WO2022228466A1 - 传动机构 - Google Patents

传动机构 Download PDF

Info

Publication number
WO2022228466A1
WO2022228466A1 PCT/CN2022/089555 CN2022089555W WO2022228466A1 WO 2022228466 A1 WO2022228466 A1 WO 2022228466A1 CN 2022089555 W CN2022089555 W CN 2022089555W WO 2022228466 A1 WO2022228466 A1 WO 2022228466A1
Authority
WO
WIPO (PCT)
Prior art keywords
reciprocating
shaft
grooves
groove
transmission mechanism
Prior art date
Application number
PCT/CN2022/089555
Other languages
English (en)
French (fr)
Inventor
傅珂珂
李进
Original Assignee
永康市光逸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永康市光逸科技有限公司 filed Critical 永康市光逸科技有限公司
Publication of WO2022228466A1 publication Critical patent/WO2022228466A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • the present application relates to the technical field of mechanical transmission, and in particular, to a transmission mechanism suitable for converting rotary motion into linear reciprocating motion.
  • the device realizes the conversion of the rotation of the rotating shaft into the reciprocating casing by setting a guide groove on the rotating shaft, and setting a pin that is slidably connected to the guide groove and fixed in the reciprocating casing. linear reciprocating motion.
  • a transmission mechanism comprising:
  • a reciprocating shaft which is provided with a reciprocating groove
  • a reciprocating body located at one end of the reciprocating shaft
  • the transmission mechanism also includes:
  • a ball configured to be confined between the reciprocating body and the reciprocating groove, and rollingly connected to the reciprocating body and the reciprocating groove;
  • the reciprocating groove surrounds the axis of the reciprocating shaft and has a closed path, so that the reciprocating body has an axial displacement relative to the reciprocating shaft during rotation.
  • the ball is connected with the reciprocating groove by rolling, and the rolling friction is much smaller than the sliding friction, which reduces the wear of the ball and the reciprocating groove.
  • the reciprocating body is slidably connected to the outer sidewall of the reciprocating shaft;
  • the reciprocating body and the reciprocating shaft are spaced apart from each other.
  • the transmission mechanism further includes a ball socket
  • the ball holder is fixed on the reciprocating body through a circlip or a screw, and the ball body is rollingly connected between the ball holder and the reciprocating groove.
  • the reciprocating shaft has a first plane of symmetry passing through its axis
  • the reciprocating groove includes a plurality of reciprocating grooves, each of the reciprocating grooves has a second symmetry plane along its longitudinal extension direction, the second symmetry plane is inclined relative to the first symmetry plane, and each of the reciprocating grooves is respectively connected to the A rolling connection of the spheres.
  • one of the reciprocating grooves coincides with the other reciprocating groove after being rotated around the axis of the reciprocating shaft by a preset angle;
  • the plane where the center line of the plurality of spheres is located is perpendicular to the axis of the reciprocating shaft;
  • the plurality of reciprocating grooves are distributed in parallel and spaced apart, and the center line of the plurality of spheres is parallel to the axis of the reciprocating shaft.
  • the plurality of reciprocating grooves are divided into two groups, and each group includes a plurality of the reciprocating grooves;
  • a group of the reciprocating grooves is arranged at one end of the reciprocating shaft, and in the group of the reciprocating grooves, one of the reciprocating grooves is rotated around the axis of the reciprocating shaft by a preset angle, and then coincides with the other reciprocating groove; corresponding to The plane where the center connecting lines of a plurality of the spheres are located is perpendicular to the axis of the reciprocating shaft;
  • Another group of the reciprocating grooves is arranged at the other end of the reciprocating shaft.
  • a plurality of the reciprocating grooves are distributed in parallel and spaced apart, and the center lines of the corresponding plurality of the spheres are connected to the reciprocating grooves.
  • the axes of the shafts are parallel.
  • the number of the reciprocating groove is one, and the trajectory of the reciprocating groove is sinusoidal;
  • the trajectory of the reciprocating groove includes a plurality of complete sinusoidal periods, and the number of sinusoidal periods constituting the reciprocating groove is equal to the number of the spheres;
  • the plane where the center lines of the plurality of spheres are located is perpendicular to the axis of the reciprocating shaft.
  • it also includes a rear connection, a front connection, a sliding part and a linear guide structure;
  • the reciprocating shaft is rotatably connected to the rear connection, one end of the sliding portion is fixed on the end of the reciprocating body away from the rear connection, and the other end of the sliding portion is slidably connected to the front connection;
  • the linear guide structure includes a guide column and a sliding sleeve; the axis of the guide column is parallel to the axis of the reciprocating shaft, one end of the guide column is inserted into the rear connection, and the other end of the guide column is inserted into the rear connection.
  • the sliding sleeve is fixed on the outer peripheral side of the reciprocating body, and the sliding sleeve is sleeved on the guide column and slidably connected with the guide column.
  • the sliding portion is configured to be cylindrical, and the axis of the sliding portion is parallel to the axis of the reciprocating shaft and does not coincide with each other;
  • the sliding part includes a main body and a boss provided on the main body, and the boss is extended along the longitudinal direction of the sliding part.
  • it includes an inner sliding sleeve, the inner sliding sleeve is embedded on the inner side wall of the outer part of the reciprocating body sleeved on the reciprocating shaft, and the inner sliding sleeve is connected to the outer side of the reciprocating shaft. Sliding connection between walls.
  • 1 is a cross-sectional view of a transmission mechanism in an embodiment of the application
  • Fig. 2 is the top view of the reciprocating shaft in the embodiment shown in Fig. 1;
  • Fig. 3 is the left side view of the reciprocating shaft in the embodiment shown in Fig. 1;
  • FIG. 4 is a top view of a reciprocating shaft in another embodiment of the application.
  • FIG. 5 is a top view of the reciprocating shaft in yet another embodiment of the application.
  • Fig. 6 is the left side view of the reciprocating shaft in the embodiment shown in Fig. 5;
  • FIG. 7 is a top view of the reciprocating shaft in an embodiment of the application.
  • FIG. 8 is a top view of a reciprocating shaft in another embodiment of the application.
  • FIG. 9 is a top view of a reciprocating shaft in yet another embodiment of the application.
  • FIG. 10 is a top view of a transmission mechanism in an embodiment of the application.
  • Figure 11 is a left side view of the transmission mechanism in the embodiment shown in Figure 10;
  • FIG. 12 is a left side view of a transmission mechanism in an embodiment of the application.
  • Figure 13 is a top view of the transmission mechanism in the embodiment shown in Figure 12;
  • Figure 14 shows a plan view of the reciprocating body in an embodiment of the present application
  • FIG. 15 shows a cross-sectional view of a sliding portion in another embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the mechanisms for realizing the above-mentioned motion conversion mainly include crank-link mechanism, rack-and-pinion mechanism, lead screw and cam mechanism.
  • the mechanisms for realizing the above-mentioned motion conversion mainly include crank-link mechanism, rack-and-pinion mechanism, lead screw and cam mechanism.
  • a device for converting rotary motion into linear reciprocating motion has appeared.
  • the device is provided with a guide groove on the rotating shaft, a reciprocating shell is sleeved on one end of the rotating shaft and a pin is fixed in the reciprocating shell.
  • the end face of the pin slides in the guide groove and drives the reciprocating shell to move in the axial direction, so as to convert the rotary motion of the rotating shaft into the linear reciprocating motion of the reciprocating shell.
  • the above-mentioned rotary motion-to-linear reciprocating motion device works under high power and easily causes workpiece wear.
  • the inventors of the present application have found that the reason for the above problem is that the friction force of the contact surface has an important influence on fatigue wear. The tensile stress caused by the force will accelerate the crack propagation, so the sliding friction between the pin and the guide groove in the above device greatly increases the surface fatigue wear of the two.
  • the size of the contact stress also has a great influence on the fatigue wear.
  • the force of the rotating shaft on the reciprocating shell acts on the end face of a single pin.
  • the force on the end face of the pin increases, accelerating the wear.
  • Fig. 1 shows a cross-sectional view of a transmission mechanism in an embodiment of the present application
  • Fig. 2 shows a top view of the reciprocating shaft in the embodiment shown in Fig. 1
  • Fig. 3 shows a left side view of the reciprocating shaft in the embodiment shown in Fig. 1 .
  • the drawings only show structures related to the present application.
  • the transmission mechanism in an embodiment of the present application includes a rear connection 1 , a reciprocating shaft 3 , a ball 4 , a ball holder 5 , a reciprocating body 6 , a sliding portion 7 and a front connection 9 .
  • the reciprocating shaft 3 is rotatably connected to the rear connection 1 .
  • a through hole is opened at the center of the rear connection 1, and the reciprocating shaft 3 is penetrated through the through hole, so as to realize the rotational connection between the reciprocating shaft 3 and the rear connection.
  • the through hole is a circular hole, and the cross-sectional shape of the reciprocating shaft 3 is adapted to the shape and size of the circular hole, and is rotatably connected in the circular hole.
  • the rotational connection between the rear bearing 2 and the rear connection 1 can also be realized, which is not limited herein.
  • the reciprocating body 6 is arranged at one end of the reciprocating shaft 3 away from the rear connection 1 , and is slidably connected with the outer side wall of the reciprocating shaft 3 .
  • the inner sliding sleeve 10 is embedded on the inner side wall of the reciprocating body 6, and forms a sliding connection with the outer side wall of the reciprocating shaft 3. In this way, the inner sliding sleeve can be replaced to prevent the reciprocating body 6 and the reciprocating shaft.
  • Abrasion causes wear failure of the reciprocating body, which improves the reliability of the transmission mechanism.
  • the inner sliding sleeve 10 can be a standard sliding rolling element that can support reciprocating motion, such as a wear-resistant steel sleeve, a copper sleeve, a composite bearing, an oil-free bushing, a linear bearing, etc. Frictional resistance between shafts 3.
  • One end of the sliding part 7 is fixed on the end of the reciprocating body 6 away from the rear connection 1 , and the other end of the sliding part 7 is slidably connected to the front connection 9 .
  • the sliding part 7 realizes the sliding connection with the front connection 9 through the front bearing 8 to reduce frictional resistance and surface wear.
  • the reciprocating shaft 3 is provided with a reciprocating groove 12
  • the ball holder 5 is fixed on the reciprocating body 6
  • the ball body 4 is configured to be limited between the ball holder 5 and the reciprocating groove 12 , and rollingly connected to the ball holder 5 and the reciprocating groove 12 .
  • the ball holder 5 can be fixed on the reciprocating body 6 through the retaining spring 11 , as shown in FIG. 1 .
  • the ball holder 5 can also be fixed on the reciprocating body 6 by screws or collars.
  • the reciprocating groove 12 surrounds the axis of the reciprocating shaft 3 and has a closed path, so that the reciprocating body 6 has an axial displacement relative to the reciprocating shaft 3 during rotation.
  • the reciprocating shaft 3 has a first symmetry plane passing through its axis.
  • the reciprocating groove 12 has a second symmetry plane along its longitudinal extension direction, and the second symmetry plane is opposite to the first symmetry plane. Symmetry plane tilt setting. In this way, since the ball 4 is limited between the ball holder 5 and the reciprocating groove 12, when the reciprocating shaft 3 rotates, the ball 4 moves relative to the reciprocating shaft 3 along the reciprocating groove 12, and the relative movement makes the ball 4 have an axial direction.
  • the reciprocating body 6 protrudes away from the rear connection 1.
  • the reciprocating body 6 extends. 6 is retracted in the direction of the rear connection 1, so through the continuous unidirectional rotation of the reciprocating shaft 3, the reciprocating body 6 can continuously output linear reciprocating motion.
  • the reciprocating grooves 12 include a plurality of reciprocating grooves, and each of the reciprocating grooves is respectively connected with a ball 4 in rolling connection. Therefore, the force of the reciprocating shaft 3 acts on the reciprocating body 6 through the plurality of spheres 4, so that the force on a single sphere is small, that is, the contact stress on each sphere, the ball holder and the corresponding reciprocating groove is small, which reduces wear and tear .
  • Fig. 4 shows a top view of the reciprocating shaft in an embodiment of the present application
  • Fig. 5 shows a top view of the reciprocating shaft in another embodiment of the present application
  • Fig. 6 shows a left side view of the reciprocating shaft shown in Fig. 5
  • Fig. 7 A top view of the reciprocating shaft in yet another embodiment of the present application is shown.
  • the reciprocating grooves 12 include a plurality of reciprocating grooves, one reciprocating groove is rotated around the axis of the reciprocating shaft 3 by a preset angle, and then overlaps with another reciprocating groove, and the centers of the plurality of spheres 4 are connected.
  • the plane is perpendicular to the axis of the reciprocating shaft 3 .
  • the above preset angle is inversely proportional to the number of reciprocating grooves. For example, when the reciprocating groove 12 includes two reciprocating grooves, as shown in FIG. 2 and FIG. 3 , one of the reciprocating grooves rotates around the axis of the reciprocating shaft 3 . After 180°, it coincides with another reciprocating groove; when the reciprocating groove 12 includes four reciprocating grooves, as shown in FIG. , and so on.
  • the centers of the plurality of spheres 4 are in the same plane, and the plane is parallel to the axis of the reciprocating shaft 3, so when the reciprocating shaft 3 rotates, the displacements of the plurality of spheres 4 along the axis of the reciprocating shaft 3 are always the same, and the reciprocation is realized.
  • the reciprocating shaft 3 can be provided with a plurality of ventilation and oil-passing grooves 13 parallel to its own axis, and the friction between the ball 4 and the reciprocating groove 12 can be reduced by gas or liquid lubrication, and the friction between the ball 5 and the reciprocating groove can be further reduced. 12 wear.
  • the plurality of reciprocating grooves 12 are distributed in parallel and spaced apart, and the center line of the plurality of spheres 4 is parallel to the axis of the reciprocating shaft 3 .
  • the reciprocating groove 12 may include two reciprocating grooves distributed in parallel and spaced apart. As shown in FIG. 5 and FIG. 6 , the center line of the two spheres 4 is parallel to the axis, and jointly carries the reciprocating body 6 for axial reciprocating motion. force.
  • the reciprocating grooves 12 are divided into two groups, and each group includes a plurality of reciprocating grooves.
  • a set of reciprocating grooves 12 is provided at one end of the reciprocating shaft 3.
  • one reciprocating groove is rotated around the axis of the reciprocating shaft 3 by a preset angle, and then overlaps with the other reciprocating groove, corresponding to The plane where the center lines of the plurality of spheres 4 are located is perpendicular to the axis of the reciprocating shaft 3 .
  • Another set of reciprocating grooves 12 is disposed at the other end of the reciprocating shaft 3 .
  • the reciprocating grooves 12 In this set of reciprocating grooves 12 , a plurality of reciprocating grooves are distributed in parallel and spaced apart, and the center lines of the corresponding plurality of spheres 4 are parallel to the axis of the reciprocating shaft 3 .
  • the reciprocating grooves 12 can include a larger number, correspondingly, including more spheres 4 to jointly bear the force of the reciprocating body 6, so that the transmission mechanism can be more work under high power.
  • Fig. 8 shows a top view of the reciprocating shaft in an embodiment of the present application
  • Fig. 9 shows a top view of the reciprocating shaft in another embodiment of the present application.
  • the trajectory of the reciprocating groove 12 includes a plurality of complete sinusoidal periods, and the number of sinusoidal periods constituting the reciprocating groove 12 is equal to that of a sphere.
  • the number of 4; and the plane where the center line of the plurality of spheres 4 is located is perpendicular to the axis of the reciprocating shaft 3.
  • the trajectory of the reciprocating groove 12 includes two complete sine cycles, and the sphere 4 includes two.
  • the trajectory of the reciprocating groove 12 includes four complete sinusoidal cycles, and the sphere 4 includes four.
  • FIG. 10 shows a top view of the transmission mechanism in an embodiment of the present application
  • FIG. 11 shows a left side view of the transmission mechanism in the embodiment shown in FIG. 10 .
  • the reciprocating body 6 is disposed at one end of the reciprocating shaft 3 and is spaced apart from the reciprocating shaft 3 .
  • the spheres 4 include two and are symmetrical about the axis of the reciprocating shaft 3 .
  • the reciprocating body 6 is configured as a U-shaped structure, the reciprocating shaft 3 is located in the open end of the U-shaped structure, and the two arms of the U-shaped structure are respectively provided with a hemispherical shape on the plane close to the reciprocating shaft 3.
  • a groove is formed so that the ball 4 is confined between the reciprocating body 6 and the reciprocating groove 12 and is connected to the reciprocating body 6 and the reciprocating groove 12 in a rolling manner.
  • FIG. 12 shows a left side view of the transmission mechanism in an embodiment of the present application
  • FIG. 13 shows a top view of the transmission mechanism in the embodiment shown in FIG. 12 .
  • the transmission mechanism in an embodiment of the present application further includes a linear guide structure
  • the linear guide structure includes a guide column 14 and a sliding sleeve 15 .
  • the axis of the guide column 14 is parallel to the axis of the reciprocating shaft 3 , one end of the guide column 14 is inserted into the rear connection 1 , and the other end of the guide column 14 is inserted into the front connection 9 .
  • the sliding sleeve 15 is fixed on the outer peripheral side of the reciprocating body 6 , and the sliding sleeve 15 is sleeved on the guide column 14 and is slidably connected with the guide column 14 .
  • the linear guide structure includes a first guide column 14a, a second guide column 14b, a first sliding sleeve 15a and a second sliding sleeve 15b. Further, the first guide column 14a and the second guide column 14b are symmetrically arranged with respect to the reciprocating axis 3, the first sliding sleeve 15a is sleeved on the first guide column 14a, and the second sliding sleeve 15b is sleeved on the second guide column 15b .
  • the transmission mechanism has higher stability.
  • Fig. 14 shows a plan view of a reciprocating body in an embodiment of the present application
  • Fig. 15 shows a cross-sectional view of a sliding portion in another embodiment of the present application.
  • the sliding portion 7 is configured in a cylindrical shape, and the axis of the sliding portion 7 is parallel to the axis of the reciprocating shaft 3 and does not coincide with each other.
  • the cross section of the sliding portion 7 is shown in FIG. 13 .
  • the sliding portion 7 may be configured as a rectangular parallelepiped or any other structure that can prevent the reciprocating body 6 from deflecting, which is not limited herein.
  • the sliding portion 7 has a linear guiding function, so that the reciprocating body 6 is prevented from being deflected during movement, so that the transmission mechanism can improve the stability, and at the same time, the volume is small and the structure is simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

传动机构,往复轴(3)上设置有往复槽(12),往复体(6)设于往复轴一端,球体(4)被配置为限位于往复体和往复槽之间,且滚动连接于往复体和往复槽。其中,往复槽环绕往复轴的轴线且具有闭合路径,以使往复体相对往复轴在转动过程中具有沿轴向的位移。该传动机构,通过球体与往复槽滚动连接,而滚动摩擦远小于滑动摩擦,减少了球体和往复槽的磨损。

Description

传动机构 技术领域
本申请涉及机械传动技术领域,特别是涉及一种适用于将旋转运动转化为直线往复运动的传动机构。
背景技术
在机械领域常常需要将旋转运动转换为直线往复运动。现有技术中存在一种实现上述运动转换的装置,该装置通过在转轴上设置导向槽,并设置与导向槽滑动连接且固定在往复壳内的柱销,实现将转轴的转动转换为往复壳的直线往复运动。
然而,现有技术中,当转轴功率较大时,工件磨损较大。
实用新型内容
基于此,有必要针对转轴处于大功率下工件磨损过大的问题,提供一种适用于不同功率并减少磨损的传动机构。
根据本申请的一个方面,提供一种传动机构,包括:
往复轴,所述往复轴上设置有往复槽;
往复体,设于所述往复轴一端;
所述传动机构还包括:
球体,被配置为限位于所述往复体和所述往复槽之间,且滚动连接于所述往复体和所述往复槽;及
其中,所述往复槽环绕所述往复轴的轴线且具有闭合路径,以使所述往复体相对所述往复轴在转动过程中具有沿轴向的位移。
上述一种传动机构,通过球体与往复槽滚动连接,而滚动摩擦远小于滑动摩擦,减少了球体和往复槽的磨损。
在其中一实施例中,所述往复体与所述往复轴的外侧壁滑动连接;或者
所述往复体与所述往复轴之间彼此间隔设置。
在其中一实施例中,所述传动机构还包括球托;
所述球托通过卡簧或螺丝固定在所述往复体上,所述球体滚动连接于所述球托和所述往复槽之间。
在其中一实施例中,所述往复轴具有经过其轴线的第一对称面;
所述往复槽包括多个,每一所述往复槽沿其纵长延伸方向具有第二对称面,所述第二对称面相对所述第一对称面倾斜设置,每一所述往复槽分别与一个所述球体滚动连接。
在其中一实施例中,一个所述往复槽围绕所述往复轴的轴线旋转预设角度后,与另一个往复槽相重合;
所述多个球体的中心连线所在平面与所述往复轴的轴线相垂直;或
所述多个往复槽平行间隔分布,所述多个球体的中心连线与所述往复轴的轴线平行。
在其中一实施例中,所述多个往复槽分为两组,每一组包括多个所述往复槽;
一组所述往复槽设置于所述往复轴的一端,该组所述往复槽中,一个所述往复槽围绕所述往复轴的轴线旋转预设角度后,与另一个往复槽相重合;对应的多个所述球体的中心连线所在平面与所述往复轴的轴线相垂直;
另一组所述往复槽设置于所述往复轴的另一端,该组所述往复槽中,多个所述往复槽平行间隔分布,对应的多个所述球体的中心连线与所述往复轴的轴线平行。
在其中一实施例中,所述往复槽为一个,且所述往复槽的轨迹呈正弦曲线;
所述往复槽的轨迹包括多个完整的正弦曲线周期,构成所述往复槽的正弦曲线周期数量等于所述球体的数量;
所述多个球体的中心连线所在平面与所述往复轴的轴线相垂直。
在其中一实施例中,还包括后连接、前连接、滑动部和直线导向结构;
所述往复轴转动连接于所述后连接,所述滑动部的一端固定在所述往复体远离所述后连接的一端,所述滑动部的另一端滑动连接于所述前连接;
所述直线导向结构包括导向柱和滑套;所述导向柱的轴线与所述往复轴的轴线平行,所述导向柱的一端插接在所述后连接上,所述导向柱的另一端插接在所述前连接上,所述滑套固定在所述往复体的外周侧,所述滑套套设在所述导向柱上并与所述导向柱滑动连接。
在其中一实施例中,所述滑动部被构造为呈圆柱状,所述滑动部的轴线与所述往复轴的轴线平行且互不重合;或
所述滑动部包括主体和设置在所述主体上的凸台,且所述凸台沿所述滑动部的纵长方向延伸设置。
在其中一实施例中,包括内滑套,所述内滑套嵌设在所述往复体套设在所述往复轴外部分的内侧壁上,所述内滑套与所述往复轴的外侧壁之间滑动连接。
附图说明
图1为本申请一实施例中的传动机构的剖视图;
图2为图1所示实施例中往复轴的俯视图;
图3为图1所示实施例中往复轴的左视图;
图4为本申请另一实施例中往复轴的俯视图;
图5为本申请又一实施例中往复轴的俯视图;
图6为图5所示实施例中往复轴的左视图;
图7为本申请一实施例中往复轴的俯视图;
图8为本申请另一实施例中往复轴的俯视图;
图9为本申请又一实施例中往复轴的俯视图;
图10为本申请一实施例中传动机构的俯视图;
图11为图10所示实施例中传动机构的左视图;
图12为本申请一实施例中传动机构的左视图;
图13为图12所示实施例中传动机构的俯视图;
图14示出了本申请一实施例中往复体的平面图;
图15示出了本申请另一实施例中滑动部的截面图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
目前,将旋转运动转换为直线往复运动的机构有多种,现有设计中,实现上述运动转换的机构主要包括曲柄连杆机构、齿轮齿条机构、丝杠及凸轮机构等,这类机构主要存在结构复杂且稳定性差的问题。为解决上述问题,出现了一种将旋转运动转换为直线往复运动的装置,该装置在转轴上设置导向槽,将往复壳套设在转轴一端并在往复壳内固定柱销,转轴转动时,柱销的端面在导向槽内滑动并带动往复壳沿轴向移动,实现将转轴的旋转运动转换为往复壳的直线往复运动。
但是,上述旋转运动转直线往复运动的装置在大功率下工作容易导致工件磨损。本申请的发明人研究发现,出现上述问题的原因在于,接触表面的摩擦力对疲劳磨损有重要影响,若摩擦力的作用使最大切应力趋于表面,增加了裂纹产生的可能性,且摩擦力所引起的拉应力会促使裂纹扩展加速,所以,上述装置中柱销与导向槽之间的滑动摩擦使两者的表面疲劳磨损大大增加。
另一方面,接触应力的大小对疲劳磨损也有较大的影响,由于上述装置中,转轴对往复壳的作用力作用在单个柱销的端面,当功率增加时柱销的端面受力增加,加快磨损。
因此,有必要提供一种适用于不同功率且能够减少磨损的传动机构。
图1示出了本申请一实施例中传动机构的剖视图;图2示出了图1所示实施例中往复轴的俯视图;图3示出了图1所示实施例中往复轴的左视图。为便于描述和理解,图示仅示出了与本申请相关的结构。
参阅附图1-图3,本申请一实施例中的传动机构,包括后连接1、往复轴3、球体4、球托5、往复体6、滑动部7和前连接9。
往复轴3转动连接于后连接1。具体地,在后连接1的中心处开设有通孔,往复轴3穿设于该通孔,以实现往复轴3与后连接的转动连接。具体到一些实施例中,该通孔为圆孔,往复轴3的截面形状与该圆孔的形状、大小适配,并转动连接于圆孔内。另一些实施例中,亦可通过后轴承2实现其与后连接1的转动连接,在此不做限定。
往复体6设于往复轴3远离后连接1的一端,并与往复轴3的外侧壁滑动连接。具体地,内滑套10嵌设在往复体6的内侧壁上,并与往复轴3的外侧壁之间形成滑动连接,如此,可以通过更换内滑套而防止由于往复体6余往复轴的磨损造成往复体的磨损失效,提高了该传动机构的可靠性。具体到一些实施例中,内滑套10可以是耐磨钢套、铜套、复合轴承、无油衬套以及直线轴承等能支持往复运动的滑动滚动标准件,从而减小往复体6与往复轴3之间的摩擦阻力。
滑动部7的一端固定在往复体6远离后连接1的一端,滑动部7的另一端滑动连接于前连接9。作为一种优选的实施方式,滑动部7通过前轴承8实现其与前连接9的滑动连接, 以减少摩擦阻力和表面磨损。
往复轴3上设置有往复槽12,球托5固定在往复体6上,球体4被配置为限位于球托5和往复槽12之间,且滚动连接于球托5和往复槽12。具体到一些实施例中,球托5可以通过卡簧11固定在往复体6上,如图1所示。具体到另一些实施例中,球托5亦可通过螺丝或套环固定在所述往复体6上。
往复槽12环绕往复轴3的轴线且具有闭合路径,以使往复体6相对往复轴3在转动过程中具有沿轴向的位移。一些实施例中,往复轴3具有经过其轴线的第一对称面,如图2所示,往复槽12沿其纵长延伸方向具有第二对称面,所述第二对称面相对所述第一对称面倾斜设置。这样,由于球体4被限位于球托5和往复槽12之间,当往复轴3转动时,球体4相对于往复轴3作沿着往复槽12的运动,该相对运动使球体4具有轴向的位移,从而带动球托5及往复体6沿着往复轴的轴线运动。示例地,当球体4从往复槽12的最低点向最高点移动时,往复体6向远离后连接1的方向伸出,当球体4从往复槽12的最高点向最低点移动时,往复体6向后连接1的方向缩回,于是通过往复轴3的持续单向转动,实现往复体6持续输出直线往复运动。
可以理解,球体4与球托5和往复槽12之间均为滚动摩擦,而滚动摩擦远小于滑动摩擦,因此上述工件接触表面的摩擦力较小,从而减缓了工件表面疲劳磨损的形成。
本申请的一些实施例中,往复槽12包括多个,且每一往复槽分别与一个球体4滚动连接。因此,往复轴3的作用力通过多个球体4作用于往复体6,使单个球体受到的作用力较小,即每一球体、球托及对应往复槽受到的接触应力较小,使磨损减少。当传动机构在大功率下工作时,可以采用数量较多的往复槽,当传动机构在小功率下工作时,可以采用数量较少的往复槽,从而使在不同功率下,单个球体4的受力均能保持在较小的范围内,进而减少磨损。
图4示出了本申请一实施例中往复轴的俯视图;图5示出了本申请另一实施例中往复轴的俯视图;图6示出了图5所示往复轴的左视图;图7示出了本申请又一实施例中往复轴的俯视图。
参阅图2-图4,一些实施例中,往复槽12包括多个,一个往复槽围绕往复轴3的轴线旋转预设角度后,与另一个往复槽重合,且多个球体4的中心连线所在平面与往复轴3的轴线相垂直。可以理解的是,上述预设角度与往复槽数量成反比关系,例如,当往复槽12包括两个往复槽时,如图2和图3所示,其中一个往复槽围绕往复轴3的轴线旋转180°后,与另一往复槽重合;当往复槽12包括四个往复槽时,如图4所示,其中任意一个往复槽围绕往复轴3的轴线旋转90°后,与另一往复槽重合,以此类推。
此外,多个球体4的中心均处于同一平面,且该平面与往复轴3的轴线平行,所以当往复轴3转动时,多个球体4的沿往复轴3轴线方向的位移始终相同,实现往复体6的轴向往复运动。在优选的实施方式中,往复轴3上可设置多个与其自身轴线平行的通气通油槽13,通过气体或液体润滑降低球体4与往复槽12之间的摩擦力,进一步减少球体5与往复槽12的磨损。
参阅图5,另一些实施例中,多个往复槽12平行间隔分布,多个球体4的中心连线与往复轴3的轴线平行。具体地,往复槽12可以包括两个平行间隔分布的往复槽,如图5和图6所示,两个球体4的中心连线与轴线平行,共同承载使往复体6作轴向往复运动的力。
可以理解,往复槽的排布还可以为其他形式,例如,又一些实施例中,往复槽12分为两组,每一组包括多个往复槽。如图7所示,一组往复槽12设置于往复轴3的一端,该组往复槽12中,一个往复槽围绕往复轴3的轴线旋转预设角度后,与另一个往复槽相重合,对应的多个球体4的中心连线所在平面与往复轴3的轴线相垂直。另一组往复槽12设置于往复轴3的另一端,该组往复槽12中,多个往复槽平行间隔分布,对应的多个球体4的中心连线与往复轴3的轴线平行。通过设置在往复轴3的不同部分的两组往复槽12,使往复槽12能包括更多数量,对应地,包括更多个球体4共同承载往复体6的受力,使传动机构可以在更大的 功率下工作。
图8示出了本申请一实施例中往复轴的俯视图;图9示出了本申请另一实施例中往复轴的俯视图。
参阅图8及图9,一些实施例中,往复槽12为一个,且其轨迹呈正弦曲线,往复槽12的轨迹包括多个完整的正弦曲线周期,构成往复槽12的正弦曲线周期数量等于球体4的数量;且多个球体4的中心连线所在平面与往复轴3的轴线相垂直。在具体的实施方式中,如图8所示,往复槽12的轨迹包括两个完整的正弦周期,球体4包括两个,这样,在往复轴3单向转动的过程中,当往复体6位于其往复运动轨迹中最靠近后连接1的位置时,两个球体均处于正弦曲线的最低点,当往复体6位于最靠近前连接9的位置时,两个球体均处于正弦曲线的最高点。在另一实施方式中,如图9所示,往复槽12的轨迹包括四个完整的正弦曲线周期,球体4包括四个。
图10示出了本申请一实施例中传动机构的俯视图,图11示出了图10所示实施例中传动机构的左视图。
参阅图10及图11,本申请的一些实施例中,往复体6设于往复轴3的一端并与往复轴3之间彼此间隔设置。具体地,球体4包括两个且关于往复轴3的轴线对称。进一步地,往复体6被构造为呈U形结构,往复轴3位于所述U形结构的开口端内,所述U形结构的两臂在靠近往复轴3的平面上分别设置有一个半球形凹槽,以使球体4被限位于往复体6和往复槽12之间,并滚动连接于往复体6和往复槽12。通过将往复体6与往复轴3之间间隔设置,使传动机构的结构简化且摩擦减少。
图12示出了本申请一实施例中传动机构的左视图,图13示出了图12所示实施例中传动机构的俯视图。
如图12和图13所示,本申请的一实施例中的传动机构,还包括直线导向结构,该直线导向结构包括导向柱14和滑套15。导向柱14的轴线与往复轴3的轴线平行,导向柱14的一端插接在后连接1上,导向柱14的另一端插接在前连接9上。滑套15固定在往复体6的外周侧,滑套15套设在导向柱14上并与导向柱14滑动连接。这样,当往复体6作往复运动时,滑套15沿着导向柱14作往复运动。通过设置导向柱14和滑套15,实现往复体6沿轴向的平稳运动,避免往复体6在往复运动中出现偏转。
在一些具体的实施例中,直线导向结构包括第一导向柱14a、第二导向柱14b、第一滑套15a和第二滑套15b。进一步地,第一导向柱14a与第二导向柱14b关于往复轴3对称设置,第一滑套15a套设在第一导向柱14a上,第二滑套15b套设在第二导向柱15b上。通过设置关于往复轴3的轴线对称的直线导向结构,使传动机构具有更高的稳定性。
图14示出了本申请一实施例中往复体的平面图;图15示出了本申请另一实施例中滑动部的截面图。
本申请的一些实施例中,如图14所示,滑动部7被构造为呈圆柱状,滑动部7的轴线与往复轴3的轴线平行且互不重合。在另一些实施方式中,滑动部7的截面如图13所示,滑动部7包括主体16和设置在主体上的凸台17,且凸台17沿滑动部7的纵长方向延伸设置。其他实施方式中,滑动部7可被构造为长方体等任何能防止往复体6偏转的结构,在此不做限定。通过上述方式使滑动部7具有直线导向作用,避免往复体6在运动中发生偏转,使传动机构在提升稳定性的同时,体积较小且结构简单。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种传动机构,其特征在于,包括:
    往复轴,所述往复轴上设置有往复槽;
    往复体,设于所述往复轴一端;
    所述传动机构还包括:
    球体,被配置为限位于所述往复体和所述往复槽之间,且滚动连接于所述往复体和所述往复槽;及
    其中,所述往复槽环绕所述往复轴的轴线且具有闭合路径,以使所述往复体相对所述往复轴在转动过程中具有沿轴向的位移。
  2. 根据权利要求1的传动机构,其特征在于,所述往复体与所述往复轴的外侧壁滑动连接;或者
    所述往复体与所述往复轴之间彼此间隔设置。
  3. 根据权利要求1所述的传动机构,其特征在于,所述传动机构还包括球托;
    所述球托通过卡簧或螺丝固定在所述往复体上,所述球体滚动连接于所述球托和所述往复槽之间。
  4. 根据权利要求1所述的传动机构,其特征在于,所述往复轴具有经过其轴线的第一对称面;
    所述往复槽包括多个,每一所述往复槽沿其纵长延伸方向具有第二对称面,所述第二对称面相对所述第一对称面倾斜设置,每一所述往复槽分别与一个所述球体滚动连接。
  5. 根据权利要求4所述的传动机构,其特征在于,一个所述往复槽围绕所述往复轴的轴线旋转预设角度后,与另一个往复槽相重合;
    所述多个球体的中心连线所在平面与所述往复轴的轴线相垂直;或
    所述多个往复槽平行间隔分布,所述多个球体的中心连线与所述往复轴的轴线平行。
  6. 根据权利要求4所述的传动机构,其特征在于,所述多个往复槽分为两组,每一组包括多个所述往复槽;
    一组所述往复槽设置于所述往复轴的一端,该组所述往复槽中,一个所述往复槽围绕所述往复轴的轴线旋转预设角度后,与另一个往复槽相重合;对应的多个所述球体的中心连线所在平面与所述往复轴的轴线相垂直;
    另一组所述往复槽设置于所述往复轴的另一端,该组所述往复槽中,多个所述往复槽平行间隔分布,对应的多个所述球体的中心连线与所述往复轴的轴线平行。
  7. 根据权利要求1所述的传动机构,其特征在于,所述往复槽为一个,且所述往复槽的轨迹呈正弦曲线;
    所述往复槽的轨迹包括多个完整的正弦曲线周期,构成所述往复槽的正弦曲线周期数量等于所述球体的数量;
    所述多个球体的中心连线所在平面与所述往复轴的轴线相垂直。
  8. 根据权利要求1-7任一项所述的传动机构,其特征在于,还包括后连接、前连接、滑动部和直线导向结构;
    所述往复轴转动连接于所述后连接,所述滑动部的一端固定在所述往复体远离所述后连接的一端,所述滑动部的另一端滑动连接于所述前连接;
    所述直线导向结构包括导向柱和滑套;所述导向柱的轴线与所述往复轴的轴线平行,所述导向柱的一端插接在所述后连接上,所述导向柱的另一端插接在所述前连接上,所述滑套固定在所述往复体的外周侧,所述滑套套设在所述导向柱上并与所述导向柱滑动连接。
  9. 根据权利要求8所述的传动机构,其特征在于,所述滑动部被构造为呈圆柱状,所述滑动部的轴线与所述往复轴的轴线平行且互不重合;或
    所述滑动部包括主体和设置在所述主体上的凸台,且所述凸台沿所述滑动部的纵长方向延伸设置。
  10. 根据权利要求8所述的传动机构,其特征在于,包括内滑套,所述内滑套嵌设在所述往复体套设在所述往复轴外部分的内侧壁上,所述内滑套与所述往复轴的外侧壁之间滑动连接。
PCT/CN2022/089555 2021-04-30 2022-04-27 传动机构 WO2022228466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120940510.2 2021-04-30
CN202120940510.2U CN215059263U (zh) 2021-04-30 2021-04-30 传动机构

Publications (1)

Publication Number Publication Date
WO2022228466A1 true WO2022228466A1 (zh) 2022-11-03

Family

ID=79108472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089555 WO2022228466A1 (zh) 2021-04-30 2022-04-27 传动机构

Country Status (2)

Country Link
CN (1) CN215059263U (zh)
WO (1) WO2022228466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215059263U (zh) * 2021-04-30 2021-12-07 永康市光逸科技有限公司 传动机构
CN217814829U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动机构及动力设备
CN217814821U (zh) * 2022-07-06 2022-11-15 浙江千机智能科技有限公司 往复传动机构及动力设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB446185A (en) * 1934-11-02 1936-04-27 Thomas Oscar Liles Means for converting reciprocating into rotary motion and vice versa
WO1983000366A1 (en) * 1981-07-22 1983-02-03 SNIJDERS, René, Jean Transmission by means of a curved groove and balls
JPS6037452A (ja) * 1983-08-08 1985-02-26 Agency Of Ind Science & Technol 案内溝による回転・往復動変換装置
CN1039292A (zh) * 1988-07-02 1990-01-31 朱新根 运动转换轴承
CN102274062A (zh) * 2010-06-08 2011-12-14 上海信晟光电技术有限公司 往复锯的传动机构
CN105065595A (zh) * 2015-07-14 2015-11-18 赵云鹏 一种传动组件、传动机构、传动装置和动力传输设备
CN108730454A (zh) * 2018-06-13 2018-11-02 胡祖军 一种传动机构
CN210686885U (zh) * 2019-10-12 2020-06-05 江苏铁锚工具有限公司 一种旋转运动转换往复运动的传动机构
CN215059263U (zh) * 2021-04-30 2021-12-07 永康市光逸科技有限公司 传动机构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB446185A (en) * 1934-11-02 1936-04-27 Thomas Oscar Liles Means for converting reciprocating into rotary motion and vice versa
WO1983000366A1 (en) * 1981-07-22 1983-02-03 SNIJDERS, René, Jean Transmission by means of a curved groove and balls
JPS6037452A (ja) * 1983-08-08 1985-02-26 Agency Of Ind Science & Technol 案内溝による回転・往復動変換装置
CN1039292A (zh) * 1988-07-02 1990-01-31 朱新根 运动转换轴承
CN102274062A (zh) * 2010-06-08 2011-12-14 上海信晟光电技术有限公司 往复锯的传动机构
CN105065595A (zh) * 2015-07-14 2015-11-18 赵云鹏 一种传动组件、传动机构、传动装置和动力传输设备
CN108730454A (zh) * 2018-06-13 2018-11-02 胡祖军 一种传动机构
CN210686885U (zh) * 2019-10-12 2020-06-05 江苏铁锚工具有限公司 一种旋转运动转换往复运动的传动机构
CN215059263U (zh) * 2021-04-30 2021-12-07 永康市光逸科技有限公司 传动机构

Also Published As

Publication number Publication date
CN215059263U (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2022228466A1 (zh) 传动机构
JP2009529619A (ja) アキシャルプランジャーポンプ又はモータ
US10670072B2 (en) Rolling bearing
WO2010084693A1 (ja) リニアアクチュエータ及びフォークリフト
CN104865060A (zh) 一种多功能柱塞泵滑靴副油膜场参数测试试验台
CN100340779C (zh) 铰链装置
JP6545489B2 (ja) トリポード型等速自在継手
WO2024008146A1 (zh) 往复传动机构及动力设备
WO2024008149A1 (zh) 往复传动机构及动力设备
KR100578538B1 (ko) 로타리 엑츄에이터
CN217814822U (zh) 往复传动组件及动力机构
CN209942738U (zh) 造斜钻具用传动轴总成
US20200292004A1 (en) Offset coupling
JP5065160B2 (ja) 揺動板式可変容量圧縮機
WO2018166208A1 (zh) 机械能增益机构及机械能增益系统
CN211550423U (zh) 一种旋转运动转换直线往复运动的装置
CN108506904A (zh) 转动装置
CN217129456U (zh) 一种螺杆钻具滑块式万向轴
CN103382965B (zh) 自调节十字块式联轴器
CN111188882A (zh) 一种旋转运动转换直线往复运动的装置
CN114483692B (zh) 一种旋转直接驱动式电液伺服阀
CN111089147B (zh) 一种适用于摩擦负载的微小型精密传动装置
CN215214423U (zh) 一种具有水平长度容差的万向轴
CN220770065U (zh) 一种偏心传动机构
CN213238836U (zh) 基于关节轴承连接的支耳式直线位移传感器或电位器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794936

Country of ref document: EP

Kind code of ref document: A1