WO2024008153A1 - 往复传动组件及动力机构 - Google Patents

往复传动组件及动力机构 Download PDF

Info

Publication number
WO2024008153A1
WO2024008153A1 PCT/CN2023/106106 CN2023106106W WO2024008153A1 WO 2024008153 A1 WO2024008153 A1 WO 2024008153A1 CN 2023106106 W CN2023106106 W CN 2023106106W WO 2024008153 A1 WO2024008153 A1 WO 2024008153A1
Authority
WO
WIPO (PCT)
Prior art keywords
reciprocating
shaft
rotating sleeve
guide rail
sleeve
Prior art date
Application number
PCT/CN2023/106106
Other languages
English (en)
French (fr)
Inventor
傅珂珂
李进
Original Assignee
浙江千机智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江千机智能科技有限公司 filed Critical 浙江千机智能科技有限公司
Publication of WO2024008153A1 publication Critical patent/WO2024008153A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams

Definitions

  • the utility model relates to the technical field of transmission structures, in particular to reciprocating transmission components and power mechanisms.
  • a reciprocating transmission assembly includes a rotating sleeve, a reciprocating shaft and a limiting body, the rotating sleeve is rotatable around its own axis; the reciprocating shaft is inserted into the rotating sleeve; the limiting body It is positioned on one of the outer wall of the reciprocating shaft and the inner wall of the rotating sleeve, and a reciprocating guide rail is provided on the other.
  • the trajectory of the reciprocating guide rail is a closed curve around the axis of the rotating sleeve.
  • the wave peaks and wave troughs of the reciprocating guide rail are spaced along the axis of the rotating sleeve.
  • the limiting body cooperates with the reciprocating guide rail guide and can move along the trajectory of the reciprocating guide rail, so that the reciprocating shaft It moves back and forth relative to the rotating sleeve along the axis direction of the rotating sleeve.
  • the number of the reciprocating guide rails is at least two, each of the reciprocating guide rails is spaced along the axis of the rotating sleeve, and each of the reciprocating guide rails is provided with at least one The limiting body; if the limiting body is positioned on the reciprocating shaft, each of the limiting bodies can move synchronously with the reciprocating shaft; if the limiting body is positioned on the rotating sleeve, then Each limiting body rotates synchronously with the rotating sleeve.
  • the trajectory of the reciprocating guide rail along the circumferential direction of the rotating sleeve is sinusoidal.
  • the circumferential trajectory of a single reciprocating guide rail along the rotating sleeve includes at least two complete and continuous sinusoidal cycles, and the number of limiting bodies provided on a single reciprocating guide rail is The number of sinusoidal cycles is less than or equal to the number of sinusoidal cycles of the reciprocating guide rail, and the limiting bodies on a single reciprocating guide rail are evenly spaced around the axis of the rotating sleeve.
  • the reciprocating guide rail is a reciprocating groove
  • the reciprocating groove is a closed curved groove around the axis of the rotating sleeve
  • the limiting body is disposed in the reciprocating groove and can be positioned at the reciprocating groove. Said reciprocating groove movement.
  • a positioning groove is provided on the outer wall of the reciprocating shaft; if the limiting body is positioned on the rotating sleeve, the rotating sleeve There is a positioning groove on the inner wall of the sleeve;
  • the limiting body includes a universal ball, part of the universal ball is rollably disposed in the positioning groove, and the other part penetrates in the reciprocating groove.
  • the limiting body further includes a limiting seat and a plurality of balls, the plurality of balls are arranged in the limiting seat, and the universal ball is partially penetrated through the limiting seat.
  • the universal ball and the ball are in contact with the ball, and both the universal ball and the ball can roll relative to the limit seat, and the limit seat is arranged in the positioning groove.
  • the reciprocating shaft includes a transmission shaft and a transmission sleeve.
  • the transmission sleeve is sleeved on and limited to the transmission shaft.
  • the positioning groove is provided on the outer wall of the reciprocating shaft.
  • the groove is provided on the outer wall of the transmission sleeve; if the inner wall of the rotating sleeve is provided with a positioning groove, the rotating sleeve includes a first sleeve part and a second sleeve part, and the second sleeve part is inserted through the
  • the positioning groove is located in the first sleeve part and is limited on the first sleeve part.
  • the positioning groove is opened on the inner wall of the second sleeve part.
  • the first sleeve part can drive the second sleeve part to rotate synchronously.
  • the reciprocating transmission assembly further includes a power source
  • the rotating sleeve includes a first sleeve part and a second sleeve part
  • a power shaft is provided at one end of the first sleeve part
  • the power source is connected to the power shaft and drives the power shaft through the power shaft.
  • the first sleeve part rotates; the first sleeve part opens at one end facing away from the power shaft, and the second sleeve part and the reciprocating shaft can be inserted through the opening end of the first sleeve part.
  • the rotating sleeve includes a first splicing part and a second splicing part.
  • the first splicing part and the second splicing part are both semi-cylindrical structures.
  • the first splicing part and the second splicing part are opposite to each other. So that the reciprocating shaft is located between the first splicing part and the second splicing part; a power shaft is provided at one end of the rotating sleeve, and the power source is connected to the power shaft and passes through the power shaft.
  • the shaft drives the rotating sleeve to rotate.
  • the reciprocating transmission assembly further includes a balance shaft and a balance body.
  • the balance shaft is passed through the rotating sleeve and is located on one side of the reciprocating shaft.
  • the outer wall of the balance shaft is in contact with the balance body.
  • the balance body is positioned on one of the inner walls of the rotating sleeve, and the other is provided with a balance guide rail spaced apart from the reciprocating guide rail.
  • the trajectory of the balance guide rail is around the axis of the rotating sleeve. A closed curve, the balance body is guided and matched with the balance guide rail, and can move along the trajectory of the balance guide rail, so that the balance shaft and the reciprocating shaft move relative to or opposite to each other.
  • the structures of the balance body and the limiting body are consistent, the trajectory of the balance guide rail along the circumferential direction of the rotating sleeve is sinusoidal, and the wave crest of the balance guide rail is consistent with the reciprocating guide rail.
  • the wave troughs of the balance guide rail are opposite to the wave crests of the reciprocating guide rail, and the balance body and the limiting body are arranged oppositely along the axial direction of the rotating sleeve.
  • one of the limiting body and the reciprocating guide rail is arranged on the inner wall of the rotating sleeve, and the other is arranged on the outer wall of the reciprocating shaft, and since the reciprocating guide rail is a closed curve guide rail around the axis of the transmission shaft, the reciprocating guide rail
  • the wave crests and troughs are arranged at intervals along the axis of the rotating sleeve.
  • the reciprocating shaft is installed in the rotating sleeve so that the limiting body cooperates with the reciprocating guide rail guide. Then, when the rotating sleeve rotates around its own axis, the limiting body slides between the peaks and troughs of the reciprocating guide rail.
  • the limiting body When the limiting body is positioned on the reciprocating shaft, the limiting body drives the reciprocating shaft to reciprocate along the axis of the rotating sleeve. ; When the limiting body is positioned on the inner wall of the rotating sleeve, the limiting body rotates with the rotating sleeve, so that the reciprocating shaft can reciprocate along the axis of the rotating sleeve through the cooperation of the limiting body and the reciprocating guide rail.
  • the above-mentioned reciprocating transmission assembly does not have a deflection angle, so there is no problem of deflection force friction and work; it has a simple structure and a wide range of applications, and can be used in compressors, pump structures and other situations that require reciprocating movement.
  • a power mechanism includes the reciprocating transmission assembly as described above.
  • Figure 1 is a schematic structural diagram of a network recurrence transmission assembly in an embodiment
  • Figure 2 is an exploded view of the reciprocating transmission assembly described in Figure 1;
  • Figure 3 is a cross-sectional view of the reciprocating transmission assembly shown in Figure 1 from one perspective;
  • Figure 4 is a cross-sectional view of the reciprocating transmission assembly shown in Figure 3 from another perspective;
  • Figure 5 is an exploded schematic view of the rotating sleeve in Figure 3;
  • Figure 6 is a schematic structural diagram of a network recurrence transmission assembly in another embodiment
  • Figure 7 is a partially exploded view of the reciprocating transmission assembly shown in Figure 6 with the housing omitted;
  • Figure 8 is a cross-sectional view of the reciprocating transmission assembly shown in Figure 6 from one perspective;
  • Figure 9 is a cross-sectional view of the reciprocating transmission assembly shown in Figure 6 from another perspective.
  • Reciprocating transmission assembly 100. Rotating sleeve; 110. Positioning groove; 120. First set part; 122. Limiting protrusion; 130, second sleeve part; 132, matching groove; 140, power shaft; 142, first splicing shaft; 144, second splicing shaft; 150, first splicing part; 160, second splicing part ; 200, reciprocating shaft; 210, transmission shaft; 220, transmission sleeve; 300, limit body; 400, reciprocating groove; 500, output shaft; 600, shell; 610, shell body; 620, cover; 630, input hole; 640, output hole.
  • the reciprocating transmission assembly 10 in one embodiment of the utility model can at least eliminate the deflection angle and the deflection force friction work, and the reciprocating transmission assembly 10 has a simple structure and good applicability.
  • the reciprocating transmission assembly 10 includes a rotating sleeve 100, a reciprocating shaft 200 and a limiting body 300.
  • the rotating sleeve 100 is rotatable around its own axis; the reciprocating shaft 200 is inserted into the rotating sleeve 100; and the limiting body 300 is positioned on the reciprocating shaft 200.
  • One of the outer wall and the inner wall of the rotating sleeve 100 is provided with a reciprocating guide rail on the other.
  • the trajectory of the reciprocating guide rail is a closed curve around the axis of the rotating sleeve 100, and the wave crest of the reciprocating guide rail is equal to The wave troughs are arranged at intervals along the axis of the rotating sleeve 100 .
  • the limiting body 300 cooperates with the reciprocating guide rail guide and can move along the trajectory of the reciprocating guide rail, so that the reciprocating shaft 200 reciprocates relative to the rotating sleeve 100 along the axis of the rotating sleeve 100 .
  • the limiting body 300 is positioned on the inner wall of the rotating sleeve 100 , and the reciprocating guide rail is provided on the outer wall of the reciprocating shaft 200 .
  • one of the limiting body 300 and the reciprocating guide rail is provided on the inner wall of the rotating sleeve 100, and the other is provided on the outer wall of the reciprocating shaft 200, and because the reciprocating guide rail is arranged around the axis of the transmission shaft.
  • the wave peaks and wave troughs of the reciprocating guide rail are arranged at intervals along the axis of the rotating sleeve 100 .
  • the reciprocating shaft 200 is inserted into the rotating sleeve 100 so that the limiting body 300 cooperates with the reciprocating guide rail guide.
  • the limiting body 300 moves between the wave peaks and the wave troughs of the reciprocating guide rail.
  • the limiting body 300 rotates with the rotating sleeve 100, so that the reciprocating shaft 200 reciprocates along the axis of the rotating sleeve 100 through the cooperation of the limiting body 300 and the reciprocating guide rail.
  • the above-mentioned reciprocating transmission assembly 10 does not have a deflection angle, so there is no problem of deflection force friction and work; it has a simple structure and a wide range of applications, and can be used in compressors, pump structures and other situations that require reciprocating movement.
  • the number of the reciprocating guide rails is at least two, each of the reciprocating guide rails is spaced apart along the axial direction of the rotating sleeve 100 , and each of the reciprocating guide rails is provided with at least one limiting body 300 .
  • the limiting body 300 is positioned on the rotating sleeve 100, and each limiting body 300 rotates synchronously with the rotating sleeve 100.
  • the limiting bodies 300 on different reciprocating guide rails can rotate synchronously relative to the reciprocating shaft 200 .
  • each reciprocating guide rail is provided with at least one limiting body 300 to cooperate with the transmission, the output power of the rotating sleeve 100 to the reciprocating shaft 200 can be increased, and can be suitable for high-power working conditions.
  • the trajectory of the reciprocating guide rail along the circumferential direction of the rotating sleeve 100 is sinusoidal.
  • the reciprocating guide rail arranged in a sinusoidal trajectory is used to ensure that the limiting body 300 can move smoothly on the reciprocating guide rail and ensure the smooth reciprocating movement of the reciprocating shaft 200.
  • the trajectory of a single reciprocating guide rail along the circumferential direction of the rotating sleeve 100 includes at least two complete and continuous sinusoidal cycles, and the number of limiting bodies 300 provided on a single reciprocating guide rail is less than or equal to that of the reciprocating guide rail.
  • the number of sinusoidal cycles, and the limiting bodies 300 on a single reciprocating guide rail are evenly spaced around the axis of the rotating sleeve 100 .
  • the trajectory of the reciprocating guide rail includes two sinusoidal curves
  • the number of limiting bodies 300 is also two.
  • the two limiting bodies 300 can be simultaneously arranged at the valley positions of the two sinusoidal curves of the reciprocating guide rail or They are arranged at the peak positions of two sinusoidal curves at the same time, and at this time, the two limiting bodies 300 are evenly arranged around the axis of the rotating sleeve 100 .
  • the transmission stability can be further improved.
  • the trajectory of a single reciprocating guide rail around the axis of the rotating sleeve 100 may include three or other numbers of complete and continuous sinusoidal cycles, and the number of corresponding limiting bodies 300 may be three or other numbers, Each sinusoidal curve is provided with a limiting body 300 to ensure stable reciprocating movement of the reciprocating shaft 200 .
  • the reciprocating guide rail is a reciprocating groove 400.
  • the reciprocating groove 400 is a closed curved groove around the axis of the rotating sleeve 100.
  • the limiting body 300 is disposed in the reciprocating groove 400 and can reciprocate. Move within slot 400.
  • the reciprocating groove 400 is used to realize the limiting and guiding function of the limiting body 300 to ensure the limiting position.
  • the body 300 can move stably along the trajectory of the reciprocating groove 400 .
  • a positioning groove 110 is provided on the inner wall of the rotating sleeve 100; the limiting body 300 includes a universal ball. Since the limiting body 300 is positioned on the rotating sleeve 100, part of the universal ball is rollably disposed in the positioning groove 110. inside, and the other part is inserted into the reciprocating groove 400 . Since the universal ball can roll, the reciprocating movement of the reciprocating shaft 200 relative to the rotating sleeve 100 is realized by the rolling friction of the universal ball instead of the sliding friction of the reciprocating shaft 200 relative to the rotating sleeve 100, further ensuring transmission efficiency. And by providing the positioning groove 110, the position of the universal ball on the rotating sleeve 100 can be effectively positioned.
  • the limiting body 300 further includes a limiting seat and a plurality of balls.
  • the plurality of balls are arranged in the limiting seat.
  • the universal ball is partially penetrated in the limiting seat and connected with the limiting seat.
  • the balls are in contact, and both the universal ball and the balls can roll relative to the limiting seat, and the limiting seat is disposed in the positioning groove 110 .
  • the universal ball is rolling, multiple balls are used to realize rolling friction between the universal ball and the limit seat, which further ensures the stability of the universal ball rolling and avoids friction between the universal ball and the inner wall of the positioning groove 110. direct contact.
  • the limiting seat can be omitted, a plurality of balls are directly arranged in the positioning groove 110, and the universal ball is disposed in the positioning groove 110 and contacts the balls.
  • the reciprocating guide rail can also be a reciprocating protrusion.
  • the reciprocating protrusion is a closed curved protrusion around the axis of the rotating sleeve 100, and the peaks and troughs of the curved protrusion are spaced along the axis of the rotating sleeve 100, and the limiting position is
  • the body 300 is provided with a groove, and the reciprocating protrusions are inserted into the groove. As long as it can ensure that the limiting body 300 moves along the trajectory of the reciprocating guide rail.
  • the outer wall diameter of the reciprocating shaft 200 is consistent with the inner wall diameter of the rotating sleeve 100 .
  • the reciprocating shaft 200 and the rotating sleeve 100 can have an interference fit to avoid direct contact and friction between the inner wall of the reciprocating shaft 200 and the rotating sleeve 100 .
  • the outer wall diameter of the reciprocating shaft 200 is slightly larger than the inner wall diameter of the rotating sleeve 100 to ensure a small gap between the outer wall of the reciprocating shaft 200 and the inner wall of the rotating sleeve 100 .
  • the rotating sleeve 100 includes a first sleeve part 120 and a second sleeve part 130.
  • the second sleeve part 130 is inserted into the first sleeve part 120 and is limited to the first sleeve part.
  • the positioning groove 110 is opened on the inner wall of the second sleeve part 130, and the first sleeve part 120 can drive the second sleeve part 130 to rotate synchronously. Since the first sleeve part 120 is a rotational power transmission component, the positioning groove 110 is opened in the second sleeve part 130 to ensure the structural integrity of the first sleeve part 120 and thereby ensure the stability of rotation transmission.
  • the limiting protrusion 122 is provided on the inner wall of the first sleeve part 120, and the matching groove 132 is provided on the outer wall of the second sleeve part 130.
  • the limiting protrusion 122 can be inserted into the matching groove 132 to ensure that The second sleeve part 130 is stably disposed inside the first sleeve part 120 .
  • the number of the limiting protrusions 122 is at least two. Each limiting protrusion 122 is evenly spaced around the axis of the first sleeve portion 120 .
  • the number of the matching grooves 132 is consistent with the number of the limiting protrusions 122 .
  • a limiting protrusion 122 is correspondingly disposed in a matching groove 132 .
  • the reciprocating transmission assembly 10 further includes a power source; a power shaft 140 is provided at one end of the rotating sleeve 100.
  • the power source is connected to the power shaft 140 and drives the rotating sleeve 100 to rotate through the power shaft 140.
  • the rotating sleeve 100 since the rotating sleeve 100 includes a first sleeve part 120 and a second sleeve part 130, a power shaft 140 is provided at one end of the first sleeve part 120; through the power shaft 140 and the power source, it is convenient to provide the first sleeve part 120 with a power source. The rotation of the part 120 provides power.
  • first sleeve part 120 is open facing away from the power shaft 140 , and the second sleeve part 130 and the reciprocating shaft 200 are inserted into the first sleeve part 120 from the open end of the first sleeve part 120 .
  • the second sleeve part 130 and the reciprocating shaft 200 are conveniently disposed in the first sleeve part 120 through the open end of the first sleeve part 120 .
  • the reciprocating transmission assembly 10 further includes an output shaft 500 .
  • the output shaft 500 is connected to the reciprocating shaft 200 by the side of the rotating sleeve 100 facing away from the power shaft 140 . through output shaft 500 facilitates outputting the reciprocating motion of the reciprocating shaft 200 to other components through the output shaft 500.
  • the reciprocating transmission assembly 10 further includes a housing 600 , in which the reciprocating shaft 200 and the rotating sleeve 100 are disposed.
  • the housing 600 can effectively protect the reciprocating shaft 200 and the rotating sleeve 100 and ensure the stability of transmission between the reciprocating shaft 200 and the rotating sleeve 100 .
  • the housing 600 includes a housing body 610 and a cover 620.
  • One side of the housing body 610 is open.
  • the reciprocating shaft 200 and the rotating sleeve 100 are arranged in the housing body 610 from the opening side of the housing body 610.
  • the cover 620 is covered with the housing 610. on the shell body 610.
  • an input hole 630 is provided on one side wall of the housing 600, and an output hole 640 is provided on the opposite side wall.
  • the power source is connected to the power shaft 140 of the rotating sleeve 100 through the input hole 630, and the output shaft 500 passes through Located in the output hole 640.
  • the input hole 630 and the output hole 640 are respectively opened on the housing body 610 and the cover 620 .
  • the reciprocating transmission assembly 10 further includes a balance shaft and a balance body.
  • the balance shaft penetrates the rotating sleeve 100 and is located on one side of the reciprocating shaft 200.
  • the outer wall of the balance shaft is in contact with the rotating body.
  • the balance body is positioned on one of the inner walls of the sleeve 100, and the other is provided with a balance guide rail spaced apart from the reciprocating guide rail.
  • the trajectory of the balance guide rail is a closed type around the axis of the rotating sleeve 100. curve, the balance body guides and cooperates with the balance guide rail, and can move along the trajectory of the balance guide rail, so that the balance shaft and the reciprocating shaft 200 move relative to or opposite to each other.
  • the balance body moves along the trajectory of the balance guide rail, and the limiting body 300 moves along the trajectory of the reciprocating guide rail, so that the balance shaft and the reciprocating shaft 200 move relative to or in opposite directions along the axis direction of the rotating sleeve 100 , thereby allowing the force generated by the acceleration of the balance shaft to offset the force generated by the acceleration of the reciprocating shaft 200 , thereby avoiding axial vibration of the rotating sleeve 100 caused by setting the reciprocating shaft 200 alone.
  • the balance body and the balance shaft the axial vibration of the reciprocating shaft 200 and the rotating sleeve 100 can be avoided, and the stability of the transmission can be improved.
  • the structure of the balance body and the limiting body 300 are consistent, and the balance guide rail The structure is consistent with that of the reciprocating guide rail.
  • the trajectory of the balance guide rail along the circumferential direction of the rotating sleeve 100 is sinusoidal
  • the wave crest of the balance guide rail is opposite to the wave trough of the reciprocating guide rail
  • the wave trough of the balance guide rail is opposite to the wave crest of the reciprocating guide rail
  • the balance body and the limiting body 300 are arranged oppositely along the axial direction of the rotating sleeve 100 .
  • the balance body 500 can move in the opposite direction on the balancing guide rail, so that the reciprocating shaft 200 and the balancing shaft move in different directions.
  • the balance guide rail and the reciprocating guide rail are both disposed on the inner wall of the rotating sleeve 100 .
  • the limiting body 300 is positioned on the inner wall of the reciprocating shaft 200, and the balance body is positioned on the inner wall of the balance shaft. This allows the limiting body 300 and the balancing body to move relative to or in opposite directions synchronously with respect to the rotating sleeve 100, further allowing the forces of the limiting body 300 and the balancing body that the rotating sleeve 100 receives to cancel each other out.
  • the balance guide rail can also be disposed on the outer wall of the balance shaft, and the reciprocating guide rail is disposed on the outer wall of the reciprocating shaft 200 .
  • the limiting body 300 and the balancing body are both positioned on the inner wall of the rotating sleeve 100 and are spaced apart along the axial direction of the rotating sleeve 100 .
  • the limiting body 300 is positioned on the outer wall of the reciprocating shaft 200 , and the reciprocating guide rail is provided on the inner wall of the rotating sleeve 100 .
  • the reciprocating guide rail follows the rotation of the rotating sleeve 100, the purpose of the limiting body 300 moving synchronously with the reciprocating shaft 200 is achieved.
  • the number of reciprocating guide rails is at least two, and each reciprocating guide rail is spaced apart along the axis direction of the rotating sleeve 100.
  • the limiting body 300 is positioned on the reciprocating shaft 200, and each limiting body 300 is positioned on the reciprocating shaft 200.
  • the body 300 can move synchronously with the reciprocating shaft 200 .
  • the limiting bodies 300 on different reciprocating guide rails can move in the same direction relative to the rotating sleeve 100, which can increase the output power of the rotating sleeve 100 to the reciprocating shaft 200.
  • the positioning groove 110 is opened on the outer wall of the reciprocating shaft 200 .
  • the limiting body 300 is positioned on the reciprocating shaft 200 through the positioning groove 110 to achieve synchronous movement of the limiting body 300 and the reciprocating shaft 200 .
  • the reciprocating shaft 200 includes a transmission shaft 210 and a transmission sleeve 220.
  • the transmission sleeve 220 is sleeved on and limited to the transmission shaft 210.
  • the positioning groove 110 is opened on the outer wall of the transmission sleeve 220. Since the transmission shaft 210 outputs reciprocating movement, the positioning groove 110 is provided on the transmission sleeve 220 to ensure the structural integrity of the transmission shaft 210 and ensure the stability of the power output.
  • a power shaft 140 is provided at one end of the rotating sleeve 100 .
  • a power source is connected to the power shaft 140 and drives the rotating sleeve 100 to rotate through the power shaft 140 .
  • the rotating sleeve 100 includes a first splicing part 150 and a second splicing part 160.
  • the first splicing part 150 and the second splicing part 160 are both semi-cylindrical structures.
  • the first splicing part 150 and the second splicing part 160 are opposite to each other so that the reciprocating shaft 200 is located between the first splicing part 150 and the second splicing part 160 .
  • the power shaft 140 includes a first splicing shaft 142 and a second splicing shaft 144. After the first splicing part 150 and the second splicing part 160 are connected, the first splicing shaft 142 and the second splicing shaft 144 are connected to form a power shaft. Axis 140.
  • the rotating sleeve 100 can also be an integral structure.
  • the reciprocating shaft 200 reciprocates along the axis of the rotating sleeve 100, and a universal ball is used to realize the reciprocating shaft 200 and the rotating sleeve 100.
  • the reciprocating shaft 200 receives a uniform reciprocating thrust and will not be affected by the deflection force due to the rolling friction between the reciprocating shafts 200 and the use of at least two uniformly arranged universal balls.
  • the reciprocating process of the reciprocating shaft 200 is only The movement trajectory and thrust along the axis of the rotating sleeve 100 can achieve the purpose of performing work in both directions and improve the transmission efficiency.
  • the power mechanism includes the reciprocating transmission assembly 10 in any of the above embodiments.
  • the power mechanism may be a compressor, and the piston of the compressor may be connected to the reciprocating shaft 200 .
  • the power mechanism can be a plunger pump, and the plunger of the plunger pump is connected to the reciprocating shaft 200 .
  • the power mechanism can be an electric hammer, and the cylinder of the electric hammer is connected to the reciprocating shaft 200 .
  • the power mechanism can also be other components that require reciprocating power.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative Significance or implicit indication of the quantity of a technical feature indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
  • connection In this utility model, unless otherwise expressly stipulated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. Connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements, unless otherwise Clear limits.
  • connection or integration
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two elements or an interaction between two elements, unless otherwise Clear limits.
  • specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in direct contact through an intermediate medium. indirect contact.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

一种往复传动组件(10),包括转动套(100)、往复轴(200)及限位体(300)。限位体与往复导轨(400)一者设置于转动套的内壁上,另一者设置于往复轴的外壁上。往复导轨为绕传动轴轴线的闭合型曲线导轨,其波峰与波谷沿转动套的轴线间隔设置。往复轴穿设于转动套内,以使限位体与往复导轨导向配合。当转动套绕自身轴线转动时,限位体在往复导轨的波峰与波谷之间滑动,当限位体定位于往复轴上时,限位体带动往复轴沿转动套轴线往复移动;当限位体定位在转动套内壁上时,限位体跟随转动套转动,以通过限位体与往复导轨的配合,使往复轴沿转动套轴线往复移动。该往复传动组件不存在偏摆角,且结构简单,适用范围广。还公开了包括该往复传动组件的动力机构。

Description

往复传动组件及动力机构 技术领域
本实用新型涉及传动结构技术领域,特别是涉及往复传动组件及动力机构。
背景技术
在机械传动领域,传统的往复结构如曲柄滑块机构,曲柄摆臂机构等,都存在偏摆角,进而导致存在偏向力摩擦做功,影响往复传动的稳定性及效率。而对于传统的直线电机或伺服电机丝杠往复机构,虽然也能够实现直线往复输出,但是结构控制复杂,成本较高,进而适用性较差。
实用新型内容
基于此,有必要针对上述问题,提供一种能够避免产生偏向力摩擦且降低结构复杂度的往复传动组件及动力机构。
一种往复传动组件,所述往复传动组件包括转动套、往复轴及限位体,所述转动套绕自身轴线可转动;所述往复轴穿设于所述转动套内;所述限位体定位于所述往复轴的外壁与所述转动套的内壁两者中的一者上,另一者上设有往复导轨,所述往复导轨的轨迹为绕所述转动套轴线的闭合型曲线,且所述往复导轨的波峰与波谷沿所述转动套的轴线间隔设置,所述限位体与所述往复导轨导向配合,并能够沿着所述往复导轨的轨迹移动,以使所述往复轴相对于所述转动套沿着所述转动套轴线方向往复移动。
在其中一个实施例中,所述往复导轨的数量为至少两个,各个所述往复导轨沿着所述转动套的轴线方向间隔设置,每一所述往复导轨均设置有至少一所 述限位体;若所述限位体定位在所述往复轴上,则各个所述限位体能够跟随所述往复轴同步移动,若所述限位体定位在所述转动套上,则各个所述限位体跟随所述转动套同步转动。
在其中一个实施例中,所述往复导轨沿所述转动套的周向的轨迹呈正弦曲线。
在其中一个实施例中,单个所述往复导轨沿所述转动套的周向的轨迹包括至少两个完整且连续的正弦曲线周期,单个所述往复导轨上设有的所述限位体的数量小于或等于所述往复导轨的正弦曲线周期数量,且单个所述往复导轨上的所述限位体围绕所述转动套的轴线均匀间隔设置。
在其中一个实施例中,所述往复导轨为往复槽,所述往复槽为绕所述转动套轴线的闭合型曲线凹槽,所述限位体穿设于所述往复槽内并能够在所述往复槽内移动。
在其中一个实施例中,若所述限位体定位在所述往复轴上,所述往复轴的外壁上开设有定位槽;若所述限位体定位在所述转动套上,所述转动套的内壁上开设有定位槽;
所述限位体包括万向球,所述万向球的部分可滚动地设置于所述定位槽内,另一部分穿设于所述往复槽内。
在其中一个实施例中,所述限位体还包括限位座及多个滚珠,多个所述滚珠设置于所述限位座内,所述万向球部分穿设于所述限位座内并与所述滚珠抵接,所述万向球与所述滚珠均能够相对于所述限位座滚动,所述限位座设置于所述定位槽内。
在其中一个实施例中,若所述往复轴的外壁上开设有定位槽,则所述往复轴包括传动轴及传动套,所述传动套套设于并限位于所述传动轴上,所述定位 槽开设于所述传动套的外壁上;若所述转动套的内壁上开设有定位槽,则所述转动套包括第一套部及第二套部,所述第二套部穿设于所述第一套部内,并限位于所述第一套部上,所述定位槽开设于所述第二套部的内壁上,所述第一套部能够带动所述第二套部同步转动。
在其中一个实施例中,所述往复传动组件还包括动力源;
若所述转动套包括第一套部及第二套部,则所述第一套部的一端设置有动力轴,所述动力源连接于所述动力轴,并通过所述动力轴驱动所述第一套部转动;所述第一套部背向于所述动力轴的一端开口,所述第二套部及所述往复轴能够由所述第一套部的开口端穿设于所述第一套部内;或者
所述转动套包括第一拼接部及第二拼接部,所述第一拼接部与所述第二拼接部均为半圆柱形结构,所述第一拼接部与所述第二拼接部相对接以使所述往复轴位于所述第一拼接部与所述第二拼接部之间;所述转动套的一端设置有动力轴,所述动力源连接于所述动力轴,并通过所述动力轴驱动所述转动套转动。
在其中一个实施例中,所述往复传动组件还包括平衡轴及平衡体,所述平衡轴穿设于所述转动套内,并位于所述往复轴的一侧,所述平衡轴的外壁与所述转动套的内壁两者中的一者上定位有所述平衡体,另一者上设有与所述往复导轨间隔设置的平衡导轨,所述平衡导轨的轨迹为绕所述转动套轴线的闭合型曲线,所述平衡体与所述平衡导轨导向配合,并能够沿着所述平衡导轨的轨迹移动,以使所述平衡轴与所述往复轴相对或相背移动。
在其中一个实施例中,所述平衡体与所述限位体的结构一致,所述平衡导轨沿所述转动套的周向的轨迹呈正弦曲线,所述平衡导轨的波峰与所述往复导轨的波谷相对,所述平衡导轨的波谷与所述往复导轨的波峰相对,所述平衡体与所述限位体沿着所述转动套的轴向相对设置。
上述往复传动组件,由于限位体与往复导轨一者设置于转动套的内壁上,另一者设置于往复轴的外壁上,且由于往复导轨为绕传动轴轴线的闭合型曲线导轨,往复导轨的波峰与波谷沿转动套的轴线间隔设置。往复轴穿设于转动套内,以使限位体与往复导轨导向配合。进而当转动套绕自身轴线转动时,使得限位体在往复导轨的波峰与波谷之间滑动,当限位体定位于往复轴上时,以使限位体带动往复轴沿转动套轴线往复移动;当限位体定位在转动套内壁上时,限位体跟随转动套转动,以通过限位体与往复导轨的配合,使得往复轴沿转动套轴线往复移动的目的。上述往复传动组件不存在偏摆角,也就不存在偏向力摩擦做功的问题;且结构简单,适用范围广,能够用于压缩机、泵体结构等需要往复移动的场合。
一种动力机构,所述动力机构包括如上所述的往复传动组件。
附图说明
构成本申请的一部分的附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
此外,附图并不是1:1的比例绘制,并且各个元件的相对尺寸在附图中仅示例地绘制,而不一定按照真实比例绘制。在附图中:
图1为一实施例中的网复发传动组件的结构示意图;
图2为图1所述的往复传动组件的分解图;
图3为图1所示的往复传动组件在一视角的剖视图;
图4为图3所示的往复传动组件在另一视角的剖视图;
图5为图3中的转动套的分解示意图;
图6为另一实施例中的网复发传动组件的结构示意图;
图7为图6所述的往复传动组件省略壳体的局部分解图;
图8为图6所示的往复传动组件在一视角的剖视图;
图9为图6所示的往复传动组件在另一视角的剖视图。
附图标记说明:
10、往复传动组件;100、转动套;110、定位槽;120、第一套部;122、
限位凸起;130、第二套部;132、配合凹槽;140、动力轴;142、第一拼接轴;144、第二拼接轴;150、第一拼接部;160、第二拼接部;200、往复轴;210、传动轴;220、传动套;300、限位体;400、往复槽;500、输出轴;600、壳体;610、壳本体;620、盖体;630、输入孔;640、输出孔。
具体实施方式
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似改进,因此本实用新型不受下面公开的具体实施例的限制。
参阅图1及图2,实用新型一实施例中的往复传动组件10,至少能够消除偏摆角,消除偏向力摩擦做功,且往复传动组件10的结构简单,适用性好。具 体地,往复传动组件10包括转动套100、往复轴200及限位体300,转动套100绕自身轴线可转动;往复轴200穿设于转动套100内;限位体300定位于往复轴200的外壁与转动套100的内壁两者中的一者上,另一者上设有往复导轨,所述往复导轨的轨迹为绕转动套100轴线的闭合型曲线,且所述往复导轨的波峰与波谷沿转动套100的轴线间隔设置,限位体300与往复导轨导向配合,并能够沿着往复导轨的轨迹移动,以使往复轴200相对于转动套100沿着转动套100轴线方向往复移动。
在本实施例中,限位体300定位于转动套100的内壁上,往复导轨设置于往复轴200的外壁上。
一并参阅图3及图4,由于限位体300与往复导轨一者设置于转动套100的内壁上,另一者设置于往复轴200的外壁上,且由于往复导轨为绕传动轴轴线的闭合型曲线导轨,往复导轨的波峰与波谷沿转动套100的轴线间隔设置。往复轴200穿设于转动套100内,以使限位体300与往复导轨导向配合。进而当转动套100绕自身轴线转动时,使得限位体300在往复导轨的波峰与波谷之间移动。当限位体300定位在转动套100内壁上时,限位体300跟随转动套100转动,以通过限位体300与往复导轨的配合,使得往复轴200沿转动套100轴线往复移动的目的。上述往复传动组件10不存在偏摆角,也就不存在偏向力摩擦做功的问题;且结构简单,适用范围广,能够用于压缩机、泵体结构等需要往复移动的场合。
一实施例中,所述往复导轨的数量为至少两个,各个所述往复导轨沿着转动套100的轴线方向间隔设置,每一所述往复导轨均设置有至少一限位体300。在本实施例中,限位体300定位在转动套100上,则各个限位体300跟随转动套100同步转动。不同往复导轨上的限位体300相对于往复轴200可同步转动。 通过设置多个往复导轨,且每一往复导轨内均设置有至少一个限位体300配合传动,能够提高转动套100输出动力至往复轴200的功率,可以适用于大功率工作状态下。当然,在其他实施例中,往复导轨还可以为一个。
参阅图2至图4,一实施例中,往复导轨沿转动套100的周向的轨迹呈正弦曲线。当转动套100带动限位体300沿往复导轨的轨迹移动时,利用呈正弦曲线轨迹布置的往复导轨,保证限位体300在往复导轨上能够顺滑移动,保证往复轴200往复移动的平稳。
具体地,单个往复导轨沿转动套100的周向的轨迹包括至少两个完整且连续的正弦曲线周期,单个所述往复导轨上设有的限位体300的数量小于或等于所述往复导轨的正弦曲线周期数量,且单个往复导轨上的限位体300围绕转动套100的轴线均匀间隔设置。
例如,在本实施例中,往复导轨的轨迹包括两个正弦曲线,限位体300的数量也为两个,两个限位体300能够同时布置于往复导轨的两个正弦曲线的波谷位置或同时布置在两个正弦曲线的波峰位置,且此时的两个限位体300围绕转动套100的轴线均匀设置。通过均匀布置的限位体300与正弦曲线型的往复导轨的配合,能够进一步提高传动稳定性。
在其他实施例中,单个往复导轨绕转动套100的轴线的轨迹可以包括三个或其他数目个完整且连续的正弦曲线周期,对应的限位体300的数量可以为三个或其他数目个,且每一正弦曲线对应设置一限位体300,以保证往复轴200的稳定往复移动。
参阅图2及图3,一实施例中,往复导轨为往复槽400,往复槽400为绕转动套100轴线的闭合型曲线凹槽,限位体300穿设于往复槽400内并能够在往复槽400内移动。利用往复槽400实现对限位体300限位导向作用,保证限位 体300能够沿着往复槽400的轨迹稳定移动。
具体地,转动套100的内壁上开设有定位槽110;限位体300包括万向球,由于限位体300定位在转动套100上,则万向球的部分可滚动地设置于定位槽110内,另一部分穿设于往复槽400内。由于万向球可滚动,进而使得往复轴200相对于转动套100的往复移动是利用万向球的滚动摩擦实现,而非是往复轴200相对于转动套100的滑动摩擦,进一步保证传动效率。且通过设置定位槽110能够有效定位万向球在转动套100上的位置。
一实施例中,限位体300还包括限位座及多个滚珠,多个所述滚珠设置于所述限位座内,所述万向球部分穿设于所述限位座内并与所述滚珠抵接,所述万向球与所述滚珠均能够相对于所述限位座滚动,所述限位座设置于所述定位槽110内。当万向球在滚动时,利用多个滚珠实现万向球与限位座之间的滚动摩擦,进一步保证万向球滚动的稳定性,且避免了万向球与定位槽110内壁之间的直接接触。
在其他实施例中,限位座还可以省略,多个滚珠直接设置于定位槽110内,万向球穿设于定位槽110内并与滚珠抵接。
在其他实施例中,往复导轨还可以为往复凸起,往复凸起为绕转动套100轴线的闭合型曲线凸起,且曲线凸起的波峰与波谷沿转动套100的轴线间隔设置,限位体300上开设有凹槽,往复凸起穿设于凹槽内。只要能够保证限位体300沿着往复导轨的轨迹移动即可。
一实施例中,往复轴200的外壁直径与转动套100的内壁直径一致。例如往复轴200与转动套100之间可以过盈配合,避免往复轴200内壁与转动套100之间直接接触摩擦。在其他实施例中,往复轴200的外壁直径略大于转动套100的内壁直径,以保证往复轴200外壁与转动套100的内壁之间具有较小间隙。
一并参阅图5,在本实施例中,转动套100包括第一套部120及第二套部130,第二套部130穿设于第一套部120内,并限位于第一套部120上,定位槽110开设于第二套部130的内壁上,第一套部120能够带动第二套部130同步转动。由于第一套部120为转动动力传递部件,通过将定位槽110开设于第二套部130上,以便于保证第一套部120结构的完整性,进而保证转动传递的稳定性。
具体地,第一套部120的内壁上设置有限位凸起122,第二套部130的外壁上设置有配合凹槽132,限位凸起122能够穿设于配合凹槽132内,以保证第二套部130稳定地设置于第一套部120内。进一步地,限位凸起122的数量为至少两个,各个限位凸起122绕第一套部120的轴线均匀间隔设置,配合凹槽132的数量与限位凸起122的数量一致,每一限位凸起122对应穿设于一配合凹槽132内。
一实施例中,往复传动组件10还包括动力源;转动套100的一端设置有动力轴140,所述动力源连接于动力轴140,并通过动力轴140驱动转动套100转动。通过设置动力源便于将转动输出至转动套100,实现转动套100的转动。
在本实施例中,由于转动套100包括第一套部120及第二套部130,则第一套部120的一端设置有动力轴140;通过动力轴140与动力源,便于为第一套部120的转动提供动力。
具体地,第一套部120背向于动力轴140的一端开口,第二套部130及往复轴200由第一套部120的开口端穿设于第一套部120内。通过第一套部120上的开口端方便第二套部130及往复轴200设置于第一套部120内。
参阅图2至图4,一实施例中,往复传动组件10还包括输出轴500,输出轴500由转动套100背向于动力轴140的一侧连接于往复轴200。通过输出轴 500便于将往复轴200的往复移动通过输出轴500输出至其他部件。
一实施例中,往复传动组件10还包括壳体600,往复轴200及转动套100均设置于壳体600内。通过壳体600能够有效保护往复轴200与转动套100,保证往复轴200与转动套100之间传动的稳定性。
具体地,壳体600包括壳本体610及盖体620,壳本体610的一侧开口,往复轴200及转动套100由壳本体610的开口侧设置于壳本体610内,盖体620盖设于壳本体610上。
进一步地,壳体600的一侧壁上开设有输入孔630,相对的另一侧壁上开设有输出孔640,动力源通过输入孔630连接于转动套100的动力轴140,输出轴500穿设于输出孔640内。更进一步地,输入孔630与输出孔640分别开设于壳本体610及盖体620上。
一实施例中,往复传动组件10还包括平衡轴及平衡体,所述平衡轴穿设于所述转动套100内,并位于所述往复轴200的一侧,所述平衡轴的外壁与转动套100的内壁两者中的一者上定位有所述平衡体,另一者上设有与所述往复导轨间隔设置的平衡导轨,所述平衡导轨的轨迹为绕转动套100轴线的闭合型曲线,所述平衡体与所述平衡导轨导向配合,并能够沿着所述平衡导轨的轨迹移动,以使所述平衡轴与所述往复轴200相对或相背移动。当驱动转动套100转动时,平衡体沿着平衡导轨的轨迹移动,限位体300沿着往复导轨的轨迹移动,以使平衡轴与往复轴200沿转动套100的轴线方向相对或相背移动,进而使得平衡轴的加速度产生的力能够与往复轴200的加速度产生的力相互抵消,避免单独设置往复轴200而导致对转动套100产生轴向振动。通过平衡体与平衡轴的配合,能够避免往复轴200及转动套100的轴向振动,提高传动的稳定性。
在本实施例中,所述平衡体与所述限位体300的结构一致,所述平衡导轨 的结构与往复导轨的结构一致。
具体地,所述平衡导轨沿转动套100的周向的轨迹呈正弦曲线,所述平衡导轨的波峰与所述往复导轨的波谷相对,所述平衡导轨的波谷与所述往复导轨的波峰相对,所述平衡体与所述限位体300沿着所述转动套100的轴向相对设置。当限位体300在往复导轨上沿一个方向移动时,以便于使得平衡体500能够在平衡导轨上沿相反方向移动,进而实现往复轴200与平衡轴沿不同方向移动。
一实施例中,所述平衡导轨与所述往复导轨均设置于转动套100的内壁上。限位体300定位于往复轴200的内壁,平衡体定位于平衡轴的内壁上。使得限位体300与平衡体能够同步相对于转动套100相对或相背运动,进一步使得转动套100受到的限位体300与平衡体的力能够相互抵消。
在另一实施例中,所述平衡导轨还可以设置于平衡轴的外壁上,往复导轨设置于往复轴200的外壁上。限位体300与平衡体均定位于转动套100的内壁上,且沿着转动套100的轴线方向间隔设置。
如图6至图8,在本实施例中,限位体300定位于往复轴200的外壁,往复导轨设置于转动套100的内壁上。往复导轨跟随转动套100转动时,实现限位体300跟随往复轴200同步移动的目的。
在本实施例中,与上述实施例中记载的方案的区别在于:
一实施例中,往复导轨的数量为至少两个,各个所述往复导轨沿着转动套100的轴线方向间隔设置,在本实施例中,限位体300定位在往复轴200上,各个限位体300能够跟随往复轴200同步移动。不同往复导轨上的限位体300相对于转动套100可同向移动,能够提高转动套100输出动力至往复轴200的功率。
参阅图7至图9,在本实施例中,定位槽110开设于往复轴200的外壁上。通过定位槽110将限位体300定位于往复轴200上,以实现限位体300与往复轴200的同步移动。
具体地,往复轴200包括传动轴210及传动套220,传动套220套设于并限位于传动轴210上,定位槽110开设于传动套220的外壁上。由于传动轴210输出往复移动,进而通过在传动套220上开设定位槽110,能够保证传动轴210的结构完整,保证动力输出的稳定。
如图7所示,在本实施例中,转动套100的一端设置有动力轴140,动力源连接于所述动力轴140,并通过动力轴140驱动所述转动套100转动。
在本实施例中,转动套100包括第一拼接部150及第二拼接部160,第一拼接部150与第二拼接部160均为半圆柱形结构,第一拼接部150与第二拼接部160相对接以使往复轴200位于第一拼接部150与第二拼接部160之间。通过设置第一拼接部150与所述第二拼接部160拼接,便于设置往复轴200,且便于使得限位体300与往复导轨导向配合。具体地,便于使得限位体300穿设于往复槽400内。
具体地,动力轴140包括第一拼接轴142及第二拼接轴144,第一拼接部150与所述第二拼接部160相对接后,第一拼接轴142与第二拼接轴144对接形成动力轴140。
在其他实施例中,转动套100还可以为一体式结构。
如图2及图7所示,上述往复传动组件10,动力源驱动转动套100转动时,往复轴200沿着转动套100的轴线往复运动,并利用万向球实现往复轴200与转动套100之间的滚动摩擦,且利用均匀布置的至少两个万向球,使得往复轴200受到均匀的往复推力,不会受到偏向力的影响。往复轴200的往复过程只有 沿着转动套100的轴线方向的移动轨迹及推力,可实现双向做功的目的,提高传动效率。
一实施例中,动力机构包括上述任一实施例中往复传动组件10。例如动力机构可以为压缩机,压缩机的活塞可以连接于往复轴200。或者动力机构可以为柱塞泵,柱塞泵的柱塞连接于往复轴200。或者动力机构可以为电锤,电锤的缸体连接于往复轴200。在其他实施例中,动力机构还可以为其他需要往复动力的部件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对 重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

Claims (12)

  1. 一种往复传动组件,其特征在于,所述往复传动组件包括:
    转动套,所述转动套绕自身轴线可转动;
    往复轴,所述往复轴穿设于所述转动套内;及
    限位体,所述限位体定位于所述往复轴的外壁与所述转动套的内壁两者中的一者上,另一者上设有往复导轨,所述往复导轨的轨迹为绕所述转动套轴线的闭合型曲线,且所述往复导轨的波峰与波谷沿所述转动套的轴线间隔设置,所述限位体与所述往复导轨导向配合,并能够沿着所述往复导轨的轨迹移动,以使所述往复轴相对于所述转动套沿着所述转动套轴线方向往复移动。
  2. 根据权利要求1所述的往复传动组件,其特征在于,所述往复导轨的数量为至少两个,各个所述往复导轨沿着所述转动套的轴线方向间隔设置,每一所述往复导轨均设置有至少一所述限位体;若所述限位体定位在所述往复轴上,则各个所述限位体能够跟随所述往复轴同步移动,若所述限位体定位在所述转动套上,则各个所述限位体跟随所述转动套同步转动。
  3. 根据权利要求1所述的往复传动组件,其特征在于,所述往复导轨沿所述转动套的周向的轨迹呈正弦曲线。
  4. 根据权利要求3所述的往复传动组件,其特征在于,单个所述往复导轨沿所述转动套的周向的轨迹包括至少两个完整且连续的正弦曲线周期,单个所述往复导轨上设有的所述限位体的数量小于或等于所述往复导轨的正弦曲线周期数量,且单个所述往复导轨上的所述限位体围绕所述转动套的轴线均匀间隔设置。
  5. 根据权利要求1-4任一项所述的往复传动组件,其特征在于,所述往复导轨为往复槽,所述往复槽的为绕所述转动套轴线的闭合型曲线凹槽,所述限位体穿设于所述往复槽内并能够在所述往复槽内移动。
  6. 根据权利要求5所述的往复传动组件,其特征在于,若所述限位体定位在所述往复轴上,所述往复轴的外壁上开设有定位槽;若所述限位体定位在所述转动套上,所述转动套的内壁上开设有定位槽;
    所述限位体包括万向球,所述万向球的部分可滚动地设置于所述定位槽内,另一部分穿设于所述往复槽内。
  7. 根据权利要求6所述的往复传动组件,其特征在于,所述限位体还包括限位座及多个滚珠,多个所述滚珠设置于所述限位座内,所述万向球部分穿设于所述限位座内并与所述滚珠抵接,所述万向球与所述滚珠均能够相对于所述限位座滚动,所述限位座设置于所述定位槽内。
  8. 根据权利要求6所述的往复传动组件,其特征在于,若所述往复轴的外壁上开设有定位槽,则所述往复轴包括传动轴及传动套,所述传动套套设并限位于所述传动轴上,所述定位槽开设于所述传动套的外壁上;若所述转动套的内壁上开设有定位槽,则所述转动套包括第一套部及第二套部,所述第二套部穿设于所述第一套部内,并限位于所述第一套部上,所述定位槽开设于所述第二套部的内壁上,所述第一套部能够带动所述第二套部同步转动。
  9. 根据权利要求8所述的往复传动组件,其特征在于,所述往复传动组件还包括动力源;
    若所述转动套包括第一套部及第二套部,则所述第一套部的一端设置有动力轴,所述动力源连接于所述动力轴,并通过所述动力轴驱动所述第一套部转动;所述第一套部背向于所述动力轴的一端开口,所述第二套部及所述往复轴由所述第一套部的开口端穿设于所述第一套部内;或者
    所述转动套包括第一拼接部及第二拼接部,所述第一拼接部与所述第二拼接部均为半圆柱形结构,所述第一拼接部与所述第二拼接部相对接以使所述往 复轴位于所述第一拼接部与所述第二拼接部之间;所述转动套的一端设置有动力轴,所述动力源连接于所述动力轴,并通过所述动力轴驱动所述转动套转动。
  10. 根据权利要求1-4任一项所述的往复传动组件,其特征在于,还包括平衡轴及平衡体,所述平衡轴穿设于所述转动套内,并位于所述往复轴的一侧,所述平衡轴的外壁与所述转动套的内壁两者中的一者上定位有所述平衡体,另一者上设有与所述往复导轨间隔设置的平衡导轨,所述平衡导轨的轨迹为绕所述转动套轴线的闭合型曲线,所述平衡体与所述平衡导轨导向配合,并能够沿着所述平衡导轨的轨迹移动,以使所述平衡轴与所述往复轴相对或相背移动。
  11. 根据权利要求10所述的往复传动组件,其特征在于,所述平衡体与所述限位体的结构一致,所述平衡导轨沿所述转动套的周向的轨迹呈正弦曲线,所述平衡导轨的波峰与所述往复导轨的波谷相对,所述平衡导轨的波谷与所述往复导轨的波峰相对,所述平衡体与所述限位体沿着所述转动套的轴向相对设置。
  12. 一种动力机构,其特征在于,所述动力机构包括如权利要求1-11任一项所述的往复传动组件。
PCT/CN2023/106106 2022-07-06 2023-07-06 往复传动组件及动力机构 WO2024008153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221727532.1U CN217814822U (zh) 2022-07-06 2022-07-06 往复传动组件及动力机构
CN202221727532.1 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024008153A1 true WO2024008153A1 (zh) 2024-01-11

Family

ID=83962036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106106 WO2024008153A1 (zh) 2022-07-06 2023-07-06 往复传动组件及动力机构

Country Status (2)

Country Link
CN (1) CN217814822U (zh)
WO (1) WO2024008153A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217814822U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动组件及动力机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254800A (zh) * 1998-11-21 2000-05-31 张寿龄 柱塞式旋转往复机构
WO2012062494A1 (de) * 2010-09-09 2012-05-18 Parker Hannifin Gmbh Elektromechanischer linearantrieb mit nachschmiereinrichtung
CN104019202A (zh) * 2013-12-06 2014-09-03 崔侃 直线-旋转运动驱动机构
CN108488340A (zh) * 2018-06-13 2018-09-04 胡祖军 往复机构
CN111566314A (zh) * 2018-01-03 2020-08-21 E·乔治齐基 用于将往复运动转换为旋转运动或进行反向转换的机构及其应用
CN217814822U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动组件及动力机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254800A (zh) * 1998-11-21 2000-05-31 张寿龄 柱塞式旋转往复机构
WO2012062494A1 (de) * 2010-09-09 2012-05-18 Parker Hannifin Gmbh Elektromechanischer linearantrieb mit nachschmiereinrichtung
CN104019202A (zh) * 2013-12-06 2014-09-03 崔侃 直线-旋转运动驱动机构
CN111566314A (zh) * 2018-01-03 2020-08-21 E·乔治齐基 用于将往复运动转换为旋转运动或进行反向转换的机构及其应用
CN108488340A (zh) * 2018-06-13 2018-09-04 胡祖军 往复机构
CN217814822U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动组件及动力机构

Also Published As

Publication number Publication date
CN217814822U (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2024008149A1 (zh) 往复传动机构及动力设备
WO2024008153A1 (zh) 往复传动组件及动力机构
WO2024008144A1 (zh) 电锤
WO2024008137A1 (zh) 用泵设备及柱塞泵
WO2022228466A1 (zh) 传动机构
CN109209819B (zh) 一种活塞传动机构及二维压缩机
WO2024008146A1 (zh) 往复传动机构及动力设备
WO2024008133A1 (zh) 用泵设备
WO2024008135A1 (zh) 电锤
WO2024008143A1 (zh) 动力设备
WO2024093340A1 (zh) 动力设备
WO2024008136A1 (zh) 动力设备
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2023103874A1 (zh) 流体机械、换热设备、流体机械的运行方法
CN109713842A (zh) 一种外转子螺旋电机及传动机构
CN209358369U (zh) 一种外转子螺旋电机及传动机构
CN111263048B (zh) 传动组件、摄像头模组及电子设备
CN110439810B (zh) 一种单螺杆风机
WO2023226414A1 (zh) 流体机械和换热设备
WO2023226409A1 (zh) 流体机械和换热设备
WO2023103876A1 (zh) 流体机械和换热设备
WO2023226411A1 (zh) 流体机械和换热设备
WO2023226413A1 (zh) 流体机械和换热设备
WO2023103871A1 (zh) 流体机械和换热设备
WO2023226415A1 (zh) 流体机械和换热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834920

Country of ref document: EP

Kind code of ref document: A1