 0.5%, the effect is saturated. Therefore, the V content is set to 0.5% or less, preferably 0.2% or less, and more preferably 0.1% or less.
  • the lower limit of the V content is not particularly limited, but is preferably 0.01% or more, more preferably 0.03% or more.
  • Al 0.10% or less
  • Al is an element that acts as a deoxidizing agent.
  • the Al content is set to 0.10% or less, preferably 0.07% or less, and more preferably 0.05% or less.
  • the lower limit of the Al content is not particularly limited, but from the viewpoint of increasing the deoxidizing effect, the Al content is preferably 0.005% or more, more preferably 0.01% or more, More preferably, the content is 0.015% or more.
  • N 0.10% or less
  • N is an element that is inevitably included in the steelmaking process, but it is also an element that increases the strength of steel.
  • the N content is set to 0.10% or less, preferably 0.07% or less, more preferably 0.05% or less, and still more preferably 0.03% or less.
  • the lower limit of the N content is not particularly limited, an extreme reduction in the N content causes an increase in steel manufacturing cost. Therefore, the N content is preferably 0.002% or more, more preferably 0.003% or more, and even more preferably 0.005% or more.
  • O 0.010% or less Since O (oxygen) exists as an oxide in steel, it has an adverse effect on various properties. Therefore, in the present invention, it is desirable to reduce the O content as much as possible. In particular, when the O content exceeds 0.010%, hot workability and corrosion resistance decrease. Therefore, the O content is set to 0.010% or less. However, excessive reduction causes an increase in cost, so from the viewpoint of cost, the O content is preferably 0.00005% or more, and more preferably 0.001% or more.
  • Sb is an element necessary to improve corrosion resistance in an acid environment.
  • the Sb content is set to 0.001% or more, preferably 0.003% or more, more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the Sb content is set to 1.000% or less, preferably 0.500% or less, more preferably 0.100% or less, and still more preferably 0.050% or less.
  • Co is an element that improves corrosion resistance.
  • the Co content is set to 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more.
  • the Co content is set to 1.00% or less, preferably 0.50% or less, more preferably 0.30% or less, and even more preferably 0.10% or less.
  • Ca 0.001-0.030%
  • Ca is an element that improves hot workability through the control of sulfide morphology, and contributes to improving the SSC resistance of steel pipes by suppressing the occurrence of flaws during pipe manufacturing.
  • the Ca content is set to 0.001% or more, preferably 0.003% or more, more preferably 0.005% or more, more preferably more than 0.010%, and even more preferably 0.012%. Above, most preferably 0.014% or more.
  • the Ca content is 0.030% or less, preferably 0.025% or less, more preferably 0.020% or less.
  • the seamless stainless steel pipe in one embodiment of the present invention has a composition including the above components, with the remainder consisting of Fe and unavoidable impurities.
  • the component composition further optionally contains at least one selected from the group consisting of Nb, Ti, W, B, Ta, Zr, REM, Mg, and Sn. Can be done.
  • Nb, Ti, W, B, Ta, Zr, REM, Mg, and Sn are steel components that can be optionally included, and the content of these components may be 0%.
  • Nb 0.07% or less
  • Nb is an element that forms carbonitrides and further improves strength and corrosion resistance, and can be included as necessary.
  • Nb carbonitride tends to reduce low-temperature toughness, so when adding Nb, the Nb content should be 0.07% or less, preferably 0.03% or less, and more preferably 0.01% or less.
  • the lower limit of the Nb content may be 0%, but from the viewpoint of enhancing the effect of adding Nb, it is preferable that the Nb content is 0.001% or more.
  • Ti 0.2% or less Ti is an element that further improves strength and corrosion resistance, and can be included as necessary. However, when Ti is contained in an amount exceeding 0.2%, low temperature toughness decreases. Therefore, when adding Ti, the Ti content is 0.2% or less, preferably 0.05% or less, and more preferably 0.01% or less. On the other hand, the lower limit of the Ti content may be 0%, but from the viewpoint of enhancing the effect of adding Ti, the Ti content is preferably 0.001% or more.
  • W 0.9% or less W is an element that contributes to further improving the strength of steel, and also stabilizes the protective film on the surface of the steel pipe to further improve corrosion resistance.
  • the W content is set to 0.9% or less, preferably 0.5% or less, and more preferably 0.3% or less.
  • the lower limit of the W content is not particularly limited and may be 0%, but it is preferably 0.05% or more, and more preferably 0.1% or more.
  • B 0.01% or less B is an element that contributes to improving hot workability and also has the effect of suppressing the occurrence of cracks and fractures during the pipe making process.
  • the B content is set to 0.01% or less, preferably 0.007% or less, and more preferably 0.005% or less.
  • the lower limit of the B content is not particularly limited and may be 0%, but it is preferably 0.0005% or more, and more preferably 0.001% or more.
  • Ta 0.3% or less
  • Ta is an element that has the effect of further improving strength and corrosion resistance, and can be contained as necessary. However, even if the content exceeds 0.3%, the effect is saturated. Therefore, when adding Ta, the Ta content is set to 0.3% or less.
  • the lower limit of the Ta content is not particularly limited and may be 0%, but is preferably 0.001% or more.
  • Zr 0.3% or less
  • Zr is an element that further improves strength, and can be included as necessary.
  • Zr also has the effect of further improving SSC resistance. However, even if Zr is contained in an amount exceeding 0.3%, the effect is saturated. Therefore, when adding Zr, the Zr content is set to 0.3% or less.
  • the lower limit of the Zr content is not particularly limited and may be 0%, but is preferably 0.0005% or more.
  • REM 0.3% or less REM (rare earth metal) is an element that contributes to further improvement of sulfide stress cracking resistance through the control of sulfide morphology, and can be included as necessary. However, even if the content exceeds 0.3%, the effect will be saturated and no effect commensurate with the content can be expected. Therefore, when REM is added, the REM content is set to 0.3% or less. On the other hand, the lower limit of the REM content is not particularly limited and may be 0%, but is preferably 0.0005% or more.
  • REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. It is a lanthanoid.
  • the composition of the seamless stainless steel pipe of the present invention may optionally contain at least one of the above REMs.
  • the REM content in the present invention is the total content of the above elements.
  • Mg 0.01% or less Mg is an element that further improves corrosion resistance, and can be included as necessary. However, even if the content exceeds 0.01%, the effect is saturated and no effect commensurate with the content can be expected. Therefore, when adding Mg, the Mg content is set to 0.01% or less.
  • the lower limit of the Mg content is not particularly limited and may be 0%, but is preferably 0.0005% or more.
  • Sn 1.0% or less Sn is an element that further improves corrosion resistance, and can be included as necessary. However, even if the content exceeds 1.0%, the effect is saturated and no effect commensurate with the content can be expected. Therefore, when Sn is contained, the Sn content is set to 1.0% or less.
  • the lower limit of the Sn content is not particularly limited and may be 0%, but is preferably 0.001% or more.
  • the seamless stainless steel pipe in one embodiment of the present invention has a volume fraction of 30% or more of martensitic phase, 50% or less of ferrite phase, and 40% or less of retained austenite phase.
  • the volume fraction of the martensitic phase is set to 30% or more, preferably 40% or more, more preferably 45% or more, and still more preferably 50% or more.
  • the upper limit of the volume fraction of the martensitic phase is not particularly limited, but is preferably 90% or less, more preferably 85% or less.
  • the volume fraction of the ferrite phase is set to 50% or less, preferably 40% or less, and more preferably 35% or less.
  • the lower limit of the volume fraction of the ferrite phase is not particularly limited, but it is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more.
  • Retained austenite phase 40% or less
  • the presence of the retained austenite phase improves ductility and low-temperature toughness. However, if a large amount of austenite phase, exceeding 40% by volume, precipitates, the desired strength cannot be ensured. Therefore, the volume percentage of the retained austenite phase is 40% or less, preferably 30% or less, and more preferably 25% or less.
  • the lower limit of the volume fraction of the retained austenite phase is not particularly limited, but it is preferably 3% or more, more preferably 5% or more.
  • the volume fraction of each phase can be measured by the following method.
  • a specimen for tissue observation taken from a seamless stainless steel pipe is corroded with Virella's reagent (a reagent in which picric acid, hydrochloric acid, and ethanol are mixed in proportions of 2 g, 10 ml, and 100 ml, respectively).
  • Virella's reagent a reagent in which picric acid, hydrochloric acid, and ethanol are mixed in proportions of 2 g, 10 ml, and 100 ml, respectively.
  • SEM scanning electron microscope
  • the obtained SEM image is analyzed using image analysis software (ImageJ 1.52p, National Institute of Health), and the tissue fraction (area ratio (%)) of the ferrite phase is calculated.
  • image analysis software ImageJ 1.52p, National Institute of Health
  • the area ratio obtained through the above procedure is defined as the volume ratio (%) of the ferrite phase.
  • an X-ray diffraction test piece taken from a seamless stainless steel tube was ground and polished so that the cross section perpendicular to the tube axis (cross section C) was the measurement surface, and the remaining Measure the microstructure fraction of austenite ( ⁇ ) phase.
  • the volume fraction of the retained austenite phase is calculated from the integrated intensity of the (220) plane of austenite and the (211) plane of ferrite using the following formula.
  • V ⁇ (%) 100/(1+(I ⁇ R ⁇ /I ⁇ R ⁇ )) here, V ⁇ : volume fraction of retained austenite phase, I ⁇ : integrated intensity of (211) plane of ferrite, I ⁇ : integrated strength of (220) plane of austenite, R ⁇ : Crystallographic theoretical calculation value of ⁇ (34.15), R ⁇ : This is the crystallographically calculated value of ⁇ (22.33).
  • the remainder other than the ferrite phase and residual ⁇ phase determined by the above measurement method is defined as the fraction of the martensitic phase. Note that the methods for observing each of the above-mentioned tissues are also described in detail in Examples described later.
  • the structure of the seamless stainless steel pipe of the present invention substantially consists of a martensitic phase, a ferrite phase, and a retained austenite phase. That is, the above-mentioned tissue may contain other tissues as long as the effects of the present invention are not impaired. Examples of the other structures include intermetallic compounds and inclusions.
  • the seamless stainless steel pipe in one embodiment of the present invention has a volume ratio of 50% or less ferrite phase, and Contains 40% or less of a retained austenite phase, with the remainder consisting essentially of a martensite phase, and
  • the structure may have a volume fraction of the martensitic phase of 30% or more.
  • the seamless stainless steel pipe according to another embodiment of the present invention has a volume ratio of 30% or more martensitic phase, 50% or less ferrite phase, and It may have a structure consisting of 40% or less of retained austenite phase.
  • the above-mentioned structure contains an impurity phase that inevitably exists.
  • the seamless stainless steel pipe of the present invention has a yield strength of 758 MPa or more.
  • the upper limit of the yield strength is not particularly limited, but is preferably 1034 MPa or less.
  • the yield strength can be measured by a tensile test. More specifically, it can be measured by the method described in Examples.
  • the seamless stainless steel pipe of the present invention has a Charpy absorbed energy vE -10 of 40 J or more at -10°C. Since the Charpy absorbed energy vE -10 is better as it is higher, the upper limit is not particularly limited, but may be, for example, 300 J or less, or 250 J or less.
  • the Charpy absorbed energy can be measured by a Charpy impact test. More specifically, it can be measured by the method described in Examples.
  • the seamless stainless steel pipe of the present invention can be used for any purpose without particular limitation, but is especially suitable for use in oil wells. That is, the seamless stainless steel pipe in one embodiment of the present invention is a seamless stainless steel pipe for oil wells (high-strength seamless seamless steel pipe for oil wells).
  • the seamless stainless steel pipe of the present invention can be manufactured by forming a seamless steel pipe from a steel material and subjecting the seamless steel pipe to quenching and tempering under specific conditions.
  • the above steel material is not particularly limited and any material can be used.
  • Billet is typically used as the steel material.
  • As the steel material a material having the above-mentioned composition can be used.
  • the method for manufacturing the steel material is not particularly limited, and any method can be used to manufacture the steel material.
  • molten steel having the above-mentioned composition is melted by a conventional melting method using a converter, etc., and then made into steel materials such as billets by a continuous casting method, an ingot-blowing method, etc. can do.
  • the above steel material is made into a seamless steel pipe.
  • the method for making the pipe is not particularly limited, and any method can be used.
  • the pipe forming is performed by hot working.
  • the steel material may be heated and then hot worked to form a seamless steel pipe.
  • the heating temperature in the heating is not particularly limited, but is preferably 1100 to 1350°C from the viewpoint of achieving both high levels of hot workability during pipe making and low-temperature toughness of the final product.
  • the method of processing the steel material to make a seamless steel pipe is not particularly limited, and any method can be used.
  • seamless steel pipes can be obtained by either the Mannesmann plug mill method or the Mannesmann mandrel mill method.
  • cooling treatment may be performed after the tube is formed.
  • the cooling treatment can be performed under any conditions without particular limitations. For example, it is preferable to cool down to room temperature after hot working.
  • the cooling rate in the cooling is not particularly limited, and cooling can be performed at any rate. For example, cooling may be performed at a cooling rate comparable to air cooling.
  • the seamless steel pipe is heated to a quenching temperature of 850 to 1150°C, and the heated seamless steel pipe is cooled to a cooling stop temperature of 50°C or less at a cooling rate of 0.01°C/s or more. Cooling.
  • the quenching temperature is set to 850°C or higher, preferably 900°C or higher.
  • the quenching temperature is set to 1150°C or lower, preferably 1100°C or lower.
  • soaking treatment may be performed to maintain the same at the quenching temperature.
  • the time for holding at the quenching temperature is not particularly limited, but is preferably 5 to 30 minutes.
  • Cooling rate 0.01°C/s or more If the cooling rate in the quenching treatment is less than 0.01°C/s, the desired structure cannot be obtained. Therefore, the cooling rate is set to 0.01°C/s or more, preferably 1.0°C/s or more, more preferably 5.0°C/s or more, and still more preferably 10.0°C/s or more.
  • the upper limit of the cooling rate is not particularly limited, but is preferably 100°C/s or less, more preferably 50°C/s or less, and even more preferably 30°C/s or less.
  • the above cooling can be performed by any method without particular limitation.
  • the cooling is preferably performed by at least one of air cooling and water cooling, and more preferably water cooling.
  • Cooling stop temperature 50°C or less If the cooling stop temperature is higher than 50°C, the desired structure cannot be obtained. That is, when the cooling stop temperature is high, transformation from austenite to martensite does not occur sufficiently, and the residual austenite fraction becomes excessive. Therefore, the cooling stop temperature in the above-mentioned quenching treatment is set to 50°C or less.
  • the lower limit of the cooling stop temperature is not particularly limited, but may be, for example, 0° C. or higher. Note that the cooling stop temperature here is the surface temperature of the seamless steel pipe.
  • the seamless steel pipe after the above-mentioned quenching treatment is subjected to a tempering treatment in which it is heated to a tempering temperature of 500 to 650°C.
  • Tempering temperature 500-650°C If the tempering temperature is less than 500°C, a sufficient tempering effect cannot be obtained, and as a result, low-temperature toughness deteriorates. Therefore, the tempering temperature is set to 500°C or higher, preferably 520°C or higher. On the other hand, if the tempering temperature is higher than 650°C, many intermetallic compounds will precipitate, making it impossible to obtain excellent low-temperature toughness. Therefore, the tempering temperature is set to 650°C or lower, preferably 630°C or lower.
  • the seamless steel pipe can be heated to the tempering temperature and then maintained at the tempering temperature.
  • the time for holding at the tempering temperature is not particularly limited, but from the viewpoint of making the temperature uniform in the thickness direction and preventing variations in material quality, it is preferably 5 minutes or more.
  • the upper limit of the holding time is not particularly limited either, but it is preferably 90 minutes or less.
  • a seamless steel pipe was manufactured from a steel material having the composition shown in Tables 1 to 3 using the following procedure.
  • a steel material was cast using molten steel having the composition shown in Tables 1 to 3. Thereafter, the steel material was heated and formed into a pipe by hot working using a model seamless rolling mill to obtain a seamless steel pipe with an outer diameter of 177.8 mm and a wall thickness of 16.0 mm, which was then air cooled. At this time, the heating temperature of the steel material before hot working was 1250°C.
  • the obtained seamless steel pipe was subjected to quenching and tempering treatment under the following conditions to obtain a seamless stainless steel pipe.
  • the obtained seamless steel pipes were hardened under the conditions shown in Tables 4 to 6. That is, the seamless steel pipe was heated to the quenching temperature shown in Tables 4 to 6, and maintained at the quenching temperature for the soaking time shown in Tables 4 to 6. Next, the mixture was cooled to a cooling stop temperature of 5° C. at the cooling rate shown in Tables 4 to 6. The cooling was performed by water cooling.
  • test piece was taken from the obtained seamless stainless steel pipe and subjected to microstructural observation, tensile test, Charpy impact test, and corrosion resistance test.
  • the test method was as follows.
  • a test piece for structure observation was taken from the obtained seamless stainless steel pipe so that the cross section including the tube axis direction and wall thickness direction was the observation surface.
  • the obtained specimen for tissue observation was corroded with Virella's reagent (a reagent in which picric acid, hydrochloric acid, and ethanol were mixed at a ratio of 2 g, 10 ml, and 100 ml, respectively), and the tissue was examined using a scanning electron microscope (SEM) at a magnification of 1000 times. An image was taken and an SEM image was obtained.
  • the obtained SEM image was analyzed using image analysis software (ImageJ 1.52p, National Institute of Health), and the tissue fraction (area ratio (%)) of the ferrite phase was calculated.
  • image analysis software ImageJ 1.52p, National Institute of Health
  • the area ratio obtained through the above procedure was defined as the volume ratio (%) of the ferrite phase.
  • a test piece for X-ray diffraction was taken from the obtained seamless stainless steel tube, ground and polished so that the cross section perpendicular to the tube axis direction (cross section C) was the measurement surface, and the X-ray diffraction method was performed.
  • the microstructure fraction of the retained austenite ( ⁇ ) phase was measured using the following method. Specifically, the volume fraction of the retained austenite phase was calculated from the integrated intensity of the (220) plane of austenite and the (211) plane of ferrite using the following formula.
  • V ⁇ (%) 100/(1+(I ⁇ R ⁇ /I ⁇ R ⁇ )) here, V ⁇ : volume fraction of retained austenite phase, I ⁇ : integrated intensity of (211) plane of ferrite, I ⁇ : integrated strength of (220) plane of austenite, R ⁇ : Crystallographic theoretical calculation value of ⁇ (34.15), R ⁇ : This is the crystallographically calculated value of ⁇ (22.33).
  • V-notch test piece 10 mm thick
  • a Charpy impact test was conducted using the test piece at a test temperature of -10°C.
  • three test pieces were taken from one seamless stainless steel pipe, and the absorbed energy of each test piece was measured.
  • the lowest value of absorbed energy of the three test pieces was defined as Charpy absorbed energy vE -10 at -10°C.
  • a corrosion test piece with a thickness of 3 mm x width of 30 mm x length of 40 mm was fabricated from the obtained seamless stainless steel pipe by machining.
  • a corrosion test was conducted using the corrosion test piece, and the corrosion rate was measured as an index of carbon dioxide corrosion resistance.
  • the corrosion test piece was immersed in a 20% by mass NaCl aqueous solution (liquid temperature: 200°C, 30 atm CO 2 gas atmosphere) held in an autoclave, and the immersion period was 14 days. (336 hours).
  • the weight loss due to the corrosion test was determined by measuring the weight of the corrosion test piece after the corrosion test and subtracting the pre-measured weight of the test piece before the corrosion test.
  • the amount of weight loss per unit time/unit area was obtained by dividing the weight loss amount by the surface area of the test piece used and the immersion period. Then, by dividing the amount of weight loss per unit time and unit area by the density of the steel, it was converted into corrosion thickness per unit time and unit area.
  • the corrosion thickness (mm/y) per unit time and unit area thus obtained was defined as the corrosion rate in carbon dioxide gas. Here, those with the corrosion rate of 0.127 mm/y or less were judged to be acceptable, and those with the corrosion rate exceeding 0.127 mm/y were judged to be rejected.
  • a C-shaped test piece was prepared by machining in accordance with NACE TM0177 Method C, and an SSC resistance test was performed. Note that no grinding or polishing was performed on the curved surfaces corresponding to the inner and outer surfaces of the steel pipe.
  • the SSC resistance test was performed by adding acetic acid + sodium acetate to a 0.165% by mass NaCl aqueous solution (liquid temperature: 7°C, 0.995 atm CO 2 gas, 0.005 atm H 2 S atmosphere) to pH: A C-shaped test piece according to NACE TM0177 Method C was immersed in an aqueous solution adjusted to a pH of 3.0, the immersion time was 720 hours, and 100% of the yield stress was applied as the applied stress.
  • those with no cracks were designated as passes, and those with cracks were designated as failures, and in Tables 4 to 6, passes were designated as "1" and those that failed were designated as "2".
  • a test piece in the shape of a rectangular parallelepiped was created by machining from the obtained seamless stainless steel pipe.
  • the dimensions of the test piece were such that the length in the longitudinal direction of the steel pipe was 50 mm, the thickness in the wall thickness direction of the steel pipe was 3 mm, and the width was 25 mm.
  • a corrosion test was conducted by immersing the test piece in a 15% by mass hydrochloric acid solution heated to 80° C. for 40 minutes. The weight loss due to the corrosion test was determined by measuring the weight of the test piece after the corrosion test and subtracting the weight of the test piece before the corrosion test.
  • the amount of weight loss per unit time/unit area was obtained by dividing the amount of weight loss by the surface area of the test piece used and the immersion time in the corrosion test. Then, by dividing the amount of weight loss per unit time and unit area by the density of the steel, it was converted into corrosion thickness per unit time and unit area.
  • the corrosion thickness (mm/y) per unit time and unit area thus obtained was defined as the corrosion rate in the acid environment. Here, those whose corrosion rate was 600 mm/y or less were judged to be acceptable, and those whose corrosion rate exceeded 600 mm/y were judged to be rejected.
  • Hot workability Furthermore, in order to evaluate the hot workability of the obtained seamless stainless steel pipe, the following evaluation was performed.
  • the maximum flaw depth was 0.1 mm or less. This result shows that the hot workability is particularly excellent when the Ca content is more than 0.010%. Therefore, if the Ca content exceeds 0.010%, it can be said that the SSC resistance at low temperatures is even better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

高強度と、優れた低温靭性および耐食性とを兼ね備えたステンレス継目無鋼管を提供する。所定の成分組成を有し、体積率で、マルテンサイト相が30%以上、フェライト相が50%以下、および残留オーステナイト相が40%以下、降伏強さが758MPa以上、-10℃におけるシャルピー吸収エネルギーvE-10が40J以上である、ステンレス継目無鋼管。

Description

ステンレス継目無鋼管およびその製造方法
 本発明は、油井およびガス井(以下、単に油井と称する)での利用に好適な、ステンレス継目無鋼管(stainless steel seamless pipe)に関する。本発明は、とくに炭酸ガス(CO)、塩素イオン(Cl)を含む高温の厳しい腐食環境下や、硫化水素(HS)を含む環境下等における耐食性を向上させたステンレス継目無鋼管に関する。
 ステンレス継目無鋼管は、油井用鋼管などの用途に広く用いられている。油井用鋼管には、降伏強さに優れることに加え、近年の寒冷地における油田開発にともない低温靭性(low-temperature toughness)に優れることも求められている。
 さらに、近い将来に予想されるエネルギー資源の枯渇という観点から、従来、省みられなかったような、高深度の油田や炭酸ガスを含む環境下、およびサワー環境と呼ばれる硫化水素を含む環境下など、厳しい腐食環境の油井の開発が盛んに行われている。そのため、油井用鋼管には、高い耐食性を有することも要求される。
 従来、COおよびCl等を含む環境下にある油田およびガス田では、採掘に使用する油井用鋼管として13Crマルテンサイト系ステンレス鋼管が一般的に使用されてきた。しかし、最近では、さらなる高温(200℃までの高温)の油井の開発が進められており、13Crマルテンサイト系ステンレス鋼管では耐食性が不足する場合があった。そのため、このような環境下でも使用できる、さらに高い耐食性を有する油井用鋼管が要望されている。
 このような要望に対し、例えば、特許文献1では、質量%で、C:0.05%以下、Si:1.0%以下、Mn:0.01~1.0%、P:0.05%以下、S:0.002%未満、Cr:16~18%、Mo:1.8~3%、Cu:1.0~3.5%、Ni:3.0~5.5%、Co:0.01~1.0%、Al:0.001~0.1%、O:0.05%以下、及び、N:0.05%以下を含有し、Cr、Ni、Mo、Cuが特定の関係を満足する組成を有する油井用ステンレス鋼が提案されている。
 また、特許文献2では、質量%で、C:0.005~0.05%、Si:0.05~0.50%、Mn:0.20~1.80%、P:0.030%以下、S:0.005%以下、Cr:12.0~17.0%、Ni:4.0~7.0%、Mo:0.5~3.0%、Al:0.005~0.10%、V:0.005~0.20%、Co:0.01~1.0%、N:0.005~0.15%、O:0.010%以下を含有し、Cr、Ni、Mo、Cu、C、Si、Mn、Nが特定の関係を満足する組成を有する油井用高強度ステンレス継目無鋼管が提案されている。
 また、特許文献3では、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.15~1.0%、P:0.030%以下、S:0.005%以下、Cr:14.5~17.5%、Ni:3.0~6.0%、Mo:2.7~5.0%、Cu:0.3~4.0%、W:0.1~2.5%、V:0.02~0.20%、Al:0.10%以下、N:0.15%以下、B:0.0005~0.0100%を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、N、Wが特定の関係を満足する組成を有し、さらに体積率で、主相としてマルテンサイト相を45%超、第二相としてフェライト相を10~45%、残留オーステナイト相を30%以下含有する組織を有する、油井用高強度ステンレス継目無鋼管が提案されている。これにより、降伏強さYS:862MPa以上の強度を備え、かつ、CO、Cl、HSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス継目無鋼管を得られるとしている。
 また、特許文献4では、質量%で、C:0.06%以下、Si:1.0%以下、P:0.05%以下、S:0.005%以下、Cr:15.7%超え18.0%以下、Mo:1.8%以上3.5%以下、Cu:1.5%以上3.5%以下、Ni:2.5%以上6.0%以下、Al:0.10%以下、N:0.10%以下、O:0.010%以下、W:0.5%以上2.0%以下、Co:0.01%以上1.5%以下を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、Nが特定の関係を満足する組成を有し、さらに体積率で、マルテンサイト相を25%以上、フェライト相を65%以下、残留オーステナイト相を40%以下含有する組織を有する、油井用高強度ステンレス継目無鋼管が提案されている。これにより、降伏強さYS:758MPa以上の強度を備え、かつ、CO、Cl、HSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス継目無鋼管を得られるとしている。
 また、特許文献5では、質量%で、C:0.06%以下、Si:1.0%以下、Mn:0.01%以上1.0%以下、P:0.05%以下、S:0.005%以下、Cr:15.2%以上18.5%以下、Mo:1.5%以上4.3%以下、Cu:1.1%以上3.5%以下、Ni:3.0%以上6.5%以下、Al:0.10%以下、N:0.10%以下、O:0.010%以下、Sb:0.001%以上1.000%以下を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、Nが特定の関係を満足する組成を有し、さらに体積率で、マルテンサイト相を30%以上、フェライト相を65%以下、残留オーステナイト相を40%以下含有する組織を有する、油井用高強度ステンレス継目無鋼管が提案されている。これにより、降伏強さYS:758MPa以上の強度を備え、かつ、CO、Cl、HSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス継目無鋼管を得られるとしている。
国際公開第2013/146046号 国際公開第2017/168874号 国際公開第2018/155041号 国際公開第2021/065263号 国際公開第2021/187331号
 特許文献1~5で提案されている従来技術によれば、ステンレス鋼の耐食性を向上させることができる。しかし、その性能は依然として十分では無かった。
 すなわち、上述したように、油井用鋼管には、降伏強さと低温靭性に優れることに加え、厳しい腐食環境下での使用に耐え得る高い耐食性を有することが求められている。
 例えば、油井用鋼管には、炭酸ガス環境下における腐食への耐性(耐炭酸ガス腐食性、CO2 corrosion resistance)に優れることが求められており、とくに、高温環境下においても耐炭酸ガス腐食性に優れることが求められる。
 また、油井用鋼管には、硫化水素環境下において硫化物応力割れ(Sulfide stress cracking:SSC)が生じない特性(耐SSC性、SSC resistance)が求められる。とくに海底油田の場合には、冷たい海水の比重が大きいため海底付近に滞留することから,その地域の大気温度よりも低い温度に油井管が晒される。そのため、油井用鋼管には低温環境下においても耐SSC性に優れることが求められる。
 さらに、石油を採掘する際に、石油が貯まっている層(貯留層)の性状(主に浸透率)が悪く、十分な生産量が得られない場合や、貯留層内の目詰まりなどにより予期した生産量が得られない場合がある。そこで、生産性の向上を図る手法の一つとして、貯留層に塩酸などの酸を注入する酸処理(acidizing)が行われることがある。そのため、油井用鋼管には酸環境における耐食性に優れることも求められる。
 しかし、従来の技術では、降伏強さ、低温靭性、高温での耐炭酸ガス腐食性、低温での耐SSC性、および酸環境における耐食性を十分な水準で兼ね備えた鋼管は得られていないのが実状であった。
 特に、特許文献5に記載された技術は、高強度と高温での耐食性、および酸環境における耐食性が得られるとされているが、耐硫化物応力割れ性については必ずしも十分とは言えなかった。その要因は次のように考えられる。すなわち、鋼管製造時の相分率が適切でない場合、熱間加工性が不十分となり、亀裂や割れが鋼管内外面に生じる。このような鋼管が油井にて使用された場合には、腐食性イオンが傷内部に滞留さらには腐食の進行により濃縮した結果、十分な耐SSC性が発揮されない。
 本発明は、このような従来技術の問題を解決し、降伏強さ:758MPa(110ksi)以上という高強度と、優れた低温靭性および耐食性とを兼ね備えたステンレス継目無鋼管を提供することを目的とする。
 なお、本発明において「優れた耐食性」とは、「高温での耐炭酸ガス腐食性」、「低温での耐SSC性」、および「酸環境における耐食性」のすべてに優れることをいうものとする。
 ここで、「高温での耐炭酸ガス腐食性」に優れるとは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCOガス雰囲気)中に、試験片を浸漬し、浸漬時間を336時間として実施した際の腐食速度が0.127mm/y以下であることをいうものとする。
 また、「低温での耐SSC性」に優れるとは、0.165質量%NaCl水溶液(液温:7℃、0.995気圧のCOガス、0.005気圧のHS雰囲気)に、酢酸+酢酸ナトリウムを加えてpH:3.0に調整した水溶液中に、NACE TM0177 Method Cに準拠したCの形をした試験片を浸漬し、浸漬時間を720時間とし、降伏応力の100%を負荷応力として負荷し、試験後の試験片に割れが発生しないことをいうものとする。
 「酸環境における耐食性」に優れるとは、80℃に加熱した15質量%塩酸溶液中に試験片を浸漬し、浸漬時間を40分として実施した際の腐食速度が600mm/y以下であることをいうものとする。
 「低温靭性」に優れるとは、-10℃におけるシャルピー吸収エネルギーvE-10が40J以上であることをいうものとする。前記シャルピー吸収エネルギーvE-10は以下の手順で測定する。まず、ASTM E23の規定に準拠して、試験片長手方向が管軸に垂直な方向であり、かつノッチが管軸に垂直な面にあるVノッチ試験片(10mm厚)を一つのステンレス継目無鋼管につき3本採取する。次いで、これらの試験片を用いて、試験温度:-10℃でシャルピー衝撃試験を行ない、3本の試験片の吸収エネルギーの最低値を、-10℃におけるシャルピー吸収エネルギーvE-10とする。
 本発明者らは、上記した目的を達成するために、ステンレス鋼の耐食性、特に耐SSC性および酸環境における耐食性に及ぼす各種要因について鋭意検討した。その結果、Cr、Mo、Sb、Co、Caを所定量以上含有させる、かつ鋼の相分率に影響するNi量を所定の範囲に制限することにより優れた耐食性を得られることを見出した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
1.質量%で、
 C :0.06%以下、
 Si:1.0%以下、
 Mn:0.01%以上1.0%以下、
 P :0.05%以下、
 S :0.005%以下、
 Cr:15.2%以上18.0%以下、
 Mo:1.5%以上4.3%以下、
 Cu:1.2%以上3.5%以下、
 Ni:3.5%以上5.2%以下、
 V :0.5%以下、
 Al:0.10%以下、
 N :0.10%以下、
 O :0.010%以下、
 Sb:0.001%以上1.000%以下
 Co:0.01%以上1.00%以下、および
 Ca:0.001%以上0.030%以下を含有し、
 残部がFeおよび不可避的不純物からなる成分組成を有し、
 体積率で、
  マルテンサイト相が30%以上、
  フェライト相が50%以下、および
  残留オーステナイト相が40%以下であり、
 降伏強さが758MPa以上、
 -10℃におけるシャルピー吸収エネルギーvE-10が40J以上である、ステンレス継目無鋼管。
2.前記成分組成が、質量%で、
 Nb:0.07%以下、
 Ti:0.2%以下、
 W :0.9%以下、
 B :0.01%以下、
 Ta:0.3%以下、
 Zr:0.3%以下、
 REM:0.3%以下、
 Mg:0.01%以下、および
 Sn:1.0%以下
からなる群より選択される少なくとも1つをさらに含有する、上記1に記載のステンレス継目無鋼管。
3.体積率で、
  マルテンサイト相が50%以上、
  フェライト相が50%以下、および
  残留オーステナイト相が25%以下であり、
 降伏強さが862MPa以上である、上記1または2に記載のステンレス継目無鋼管。
4.上記1または2に記載の成分組成を有する鋼素材から継目無鋼管を造管し、
  前記継目無鋼管を850~1150℃の焼入温度に加熱し、
  前記加熱後の前記継目無鋼管を、0.01℃/s以上の冷却速度で、50℃以下の冷却停止温度まで冷却し、
  前記冷却後の前記継目無鋼管を、500~650℃の焼戻温度に加熱することにより、
体積率で、
  マルテンサイト相が30%以上、
  フェライト相が50%以下、および
  残留オーステナイト相が40%以下であり、
 降伏強さが758MPa以上、
 -10℃におけるシャルピー吸収エネルギーvE-10が40J以上であるステンレス継目無鋼管を製造する、ステンレス継目無鋼管の製造方法。
5.体積率で、
  マルテンサイト相が50%以上、
  フェライト相が50%以下、および
  残留オーステナイト相が25%以下であり、
 降伏強さが862MPa以上である、上記4に記載のステンレス継目無鋼管の製造方法。
 本発明によれば、降伏強さ:758MPa(110ksi)以上という高強度と、優れた低温靭性および耐食性とを兼ね備えたステンレス継目無鋼管を得ることができる。
 以下、本発明について詳細に説明する。
[成分組成]
 本発明のステンレス継目無鋼管は、上記成分組成を有する。まず、前記成分組成の限定理由について説明する。以下、とくに断らない限り、「質量%」は単に「%」で記す。
C:0.06%以下
 Cは、製鋼過程で不可避に含有される元素である。0.06%を超えてCを含有すると、耐食性が低下する。このため、C含有量は0.06%以下とする。C含有量は、好ましくは0.05%以下であり、より好ましくは0.04%以下であり、さらに好ましくは0.03%以下である。一方、耐食性の観点からはC含有量は低いほど好ましいため、C含有量の下限はとくに限定されない。しかし、脱炭コストの観点からは、C含有量は0.002%以上であることが好ましく、0.003%以上であることがより好ましく、0.005%以上であることがさらに好ましい。
Si:1.0%以下
 Siは、脱酸剤として作用する元素である。しかし、1.0%を超えてSiを含有すると、熱間加工性および耐食性が低下する。このため、Si含有量は1.0%以下、好ましくは0.7%以下、より好ましくは0.5%以下、さらに好ましくは0.4%以下とする。一方、Si含有量の下限はとくに限定されないが、脱酸効果を高めるという観点からは、Si含有量は0.03%以上とすることが好ましく、0.05%以上とすることがより好ましく、0.1%以上とすることがさらに好ましい。
Mn:0.01~1.0%
 Mnは、脱酸材および脱硫材として作用し、熱間加工性を向上させる元素である。脱酸素および脱硫材としての効果を得るとともに、強度を向上させるために、Mn含有量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上、さらに好ましくは0.1%以上とする。一方、1.0%を超えてMnを含有しても効果が飽和する。このため、Mn含有量は1.0%以下、好ましくは0.8%以下、より好ましくは0.6%以下、さらに好ましくは0.4%以下とする。
P:0.05%以下
 Pは、耐炭酸ガス腐食性および耐SSC性を低下させる元素である。所望の耐食性を得るために、P含有量は0.05%以下、好ましくは0.04%以下、より好ましくは0.03%以下とする。一方、P含有量はできるだけ低減することが好ましいため、P含有量の下限はとくに限定されず、0%であってよい。しかし、過度の低減はコストの上昇を招くため、コストの観点からは、P含有量は0.005%以上であることが好ましく、0.010%以上であることがより好ましい。
S:0.005%以下
 Sは、熱間加工性を著しく低下させ、熱間造管工程の安定操業を阻害する元素である。また、Sは、鋼中では硫化物系介在物として存在し、耐食性を低下させる。そのため、S含有量は、0.005%以下、好ましくは0.004%以下、より好ましくは0.003%以下、さらに好ましくは0.002%以下とする。一方、S含有量はできるだけ低減することが好ましいため、S含有量の下限はとくに限定されず、0%であってよい。しかし、過度の低減はコストの上昇を招くため、コストの観点からは、S含有量は0.0003%以上であることが好ましく、0.0005%以上であることがより好ましい。
Cr:15.2~18.0%
 Crは、鋼管表面の保護皮膜を形成して耐食性向上に寄与する元素である。Cr含有量が15.2%未満では、所望の耐炭酸ガス腐食性および耐硫化物応力割れ性を確保することができない。このため、Cr含有量は15.2%以上、好ましくは15.5%以上、より好ましくは16.0%以上、さらに好ましくは16.30%以上とする。一方、Cr含有量が18.0%を超えると、フェライト分率が高くなりすぎて、所望の強度を確保できなくなる。このため、Cr含有量は18.0%以下、好ましくは17.5%以下、より好ましくは17.2%以下、さらに好ましくは17.0%以下とする。
Mo:1.5~4.3%
 Moは、鋼管表面の保護皮膜を安定化させて、Clや低pHによる孔食に対する抵抗性を増加させ、これにより耐食性を高める。所望の耐食性を得るために、Mo含有量を1.5%以上、好ましくは1.8%以上、より好ましくは2.0%以上、さらに好ましくは2.3%以上とする。一方、Mo含有量が4.3%を超える場合、フェライト分率が高くなりすぎて、所望の強度を確保できなくなる。このため、Mo含有量は4.3%以下、好ましくは4.0%以下、より好ましくは3.5%以下、さらに好ましくは3.0%以下とする。
Cu:1.2~3.5%
 Cuは、鋼管表面の保護皮膜を強固にし、耐炭酸ガス腐食性および耐硫化物応力割れ性を高める効果を有する。所望の強度および耐食性、特に耐炭酸ガス腐食性を得るために、Cu含有量を1.2%以上、好ましくは1.8%以上、より好ましくは2.0%以上、さらに好ましくは2.3%以上とする。一方、Cu含有量が多すぎると鋼の熱間加工性が低下して造管時に外面疵が発生し、所望の耐硫化物応力割れ性が得られなくなる。そのため、Cu含有量は3.5%以下、好ましくは3.2%以下、より好ましくは3.0%以下、さらに好ましくは2.7%以下とする。
Ni:3.5~5.2%
 Niは、鋼の低温靭性を向上させる。また、Niは、オーステナイト分率の増加に寄与するため、熱間圧延時の熱間加工性に影響する。所望の靭性を得るために、Ni含有層を3.5%以上、好ましくは3.8%以上、より好ましくは4.0%以上、さらに好ましくは4.3%以上とする。一方、Ni含有量が5.2%を超える場合、オーステナイト分率が高くなりすぎ、鋼の熱間加工性が低下する。さらにその結果、熱間圧延時に疵を生じやすくなり、所望の耐硫化物応力割れ性が得られない場合がある。このため、Ni含有量は5.2%以下、好ましくは5.0%以下とする。
V:0.5%以下
 Vは、炭窒化物を形成することで靭性を損なうことなく強度を増加させる元素である。また、Vは耐食性を向上させる作用も有している。これは、Vが優先的に炭窒化物を形成することにより、Crなどの耐食性元素が炭窒化物を形成して耐食性に効く有効量が減少することが防止されるためである。しかし、0.5%を超えてVを含有させても、その効果は飽和する。このため、V含有量は0.5%以下、好ましくは0.2%以下、さらに好ましくは0.1%以下とする。一方、V含有量の下限はとくに限定されないが、0.01%以上とすることが好ましく、0.03%以上とすることがより好ましい。
Al:0.10%以下
 Alは、脱酸剤として作用する元素である。しかし、0.10%を超えてAlを含有すると、耐食性が低下する。このため、Al含有量は0.10%以下、好ましくは0.07%以下、より好ましくは0.05%以下とする。一方、Al含有量の下限はとくに限定されないが、脱酸効果を高めるという観点からは、Al含有量を0.005%以上とすることが好ましく、0.01%以上とすることがより好ましく、0.015%以上とすることがさらに好ましい。
N:0.10%以下
 Nは製鋼過程で不可避に含有される元素であるが、鋼の強度を高める元素でもある。しかし、0.10%を超えてNを含有すると、窒化物の形成量が過剰となり耐食性が低下する。このため、N含有量は0.10%以下、好ましくは0.07%以下、より好ましくは0.05%以下、さらに好ましくは0.03%以下とする。一方、N含有量の下限はとくに限定されないが、極度のN含有量の低減は製鋼コストの増大を招く。そのため、N含有量は、0.002%以上とすることが好ましく、0.003%以上とすることがより好ましく、0.005%以上とすることがさらに好ましい。
O:0.010%以下
 O(酸素)は、鋼中では酸化物として存在するため、各種特性に悪影響を及ぼす。このため、本発明では、O含有量をできるだけ低減することが望ましい。とくに、O含有量が0.010%を超えると熱間加工性および耐食性が低下する。このため、O含有量は0.010%以下とする。しかし、過度の低減はコストの上昇を招くため、コストの観点からは、O含有量は0.00005%以上であることが好ましく、0.001%以上であることがより好ましい。
Sb:0.001~1.000%
 Sbは、酸環境における耐食性を向上させるために必要な元素である。所望の耐食性を得るために、Sb含有量を0.001%以上、好ましくは0.003%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上とする。一方、Sbを1.000%超えて含有させても効果が飽和する。そのため、Sb含有量は1.000%以下、好ましくは0.500%以下、より好ましくは0.100%以下、さらに好ましくは0.050%以下とする。
Co:0.01~1.00%
 Coは、耐食性を向上させる元素である。所望の耐食性を得るために、Co含有量を0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上とする。一方、Coは1.00%超えて含有させても効果が飽和する。そのため、Co含有量は1.00%以下、好ましくは0.50%以下、より好ましくは0.30%以下、さらに好ましくは0.10%以下とする。
Ca:0.001~0.030%
 Caは、硫化物の形態制御を介して熱間加工性を向上させる元素であり、造管時の疵発生を抑制することで、鋼管における耐SSC性の改善に寄与する。前記効果を得るために、Ca含有量を0.001%以上、好ましくは0.003%以上、より好ましくは0.005%以上、より好ましくは0.010%超、さらに好ましくは0.012%以上、最も好ましくは0.014%以上とする。一方、0.030%を超えてCaを含有しても効果が飽和し、含有量に見合う効果が期待できない。そのため、Ca含有量は0.030%以下、好ましくは0.025%以下、より好ましくは0.020%以下である。
 本発明の一実施形態におけるステンレス継目無鋼管は、以上の成分を含み、残部がFeおよび不可避的不純物からなる成分組成を有する。
 本発明の他の実施形態においては、上記成分組成が、さらに任意にNb、Ti、W、B、Ta、Zr、REM、Mg、およびSnからなる群より選択される少なくとも1つを含有することができる。Nb、Ti、W、B、Ta、Zr、REM、Mg、およびSnは、任意選択的に含有できる鋼成分であり、これらの成分の含有量は0%であってもよい。
Nb:0.07%以下
 Nbは、炭窒化物を形成し、強度および耐食性をさらに向上させる元素であり、必要に応じて含有することができる。しかし、Nbの炭窒化物は低温靭性を低下させやすいため、Nbを添加する場合、Nb含有量は0.07%以下、好ましくは0.03%以下、より好ましくは0.01%以下とする。一方、Nb含有量の下限は0%であってよいが、Nbの添加効果を高めるという観点からは、Nb含有量を0.001%以上とすることが好ましい。
Ti:0.2%以下
 Tiは、強度および耐食性をさらに向上させる元素であり、必要に応じて含有することができる。しかし、Tiを0.2%超えて含有すると、低温靭性が低下する。このため、Tiを添加する場合、Ti含有量は0.2%以下、好ましくは0.05%以下、より好ましくは0.01%以下とする。一方、Ti含有量の下限は0%であってよいが、Tiの添加効果を高めるという観点からは、Ti含有量を0.001%以上とすることが好ましい。
W:0.9%以下
 Wは、鋼のさらなる強度向上に寄与するとともに、鋼管表面の保護皮膜を安定化させて耐食性をさらに高める元素である。しかし、0.9%を超えてWを含有すると、低温靭性が低下する。このため、Wを添加する場合、W含有量は0.9%以下、好ましくは0.5%以下、より好ましくは0.3%以下とする。一方、W含有量の下限はとくに限定されず、0%であってよいが、0.05%以上とすることが好ましく、0.1%以上とすることがより好ましい。
B:0.01%以下
 Bは、熱間加工性の改善に寄与するとともに、造管過程において亀裂や割れの発生を抑制する効果も有する元素である。しかし、0.01%を超えてBを含有すると、低温靭性が低下する。このため、Bを添加する場合、B含有量は0.01%以下、好ましくは0.007%以下、より好ましくは0.005%以下とする。一方、B含有量の下限はとくに限定されず、0%であってよいが、0.0005%以上とすることが好ましく、0.001%以上とすることがより好ましい。
Ta:0.3%以下
 Taは、強度をさらに向上させるとともに、耐食性をさらに向上させる効果を有する元素であり、必要に応じて含有することができる。しかし、0.3%を超えて含有させても効果が飽和する。このため、Taを添加する場合、Ta含有量を0.3%以下とする。一方、Ta含有量の下限はとくに限定されず、0%であってよいが、0.001%以上とすることが好ましい。
Zr:0.3%以下
 Zrは、強度をさらに向上させる元素であり、必要に応じて含有することができる。また、Zrは耐SSC性をさらに改善する効果も有する。しかし、0.3%を超えてZrを含有しても効果が飽和する。このため、Zrを添加する場合、Zr含有量を0.3%以下とする。一方、Zr含有量の下限はとくに限定されず、0%であってよいが、0.0005%以上とすることが好ましい。
REM:0.3%以下
 REM(希土類金属)は、硫化物の形態制御を介して耐硫化物応力割れ性のさらなる改善に寄与する元素であり、必要に応じて含有できる。しかし、0.3%超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなる。このため、REMを添加する場合、REM含有量を0.3%以下とする。一方、REM含有量の下限はとくに限定されず、0%であってよいが、0.0005%以上とすることが好ましい。なお、本発明でいうREMとは、原子番号21番のスカンジウム(Sc)と原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドである。本発明のステンレス継目無鋼管の成分組成は、上記REMの少なくとも1つを任意に含有することができる。本発明におけるREM含有量とは、前記元素の総含有量である。
Mg:0.01%以下
 Mgは、耐食性をさらに向上させる元素であり、必要に応じて含有できる。しかし、0.01%を超えて含有しても、効果が飽和し、含有量に見合う効果を期待できない。このため、Mgを添加する場合、Mg含有量を0.01%以下とする。一方、Mg含有量の下限はとくに限定されず、0%であってよいが、0.0005%以上とすることが好ましい。
Sn:1.0%以下
 Snは、耐食性をさらに向上させる元素であり、必要に応じて含有できる。しかし、1.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できない。このため、Snを含有する場合、Sn含有量を1.0%以下とする。一方、Sn含有量の下限はとくに限定されず、0%であってよいが、0.001%以上とすることが好ましい。
[組織]
 次に、本発明のステンレス継目無鋼管の組織の限定理由について説明する。
 本発明の一実施形態におけるステンレス継目無鋼管は、体積率で、マルテンサイト相が30%以上、フェライト相が50%以下、および残留オーステナイト相が40%以下である。
マルテンサイト相:30%以上
 マルテンサイト相の体積率が30%未満であると、所望の強度を確保することができない。そのため、マルテンサイト相の体積率は、30%以上、好ましくは40%以上、より好ましくは45%以上、さらに好ましくは50%以上とする。一方、マルテンサイト相の体積率の上限はとくに限定されないが、90%以下とすることが好ましく、85%以下とすることがより好ましい。
フェライト相:50%以下
 フェライト相を含有することにより、硫化物応力腐食割れおよび硫化物応力割れの進展を抑制することができ、優れた耐食性が得られる。しかし、フェライト相の体積率が50%を超えると、所望の強度を確保できない。そのため、フェライト相の体積率を50%以下、好ましくは40%以下、より好ましくは35%以下とする。一方、フェライト相の体積率の下限はとくに限定されないが、10%以上とすることが好ましく、15%以上とすることがより好ましく、20%以上とすることがさらに好ましい。
残留オーステナイト相:40%以下
 残留オーステナイト相の存在により、延性および低温靭性が向上する。しかし、体積率で40%を超える多量のオーステナイト相が析出すると、所望の強度を確保できない。このため、残留オーステナイト相は体積率で40%以下、好ましくは30%以下、より好ましくは25%以下とする。一方、残留オーステナイト相の体積率の下限はとくに限定されないが、3%以上とすることが好ましく、5%以上とすることがより好ましい。
 ここで、上記各相の体積率の測定は、次の方法で行うことができる。まず、ステンレス継目無鋼管より採取した組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食する。次いで、走査型電子顕微鏡(SEM)を用いて前記組織観察用試験片の組織を倍率1000倍で撮像し、SEM画像を得る。得られたSEM画像を画像解析ソフトウェア(ImageJ 1.52p,National Institute of Health)を用いて解析し、フェライト相の組織分率(面積率(%))を算出する。前記解析においては、SEM画像を2値化し、輝度が小さい領域をフェライト相と見なす。以上の手順で得た面積率をフェライト相の体積率(%)と定義する。
 次に、ステンレス継目無鋼管より採取したX線回折用試験片を、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)相の組織分率を測定する。具体的には、残留オーステナイト相の体積率は、オーステナイトの(220)面およびフェライトの(211)面の積分強度から、次式を用いて算出する。
 Vγ(%)=100/(1+(IαRγ/IγRα))
ここで、
 Vγ:残留オーステナイト相の体積率、
 Iα:フェライトの(211)面の積分強度、
 Iγ:オーステナイトの(220)面の積分強度、
 Rα:αの結晶学的理論計算値(34.15)、
 Rγ:γの結晶学的理論計算値(22.33)である。
 また、上記測定方法により求めたフェライト相および残留γ相以外の残部を、マルテンサイト相の分率とする。なお、上記の各組織の観察方法は、後述の実施例でも詳述している。
 なお、本発明のステンレス継目無鋼管の組織は、実質的にマルテンサイト相、フェライト相、および残留オーステナイト相からなる。すなわち、前記組織は本発明の作用効果を損なわない範囲で、他の組織を含有していてもよい。前記他の組織としては、例えば、金属間化合物および介在物が挙げられる。
 言い換えると、本発明の一実施形態におけるステンレス継目無鋼管は、体積率で、
  50%以下のフェライト相、および 
  40%以下の残留オーステナイト相を含み、残部が実質的にマルテンサイト相からなり、かつ、
 前記マルテンサイト相の体積率が30%以上である組織を備えるものであってもよい。
 また、本発明の他の実施形態におけるステンレス継目無鋼管は、体積率で、
  30%以上のマルテンサイト相、
  50%以下のフェライト相、および 
  40%以下の残留オーステナイト相からなる組織を備えるものであってもよい。
 ただし、いずれの場合であっても、上記組織には、不可避的に存在する不純物相が含まれることが許容される。
降伏強さ:758MPa以上
 本発明のステンレス継目無鋼管は、758MPa以上の降伏強さを有する。前記降伏強さの上限はとくに限定されないが、1034MPa以下であることが好ましい。前記降伏強さは引張試験により測定することができる。より具体的には、実施例に記載した方法で測定することができる。
vE-10:40J以上
 本発明のステンレス継目無鋼管は、-10℃におけるシャルピー吸収エネルギーvE-10が40J以上である。前記シャルピー吸収エネルギーvE-10は高いほどよいため、上限はとくに限定されないが、例えば、300J以下であってよく、250J以下であってもよい。前記シャルピー吸収エネルギーはシャルピー衝撃試験により測定することができる。より具体的には、実施例に記載した方法で測定することができる。
 本発明のステンレス継目無鋼管は、とくに限定されることなく任意の用途に用いることができるが、中でも油井用として極めて好適に用いることができる。すなわち、本発明の一実施形態におけるステンレス継目無鋼管は、油井用ステンレス継目無鋼管(油井用高強度ステンレス継目無鋼管)である。
[製造方法]
 次に、本発明のステンレス継目無鋼管の好適な製造方法について説明する。
 本発明のステンレス継目無鋼管は、鋼素材から継目無鋼管を造管し、前記継目無鋼管に特定の条件で焼入れ-焼戻処理を施すことにより製造することができる。
 上記鋼素材としては、とくに限定されることなく任意の素材を用いることができる。前記鋼素材としては、典型的にはビレットを用いられる。前記鋼素材としては、上述した成分組成を有する素材を用いることができる。
 前記鋼素材の製造方法はとくに限定されず、任意の方法で製造することができる。例えば、上述した成分組成を有する溶鋼を、転炉等を用いた常用の溶製方法で溶製し、次いで、連続鋳造法、造塊-分塊圧延法等の方法でビレット等の鋼素材とすることができる。
[造管]
 上記鋼素材を造管して継目無鋼管とする。前記造管の方法はとくに限定されず、任意の方法で行うことができる。前記造管は、熱間加工により行うことが好ましい。熱間加工により造管を行う場合は、鋼素材を加熱した後、熱間加工により継目無鋼管とすればよい。前記加熱における加熱温度はとくに限定されないが、造管の際の熱間加工性と最終製品の低温靭性とを高い水準で両立させるという観点からは、1100~1350℃とすることが好ましい。
 鋼素材を加工して継目無鋼管とする方法としては、とくに限定されず任意の方法を用いることができる。例えば、マンネスマン-プラグミル法およびマンネスマン-マンドレルミル法のいずれかの方法により継目無鋼管を得ることができる。
 熱間加工により造管を行った場合には、造管後に冷却処理を行ってもよい。前記冷却処理は、とくに限定されることなく任意の条件で行うことができる。例えば、熱間加工後、室温まで冷却することが好ましい。前記冷却における冷却速度はとくに限定されず、任意の速度で冷却することができる。例えば、空冷程度の冷却速度で冷却してもよい。
[焼入れ-焼戻処理]
 次いで、得られた継目無鋼管に対して、特定の条件で、焼入れ処理と焼戻処理とからなる熱処理(焼入れ-焼戻処理)を施す。以下、焼入れ-焼戻処理の条件について説明する。
・焼入れ処理
 まず、継目無鋼管を850~1150℃の焼入温度に加熱し、加熱された前記継目無鋼管を、0.01℃/s以上の冷却速度で、50℃以下の冷却停止温度まで冷却する。
焼入温度:850~1150℃
 焼入れ処理における加熱温度(焼入温度)が850℃未満では、マルテンサイトからオーステナイトへの逆変態が起こらず、また冷却時にオーステナイトからマルテンサイトへの変態が起こらず、所望の強度を確保できない。そのため、焼入温度は850℃以上、好ましくは900℃以上とする。一方、焼入温度が1150℃より高いと、結晶粒が粗大化し、その結果、低温靭性が劣化する。そのため、焼入温度は1150℃以下、好ましくは1100℃以下とする。
 上記焼入れ処理においては、継目無鋼管を前記焼入温度まで加熱した後、該焼入温度に保持する均熱処理を行ってもよい。均熱処理を行うことにより、継目無鋼管の肉厚方向における温度を均一化し、材質のバラツキを低減することができる。焼入温度に保持する時間(均熱時間)はとくに限定されないが、5~30分とすることが好ましい。
冷却速度:0.01℃/s以上
 焼入れ処理における冷却速度が0.01℃/s未満であると、所望の組織を得ることができない。そのため、冷却速度は0.01℃/s以上、好ましくは1.0℃/s以上、より好ましくは5.0℃/s以上、さらに好ましくは10.0℃/s以上とする。一方、前記冷却速度の上限についてはとくに限定されないが、100℃/s以下とすることが好ましく、50℃/s以下とすることがより好ましく,30℃/s以下とすることがさらに好ましい。
 上記冷却は、特に限定されることなく、任意の方法で行うことができる。例えば、前記冷却は、空冷および水冷の少なくとも一方の方法で行うことが好ましく、水冷で行うことがより好ましい。
冷却停止温度:50℃以下
 冷却停止温度が50℃より高いと、所望の組織を得ることができない。すなわち、冷却停止温度が高いと、オーステナイトからマルテンサイトへの変態が十分に起こらず、残留オーステナイト分率が過剰となる。そのため、上記焼入れ処理における冷却停止温度は、50℃以下とする。一方、前記冷却停止温度の下限はとくに限定されないが、例えば、0℃以上であってよい。なお、ここで前記冷却停止温度は、継目無鋼管の表面温度とする。
・焼戻処理
 次いで、上記焼入れ処理後の継目無鋼管を、500~650℃の焼戻温度に加熱する焼戻し処理を行う。
焼戻温度:500~650℃
 焼戻温度が500℃未満であると、十分な焼戻効果を得ることができず、その結果、低温靭性が劣化する。そのため、焼戻温度は500℃以上、好ましくは520℃以上とする。一方、焼戻温度が650℃より高いと、金属間化合物が多く析出し、優れた低温靭性が得られない。そのため、焼戻温度は650℃以下、好ましくは630℃以下とする。
 上記焼戻し処理においては、継目無鋼管を前記焼戻温度まで加熱した後、該焼戻温度に保持することができる。前記焼戻温度に保持する時間(保持時間)はとくに限定されないが、肉厚方向における温度を均一化し、材質の変動を防止するという観点からは、5分以上とすることが好ましい。一方、前記保持時間の上限についてもとくに限定されないが、90分以下とすることが好ましい。
 上記焼戻し処理を行った後は、放冷することができる。
 上記焼入れ-焼戻処理を施すことにより、所望の強度を有するとともに、優れた低温靭性および耐食性とを兼ね備えたステンレス継目無鋼管を得ることができる。
 以下、実施例に基づき、さらに本発明について説明する。なお、本発明は以下の実施例に限定されない。
 まず、以下の手順で表1~3に示す成分組成を有する鋼素材から継目無鋼管を造管した。
 表1~3に示す成分組成を有する溶鋼を用いて鋼素材を鋳造した。その後、前記鋼素材を加熱し、モデルシームレス圧延機を用いる熱間加工により造管して、外径177.8mm×肉厚16.0mmの継目無鋼管とし、空冷した。このとき、熱間加工前の鋼素材の加熱温度は1250℃とした。
 次いで、得られた継目無鋼管に、以下の条件で焼入れ-焼戻処理を施して、ステンレス継目無鋼管を得た。
・焼入れ
 得られた継目無鋼管に対して、表4~6に示す条件で焼入れ処理を施した。すなわち、前記継目無鋼管を表4~6に示す焼入温度まで加熱し、表4~6に示した均熱時間の間、該焼入温度に保持した。次いで、表4~6に示した冷却速度で、5℃の冷却停止温度まで冷却した。前記冷却は水冷で行った。
・焼戻し
 その後、前記冷却後の継目無鋼管を、表4~6に示した焼戻温度まで加熱し、表4~6に示した保持時間の間、該焼戻温度に保持した。その後、前記継目無鋼管を空冷(放冷)した。前記空冷における冷却速度は0.04℃/sであった。
 得られたステンレス継目無鋼管から試験片を採取し、組織観察、引張試験、シャルピー衝撃試験、および耐食性試験を実施した。試験方法は次の通りとした。
(1)組織観察
 得られたステンレス継目無鋼管から、管軸方向と肉厚方向を含む断面が観察面となるように組織観察用試験片を採取した。得られた組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(SEM)で組織を倍率1000倍で撮像し、SEM画像を得た。得られたSEM画像を画像解析ソフトウェア(ImageJ 1.52p,National Institute of Health)を用いて解析し、フェライト相の組織分率(面積率(%))を算出した。前記解析においては、SEM画像を2値化し、輝度が小さい領域をフェライト相と見なした。以上の手順で得た面積率をフェライト相の体積率(%)とした。
 また、得られたステンレス継目無鋼管から、X線回折用試験片を採取し、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)相の組織分率を測定した。具体的には、残留オーステナイト相の体積率は、オーステナイトの(220)面およびフェライトの(211)面の積分強度から、次式を用いて算出した。
 Vγ(%)=100/(1+(IαRγ/IγRα))
ここで、
 Vγ:残留オーステナイト相の体積率、
 Iα:フェライトの(211)面の積分強度、
 Iγ:オーステナイトの(220)面の積分強度、
 Rα:αの結晶学的理論計算値(34.15)、
 Rγ:γの結晶学的理論計算値(22.33)である。
 以上の手順で得た各相の体積率を表4~6に示す。なお、表4~6に記載した組織の記号M、F、およびγは、それぞれ以下の相を表す。
M:マルテンサイト相
F:フェライト相
γ:残留オーステナイト相
(2)引張試験
 得られたステンレス継目無鋼管から、管軸方向が引張方向となるように、API(American Petroleum Institute)-5CTの規定に準拠して弧状引張試験片を採取し、引張試験を実施し、降伏強さ(YS)を求めた。ここでは、降伏強さYSが758MPa以上のものを高強度であるとして合格とし、758MPa未満のものは不合格とした。
(3)シャルピー衝撃試験
 低温靭性を評価するために、以下の手順でシャルピー衝撃試験を実施した。
 まず、得られたステンレス継目無鋼管から、ASTM E23の規定に準拠して、試験片長手方向が管軸に垂直な方向であり,かつノッチが管軸に垂直な面にあるVノッチ試験片(10mm厚)を採取した。前記試験片を用い、試験温度:-10℃においてシャルピー衝撃試験を実施した。上記試験においては、一つのステンレス継目無鋼管につき3本の試験片を採取し、それぞれの試験片について吸収エネルギーを測定した。3本の試験片の吸収エネルギーの最低値を、-10℃におけるシャルピー吸収エネルギーvE-10とした。vE-10が40J以上である場合を合格とした。
(4)耐炭酸ガス腐食性試験
 高温での耐炭酸ガス腐食性を評価するために、以下の試験を行った。
 得られたステンレス継目無鋼管から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製した。前記腐食試験片を用いて腐食試験を実施し、耐炭酸ガス腐食性の指標としての腐食速度を測定した。前記腐食試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCOガス雰囲気)中に、上記腐食試験片を浸漬し、浸漬期間を14日間(336時間)として実施した。前記腐食試験後の腐食試験片の重量を測定し、予め測定しておいた腐食試験前の前記試験片の重量を差し引くことにより、腐食試験による重量減少量を求めた。次に、前記重量減少量を、使用した試験片の表面積と前記浸漬期間で割ることにより、単位時間・単位面積あたりの重量減少量を得た。そして、前記単位時間・単位面積あたりの重量減少量を鋼の密度で割ることにより、単位時間・単位面積あたりの腐食厚さに換算した。このようにして得られた単位時間・単位面積あたりの腐食厚さ(mm/y)を炭酸ガス中の腐食速度とした。ここでは、前記腐食速度が0.127mm/y以下のものを合格とし、0.127mm/y超えのものを不合格とした。
(5)耐SSC試験
 低温での耐SSC性を評価するために、以下の試験を行った。
 得られたステンレス継目無鋼管から、NACE TM0177 Method Cに準拠して、Cの形をした試験片を機械加工によって作製し、耐SSC試験を実施した。なお、鋼管内外面に相当する曲面に対しては研削や研磨は行っていない。
 前記耐SSC試験は、0.165質量%NaCl水溶液(液温:7℃、0.995気圧のCOガス、0.005気圧のHS雰囲気)に、酢酸+酢酸ナトリウムを加えてpH:3.0に調整した水溶液中に、NACE TM0177 Method Cに準拠したCの形をした試験片を浸漬し、浸漬時間を720時間とし、降伏応力の100%を負荷応力として負荷して実施した。ここでは、割れ無のものを合格、割れ有のものを不合格とし、表4~6においては合格を「1」、不合格を「2」で示した。
(6)酸環境での腐食試験
 酸環境における耐食性を評価するために、以下の試験を行った。
 まず、得られたステンレス継目無鋼管から、直方体形状の試験片を機械加工により作成した。前記試験片の寸法は、鋼管の長手方向長さが50mm、鋼管の肉厚方向の厚さが3mm、幅が25mmとした。前記試験片の重量を測定した後、80℃に加熱した15質量%塩酸溶液中に前記試験片を40分間浸漬して腐食試験を実施した。前記腐食試験後の試験片の重量を測定し、腐食試験前の前記試験片の重量を差し引くことにより、腐食試験による重量減少量を求めた。次に、前記重量減少量を、使用した試験片の表面積と前記腐食試験における浸漬時間で割ることにより、単位時間・単位面積あたりの重量減少量を得た。そして、前記単位時間・単位面積あたりの重量減少量を鋼の密度で割ることにより、単位時間・単位面積あたりの腐食厚さに換算した。このようにして得られた単位時間・単位面積あたりの腐食厚さ(mm/y)を酸環境中の腐食速度とした。ここでは、前記腐食速度が600mm/y以下であるものを合格とし、600mm/y超えのものを不合格とした。
(7)熱間加工性
 さらに、得られたステンレス継目無鋼管の熱間加工性を評価するために、以下の評価を行った。上記耐SSC試験の試験片の鋼管外面側にあたる面における疵深さを、超音波探傷により測定した。測定された疵深さの最大値に基づいて、以下の3水準で熱間加工性を評価した。
1:最大疵深さが0.1mm以下
2:最大疵深さが0.1mm超、0.2mm以下
3:最大疵深さが0.2mm超
 得られた結果を表4~6に示す。表4~6に示した結果から分かるように、本発明の条件を満たすステンレス継目無鋼管は、いずれも、降伏強さ:758MPa(110ksi)以上という高強度と、優れた低温靭性および耐食性とを兼ね備えていた。特に耐食性については、「高温での耐炭酸ガス腐食性」、「低温での耐SSC性」、および「酸環境における耐食性」のすべてに優れていた。したがって、本発明のステンレス継目無鋼管は、油井用鋼管を初めとする様々な用途に極めて好適に用いることができる。
 さらに、Ca含有量が0.010%超である発明例では、疵深さの最大値が0.1mm以下であった。この結果は、特にCa含有量が0.010%超である場合に、熱間加工性が著しく優れることを表している。したがって、Ca含有量が0.010%超であれば、低温での耐SSC性に一層優れるといえる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (5)

  1.  質量%で、
     C :0.06%以下、
     Si:1.0%以下、
     Mn:0.01%以上1.0%以下、
     P :0.05%以下、
     S :0.005%以下、
     Cr:15.2%以上18.0%以下、
     Mo:1.5%以上4.3%以下、
     Cu:1.2%以上3.5%以下、
     Ni:3.5%以上5.2%以下、
     V :0.5%以下、
     Al:0.10%以下、
     N :0.10%以下、
     O :0.010%以下、
     Sb:0.001%以上1.000%以下
     Co:0.01%以上1.00%以下、および
     Ca:0.001%以上0.030%以下を含有し、
     残部がFeおよび不可避的不純物からなる成分組成を有し、
     体積率で、
      マルテンサイト相が30%以上、
      フェライト相が50%以下、および
      残留オーステナイト相が40%以下であり、
     降伏強さが758MPa以上、
     -10℃におけるシャルピー吸収エネルギーvE-10が40J以上である、ステンレス継目無鋼管。
  2.  前記成分組成が、質量%で、
     Nb:0.07%以下、
     Ti:0.2%以下、
     W :0.9%以下、
     B :0.01%以下、
     Ta:0.3%以下、
     Zr:0.3%以下、
     REM:0.3%以下、
     Mg:0.01%以下、および
     Sn:1.0%以下
    からなる群より選択される少なくとも1つをさらに含有する、請求項1に記載のステンレス継目無鋼管。
  3.  体積率で、
      マルテンサイト相が50%以上、
      フェライト相が50%以下、および
      残留オーステナイト相が25%以下であり、
     降伏強さが862MPa以上である、請求項1または2に記載のステンレス継目無鋼管。
  4.  請求項1または2に記載の成分組成を有する鋼素材から継目無鋼管を造管し、
      前記継目無鋼管を850~1150℃の焼入温度に加熱し、
      前記加熱後の前記継目無鋼管を、0.01℃/s以上の冷却速度で、50℃以下の冷却停止温度まで冷却し、
      前記冷却後の前記継目無鋼管を、500~650℃の焼戻温度に加熱することにより、
    体積率で、
      マルテンサイト相が30%以上、
      フェライト相が50%以下、および
      残留オーステナイト相が40%以下であり、
     降伏強さが758MPa以上、
     -10℃におけるシャルピー吸収エネルギーvE-10が40J以上であるステンレス継目無鋼管を製造する、ステンレス継目無鋼管の製造方法。
  5.  体積率で、
      マルテンサイト相が50%以上、
      フェライト相が50%以下、および
      残留オーステナイト相が25%以下であり、
     降伏強さが862MPa以上である、請求項4に記載のステンレス継目無鋼管の製造方法。
PCT/JP2023/008928 2022-07-05 2023-03-08 ステンレス継目無鋼管およびその製造方法 WO2024009564A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023537602A JP7409569B1 (ja) 2022-07-05 2023-03-08 ステンレス継目無鋼管およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-108570 2022-07-05
JP2022108570 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024009564A1 true WO2024009564A1 (ja) 2024-01-11

Family

ID=89452972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008928 WO2024009564A1 (ja) 2022-07-05 2023-03-08 ステンレス継目無鋼管およびその製造方法

Country Status (1)

Country Link
WO (1) WO2024009564A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187330A1 (ja) * 2020-03-19 2021-09-23 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2021187331A1 (ja) * 2020-03-19 2021-09-23 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
JP2021161503A (ja) * 2020-04-01 2021-10-11 日本製鉄株式会社 継目無鋼管
JP7226675B1 (ja) * 2021-09-29 2023-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187330A1 (ja) * 2020-03-19 2021-09-23 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2021187331A1 (ja) * 2020-03-19 2021-09-23 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
JP2021161503A (ja) * 2020-04-01 2021-10-11 日本製鉄株式会社 継目無鋼管
JP7226675B1 (ja) * 2021-09-29 2023-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Similar Documents

Publication Publication Date Title
JP6766887B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6156609B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7156536B2 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2018131340A1 (ja) 高強度ステンレス継目無鋼管およびその製造方法
WO2014097628A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7156537B2 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2021200571A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2021131445A1 (ja) 油井用高強度ステンレス継目無鋼管
JP7111253B2 (ja) ステンレス継目無鋼管およびその製造方法
JP6819837B1 (ja) ステンレス継目無鋼管
JP7409569B1 (ja) ステンレス継目無鋼管およびその製造方法
WO2024009564A1 (ja) ステンレス継目無鋼管およびその製造方法
WO2024009565A1 (ja) ステンレス継目無鋼管およびその製造方法
JP7226571B2 (ja) ステンレス継目無鋼管およびその製造方法
JP7279863B2 (ja) ステンレス鋼管およびその製造方法
JP7347714B1 (ja) 油井用高強度ステンレス継目無鋼管
WO2021065262A1 (ja) ステンレス継目無鋼管およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835105

Country of ref document: EP

Kind code of ref document: A1