WO2024007723A1 - 电池 - Google Patents
电池 Download PDFInfo
- Publication number
- WO2024007723A1 WO2024007723A1 PCT/CN2023/092976 CN2023092976W WO2024007723A1 WO 2024007723 A1 WO2024007723 A1 WO 2024007723A1 CN 2023092976 W CN2023092976 W CN 2023092976W WO 2024007723 A1 WO2024007723 A1 WO 2024007723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shape memory
- tab
- memory material
- battery
- temperature
- Prior art date
Links
- 239000012781 shape memory material Substances 0.000 claims abstract description 99
- 239000003292 glue Substances 0.000 claims description 55
- 239000002985 plastic film Substances 0.000 claims description 33
- 229920006255 plastic film Polymers 0.000 claims description 33
- 229910052782 aluminium Inorganic materials 0.000 claims description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 239000004743 Polypropylene Substances 0.000 claims description 14
- 229920001155 polypropylene Polymers 0.000 claims description 14
- -1 polypropylene Polymers 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 3
- 229910018643 Mn—Si Inorganic materials 0.000 claims description 3
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 claims description 3
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 claims description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 3
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 3
- 239000000565 sealant Substances 0.000 abstract 4
- 230000005611 electricity Effects 0.000 abstract 1
- 238000013461 design Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 101100460844 Mus musculus Nr2f6 gene Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of battery technology, and in particular to a battery.
- the purpose of this application is to provide a battery to solve the above-mentioned problem of low thermal safety margin of existing lithium batteries as battery energy density, capacity and charging speed gradually increase.
- the present application provides a battery, which includes a battery core, and the battery core includes a positive electrode lug and a negative electrode lug;
- the positive tab is provided with a first tab glue, a first temperature control element is embedded in the first tab glue, and a first shape memory material is provided on the first temperature control element;
- the negative electrode tab is provided with a second tab glue, a second temperature control element is embedded in the second tab glue, and a second shape memory material is provided on the second temperature control element;
- first shape memory material and the second shape memory material are used to deform under set temperature conditions to short-circuit the positive electrode tab and the negative electrode tab.
- the shape memory material can be heated and deformed to electrically connect the positive and negative tabs, thereby forming an electronic circuit between the positive and negative tabs, that is, a short circuit, thereby discharging the battery through the short circuit. It can reduce battery power and improve battery safety in high temperature environments.
- the battery further includes an aluminum-plastic film, the aluminum-plastic film is heat-sealed and bonded to the first tab glue and the second tab glue, and the aluminum-plastic film includes a stacked Polypropylene layer and aluminum layer, the aluminum plastic film is fixedly coated on the outside of the first tab rubber and the second tab rubber through the polypropylene layer; the first shape memory material and the The second shape memory material is used to electrically connect to the aluminum layer through the polypropylene layer when deformed by heat.
- the aluminum-plastic film has extremely high barrier properties, good heat sealing performance, and resistance to electrolyte and strong acid corrosion. It also has good ductility, flexibility and mechanical strength, and can effectively protect the internal battery core. effect. And when the temperatures of the first temperature control element and the second temperature control element rise to a certain value, at least part of the first shape memory material and the second shape memory material may be deformed after being heated, such as warping deformation. Part of it can penetrate the pp layer of the aluminum-plastic film and be in contact with the Al layer, thereby electrically connecting the positive and negative tabs through the Al layer, realizing a short-circuit connection between the positive and negative tabs, realizing discharge, and thus reducing the battery life. power, improving battery safety in high temperature environments.
- the first shape memory material and the second shape memory material include tips, and the first shape memory material and the second shape memory material are used to penetrate through the tips when deformed by heat.
- the polypropylene layer is electrically connected to the aluminum layer.
- the tip can be an acute angle of an approximate triangle, and the pp layer can be easily pierced through the tip.
- the first shape memory material and the second shape memory material can warp at least at the tips, and can pierce the pp layer through the tips. And connected with the Al layer.
- the set temperature condition includes a critical temperature value, and at least part of the first shape memory material and the second shape memory material warps under conditions greater than the critical temperature value. Curved deformation.
- the first shape memory material and the second shape memory material are flat as a whole and can fit with the surfaces of the first temperature control element and the second temperature control element.
- the first shape memory material and the second shape memory material can be heated to warp and deform at least at the tip location, causing the The tip can pierce the pp layer of the aluminum-plastic film and make conductive contact with the Al layer to achieve a short-circuit connection between the positive and negative tabs.
- the critical temperature value is 65-105°C.
- the critical temperature value is 65-105°C, and the temperature range is less than 130°C, so that the battery can deform the positive electrode lug and the negative electrode through the deformation of the shape memory material when the temperature of the external heat source does not reach 130°C. Short-circuit the ears and discharge to reduce the battery power and improve the safety of the battery in high-temperature environments.
- the projected area of the first temperature control element on the positive electrode tab is smaller than the projected area of the first tab glue on the positive electrode tab. 1/2; along the thickness direction of the negative electrode tab, the projected area of the second temperature control element on the negative electrode tab is less than 1/2 of the projected area of the second tab glue on the negative electrode tab. 2.
- the projected area of the first temperature control element on the positive tab less than 1/2 of the projected area of the first tab glue on the positive tab, it can be ensured that the first tab glue has a positive effect on the first temperature control element and the third A reliable encapsulation of shape memory materials.
- the first temperature control element and the second temperature control element are thermistors with a nonlinear negative temperature coefficient effect.
- the resistance value of this thermistor decreases as the temperature increases.
- the set temperature value may be the critical temperature value at which the shape memory material in this embodiment can deform.
- the thermistor has a larger resistance value, which can ensure the battery's normal work.
- the resistance value of the thermistor drops sharply, and the tip of the shape memory material can warp and deform, piercing the pp layer of the aluminum plastic film and making conductive contact with the Al layer, and the thermal sensitive
- the low resistance of the resistor is conducive to the flow of current between the positive and negative lugs, achieving effective discharge, reducing battery power, and improving battery safety in high-temperature environments.
- the resistance of the thermistor when the temperature is less than the first preset temperature is greater than 100 M ⁇ , and the resistance of the thermistor when the temperature is greater than the first preset temperature is 20 m ⁇ ⁇ 20 ⁇ .
- the resistance value of the thermistor can be maintained above 100M ⁇ to ensure the normal operation of the battery; when the temperature of the thermistor reaches above the first preset temperature, the thermal resistance Mindian The resistance value of the resistor suddenly drops to 20m ⁇ 20 ⁇ , which can increase the current so that the current flows between the positive electrode, the first temperature control element, the first conductive element, the Al layer of the aluminum-plastic film, the second conductive element, and the second temperature control element. The normal flow between the positive and negative electrodes makes the positive and negative electrodes short-circuited to achieve discharge.
- the first preset temperature is 65°C to 105°C.
- the tip of the shape memory material can also undergo corresponding warping deformation, so that when the tip is in conductive contact with the Al layer of the aluminum-plastic film, the thermistor has a smaller resistance value, which is beneficial to increasing the temperature. Large current between positive and negative lugs to achieve effective discharge.
- the first shape memory material and the second shape memory material are shape memory alloys.
- the shape memory alloy can ensure the conductive performance when the positive and negative tabs are connected in a short circuit to achieve effective discharge. At the same time, it can cause the tip to warp and deform under the action of high temperature, and can pierce the pp layer of the aluminum-plastic film. It is in conductive contact with the Al layer of the aluminum-plastic film to realize a short-circuit connection between the positive and negative electrodes.
- the material of the shape memory alloy is one of nickel-titanium alloy, copper-nickel alloy, copper-aluminum alloy, copper-zinc alloy, Fe-Mn-Si, and Fe-Pd.
- Figure 1 is a schematic structural diagram of a battery provided by an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of another battery provided by an embodiment of the present application.
- Figure 3 is a schematic diagram of the combination of the positive tab and the first tab glue
- Figure 4 is a schematic diagram of the cooperation between the negative tab and the second tab glue
- Figure 5 is a schematic structural diagram of the aluminum plastic film.
- connection can be a fixed connection, a detachable connection, or an integral connection.
- Connection, or electrical connection may be direct or indirect through an intermediary.
- the purpose of the 130°C 30min thermal shock test is to evaluate the safety performance of the battery after being affected by external heat sources.
- the test method is: keep the battery in a fully charged state, use a convection or circulating hot air box to heat with a starting temperature of 25 ⁇ 3°C, a temperature change rate of 5 ⁇ 2°C/min, and heat up to 130/132/135 ⁇ 2 °C, and then end after maintaining for 30 minutes. If the battery does not catch fire or explode after the test, the battery is deemed qualified.
- the embodiment of the present application provides a battery, which may be a lithium battery.
- the battery can be used as an electrical device for power supply, and the electrical device can be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
- electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
- spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
- the battery includes a battery core 1 , and the battery core 1 includes a positive electrode lug 2 and a negative electrode lug 3 .
- the battery core 1 may include One positive tab 2 and one negative tab 3 form a bipolar battery core 1, as shown in Figure 1; the battery core 1 may also include two positive tabs 2 and one negative tab 3 to form a three-pole battery core 1. as shown in picture 2.
- the battery core 1 may include a positive electrode sheet, a separator and a negative electrode sheet, and may be prepared through a lamination process or a winding process.
- the positive electrode tab 2 may be provided on the positive electrode sheet, and the negative electrode tab 3 may be provided on the negative electrode sheet.
- the positive tab 2 and the negative tab 3 are metal conductors that lead out the positive and negative electrodes from the battery core 1 and serve as contact points during charging and discharging.
- the material of the positive electrode tab 2 may be aluminum, and the material of the negative electrode tab 3 may be copper.
- the positive tab 2 is provided with a first tab glue 21, a first temperature control element 22 is embedded in the first tab glue 21, and a first shape memory element is provided on the first temperature control element 22.
- Material 23; the negative electrode tab 3 is provided with a second tab glue 31, a second temperature control element 32 is embedded in the second tab glue 31, and a second shape memory material 33 is provided on the second temperature control element 32.
- tab glue is a material widely used in the field of lithium-ion batteries.
- the main function of the tab glue is to adhere to the tabs of the lithium ion battery, so that the tabs of the lithium ion battery have the performance of heat sealing with the polypropylene layer 43 (pp layer) of the aluminum plastic film 4 .
- Ear glue is essentially a non-sticky film that relies on temperature and time control to fuse.
- the first temperature control element 22 and the second temperature control element 32 can conduct the battery heat to the corresponding shape memory material promptly and quickly.
- the temperature of the first temperature control element 22 and the second temperature control element 32 reaches the temperature of the shape memory material, At the critical temperature value, the shape memory material can be heated and deformed, making the positive electrode tab 2 and the negative electrode tab 3 electrically connected, thereby forming an electronic circuit between the positive electrode tab 2 and the negative electrode tab 3, that is, a short circuit, thereby making the Battery discharge can reduce battery power and improve battery safety in high temperature environments.
- the battery also includes an aluminum-plastic film 4.
- the aluminum-plastic film 4 has extremely high barrier properties, good heat sealing performance, and is resistant to electrolyte. It is resistant to strong acid corrosion and has good ductility, flexibility and mechanical strength, which can effectively protect the internal battery core 1.
- the aluminum-plastic film 4 can be packaged on the side of the battery core 1 with the tab, and the aluminum-plastic film 4 can be a continuous packaging film layer.
- the aluminum-plastic film 4 can be heat-sealed and bonded to the first tab glue 21 and the second tab glue 31 , and continuously extends between the positive electrode tab 2 and the negative electrode tab 3 .
- the aluminum-plastic film 4 includes a stacked polypropylene layer 43 (pp layer), an aluminum layer 42 (Al layer) and a nylon layer 41.
- the aluminum-plastic film 4 is fixedly covered with the first layer through the polypropylene layer 43.
- the outer sides of the tab glue 21 and the second tab glue 31 are used to electrically connect with the aluminum layer 42 through the polypropylene layer 43 when deformed by heat.
- the deformed part can penetrate the pp layer of the aluminum-plastic film 4 and be in contact with the Al layer, thereby electrically connecting the positive electrode tab 2 and the negative electrode tab 3 through the Al layer, realizing a short-circuit connection between the positive electrode tab 2 and the negative electrode tab 3 , realizes discharge, which in turn can reduce the battery power and improve the safety of the battery in high temperature environments.
- the first shape memory material 23 and the second shape memory material 33 include a tip A, and the first shape memory material 23 and the second shape memory material 33 are used to pass through the tip when deformed by heat.
- A penetrates the polypropylene layer 43 and is electrically connected to the aluminum layer 42 .
- the tip A can be an acute angle of an approximate triangle, and the pp layer can be easily pierced through the tip A.
- the temperature of the first shape memory material 23 and the second shape memory material 33 reaches a certain value, at least the tip A of the first shape memory material 23 and the second shape memory material 33 can warp and pass through The tip A pierces the pp layer and connects to the Al layer.
- first shape memory material 23 and the second shape memory material 33 may be arrow-shaped (as shown in Figure 3), triangle, pentagram-shaped (as shown in Figure 4), or regular or irregular.
- This tip A can have only one or multiple tips.
- the arrow shape shown in Figure 3 has one tip A
- the five-pointed star shape shown in Figure 4 has five tips A.
- the number of the tips A can be Multiple.
- the first shape memory material 23 and the second shape memory material 33 can be trained so that the part with the tip A can be heated and deformed, and the training method can specifically be heat treatment.
- the first shape memory material 23 and the second shape memory material 33 are used to deform under set temperature conditions to short-circuit the positive electrode tab 2 and the negative electrode tab 3 .
- the set temperature condition includes a critical temperature value, and at least part of the first shape memory material 23 and the second shape memory material 33 may warp and deform under conditions greater than the critical temperature value.
- the first shape memory material 23 and the second shape memory material 33 are flat as a whole and can fit with the surfaces of the first temperature control element 22 and the second temperature control element 32 .
- the first shape memory material 23 and the second shape memory material 33 can be heated at least where the tip A is located. The warping deformation allows the tip A to pierce the pp layer of the aluminum-plastic film 4 and conduct conductive contact with the Al layer to realize a short-circuit connection between the positive electrode lug 2 and the negative electrode lug 3 .
- the above-mentioned critical temperature value may be 65-105°C. It is understandable that as battery energy density, capacity and charging speed gradually increase, the initial temperature of battery thermal runaway decreases significantly in high-temperature environments. The battery may fail when the temperature of the external heat source to which the battery is subjected does not reach 130°C. Fire and explosion problems occurred.
- the critical temperature value is set to 65-105°C, and the temperature range is less than 130°C, so that the battery can deform the positive electrode through the deformation of the shape memory material when the temperature of the external heat source does not reach 130°C.
- the ear 2 and the negative ear 3 are connected in a short circuit and discharged to reduce the battery power and improve the safety of the battery in high temperature environment.
- the projected area of the first temperature control element 22 on the positive tab 2 is less than 1/2 of the projected area of the first tab glue 21 on the positive tab 2;
- the projected area of the second temperature control element 32 on the negative electrode tab 3 is less than 1/2 of the projected area of the second tab glue 31 on the negative electrode tab 3 .
- the positive electrode tab 2 and the negative electrode tab 3 are both elongated metal sheets.
- the positive electrode tab 2 is a rectangular aluminum sheet
- the negative electrode tab 3 is a rectangular copper sheet.
- the shape of the first tab glue 21 and the second tab glue 31 is also a long strip, such as a rectangle. After the first tab glue 21 is bonded to the positive electrode tab 2 , the bonding interface between the first tab glue 21 and the positive electrode tab 2 is the projection area of the first tab glue 21 in the thickness direction of the positive electrode tab 2 .
- the connection method between the second tab glue 31 and the negative electrode tab 3 is the same as the connection method between the first tab glue 21 and the positive electrode tab 2, and will not be described again here.
- the first temperature control element 22 is embedded in the first tab glue 21 , where “embedded” means that the first temperature control element 22 is disposed inside the first tab glue 21 .
- the surfaces of the components 22 are covered by the first tab glue 21 .
- the projection of the first temperature control element 22 in the thickness direction of the positive tab 2 is also located within the projection area of the first tab glue 21 on the positive tab 2 . If the projected area of the first temperature control element 22 on the positive electrode lug 2 is larger than the first temperature control element 22 If the projected area of the ear glue 21 on the positive electrode 2 is 1/2, then it is difficult for the first ear glue 21 to effectively encapsulate the first temperature control element 22 and the first shape memory material 23.
- the first temperature control element 22 and the first shape memory material 23 are The first shape memory material 23 leaks from the first tab glue 21 , or the first temperature control element 22 and the first shape memory material 23 move in the first tab glue 21 , etc.
- the projected area of the first temperature control element 22 on the positive tab 2 less than 1/2 of the projected area of the first tab glue 21 on the positive tab 2, it is possible to ensure that the first temperature control element 22 is The ear gel 21 reliably encapsulates the first temperature control element 22 and the first shape memory material 23 .
- connection scheme between the second tab glue 31, the second temperature control element 32 and the negative electrode tab 3 is the same as the connection scheme between the first tab glue 21, the first temperature control element 22 and the positive electrode tab 2. This will not be described again.
- both the first temperature control element 22 and the second temperature control element 32 can be a thermistor with a nonlinear negative temperature coefficient effect.
- the resistance value of this thermistor decreases as the temperature increases.
- the set temperature value may be the critical temperature value at which the shape memory material in this embodiment can deform.
- the thermistor has a larger resistance value, which can ensure the battery's normal work.
- the resistance value of the thermistor drops sharply, and the tip A of the shape memory material can warp and deform, piercing the pp layer of the aluminum plastic film 4 and making conductive contact with the Al layer, and
- the low resistance of the thermistor is conducive to the flow of current between the positive ear 2 and the negative ear 3, achieving effective discharge, reducing battery power, and improving battery safety in high-temperature environments.
- the resistance of the thermistor when the temperature is lower than the first preset temperature is greater than 100 M ⁇ , and the resistance of the thermistor when the temperature is greater than the first preset temperature is 20 m ⁇ ⁇ 20 ⁇ .
- the first preset temperature is a temperature that can cause the resistance value of the thermistor to drop suddenly, and the first preset temperature can be the same as a critical temperature value at which the shape memory material can deform.
- the resistance value of the thermistor can be maintained above 100M ⁇ to ensure the normal operation of the battery; when the temperature of the thermistor reaches above the first preset temperature, the thermal resistance The resistance value of the sensitive resistor drops suddenly to 20m ⁇ 20 ⁇ , which can increase the current, so that the current flows between the positive electrode ear 2, the first temperature control element 22, the first conductive element, the Al layer of the aluminum-plastic film 4, the second conductive element, and the third conductive element.
- the normal flow between the second temperature control element 32 and the negative electrode ear 3 causes the positive electrode ear 2 and the negative electrode ear 3 to be connected in a short circuit to realize discharge.
- the first preset temperature may be 65 ⁇ 105°C.
- the tip A of the shape memory material can also undergo corresponding warping deformation, so that when the tip A is in conductive contact with the Al layer of the aluminum plastic film 4, the thermistor has a smaller resistance value, which is beneficial to Increase the current between the positive ear 2 and the negative ear 3 to achieve effective discharge.
- the first shape memory material 23 and the second shape memory material 33 can be a shape memory alloy.
- the shape memory alloy can ensure the conductive performance when the positive electrode tab 2 and the negative electrode tab 3 are connected in a short circuit, achieve effective discharge, and at the same time can make the tip A warps and deforms under the action of high temperature, and can pierce the pp layer of the aluminum-plastic film 4, and make conductive contact with the Al layer of the aluminum-plastic film 4, realizing a short-circuit connection between the positive electrode lug 2 and the negative electrode lug 3.
- the material of the shape memory alloy may be one of nickel-titanium alloy, copper-nickel alloy, copper-aluminum alloy, copper-zinc alloy, Fe-Mn-Si or Fe-Pd.
- first shape memory material 23 and the second shape memory material 33 can also be thermal bimetals.
- the active layer and the passive layer of the thermal bimetal are materials with different thermal expansion rates.
- the thermal expansion rate of the active layer is greater than the thermal expansion rate of the passive layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
本申请提供了一种电池,其包括电芯,电芯包括正极耳和负极耳;正极耳设置有第一极耳胶,第一极耳胶中埋设有第一控温元件,第一控温元件上设置有第一形状记忆材料;负极耳设置有第二极耳胶,第二极耳胶中埋设有第二控温元件,第二控温元件上设置有第二形状记忆材料;其中,第一形状记忆材料和第二形状记忆材料用于在设定的温度条件下发生变形,以使正极耳与负极耳短路连接。本申请提供的电池,形状记忆材料可以受热变形,使正极耳和负极耳电性连通,从而使正极耳和负极耳之间形成电子回路,也即短路,由此通过短路的方式使电池放电,可以降低电池电量,提升电池在高温环境下的安全性。
Description
本申请要求于2022年07月07日提交中国专利局、申请号为202210802736.5、发明名称为“电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电池技术领域,尤其涉及一种电池。
随着消费类锂电池能量密度、容量及充电速度逐步提升,在高温环境下电池热失控起始温度大幅降低,产热量明显增大,电池热安全边界越来越低。
发明内容
本申请的目的在于提供一种电池,以解决上述现有锂电池随着电池能量密度、容量及充电速度逐步的提升而导致热安全边界低的问题。
本申请提供了一种电池,其包括电芯,所述电芯包括正极耳和负极耳;
所述正极耳设置有第一极耳胶,所述第一极耳胶中埋设有第一控温元件,所述第一控温元件上设置有第一形状记忆材料;
所述负极耳设置有第二极耳胶,所述第二极耳胶中埋设有第二控温元件,所述第二控温元件上设置有第二形状记忆材料;
其中,所述第一形状记忆材料和所述第二形状记忆材料用于在设定的温度条件下发生变形,以使所述正极耳与所述负极耳短路连接。
本申请提供的电池,形状记忆材料可以受热变形,使正极耳和负极耳电性连通,从而使正极耳和负极耳之间形成电子回路,也即短路,由此通过短路的方式使电池放电,可以降低电池电量,提升电池在高温环境下的安全性。
在一种可能的设计中,所述电池还包括铝塑膜,所述铝塑膜热封粘合于所述第一极耳胶和第二极耳胶,所述铝塑膜包括层叠设置的聚丙烯层和铝层,所述铝塑膜通过所述聚丙烯层固定包覆于所述第一极耳胶和所述第二极耳胶的外侧;所述第一形状记忆材料和所述第二形状记忆材料用于在受热变形时贯穿所述聚丙烯层与所述铝层电连接。
其中,该铝塑膜具备极高的阻隔性,具有良好的热封性能,耐电解液及强酸腐蚀,同时还具有良好的延展性、柔韧性和机械强度,可以有效起到保护内部电芯的作用。且当第一控温元件和第二控温元件的温度上升到一定值时,第一形状记忆材料和第二形状记忆材料的至少部分部位受热后可以发生变形,如翘曲变形,变形的这部分可以贯穿铝塑膜的pp层,并能够与Al层接触,从而通过Al层使正极耳和负极耳电性连通,实现正极耳和负极耳之间短路连接,实现了放电,进而可以降低电池电量,提升电池在高温环境下的安全性。
在一种可能的设计中,第一形状记忆材料和所述第二形状记忆材料包括尖端,所述第一形状记忆材料和所述第二形状记忆材料用于在受热变形时通过所述尖端贯穿所述聚丙烯层与所述铝层电连接。
其中,该尖端可以为近似三角形的一个锐角,通过尖端可以便于刺破pp层。当第一形状记忆材料和第二形状记忆材料受到的温度达到一定值时,第一形状记忆材料和第二形状记忆材料的至少在尖端所在部位可以发生翘曲,并能够通过尖端刺破pp层而与Al层连接。
在一种可能的设计中,所述设定的温度条件包括临界温度值,所述第一形状记忆材料和所述第二形状记忆材料的至少部分在大于所述临界温度值的条件下发生翘曲变形。
其中,该第一形状记忆材料和第二形状记忆材料在所受到的温度未达到临界温度值时,整体呈扁平状,能够与第一控温元件和第二控温元件的表面贴合。当第一形状记忆材料和第二形状记忆材料在所受到的温度达到临界温度值以上时,该第一形状记忆材料和第二形状记忆材料至少在尖端所在的部位可以受热发生翘曲变形,使尖端可以刺破铝塑膜的pp层,并与Al层导电接触,实现正极耳与负极耳短路连接。
在一种可能的设计中,所述临界温度值为65~105℃。
其中,使临界温度值为65~105℃,该温度范围小于130℃,从而能够使电池在受到的外部热源的温度未达到130℃的情况下便能够通过形状记忆材料的变形使正极耳和负极耳短路连接,进行放电,以降低电池电量,提升电池高温环境下的安全性。
在一种可能的设计中,沿所述正极耳的厚度方向,所述第一控温元件在所述正极耳上的投影面积小于所述第一极耳胶在所述正极耳上的投影面积的1/2;沿所述负极耳的厚度方向,所述第二控温元件在所述负极耳上的投影面积小于所述第二极耳胶在所述负极耳上的投影面积的1/2。
其中,通过使第一控温元件在正极耳上的投影面积小于第一极耳胶在正极耳上的投影面积的1/2,从而可以保证第一极耳胶对第一控温元件和第一形状记忆材料的可靠封装。
在一种可能的设计中,所述第一控温元件和所述第二控温元件为具有非线性负温度系数效应的热敏电阻。
该热敏电阻的电阻值随温度增大而减小。当温度未达到设定的温度值时,该设定的温度值可以为本实施例中形状记忆材料能够发生变形的临界温度值,此时热敏电阻具有较大的电阻值,可以保证电池的正常工作。而当温度达到上述临界温度值以上时,热敏电阻的电阻值发生骤降,形状记忆材料的尖端能够发生翘曲变形,刺破铝塑膜的pp层而与Al层导电接触,而热敏电阻的低阻值有利于正极耳和负极耳之间的电流流动,实现有效放电,降低电池电量,提升电池高温环境下的安全性。
在一种可能的设计中,所述热敏电阻在小于第一预设温度时的电阻大于100MΩ,所述热敏电阻在大于所述第一预设温度时的电阻为20mΩ~20Ω。
当热敏电阻的温度未达到第一预设温度时,热敏电阻的电阻值能够保持在100MΩ以上,以保证电池的正常工作;当热敏电阻的温度达到第一预设温度以上时,热敏电
阻的电阻值骤降至20mΩ~20Ω,可以增大电流,使电流在正极耳、第一控温元件、第一导电元件、铝塑膜的Al层、第二导电元件、第二控温元件和负极耳之间正常流动,使正极耳和负极耳短路连接,实现放电。
在一种可能的设计中,所述第一预设温度为65~105℃。
其中,在该温度范围内,形状记忆材料的尖端也可以发生相应的翘曲变形,从而使尖端在与铝塑膜的Al层导电接触时,热敏电阻具有较小的阻值,有利于增大正极耳和负极耳之间的电流,实现有效放电。
在一种可能的设计中,所述第一形状记忆材料和所述第二形状记忆材料为形状记忆合金。
其中,该形状记忆合金可以保证正极耳和负极耳短路连接时的导电性能,实现有效放电,同时可以使尖端在高温的作用下发生翘曲变形,并能够刺破铝塑膜的pp层,而与铝塑膜的Al层导电接触,实现正极耳和负极耳短路连接。
在一种可能的设计中,所述形状记忆合金的材料为镍钛系合金、铜镍系合金、铜铝系合金、铜锌系合金、Fe-Mn-Si、Fe-Pd中的一种。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
图1为本申请实施例提供的一种电池的结构示意图;
图2为本申请实施例提供的另一种电池的结构示意图;
图3为正极耳与第一极耳胶配合的示意图;
图4为负极耳与第二极耳胶配合的示意图;
图5为铝塑膜的结构示意图。
附图标记:
1-电芯;
2-正极耳;
21-第一极耳胶;
22-第一控温元件;
23-第一形状记忆材料;
3-负极耳;
31-第二极耳胶;
32-第二控温元件;
33-第二形状记忆材料;
4-铝塑膜;
41-尼龙层;
42-铝层;
43-聚丙烯层;
A-尖端。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
随着消费类锂电池能量密度、容量及充电速度逐步提升,在高温环境下电池热失控起始温度大幅降低,产热量明显增大,电池热安全边界越来越低,甚至难以满足130℃30min热冲击测试国标要求。
其中,该130℃30min热冲击测试的测试目的是评估电池在遭受外部热源影响后的安全性能。测试方法为:使电池处于满电状态,用对流或循环热空气箱以起始温度为25±3℃进行加热,温变率为5±2℃/min,升温至130/132/135±2℃,保持30min后结束。如果测试结束后,电池不起火、不爆炸,则判定电池合格。
但是,随着锂电池的容量、充电速度等性能的提升,电池的热量在外部热空气未达到130℃时便会迅速升高,发生起火、爆炸的问题,电池的安全性过低。
目前,为提升电池的安全性,一般会考虑到优化电池材料体系中的电解液,但是,能够满足高温性能的电解液一方面会导致电池循环性能恶化,例如,电池容量保持率衰减明显加快或跳水、厚度膨胀率明显增大等,从而影响电池寿命及膨胀超厚带来的安全风险;另一方面,也会导致电池低温拉载性能大幅降低,从而影响手机低温拍照性能。
本申请实施例提供了一种电池,该电池具体可以为锂电池。该电池可以作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
该电池包括电芯1,电芯1包括正极耳2和负极耳3。具体地,该电芯1可以包括
一个正极耳2和一个负极耳3,构成双极耳电芯1,如图1所示;该电芯1也可以包括两个正极耳2和一个负极耳3,构成三极耳电芯1,如图2所示。其中,电芯1可以包括正极片、隔膜和负极片,并能够通过叠片工艺或卷绕工艺制备而成,正极耳2可以设置于正极片,负极耳3设置于负极片。正极耳2和负极耳3是从电芯1中将正负极引出来的金属导电体,作为充放电时的接触点。本实施例中,正极耳2的材料可以为铝,负极耳3的材料可以为铜。
如图1至图4所示,正极耳2设置有第一极耳胶21,第一极耳胶21中埋设有第一控温元件22,第一控温元件22上设置有第一形状记忆材料23;负极耳3设置有第二极耳胶31,第二极耳胶31中埋设有第二控温元件32,第二控温元件32上设置有第二形状记忆材料33。
其中,极耳胶是一种广泛用于锂离子电池领域的材料。极耳胶的主要作用是粘接在锂离子电池的极耳上,使锂离子电池的极耳具备与铝塑膜4的聚丙烯层43(pp层)进行热封的性能。极耳胶本质上是无黏性胶膜,其依靠温度与时间控制使其熔合。
第一控温元件22和第二控温元件32是可以将电池热量及时快速地传导至相应的形状记忆材料,当第一控温元件22和第二控温元件32的温度达到形状记忆材料的临界温度值时,形状记忆材料可以受热变形,使正极耳2和负极耳3电性连通,从而使正极耳2和负极耳3之间形成电子回路,也即短路,由此通过短路的方式使电池放电,可以降低电池电量,提升电池在高温环境下的安全性。
作为一种具体的实现方式,如图1、图3和图5所示,该电池还包括铝塑膜4,铝塑膜4具备极高的阻隔性,具有良好的热封性能,耐电解液及强酸腐蚀,同时还具有良好的延展性、柔韧性和机械强度,可以有效起到保护内部电芯1的作用。该铝塑膜4可以封装在电芯1具有极耳的一侧,铝塑膜4可以为连续的封装膜层。
本实施例中,铝塑膜4可以热封粘合于第一极耳胶21和第二极耳胶31,且在正极耳2和负极耳3之间连续延伸。如图5所示,铝塑膜4包括层叠设置的聚丙烯层43(pp层)、铝层42(Al层)和尼龙层41,铝塑膜4通过聚丙烯层43固定包覆于第一极耳胶21和第二极耳胶31的外侧。第一形状记忆材料23和第二形状记忆材料33用于在受热变形时贯穿聚丙烯层43与铝层42电连接。
当第一控温元件22和第二控温元件32的温度上升到一定值时,第一形状记忆材料23和第二形状记忆材料33的至少部分部位受热后均可以发生变形,如翘曲变形,变形的这部分可以贯穿铝塑膜4的pp层,并能够与Al层接触,从而通过Al层使正极耳2和负极耳3电性连通,实现正极耳2和负极耳3之间短路连接,实现了放电,进而可以降低电池电量,提升电池在高温环境下的安全性。
具体地,如图3和图4所示,第一形状记忆材料23和第二形状记忆材料33包括尖端A,第一形状记忆材料23和第二形状记忆材料33用于在受热变形时通过尖端A贯穿聚丙烯层43与铝层42电连接。
该尖端A可以为近似三角形的一个锐角,通过尖端A可以便于刺破pp层。当第一形状记忆材料23和第二形状记忆材料33受到的温度达到一定值时,第一形状记忆材料23和第二形状记忆材料33的至少在尖端A所在部位可以发生翘曲,并能够通过
尖端A刺破pp层而与Al层连接。
需要说明的是,该第一形状记忆材料23和第二形状记忆材料33可以为箭头形(如图3所示)、三角形、五角星形(如图4所示),或者为规则或不规则的具有尖端A的多边形,这种尖端A可以只有一个,也可以具有多个,其中,如图3所示的箭头形具有一个尖端A,如图4所示的五角星形具有五个尖端A。本实施例中,为了便于第一形状记忆材料23和第二形状记忆材料33在受热变形时能够顺利刺破pp层,同时保证尖端A与Al层接触的可靠性,该尖端A的数量可以具有多个。
其中,第一形状记忆材料23和第二形状记忆材料33可以通过训练使具有尖端A的部位能够受热发生变形,训练的方式具体可以为热处理等。
具体地,由上文记载可知,第一形状记忆材料23和第二形状记忆材料33用于在设定的温度条件下发生变形,以使正极耳2与负极耳3短路连接。其中,该设定的温度条件包括临界温度值,第一形状记忆材料23和第二形状记忆材料33的至少部分在大于临界温度值的条件下可以发生翘曲变形。
该第一形状记忆材料23和第二形状记忆材料33在所受到的温度未达到临界温度值时,整体呈扁平状,能够与第一控温元件22和第二控温元件32的表面贴合。当第一形状记忆材料23和第二形状记忆材料33在所受到的温度达到临界温度值以上时,该第一形状记忆材料23和第二形状记忆材料33至少在尖端A所在的部位可以受热发生翘曲变形,使尖端A可以刺破铝塑膜4的pp层,并与Al层导电接触,实现正极耳2与负极耳3短路连接。
其中,上述临界温度值可以为65~105℃。可以理解的是,随着电池能量密度、容量及充电速度逐步提升,在高温环境下电池热失控起始温度大幅降低,可能在电池所受的外部热源的温度未达到130℃的情况下电池便发生起火、爆炸的问题。本实施例中,使临界温度值为65~105℃,该温度范围小于130℃,从而能够使电池在受到的外部热源的温度未达到130℃的情况下便能够通过形状记忆材料的变形使正极耳2和负极耳3短路连接,进行放电,以降低电池电量,提升电池高温环境下的安全性。
作为一种具体的实现方式,沿正极耳2的厚度方向,第一控温元件22在正极耳2上的投影面积小于第一极耳胶21在正极耳2上的投影面积的1/2;沿负极耳3的厚度方向,第二控温元件32在负极耳3上的投影面积小于第二极耳胶31在负极耳3上的投影面积的1/2。
其中,正极耳2和负极耳3均为长条形的金属片,例如正极耳2为长方形的铝片,负极耳3为长方形的铜片。第一极耳胶21和第二极耳胶31的形状也为长条形,如长方形。第一极耳胶21粘接到正极耳2上后,第一极耳胶21与正极耳2的粘接界面即为第一极耳胶21在正极耳2厚度方向上的投影区域。第二极耳胶31和负极耳3的连接方式同第一极耳胶21与正极耳2的连接方式,在此不再赘述。
本实施例中,在第一极耳胶21中埋设有第一控温元件22,其中,“埋设”是指第一控温元件22设置在第一极耳胶21的内部,第一控温元件22的表面均被第一极耳胶21包覆。第一控温元件22在正极耳2厚度方向上的投影也位于上述第一极耳胶21在正极耳2上的投影区域内。如果第一控温元件22在正极耳2上的投影面积大于第一极
耳胶21在正极耳2上的投影面积的1/2,则第一极耳胶21难以对第一控温元件22和第一形状记忆材料23进行有效封装,例如第一控温元件22和第一形状记忆材料23从第一极耳胶21中漏出,或者第一控温元件22和第一形状记忆材料23在第一极耳胶21中窜动等。
为此,本实施例中,通过使第一控温元件22在正极耳2上的投影面积小于第一极耳胶21在正极耳2上的投影面积的1/2,从而可以保证第一极耳胶21对第一控温元件22和第一形状记忆材料23的可靠封装。
其中,第二极耳胶31、第二控温元件32和负极耳3之间的连接方案同上述第一极耳胶21、第一控温元件22和正极耳2之间的连接方案,在此不再赘述。
具体地,第一控温元件22和第二控温元件32均可以为具有非线性负温度系数效应的热敏电阻。该热敏电阻的电阻值随温度增大而减小。当温度未达到设定的温度值时,该设定的温度值可以为本实施例中形状记忆材料能够发生变形的临界温度值,此时热敏电阻具有较大的电阻值,可以保证电池的正常工作。而当温度达到上述临界温度值以上时,热敏电阻的电阻值发生骤降,形状记忆材料的尖端A能够发生翘曲变形,刺破铝塑膜4的pp层而与Al层导电接触,而热敏电阻的低阻值有利于正极耳2和负极耳3之间的电流流动,实现有效放电,降低电池电量,提升电池高温环境下的安全性。
具体地,热敏电阻在小于第一预设温度时的电阻大于100MΩ,热敏电阻在大于第一预设温度时的电阻为20mΩ~20Ω。该第一预设温度是可以使热敏电阻的电阻值发生骤降的温度,该第一预设温度可以与形状记忆材料能够发生变形的临界温度值相同。当热敏电阻的温度未达到第一预设温度时,热敏电阻的电阻值能够保持在100MΩ以上,以保证电池的正常工作;当热敏电阻的温度达到第一预设温度以上时,热敏电阻的电阻值骤降至20mΩ~20Ω,可以增大电流,使电流在正极耳2、第一控温元件22、第一导电元件、铝塑膜4的Al层、第二导电元件、第二控温元件32和负极耳3之间正常流动,使正极耳2和负极耳3短路连接,实现放电。
其中,该第一预设温度可以为65~105℃。在该温度范围内,形状记忆材料的尖端A也可以发生相应的翘曲变形,从而使尖端A在与铝塑膜4的Al层导电接触时,热敏电阻具有较小的阻值,有利于增大正极耳2和负极耳3之间的电流,实现有效放电。
具体地,第一形状记忆材料23和第二形状记忆材料33可以为形状记忆合金,该形状记忆合金可以保证正极耳2和负极耳3短路连接时的导电性能,实现有效放电,同时可以使尖端A在高温的作用下发生翘曲变形,并能够刺破铝塑膜4的pp层,而与铝塑膜4的Al层导电接触,实现正极耳2和负极耳3短路连接。
其中,上述形状记忆合金的材料可以为镍钛系合金、铜镍系合金、铜铝系合金、铜锌系合金、Fe-Mn-Si或Fe-Pd中的一种。
此外,第一形状记忆材料23和第二形状记忆材料33也可以为热双金属,热双金属的主动层和被动层为热膨胀率不同的材料,例如主动层的热膨胀率大于被动层的热膨胀率,在热双金属受热时主动层发生较大的热膨胀,而被动层发生较小热膨胀,进而在主动层的作用下带着被动层发生翘曲。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (11)
- 一种电池,其特征在于,包括电芯,所述电芯包括正极耳和负极耳;所述正极耳设置有第一极耳胶,所述第一极耳胶中埋设有第一控温元件,所述第一控温元件上设置有第一形状记忆材料;所述负极耳设置有第二极耳胶,所述第二极耳胶中埋设有第二控温元件,所述第二控温元件上设置有第二形状记忆材料;其中,所述第一形状记忆材料和所述第二形状记忆材料用于在设定的温度条件下发生变形,以使所述正极耳与所述负极耳短路连接。
- 根据权利要求1所述的电池,其特征在于,所述电池还包括铝塑膜,所述铝塑膜热封粘合于所述第一极耳胶和第二极耳胶,所述铝塑膜包括层叠设置的聚丙烯层和铝层,所述铝塑膜通过所述聚丙烯层固定包覆于所述第一极耳胶和所述第二极耳胶的外侧;所述第一形状记忆材料和所述第二形状记忆材料用于在受热变形时贯穿所述聚丙烯层与所述铝层电连接。
- 根据权利要求2所述的电池,其特征在于,第一形状记忆材料和所述第二形状记忆材料包括尖端,所述第一形状记忆材料和所述第二形状记忆材料用于在受热变形时通过所述尖端贯穿所述聚丙烯层与所述铝层电连接。
- 根据权利要求2所述的电池,其特征在于,所述设定的温度条件包括临界温度值,所述第一形状记忆材料和所述第二形状记忆材料的至少部分在大于所述临界温度值的条件下发生翘曲变形。
- 根据权利要求4所述的电池,其特征在于,所述临界温度值为65~105℃。
- 根据权利要求1-5任一项所述的电池,其特征在于,沿所述正极耳的厚度方向,所述第一控温元件在所述正极耳上的投影面积小于所述第一极耳胶在所述正极耳上的投影面积的1/2;沿所述负极耳的厚度方向,所述第二控温元件在所述负极耳上的投影面积小于所述第二极耳胶在所述负极耳上的投影面积的1/2。
- 根据权利要求1-5任一项所述的电池,其特征在于,所述第一控温元件和所述第二控温元件为具有非线性负温度系数效应的热敏电阻。
- 根据权利要求7所述的电池,其特征在于,所述热敏电阻在小于第一预设温度时的电阻大于100MΩ,所述热敏电阻在大于所述第一预设温度时的电阻为20mΩ~20Ω。
- 根据权利要求8所述的电池,其特征在于,所述第一预设温度为65~105℃。
- 根据权利要求1-5任一项所述的电池,其特征在于,所述第一形状记忆材料和所述第二形状记忆材料为形状记忆合金。
- 根据权利要求10所述的电池,其特征在于,所述形状记忆合金的材料为镍钛系合金、铜镍系合金、铜铝系合金、铜锌系合金、Fe-Mn-Si、Fe-Pd中的一种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210802736.5 | 2022-07-07 | ||
CN202210802736.5A CN115621580B (zh) | 2022-07-07 | 2022-07-07 | 电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024007723A1 true WO2024007723A1 (zh) | 2024-01-11 |
Family
ID=84856992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/092976 WO2024007723A1 (zh) | 2022-07-07 | 2023-05-09 | 电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115621580B (zh) |
WO (1) | WO2024007723A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115621580B (zh) * | 2022-07-07 | 2023-08-18 | 荣耀终端有限公司 | 电池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001093489A (ja) * | 1999-01-20 | 2001-04-06 | Matsushita Electric Ind Co Ltd | 扁平電池 |
CN203288688U (zh) * | 2013-05-13 | 2013-11-13 | 东莞新能源科技有限公司 | 一种安全的锂离子电池 |
CN105406107A (zh) * | 2015-11-16 | 2016-03-16 | 珠海光宇电池有限公司 | 一种锂离子电池及其制备方法 |
CN205488409U (zh) * | 2016-01-27 | 2016-08-17 | 清华大学 | 电池内短路测试装置 |
CN206685432U (zh) * | 2017-02-27 | 2017-11-28 | 比亚迪股份有限公司 | 一种电池盖板组件及电池 |
CN109148748A (zh) * | 2018-10-18 | 2019-01-04 | 天津中聚新能源科技有限公司 | 一种防过充电池盖板及其应用的锂电池 |
CN115621580A (zh) * | 2022-07-07 | 2023-01-17 | 荣耀终端有限公司 | 电池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3468015B2 (ja) * | 1997-03-12 | 2003-11-17 | 新神戸電機株式会社 | リチウム二次電池 |
CN202585594U (zh) * | 2012-02-20 | 2012-12-05 | 宁德新能源科技有限公司 | 电池及其极耳 |
CN205752365U (zh) * | 2016-05-17 | 2016-11-30 | 比亚迪股份有限公司 | 电池保护装置、盖板组件及电池 |
CN111276665B (zh) * | 2018-12-04 | 2022-05-24 | 中信国安盟固利动力科技有限公司 | 一种软包装锂离子电池 |
CN212136578U (zh) * | 2020-03-30 | 2020-12-11 | 东莞市鸿德电池有限公司 | 防爆锂电池 |
CN212136579U (zh) * | 2020-03-30 | 2020-12-11 | 东莞市鸿德电池有限公司 | 无磁化锂电池 |
-
2022
- 2022-07-07 CN CN202210802736.5A patent/CN115621580B/zh active Active
-
2023
- 2023-05-09 WO PCT/CN2023/092976 patent/WO2024007723A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001093489A (ja) * | 1999-01-20 | 2001-04-06 | Matsushita Electric Ind Co Ltd | 扁平電池 |
CN203288688U (zh) * | 2013-05-13 | 2013-11-13 | 东莞新能源科技有限公司 | 一种安全的锂离子电池 |
CN105406107A (zh) * | 2015-11-16 | 2016-03-16 | 珠海光宇电池有限公司 | 一种锂离子电池及其制备方法 |
CN205488409U (zh) * | 2016-01-27 | 2016-08-17 | 清华大学 | 电池内短路测试装置 |
CN206685432U (zh) * | 2017-02-27 | 2017-11-28 | 比亚迪股份有限公司 | 一种电池盖板组件及电池 |
CN109148748A (zh) * | 2018-10-18 | 2019-01-04 | 天津中聚新能源科技有限公司 | 一种防过充电池盖板及其应用的锂电池 |
CN115621580A (zh) * | 2022-07-07 | 2023-01-17 | 荣耀终端有限公司 | 电池 |
Also Published As
Publication number | Publication date |
---|---|
CN115621580B (zh) | 2023-08-18 |
CN115621580A (zh) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10008702B2 (en) | Pouch cell | |
CN100486034C (zh) | 电池用安全元件和具有该元件的电池 | |
US10770696B2 (en) | Top cover assembly of secondary battery and secondary battery | |
KR102105172B1 (ko) | 내부의 온도를 측정할 수 있는 전지셀 | |
WO2024007723A1 (zh) | 电池 | |
JP6661485B2 (ja) | 非水電解質二次電池 | |
CN111987282A (zh) | 电化学装置及电子装置 | |
JP2015508564A (ja) | 新規な構造の内蔵型電池セル | |
WO2022170850A1 (zh) | 固态锂离子电池、基于固态锂离子电池的充电保护方法 | |
CN110120557A (zh) | 保护装置及电池 | |
CN103887516A (zh) | 一种集流体及其制作方法、与锂离子电池 | |
WO2023151494A1 (zh) | 一种加热组件、电池以及用电装置 | |
US9269960B2 (en) | Electrode lead and secondary battery having the same | |
US20240055875A1 (en) | Secondary battery capable of preventing overcharge, and charging method thereof | |
CN211150663U (zh) | 一种电芯、电池及电子设备 | |
CN204760501U (zh) | 叠片锂离子电池以及其构成的电池组以及其极片 | |
CN111276665B (zh) | 一种软包装锂离子电池 | |
CN113497268A (zh) | 一种软包电芯结构、软包电池及电化学装置 | |
CN112930616A (zh) | 电芯、应用所述电芯的电池及电子设备 | |
CN114203955A (zh) | 一种电芯及电池 | |
US12095049B2 (en) | Thermal runaway trigger method | |
KR20130089375A (ko) | 이차 전지 및 이차 전지용 부품 | |
WO2020177746A1 (zh) | 保护器、电芯以及电池 | |
JP2001229904A (ja) | 密閉形電池 | |
WO2023024988A1 (zh) | 电池及用电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23834497 Country of ref document: EP Kind code of ref document: A1 |