WO2024007664A1 - 光束扫描系统及其扫描方法 - Google Patents

光束扫描系统及其扫描方法 Download PDF

Info

Publication number
WO2024007664A1
WO2024007664A1 PCT/CN2023/087978 CN2023087978W WO2024007664A1 WO 2024007664 A1 WO2024007664 A1 WO 2024007664A1 CN 2023087978 W CN2023087978 W CN 2023087978W WO 2024007664 A1 WO2024007664 A1 WO 2024007664A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable mirror
frame
mirror frame
limiting
pressing mechanism
Prior art date
Application number
PCT/CN2023/087978
Other languages
English (en)
French (fr)
Inventor
吕毅平
刘琳
吴佩
陈粉宁
张国鹏
Original Assignee
西安炬光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安炬光科技股份有限公司 filed Critical 西安炬光科技股份有限公司
Publication of WO2024007664A1 publication Critical patent/WO2024007664A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present application relates to the technical field of laser multi-beam scanning equipment, and in particular to a beam scanning system and a scanning method thereof.
  • the LD laser splitting and equal-intensity equal-spaced multi-point spot mechanical scanning based on laser skin rejuvenation needs to ensure that the beam is scanned.
  • beam scanning requires a galvanometer to swing in conjunction with a field lens to form a convergent spot on the focal plane; however, the implementation of beam scanning in the prior art has higher requirements for the field lens and requires multiple optical elements to correct the image. Poor, bulky and bulky, especially for multi-beam applications, it is no longer suitable.
  • the purpose of this application is to provide a beam scanning system and a scanning method thereof to alleviate the technical problems in the prior art that beam scanning requires multiple optical elements to correct aberrations and that multiple beams are not suitable.
  • This application provides a beam scanning system, including: a movable mirror frame, a driving mechanism, a limiting mechanism and a pressing mechanism;
  • the limiting mechanism is provided with a limiting path, the movable mirror frame is slidingly connected to the limiting mechanism through the limiting path, the pressing mechanism is accommodated in the limiting path, and the pressing mechanism Configured to squeeze one side of the movable mirror frame to limit the movable mirror frame to a fixed state within the limiting path;
  • the driving mechanism is drivingly connected to the movable mirror frame, and the driving mechanism is configured to overcome the force exerted by the pressing mechanism on the movable mirror frame to drive the movable mirror frame to reciprocate along the limiting path. move.
  • the limiting mechanism includes a lens barrel and a pressure frame
  • the lens barrel is provided with a first limiting groove
  • the pressure frame is provided with a second limiting groove corresponding to the first limiting groove
  • the lens barrel is connected to the pressure frame
  • the first limiting groove is connected to the pressure frame.
  • the positioning groove and the second limiting groove are arranged correspondingly, the pressing mechanism is located in the first limiting groove, the pressing mechanism and the second limiting groove form the limiting path, and the At least a part of the movable frame is in contact with the pressing mechanism, and the pressing mechanism is configured to press the movable frame to the inner wall of the second limiting groove, so that the movable frame is relatively
  • the limiting path is in a fixed state.
  • the pressing mechanism includes an elastic member and a fastening plate
  • the lens barrel has a fixing hole corresponding to the first limiting groove, and the elastic member is accommodated in the fixing hole. And the elastic member is in contact with the fastening plate, the fastening plate is in contact with at least a part of the movable frame, and the elastic member is configured to exert force on the movable frame through the fastening plate. The elastic force exerts an elastic force to frictionally fix the movable mirror frame with the fastening plate and the pressure frame respectively.
  • the fastening plates are provided in multiple groups, and the fastening plates in the multiple groups are arranged symmetrically with respect to the center line of the movable mirror frame;
  • Each group of the fastening plates is provided with a plurality of elastic members.
  • the number of the elastic members is an even multiple.
  • the plurality of elastic members are arranged at intervals along the extension direction of the fastening plates. Any two opposite ones The elastic members are arranged symmetrically so that any position of the fastening plate exerts the same force on the movable mirror frame.
  • it also includes a control mechanism and a position detection mechanism
  • the control mechanism is electrically connected to the position detection mechanism and the driving mechanism respectively.
  • the position detection mechanism is electrically connected to the movable mirror frame.
  • the position detection mechanism is configured to detect the relative position of the movable mirror frame.
  • the position signal of the limiting mechanism is transmitted to the control mechanism, and the control mechanism correspondingly adjusts the operation of the driving mechanism.
  • the driving mechanism includes a rotating motor and a rotating motor drive arm;
  • the movable mirror frame includes a sliding part, the sliding part is clamped in the limiting path, and the end of the sliding part extends out of the limiting path, and the rotating motor drives the arm through the rotating motor It is transmission connected with the sliding part, and the sliding part is rotationally connected with the rotating motor drive arm.
  • the rotating motor is configured to drive the movable mirror frame to reciprocate along the limiting path through the motor drive arm. .
  • a clamping slot is provided on the rotating motor driving arm, the sliding part is rotationally connected to the clamping slot, and the extension length of the clamping slot is greater than the radius of the motor driving arm. Difference.
  • the driving mechanism includes a linear motor and a linear motor driving arm;
  • the movable mirror frame includes a sliding part, the sliding part is clamped in the limiting path, and the end of the sliding part extends out of the limiting path, and the linear motor drives the arm through the linear motor Drivenly connected to the sliding part, and the action direction of the linear motor is the same as the extension direction of the limiting path, the linear motor is configured to drive the movable mirror frame along the The limit path reciprocates.
  • This application provides a scanning method based on the beam scanning system, including the following steps:
  • the pressing mechanism is used to exert force on the movable frame in the limiting path, so that the pressing mechanism and the movable frame are fixed by static friction;
  • the driving mechanism Based on the driving force of the driving mechanism, the driving mechanism is controlled to drive the movable mirror frame to move at a preset speed and distance;
  • the formula for calculating the positive pressure of the pressing mechanism on the movable frame is:
  • Fn n*K*x; where n is the number of elastic parts of the pressing mechanism, K is the elastic coefficient of the elastic parts of the pressing mechanism, and x is the deformation amount of the elastic parts of the pressing mechanism;
  • the properties of the material confirm that the kinetic friction factor between the movable mirror frame and the fastening plate of the pressing mechanism is ⁇ 1, and confirm that the kinetic friction factor between the movable mirror frame and the pressing frame of the limiting mechanism is ⁇ 2;
  • This application provides a beam scanning system, including: a movable mirror frame, a driving mechanism, a limiting mechanism and a pressing mechanism; the limiting mechanism is provided with a limiting path, the movable mirror frame is slidingly connected to the limiting mechanism through the limiting path, and the pressing mechanism is The tightening mechanism is accommodated in the limit path, and the tightening mechanism is configured to squeeze one side of the movable frame to limit the movable frame to a fixed state within the limit path; wherein, the tightening mechanism has no opposition to the movable frame movement, the pressing mechanism can exert force on the movable mirror frame, so that both sides of the movable mirror frame are statically friction fixed with the limit path.
  • the driving mechanism can overcome the pressure of the pressing mechanism on the movable mirror frame.
  • the force of the mirror frame drives the movable mirror frame to move back and forth along the limit path.
  • the movable mirror frame can be equipped with optical elements such as reflectors. The movement of the optical elements is used to achieve scanning motion, which alleviates the beam scanning problems in the existing technology. Multiple optical elements are required to correct aberrations, as well as technical issues that make multiple beams unsuitable.
  • Figure 1 is a schematic diagram of the overall structure of the beam scanning system provided by the embodiment of the present application.
  • Figure 2 is a schematic cross-sectional structural diagram of a beam scanning system provided by an embodiment of the present application.
  • Figure 3 is a schematic view of the front structure of the beam scanning system facing the movable mirror frame provided by the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of the beam scanning system in a moving state according to the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the lens barrel of the beam scanning system provided by the embodiment of the present application with a fastening plate installed;
  • Figure 6 is a schematic structural diagram of the elastic member in the lens barrel of the beam scanning system provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the movable mirror frame of the beam scanning system provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the pressing mechanism of the beam scanning system provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the overall structure of the driving mechanism of the beam scanning system provided by the embodiment of the present application, including a linear motor;
  • Figure 10 is a schematic top structural view of the beam scanning system provided by the embodiment of Figure 9;
  • FIG 11 is a schematic cross-sectional structural diagram of the beam scanning system provided by the embodiment of Figure 9;
  • Figure 12 is a schematic structural diagram of the lens barrel of the beam scanning system provided by the embodiment of Figure 9 with a fastening plate installed;
  • FIG. 13 is a schematic structural diagram of another embodiment of the pressing mechanism of the beam scanning system provided by the embodiment of the present application.
  • Icon 100-movable mirror frame; 101-sliding part; 200-driving mechanism; 201-rotating motor; 202-rotating motor driving arm; 212-card slot; 203-linear motor; 204-linear motor driving arm; 300-limited position mechanism; 301-lens barrel; 302-pressing frame; 400-pressing mechanism; 401-elastic member; 402-fastening plate.
  • this embodiment provides a beam scanning system, including: a movable mirror frame 100, a driving mechanism 200, a limiting mechanism 300 and a pressing mechanism 400; the limiting mechanism 300 is provided with a limited path, The movable mirror frame 100 is slidingly connected to the limiting mechanism 300 through the limiting path.
  • the pressing mechanism 400 is accommodated in the limiting path.
  • the pressing mechanism 400 is configured to squeeze one side of the movable mirror frame 100 to hold the movable mirror frame 100 It is limited to a fixed state within the limit path;
  • the driving mechanism 200 is transmission connected with the movable frame 100, and the driving mechanism 200 is configured to overcome the force of the pressing mechanism 400 on the movable frame 100 to drive the movable frame 100 along the limit.
  • the path moves back and forth.
  • the beam scanning system can move and scan LD laser light sources in various modes.
  • the movable mirror frame 100, the limiting mechanism 300 and the pressing mechanism 400 form an overall beam structure.
  • the mechanism 300 can have a limit path on both sides, and the limit path can be a limit groove structure.
  • the movable mirror frame 100 is equipped with an LD laser light source, and both sides of the movable mirror frame 100 can be inserted into the limit paths.
  • the pressing mechanism 400 can be connected with the limiting mechanism 300, and the pressing mechanism 400 can be in close contact with one side of the movable frame 100.
  • the pressing mechanism 400 can exert pressure on the movable frame 100, making it movable.
  • the mirror frame 100 is clamped by the pressing mechanism 400 and the limiting mechanism 300 respectively in the limiting path.
  • the movable mirror frame 100 forms static friction with the surface of the pressing mechanism 400 and the limiting mechanism 300 respectively, and utilizes the pressing force.
  • the tight fit of the tightening mechanism 400 ensures that the movable frame 100 is fixed on the limiting path; when it is necessary to use the movable frame 100 to drive the optical element to move, the driving mechanism 200 is controlled to drive the movable frame 100 to overcome the pressing mechanism.
  • the friction force exerted by 400 allows the movable mirror frame 100 to move relative to the limit path to complete the scanning of the laser beam; wherein, by controlling the moving position of the movable mirror frame 100, the number of scanning spots can be arbitrarily expanded to 1 , 2, 3, 4, 5, 6..., which is beneficial to reducing costs.
  • the laser light source when it is a point spot, it can be scanned into a one-dimensional lattice.
  • the laser light source is a row of multiple collimated light spots (one-dimensional lattice), it can be scanned into multiple rows of multiple collimated light spots (two-dimensional lattice).
  • dimensional lattice when the laser light source is a line spot, it can be scanned into a surface spot.
  • the movable frame 100 can adopt a flat frame or a concave-convex frame.
  • the movable frame 100 can adopt a "ji"-shaped structure, that is, both sides of the movable frame 100 are slidingly connected to the limiting path, and the movable frame 100 can be movable.
  • a laser light source and a lens are installed in the center of the frame 100, and the center position of the movable frame 100 can extend out of the limiting mechanism 300.
  • the linear scanning of the laser beam can be completed.
  • This embodiment provides a beam scanning system, including: a movable mirror frame 100, a driving mechanism 200, and a limiter.
  • One side of the movable frame 100 is squeezed to limit the movable frame 100 to a fixed state within the limit path; wherein, the pressing mechanism 400 and the movable frame 100 have no relative movement, and the pressing mechanism 400 can control the movable frame 100 .
  • the mirror frame 100 exerts force so that both sides of the movable mirror frame 100 form static friction fixation with the limiting path respectively.
  • the driving mechanism 200 can overcome the pressure of the pressing mechanism 400 on the movable mirror frame 100.
  • the acting force is used to drive the movable mirror frame 100 to reciprocate along the limiting path.
  • the movable mirror frame 100 can be provided with optical elements such as mirrors, and the movement of the optical elements is used to achieve scanning motion, which alleviates the beam scanning problems in the prior art. Multiple optical elements are required to correct aberrations, as well as technical issues that make multiple beams unsuitable.
  • the limiting mechanism 300 includes a lens barrel 301 and a pressure frame 302; the lens barrel 301 is provided with a first limiting groove, and the pressure frame 302 corresponds to The first limiting groove is provided with a second limiting groove.
  • the lens barrel 301 and the pressure frame 302 are connected, and the first limiting groove and the second limiting groove are arranged correspondingly.
  • the pressing mechanism 400 is located in the first limiting groove, and the pressing mechanism 400 is located in the first limiting groove.
  • the tightening mechanism 400 and the second limiting groove form a limiting path. At least a part of the movable frame 100 is in contact with the pressing mechanism 400.
  • the pressing mechanism 400 is configured to squeeze the movable frame 100 to the inner wall of the second limiting groove. , so that the movable mirror frame 100 is in a fixed state relative to the limiting path.
  • the lens barrel 301 can be provided with a power supply and other structures, and the pressure frame 302 can adopt a ring frame structure, that is, there is a space inside the pressure frame 302 for the movable lens frame 100 to extend, and the lens barrel 301 corresponds to a part of the pressure frame 302.
  • a contact surface is provided on the side, and a first limiting groove is provided on the contact surface of the lens barrel 301 facing the pressure frame 302.
  • the pressing mechanism 400 is accommodated in the first limiting groove.
  • the second limiting groove and the first limiting groove are arranged correspondingly, that is, the first limiting groove and the second limiting groove form a limiting path, and when the end of the movable mirror frame 100 is clamped in the limiting path , the opposite sides of the movable frame 100 are respectively in contact with the pressing mechanism 400 and the pressing frame 302.
  • the pressing mechanism 400 can exert positive pressure on the movable frame 100 through the lens barrel 301, ensuring that the movable frame 100 is in contact with the pressing mechanism.
  • the lens barrel 301 and the pressure frame 302 can be connected in a variety of ways, such as snap connection, screw connection or buckle connection.
  • the lens barrel 301 and the pressure frame 302 are connected by screws.
  • the end of the movable frame 100 is fitted to the pressing mechanism 400, and the pressing frame 302 is used to squeeze the pressing mechanism 400 through the movable frame 100.
  • the movable lens frame 100 and the pressing mechanism 400 Connected to the lens barrel 301, when the pressure frame 302 and the lens barrel 301 are connected and fixed, there is no relative movement between the pressure frame 302, the movable lens frame 100 and the pressing mechanism 400, that is, the pressing mechanism 400 exerts force on the movable lens frame 100.
  • the force forms static friction.
  • the pressing mechanism 400 includes an elastic member 401 and a fastening plate 402; the lens barrel 301 has a fixing hole corresponding to the first limiting groove, and the elastic member 401 is accommodated in the fixing hole, and The elastic member 401 is in contact with the fastening plate 402, and the fastening plate 402 is in contact with at least a part of the movable frame 100.
  • the elastic member 401 is configured to exert an elastic force on the movable frame 100 through the fastening plate 402, so that the movable frame 100 can be moved.
  • the mirror frame 100 is friction-fixed with the fastening plate 402 and the pressure frame 302 respectively.
  • the elastic member 401 may be of various types, such as a compression spring, an elastic piece or a rubber ring, etc.
  • the elastic member 401 may be a compression spring.
  • the fixing hole can adopt a blind hole structure, that is, the elastic member 401 is accommodated in the fixing hole, and the fastening plate 402 can be clamped in the first limiting groove, and the fastening plate 402 is in contact with the lens barrel 301
  • One side of the fastening plate 402 can be in contact with the elastic member 401
  • the other side of the fastening plate 402 can be in contact with the movable frame 100
  • the movable frame 100 can be in contact with the pressure frame 302.
  • the elastic member 401 exerts positive pressure on the fastening plate 402 under the action of its own deformation, because the elastic member 401 is always in a compressed state. , so positive pressure can be exerted on the movable mirror frame 100 through the fastening plate 402. Therefore, during the entire service life, the movable mirror frame 100 will always be in a squeezed state between the fastening plate 402 and the pressure frame 302.
  • the fastening plate 402 and the lens barrel 301 can be connected in various ways.
  • the fastening plate 402 is provided with a limiting protrusion
  • the lens barrel 301 corresponds to the limiting protrusion.
  • a limiting groove is provided, the lens barrel 301 is engaged with the limiting groove through the limiting protrusion, and the fastening plate 402 can be completely clamped in the first limiting groove; or, the fastening plate 402 can be set corresponding to the position of the fixing hole.
  • the limit rod can extend into the fixed hole, and the elastic member 401 is sleeved on the outside of the limit rod. The two ends of the elastic member 401 are respectively in contact with the bottom wall of the fixed hole and the surface of the fastening plate 402 , the elastic member 401 has an elastic tendency toward the fastening plate 402.
  • a receiving groove may be provided on the side of the fastening plate 402 corresponding to the movable mirror frame 100, and the movable mirror frame 100 may be provided with a groove configured to accommodate the The movable mirror frame 100 can be slidably connected to the accommodating groove of the fastening plate 402 through the sliding protrusion of the groove.
  • multiple sets of fastening plates 402 are provided, and the multiple sets of fastening plates 402 are arranged symmetrically with respect to the center line of the movable frame 100; each set of fastening plates 402 is provided with multiple elastic members.
  • the number of elastic members 401 is an even multiple, multiple elastic members 401 are spaced apart along the extension direction of the fastening plate 402, and any two opposite elastic members 401 are arranged symmetrically, so that any position of the fastening plate 402 is aligned.
  • the force exerted by the movable frame 100 is the same.
  • the side of the lens barrel 301 facing the pressure frame 302 can be arranged in a rectangular structure, in which the fastening plates 402 can be used in groups, and multiple groups of fastening plates 402 are used to respectively correspond to the center line of the movable mirror frame 100
  • the symmetrical arrangement enables the positive pressure exerted on both sides of the fastening plate 402 and the movable frame 100 to be uniform when the movable frame 100 moves; further, the elastic members 401 are designed in symmetrical groups with even multiples to ensure that they are applied to the fastening plate 402 and the movable frame 100.
  • the positive pressure of the fastening plate 402 is uniform to avoid wear and tear caused by multiple movements between the movable frame 100 and the fastening plate 402; preferably, two sets of fastening plates 402 can be used, and the two sets of fastening plates 402 are respectively located on the lens barrel 301 On both sides of the fastening plate 402, two elastic members 401 are provided on each set, and the two elastic members 401 are respectively located at symmetrical positions at both ends of the fastening plate 402 in the extension direction.
  • the control mechanism is electrically connected to the position detection mechanism and the driving mechanism 200 respectively, and the position detection mechanism is electrically connected to the movable mirror frame 100.
  • the position detection mechanism is configured The position of the movable mirror frame 100 relative to the limiting mechanism 300 is detected, and the position signal is transmitted to the control mechanism, and the control mechanism adjusts the operation of the driving mechanism 200 accordingly.
  • control mechanism can be of various types, such as: MCU, computer, PLC controller, etc.; preferably, the control mechanism is MCU, Microcontroller Unit (MCU), also known as a single-chip microcomputer or single-chip computer. It is to appropriately reduce the frequency and specifications of the central processor, and integrate memory, counters, USB, A/D conversion, UART, PLC, DMA and other peripheral interfaces, and even LCD driver circuits on a single chip. It has become a chip-level computer and can perform different combinations of controls for different applications.
  • the controller can be an STM32F103C8T6 microcontroller, and the controller can also be controlled by a PLC, which will not be described again here.
  • the position detection mechanism may include a Hall sensor and a magnetic ring, where the Hall sensor and the magnetic ring may be disposed inside the driving mechanism 200, and a value corresponding to the initial position of the movable mirror frame 100 is preset in the control mechanism.
  • the driving mechanism 200 moves, it can cooperate with the encoder according to the number of rotations to determine the current position of the movable mirror frame 100; or, the magnetic ring can also be set at a fixed position, and the Hall sensor can be set on the movable mirror frame 100.
  • the magnetic flux sensed by the Hall sensor determines the current position of the movable mirror frame 100; the position of the movable mirror frame 100 is monitored in real time through the position detection mechanism, so that the displacement of the movable mirror frame 100 can be accurately determined to obtain the scanning range of the laser beam.
  • the driving mechanism 200 includes a rotating motor 201 and a rotating motor driving arm 202;
  • the movable mirror frame 100 includes a sliding part 101, and the sliding part 101 is clamped in a limiting position path, and the end of the sliding part 101 extends out of the limiting path, the rotating motor 201 is transmission connected with the sliding part 101 through the rotating motor driving arm 202, and the sliding part 101 is rotationally connected with the rotating motor driving arm 202, and the rotating motor 201 is configured as
  • the motor drive arm drives the movable mirror frame 100 to reciprocate along the limiting path.
  • the rotating motor drive arm 202 is provided with a slot 212, the sliding part 101 is rotationally connected to the slot 212, and the extension length of the slot 212 is greater than the radius difference of the motor drive arm.
  • the card slot 212 is located at the end of the rotating motor drive arm 202.
  • the card slot 212 can be a U-shaped or oval-shaped open card slot 212.
  • the card slot 212 is rotationally connected to the sliding part 101 of the movable mirror frame 100. Since The movable mirror frame 100 can move along the direction of the slot 212 of the rotating motor driving arm 202. When the rotating motor driving arm 202 rotates around the rotating motor 201 along a radius arc, the movable mirror frame 100 is only pressed by the elastic member 401.
  • the length margin after the sliding part 101 of the movable mirror frame 100 is installed in the slot 212 of the rotating motor driving arm 202 must be larger than the rotation of the rotating motor driving arm 202
  • the difference in radius causes the movable mirror frame 100 to be completely unforced along the normal direction.
  • two groups of rotating motor driving arms 202 may be provided.
  • the two groups of rotating motor driving arms 202 are respectively slidingly connected to both sides of the movable mirror frame 100 , and the two groups of rotating motor driving arms 202 are connected by connecting rods.
  • the two integrated sets of rotating motor driving arms 202 are drivingly connected to the rotating motor 201 .
  • the driving mechanism 200 includes a linear motor 203 and a linear motor driving arm 204;
  • the movable mirror frame 100 includes a sliding part 101, the sliding part 101 is clamped in the limiting path, and the end of the sliding part 101
  • the linear motor 203 is connected to the sliding part 101 through the linear motor driving arm 204, and the action direction of the linear motor 203 is the same as the extension direction of the limiting path.
  • the linear motor 203 is configured to pass through the linear motor driving arm 204.
  • the movable mirror frame 100 is driven to reciprocate along the limiting path.
  • the movement direction of the linear motor 203 is the same as the extension direction of the limiting path.
  • the linear motor 203 is connected to the sliding part 101 of the movable mirror frame 100 through the linear motor driving arm 204. By using the driving of the linear motor 203, the motor can be realized. One-dimensional scan in the direction of the rail.
  • this embodiment provides a scanning method based on a beam scanning system, including the following steps: using a pressing mechanism 400 to apply force to the movable mirror frame 100 in the limiting path, so that Pressing mechanism 400 It is fixed by static friction with the movable frame 100; calculate the positive pressure of the pressing mechanism 400 on the movable frame 100; confirm the pressure of the pressing mechanism 400 on one side of the movable frame 100 based on the positive pressure of the pressing mechanism 400 on the movable frame 100 friction force, and confirm the friction force of the limiting mechanism 300 on the other side of the movable mirror frame 100; determine the driving force of the driving mechanism 200 based on the friction force on both sides of the movable mirror frame 100; based on the driving force of the driving mechanism 200, control the driving The mechanism 200 drives the movable mirror frame 100 to move at a preset speed and distance; completing spot scanning.
  • K is the elastic coefficient of the elastic member 401 of the pressing mechanism 400
  • x is the deformation amount of the elastic member 401 of the pressing mechanism 400; according to the properties of the material, confirm the The kinetic friction factor between the fastening plates 402 is ⁇ 1, and it is confirmed that the kinetic friction factor between the movable mirror frame 100 and the pressure frame 302 of the limiting mechanism 300 is ⁇ 2; the driving force of the driving mechanism 200 is determined based on the friction on both sides of the movable mirror frame 100
  • the movable mirror frame 100 is in the limiting path composed of the fastening plate 402 and the pressure frame 302.
  • the two sliding sides of the movable mirror frame 100 are respectively in contact with the fastening plate 402 and the pressure frame 302.
  • the 401 beam scanning system is in a compressed state, so the positive pressure Fn is always applied to the fastening plate 402.
  • the movable mirror frame 100 is always within the limiting path of the fastening plate 402 and the pressure frame 302; where, the elasticity
  • This application provides a beam scanning system and a scanning method.
  • the driving mechanism is connected to the movable mirror frame through transmission.
  • the driving mechanism can overcome the force of the pressing mechanism on the movable mirror frame to drive the movable mirror frame along the limiting path.
  • the movable mirror frame can be equipped with optical elements such as mirrors, and the movement of the optical elements is used to realize the scanning movement, which alleviates the existing technology that requires multiple optical elements to correct aberrations for beam scanning, and the incompatibility of multiple beams. technical problem.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种光束扫描系统及其扫描方法,涉及激光多光束扫描设备的技术领域,包括可动镜框(100)、驱动机构(200)、限位机构(300)和压紧机构(400);限位机构(300)设置有限位路径,压紧机构(400)能够将可动镜框(100)限制于限位路径内呈固定状态;其中,压紧机构(400)与可动镜框(100)无相对运动,压紧机构(400)能够对可动镜框(100)施加作用力,使得可动镜框(100)的两侧分别与限位路径形成静摩擦固定,通过驱动机构(200)与可动镜框(100)传动连接,驱动机构(200)能够克服压紧机构(400)对可动镜框(100)的作用力,以带动可动镜框(100)沿着限位路径往复移动,其中,可动镜框(100)上可以具有反射镜等光学元件,利用光学元件移动实现扫描运动,缓解了现有技术中存在的光束扫描需要多片光学元件矫正像差,以及多光束不适用的技术问题。

Description

光束扫描系统及其扫描方法
相关申请的交叉引用
本申请要求于2022年07月04日提交中国专利局的申请号为202210786004.1、名称为“光束扫描系统及其扫描方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光多光束扫描设备技术领域,尤其是涉及一种光束扫描系统及其扫描方法。
背景技术
针对激光医疗美容行业的激光多光束分束整形机械扫描系统,基于激光嫩肤的LD激光分束等强度等间距多点光斑机械扫描,需要保证光束进行扫描。
现有技术中,光束扫描时需要通过振镜摆动配合场镜,在焦面上形成会聚光斑;但是,现有技术中的光束扫描实现方式对场镜要求较高,需要多片光学元件矫正像差,体积大,笨重,尤其是多光束时,不再适用。
申请内容
本申请的目的在于提供一种光束扫描系统及其扫描方法,以缓解现有技术中存在的光束扫描需要多片光学元件矫正像差,以及多光束不适用的技术问题。
本申请提供的一种光束扫描系统,包括:可动镜框、驱动机构、限位机构和压紧机构;
所述限位机构设置有限位路径,所述可动镜框通过所述限位路径与所述限位机构滑动连接,所述压紧机构容置于所述限位路径中,所述压紧机构配置成挤压所述可动镜框的一侧,以将所述可动镜框限制于所述限位路径内呈固定状态;
所述驱动机构与所述可动镜框传动连接,所述驱动机构配置成克服所述压紧机构对所述可动镜框的作用力,以带动所述可动镜框沿着所述限位路径往复移动。
在本申请较佳的实施例中,所述限位机构包括镜筒和压框;
所述镜筒上开设有第一限位槽,所述压框对应所述第一限位槽开设有第二限位槽,所述镜筒和所述压框连接,且所述第一限位槽和所述第二限位槽对应布置,所述压紧机构位于所述第一限位槽内,所述压紧机构与所述第二限位槽形成所述限位路径,所述可动镜框的至少一部分与所述压紧机构抵接,所述压紧机构配置成挤压所述可动镜框至所述第二限位槽的内壁上,以使所述可动镜框相对于所述限位路径呈固定状态。
在本申请较佳的实施例中,所述压紧机构包括弹性件和紧固板;
所述镜筒对应所述第一限位槽内开设有固定孔,所述弹性件容置于所述固定孔内, 且所述弹性件与所述紧固板抵接,所述紧固板与所述可动镜框的至少一部分抵接,所述弹性件配置成通过所述紧固板对所述可动镜框施加弹性作用力,以使所述可动镜框的分别与所述紧固板和所述压框摩擦固定。
在本申请较佳的实施例中,所述紧固板设置有多组,多组所述紧固板分别相对于所述可动镜框的中线呈对称布置;
每组所述紧固板设置有多个所述弹性件,所述弹性件的数量呈偶数倍,多个所述弹性件沿着所述紧固板的延伸方向间隔布置,任意相对的两个所述弹性件呈对称布置,以使所述紧固板的任意位置对所述可动镜框施加的作用力相同。
在本申请较佳的实施例中,还包括控制机构和位置检测机构;
所述控制机构分别与所述位置检测机构和所述驱动机构电信号连接,所述位置检测机构与所述可动镜框电信号连接,所述位置检测机构配置成检测所述可动镜框相对于所述限位机构的位置,并将此位置信号输送至所述控制机构处,所述控制机构对应调节所述驱动机构的运行。
在本申请较佳的实施例中,所述驱动机构包括旋转电机和旋转电机驱动臂;
所述可动镜框包括滑动部,所述滑动部夹持于所述限位路径中,且所述滑动部的端部伸出所述限位路径,所述旋转电机通过所述旋转电机驱动臂与所述滑动部传动连接,且所述滑动部与所述旋转电机驱动臂转动连接,所述旋转电机配置成通过所述电机驱动臂带动所述可动镜框沿着所述限位路径往复运动。
在本申请较佳的实施例中,所述旋转电机驱动臂上开设有卡槽,所述滑动部与所述卡槽转动连接,且所述卡槽的延伸长度大于所述电机驱动臂的半径差。
在本申请较佳的实施例中,所述驱动机构包括直线电机和直线电机驱动臂;
所述可动镜框包括滑动部,所述滑动部夹持于所述限位路径中,且所述滑动部的端部伸出所述限位路径,所述直线电机通过所述直线电机驱动臂与所述滑动部传动连接,且所述直线电机的作用方向与所述限位路径的延伸方向相同,所述直线电机配置成通过所述直线电机驱动臂带动所述可动镜框沿着所述限位路径往复运动。
本申请提供的一种基于所述的光束扫描系统的扫描方法,包括以下步骤:
利用压紧机构对限位路径中的可动镜框施加作用力,以使压紧机构与可动镜框之间呈静摩擦固定;
计算压紧机构对可动镜框的正压力;
根据压紧机构对可动镜框的正压力确认压紧机构对可动镜框一侧的摩擦力,及确认限位机构对可动镜框另一侧的摩擦力;
根据可动镜框两侧的摩擦力确定驱动机构的驱动力;
基于驱动机构的驱动力,控制驱动机构以预设速度和距离驱动可动镜框移动;
完成光斑扫描。
在本申请较佳的实施例中,还包括以下步骤:
计算压紧机构对可动镜框的正压力的公式为:
Fn=n*K*x;式中,n为压紧机构的弹性件的数量,K为压紧机构的弹性件的弹性系数,x为压紧机构的弹性件的形变量;
根据材料的属性,确认可动镜框与压紧机构的紧固板之间的动摩擦因数为μ1,确认可动镜框与限位机构的压框之间的动摩擦因数为μ2;
根据可动镜框两侧的摩擦力确定驱动机构的驱动力的公式为:F驱≥S*(f摩(可动镜框与紧固板)+f摩(可动镜框与压框))=S*(μ1*n*K*x+μ2*n*K*x);式中,S为根据应用场景选取的安全系数。
本申请提供的一种光束扫描系统,包括:可动镜框、驱动机构、限位机构和压紧机构;限位机构设置有限位路径,可动镜框通过限位路径与限位机构滑动连接,压紧机构容置于限位路径中,压紧机构配置成挤压可动镜框的一侧,以将可动镜框限制于限位路径内呈固定状态;其中,压紧机构与可动镜框无相对运动,压紧机构能够对可动镜框施加作用力,使得可动镜框的两侧分别与限位路径形成静摩擦固定,通过驱动机构与可动镜框传动连接,驱动机构能够克服压紧机构对可动镜框的作用力,以带动可动镜框沿着限位路径往复移动,其中,可动镜框上可以具有反射镜等光学元件,利用光学元件移动实现扫描运动,缓解了现有技术中存在的光束扫描需要多片光学元件矫正像差,以及多光束不适用的技术问题。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光束扫描系统的整体结构示意图;
图2为本申请实施例提供的光束扫描系统的剖面结构示意图;
图3为本申请实施例提供的光束扫描系统的朝向可动镜框的正面结构示意图;
图4为本申请实施例提供的光束扫描系统的移动状态下的结构示意图;
图5为本申请实施例提供的光束扫描系统的镜筒安装有紧固板的结构示意图;
图6为本申请实施例提供的光束扫描系统的镜筒内具有弹性件的结构示意图;
图7为本申请实施例提供的光束扫描系统的可动镜框的结构示意图;
图8为本申请实施例提供的光束扫描系统的压紧机构的结构示意图;
图9为本申请实施例提供的光束扫描系统的驱动机构包括直线电机的整体结构示意图;
图10为图9实施例提供的光束扫描系统的俯视结构示意图;
图11为图9实施例提供的光束扫描系统的剖面结构示意图;
图12为图9实施例提供的光束扫描系统的镜筒安装有紧固板的结构示意图;
图13为本申请实施例提供的光束扫描系统的压紧机构另一实施方式的结构示意图。
图标:100-可动镜框;101-滑动部;200-驱动机构;201-旋转电机;202-旋转电机驱动臂;212-卡槽;203-直线电机;204-直线电机驱动臂;300-限位机构;301-镜筒;302-压框;400-压紧机构;401-弹性件;402-紧固板。
具体实施方式
下面将结合实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1-图13所示,本实施例提供的一种光束扫描系统,包括:可动镜框100、驱动机构200、限位机构300和压紧机构400;限位机构300设置有限位路径,可动镜框100通过限位路径与限位机构300滑动连接,压紧机构400容置于限位路径中,压紧机构400配置成挤压可动镜框100的一侧,以将可动镜框100限制于限位路径内呈固定状态;驱动机构200与可动镜框100传动连接,驱动机构200配置成克服压紧机构400对可动镜框100的作用力,以带动可动镜框100沿着限位路径往复移动。
需要说明的是,本实施例提供的光束扫描系统可以对多种方式的LD激光光源进行移动扫描,具体地,可动镜框100、限位机构300和压紧机构400形成光束整体结构,限位机构300可以在两侧开设有限位路径,限位路径可以为限位槽结构,可动镜框100上安装有LD激光光源,并且可动镜框100的两侧可以插设于限位路径的限位槽中,压紧机构400可以与限位机构300连接,并且压紧机构400与可动镜框100的一侧贴合抵接,压紧机构400可以对可动镜框100施加压力,即使得可动镜框100在限位路径中分别受到压紧机构400和限位机构300夹持的作用力,此时可动镜框100分别与压紧机构400的表面和限位机构300的表面形成静摩擦,利用压紧机构400的紧配合作用,保证了可动镜框100在限位路径的固定状态;当需要利用可动镜框100带动光学元件进行移动时,通过控制驱动机构200带动可动镜框100克服压紧机构400施加的摩擦作用力,使得可动镜框100可以沿着限位路径进行相对运动,完成对激光光束的扫描;其中,通过对可动镜框100移动位置的控制从而将扫描光斑数量任意扩展成1、2、3、4、5、6……,有利于降低成本。
可选地,当激光光源为一个点光斑时可以扫描成一个一维点阵,当激光光源为一行多束准直光斑(一维点阵)时可以扫描成多行多束准直光斑(二维点阵),当激光光源为一个线光斑时可以扫描成一个面光斑。
可选地,可动镜框100可以采用平面框架也可以采用凹凸框架,优选地,可动镜框100可以采用“几”字形结构,即可动镜框100的两侧与限位路径滑动连接,可动镜框100的中心安装有激光光源和镜片,并且可动镜框100的中心位置可以伸出限位机构300,当可动镜框100在移动过程中,可以完成对激光光束的直线扫描。
本实施例提供的一种光束扫描系统,包括:可动镜框100、驱动机构200、限位机 构300和压紧机构400;限位机构300设置有限位路径,可动镜框100通过限位路径与限位机构300滑动连接,压紧机构400容置于限位路径中,压紧机构400配置成挤压可动镜框100的一侧,以将可动镜框100限制于限位路径内呈固定状态;其中,压紧机构400与可动镜框100无相对运动,压紧机构400能够对可动镜框100施加作用力,使得可动镜框100的两侧分别与限位路径形成静摩擦固定,通过驱动机构200与可动镜框100传动连接,驱动机构200能够克服压紧机构400对可动镜框100的作用力,以带动可动镜框100沿着限位路径往复移动,其中,可动镜框100上可以具有反射镜等光学元件,利用光学元件移动实现扫描运动,缓解了现有技术中存在的光束扫描需要多片光学元件矫正像差,以及多光束不适用的技术问题。
在上述实施例的基础上,进一步地,在本申请较佳的实施例中,限位机构300包括镜筒301和压框302;镜筒301上开设有第一限位槽,压框302对应第一限位槽开设有第二限位槽,镜筒301和压框302连接,且第一限位槽和第二限位槽对应布置,压紧机构400位于第一限位槽内,压紧机构400与第二限位槽形成限位路径,可动镜框100的至少一部分与压紧机构400抵接,压紧机构400配置成挤压可动镜框100至第二限位槽的内壁上,以使可动镜框100相对于限位路径呈固定状态。
本实施例中,镜筒301内可以设置有电源等结构,压框302可以采用环形框结构,即压框302的内部具有可动镜框100伸出的空间,镜筒301对应压框302的一侧设置有接触面,在镜筒301朝向压框302的接触面上开设有第一限位槽,压紧机构400容置于第一限位槽中,当压框302与镜筒301连接时,此时第二限位槽和第一限位槽对应布置,即第一限位槽和第二限位槽形成限位路径,并当可动镜框100的端部夹持于限位路径中,可动镜框100相对的两侧分别与压紧机构400和压框302抵接,压紧机构400能够通过镜筒301对可动镜框100施加正压力,保证了可动镜框100在压紧机构400和压框302之间的限位路径的固定状态。
可选地,镜筒301和压框302之间的连接方式为多种,例如:卡接、通过螺钉连接或者通过卡扣连接等,优选地,镜筒301和压框302之间通过螺钉连接,即当将压紧机构400安装于第一限位槽后,通过将可动镜框100的端部与压紧机构400贴合,利用压框302通过可动镜框100挤压压紧机构400后与镜筒301连接,当压框302和镜筒301连接固定后,此时压框302、可动镜框100和压紧机构400之间没有相对运动,即压紧机构400对可动镜框100施加的作用力形成静摩擦力。
在本申请较佳的实施例中,压紧机构400包括弹性件401和紧固板402;镜筒301对应第一限位槽内开设有固定孔,弹性件401容置于固定孔内,且弹性件401与紧固板402抵接,紧固板402与可动镜框100的至少一部分抵接,弹性件401配置成通过紧固板402对可动镜框100施加弹性作用力,以使可动镜框100的分别与紧固板402和压框302摩擦固定。
可选地,弹性件401可以为多种,例如:压缩弹簧、弹性片或者橡胶环等,优选地,弹性件401可以为压缩弹簧。
本实施例中,固定孔可以采用盲孔结构,即弹性件401容置于固定孔中,并且紧固板402可以卡设于第一限位槽中,紧固板402与镜筒301抵接的一侧可以与弹性件401抵接,紧固板402的另一侧与可动镜框100抵接,可动镜框100与压框302抵接,当压框302与镜筒301连接后,压框302、可动镜框100和紧固板402限制弹性件401在固定孔中形成压缩变形,弹性件401在自身形变的作用下对紧固板402施加正压力,因弹性件401一直处于压缩状态,故可以通过紧固板402对可动镜框100施加正压力,因此在整个寿命期内,可动镜框100会一直处于紧固板402和压框302的挤压状态中。
如图8和图13所示,可选地,紧固板402与镜筒301的连接方式可以为多种方式,例如:紧固板402上设置有限位凸起,镜筒301对应限位凸起设置有限位槽,镜筒301通过限位凸起与限位槽卡接,并且紧固板402可以完全卡设于第一限位槽中;或者,紧固板402对应固定孔的位置设置有限位杆,限位杆能够伸入至固定孔中,并且弹性件401套设于限位杆的外部,弹性件401的两端分别与固定孔的底壁和紧固板402的表面抵接,弹性件401对紧固板402具有弹性趋势。
另外,紧固板402与可动镜框100之间可以直接表面摩擦,或者紧固板402对应可动镜框100的一侧可以设置有容置槽,可动镜框100上设置有配置成与容置槽卡接的滑动凸起,可动镜框100可以通过滑动凸起与紧固板402的容置槽滑动连接。
在本申请较佳的实施例中,紧固板402设置有多组,多组紧固板402分别相对于可动镜框100的中线呈对称布置;每组紧固板402设置有多个弹性件401,弹性件401的数量呈偶数倍,多个弹性件401沿着紧固板402的延伸方向间隔布置,任意相对的两个弹性件401呈对称布置,以使紧固板402的任意位置对可动镜框100施加的作用力相同。
可选地,镜筒301朝向压框302的一侧可以设置为矩形结构,其中,紧固板402可以采用成组使用的方式,利用多组紧固板402分别相对于可动镜框100的中线呈对称布置,能够实现可动镜框100在移动时施加于紧固板402和可动镜框100件的两侧正压力均匀一致;进一步地,弹性件401采用对称成组偶数倍设计,保证施加于紧固板402的正压力均匀一致,避免可动镜框100与紧固板402间多次运动的磨损;优选地,紧固板402可以采用两组,两组紧固板402分别位于镜筒301的两侧,每组紧固板402上设置有两个弹性件401,并且两个弹性件401分别位于紧固板402的延伸方向的两端对称位置。
在本申请较佳的实施例中,还包括控制机构和位置检测机构;控制机构分别与位置检测机构和驱动机构200电信号连接,位置检测机构与可动镜框100电信号连接,位置检测机构配置成检测可动镜框100相对于限位机构300的位置,并将此位置信号输送至控制机构处,控制机构对应调节驱动机构200的运行。
可选地,控制机构可以为多种,例如:MCU,计算机,PLC控制器等;较佳地,控制机构为MCU,微控制单元(Microcontroller Unit;MCU),又称单片微型计算机或者单片机,是把中央处理器的频率与规格做适当缩减,并将内存、计数器、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形 成芯片级的计算机,为不同的应用场合做不同组合控制。优选地,控制器可以采用STM32F103C8T6单片机,控制器也可以采用PLC控制,此处对此不再赘述。
本实施例中,位置检测机构可以包括霍尔传感器和磁环,其中霍尔传感器和磁环可以设置在驱动机构200内部,并在控制机构预设有可动镜框100的初始位置对应的值,当驱动机构200运动时,可以根据转动的圈数配合编码器,确定可动镜框100的当前位置;或者,也可以将磁环设置于固定位置,霍尔传感器设置于可动镜框100上,根据霍尔传感器感应到的磁通量确定可动镜框100当前的位置;通过位置检测机构对可动镜框100的位置进行实时监测,从而可以精确判断可动镜框100的位移,以得到激光光束的扫描范围。
如图1-图4所示,在本申请较佳的实施例中,驱动机构200包括旋转电机201和旋转电机驱动臂202;可动镜框100包括滑动部101,滑动部101夹持于限位路径中,且滑动部101的端部伸出限位路径,旋转电机201通过旋转电机驱动臂202与滑动部101传动连接,且滑动部101与旋转电机驱动臂202转动连接,旋转电机201配置成通过电机驱动臂带动可动镜框100沿着限位路径往复运动。
在本申请较佳的实施例中,旋转电机驱动臂202上开设有卡槽212,滑动部101与卡槽212转动连接,且卡槽212的延伸长度大于电机驱动臂的半径差。
本实施例中,卡槽212位于旋转电机驱动臂202的端部位置,卡槽212可以采用U型或者椭圆形开口卡槽212,卡槽212与可动镜框100的滑动部101转动连接,由于可动镜框100在旋转电机驱动臂202的卡槽212可以沿卡槽212方向移动,在旋转电机驱动臂202绕旋转电机201沿半径弧线旋转时,可动镜框100仅受弹性件401压力贴在紧固板402和压框302的表面滑动,实现直线扫描;其中,旋转电机驱动臂202的卡槽212安装可动镜框100的滑动部101后的长度余量须大于旋转电机驱动臂202旋转半径差,使可动镜框100沿法线方向完全不受力。
可选地,旋转电机驱动臂202可以设置有两组,两组旋转电机驱动臂202分别与可动镜框100的两侧滑动连接,并且两组旋转电机驱动臂202之间通过连杆连接,将形成整体的两组旋转电机驱动臂202与旋转电机201传动连接。
在本申请较佳的实施例中,驱动机构200包括直线电机203和直线电机驱动臂204;可动镜框100包括滑动部101,滑动部101夹持于限位路径中,且滑动部101的端部伸出限位路径,直线电机203通过直线电机驱动臂204与滑动部101传动连接,且直线电机203的作用方向与限位路径的延伸方向相同,直线电机203配置成通过直线电机驱动臂204带动可动镜框100沿着限位路径往复运动。
本实施例中,直线电机203的运动方向与限位路径的延伸方向相同,直线电机203通过直线电机驱动臂204与可动镜框100的滑动部101连接,利用直线电机203的驱动,能够实现电机导轨方向的一维扫描。
如图1-图13所示,本实施例提供的一种基于的光束扫描系统的扫描方法,包括以下步骤:利用压紧机构400对限位路径中的可动镜框100施加作用力,以使压紧机构400 与可动镜框100之间呈静摩擦固定;计算压紧机构400对可动镜框100的正压力;根据压紧机构400对可动镜框100的正压力确认压紧机构400对可动镜框100一侧的摩擦力,及确认限位机构300对可动镜框100另一侧的摩擦力;根据可动镜框100两侧的摩擦力确定驱动机构200的驱动力;基于驱动机构200的驱动力,控制驱动机构200以预设速度和距离驱动可动镜框100移动;完成光斑扫描。
在本申请较佳的实施例中,还包括以下步骤:计算压紧机构400对可动镜框100的正压力的公式为:Fn=n*K*x;式中,n为压紧机构400的弹性件401的数量,K为压紧机构400的弹性件401的弹性系数,x为压紧机构400的弹性件401的形变量;根据材料的属性,确认可动镜框100与压紧机构400的紧固板402之间的动摩擦因数为μ1,确认可动镜框100与限位机构300的压框302之间的动摩擦因数为μ2;根据可动镜框100两侧的摩擦力确定驱动机构200的驱动力的公式为:F驱≥S*(f摩(可动镜框与紧固板)+f摩(可动镜框与压框))=S*(μ1*n*K*x+μ2*n*K*x);式中,S为根据应用场景选取的安全系数。
本实施例中,可动镜框100处于紧固板402与压框302组成的限位路径中,可动镜框100滑动的两侧面分别与紧固板402和压框302接触,同时因压缩弹性件401光束扫描系统处于压缩状态,故对紧固板402始终施加正压力Fn,故在整个寿命期内,可动镜框100始终处于紧固板402和压框302的限位路径内;其中,弹性件401施加于紧固板402上的正压力的公式为:Fn=n*K*x;式中,n为压紧机构400的弹性件401的数量,K为压紧机构400的弹性件401的弹性系数,x为压紧机构400的弹性件401的形变量;进一步地,以压框302和紧固板402构成可动镜框100移动的滑槽,根据各自材料的属性可得知可动镜框100与紧固板402、可动镜框100与压框302之间的动摩擦因数分别为μ1和μ2;则驱动机构200的驱动力需满足F驱≥S*(f摩(可动镜框与紧固板)+f摩(可动镜框与压框))=2*(μ1*n*K*x+μ2*n*K*x);(根据应用场合选取,安全系数S=2),当F驱确定后,可以控制驱动机构200按照预设的速度和距离驱动可动镜框100移动,实现光斑扫描;缓解了现有技术中存在的光束扫描需要多片光学元件矫正像差,以及多光束不适用的技术问题,适合推广应用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
工业实用性
本申请提供的一种光束扫描系统及其扫描方法,通过驱动机构与可动镜框传动连接,驱动机构能够克服压紧机构对可动镜框的作用力,以带动可动镜框沿着限位路径往 复移动,其中,可动镜框上可以具有反射镜等光学元件,利用光学元件移动实现扫描运动,缓解了现有技术中存在的光束扫描需要多片光学元件矫正像差,以及多光束不适用的技术问题。

Claims (10)

  1. 一种光束扫描系统,其特征在于,包括:可动镜框(100)、驱动机构(200)、限位机构(300)和压紧机构(400);
    所述限位机构(300)设置有限位路径,所述可动镜框(100)通过所述限位路径与所述限位机构(300)滑动连接,所述压紧机构(400)容置于所述限位路径中,所述压紧机构(400)配置成挤压所述可动镜框(100)的一侧,以将所述可动镜框(100)限制于所述限位路径内呈固定状态;
    所述驱动机构(200)与所述可动镜框(100)传动连接,所述驱动机构(200)配置成克服所述压紧机构(400)对所述可动镜框(100)的作用力,以带动所述可动镜框(100)沿着所述限位路径往复移动。
  2. 根据权利要求1所述的光束扫描系统,其特征在于,所述限位机构(300)包括镜筒(301)和压框(302);
    所述镜筒(301)上开设有第一限位槽,所述压框(302)对应所述第一限位槽开设有第二限位槽,所述镜筒(301)和所述压框(302)连接,且所述第一限位槽和所述第二限位槽对应布置,所述压紧机构(400)位于所述第一限位槽内,所述压紧机构(400)与所述第二限位槽形成所述限位路径,所述可动镜框(100)的至少一部分与所述压紧机构(400)抵接,所述压紧机构(400)配置成挤压所述可动镜框(100)至所述第二限位槽的内壁上,以使所述可动镜框(100)相对于所述限位路径呈固定状态。
  3. 根据权利要求2所述的光束扫描系统,其特征在于,所述压紧机构(400)包括弹性件(401)和紧固板(402);
    所述镜筒(301)对应所述第一限位槽内开设有固定孔,所述弹性件(401)容置于所述固定孔内,且所述弹性件(401)与所述紧固板(402)抵接,所述紧固板(402)与所述可动镜框(100)的至少一部分抵接,所述弹性件(401)配置成通过所述紧固板(402)对所述可动镜框(100)施加弹性作用力,以使所述可动镜框(100)的分别与所述紧固板(402)和所述压框(302)摩擦固定。
  4. 根据权利要求3所述的光束扫描系统,其特征在于,所述紧固板(402)设置有多组,多组所述紧固板(402)分别相对于所述可动镜框(100)的中线呈对称布置;
    每组所述紧固板(402)设置有多个所述弹性件(401),所述弹性件(401)的数量呈偶数倍,多个所述弹性件(401)沿着所述紧固板(402)的延伸方向间隔布置,任意相对的两个所述弹性件(401)呈对称布置,以使所述紧固板(402)的任意位置对所述可动镜框(100)施加的作用力相同。
  5. 根据权利要求1-4任一项所述的光束扫描系统,其特征在于,还包括控制机构和位置检测机构;
    所述控制机构分别与所述位置检测机构和所述驱动机构(200)电信号连接,所述位置检测机构与所述可动镜框(100)电信号连接,所述位置检测机构配置成检测所述 可动镜框(100)相对于所述限位机构(300)的位置,并将此位置信号输送至所述控制机构处,所述控制机构对应调节所述驱动机构(200)的运行。
  6. 根据权利要求5所述的光束扫描系统,其特征在于,所述驱动机构(200)包括旋转电机(201)和旋转电机驱动臂(202);
    所述可动镜框(100)包括滑动部(101),所述滑动部(101)夹持于所述限位路径中,且所述滑动部(101)的端部伸出所述限位路径,所述旋转电机(201)通过所述旋转电机驱动臂(202)与所述滑动部(101)传动连接,且所述滑动部(101)与所述旋转电机驱动臂(202)转动连接,所述旋转电机(201)配置成通过所述电机驱动臂带动所述可动镜框(100)沿着所述限位路径往复运动。
  7. 根据权利要求6所述的光束扫描系统,其特征在于,所述旋转电机驱动臂(202)上开设有卡槽(212),所述滑动部(101)与所述卡槽(212)转动连接,且所述卡槽(212)的延伸长度大于所述电机驱动臂的半径差。
  8. 根据权利要求5所述的光束扫描系统,其特征在于,所述驱动机构(200)包括直线电机(203)和直线电机驱动臂(204);
    所述可动镜框(100)包括滑动部(101),所述滑动部(101)夹持于所述限位路径中,且所述滑动部(101)的端部伸出所述限位路径,所述直线电机(203)通过所述直线电机驱动臂(204)与所述滑动部(101)传动连接,且所述直线电机(203)的作用方向与所述限位路径的延伸方向相同,所述直线电机(203)配置成通过所述直线电机驱动臂(204)带动所述可动镜框(100)沿着所述限位路径往复运动。
  9. 一种基于如权利要求1-8任一项所述的光束扫描系统的扫描方法,其特征在于,包括以下步骤:
    利用压紧机构(400)对限位路径中的可动镜框(100)施加作用力,以使压紧机构(400)与可动镜框(100)之间呈静摩擦固定;
    计算压紧机构(400)对可动镜框(100)的正压力;
    根据压紧机构(400)对可动镜框(100)的正压力确认压紧机构(400)对可动镜框(100)一侧的摩擦力,及确认限位机构(300)对可动镜框(100)另一侧的摩擦力;
    根据可动镜框(100)两侧的摩擦力确定驱动机构(200)的驱动力;
    基于驱动机构(200)的驱动力,控制驱动机构(200)以预设速度和距离驱动可动镜框(100)移动;
    完成光斑扫描。
  10. 根据权利要求9所述的光束扫描系统的扫描方法,其特征在于,还包括以下步骤:
    计算压紧机构(400)对可动镜框(100)的正压力的公式为:
    Fn=n*K*x;式中,n为压紧机构(400)的弹性件(401)的数量,K为压紧机构(400)的弹性件(401)的弹性系数,x为压紧机构(400)的弹性件(401)的形变量;
    根据材料的属性,确认可动镜框(100)与压紧机构(400)的紧固板(402)之间 的动摩擦因数为μ1,确认可动镜框(100)与限位机构(300)的压框(302)之间的动摩擦因数为μ2;
    根据可动镜框(100)两侧的摩擦力确定驱动机构(200)的驱动力的公式为:F驱≥S*(f摩(可动镜框与紧固板)+f摩(可动镜框与压框))=S*(μ1*n*K*x+μ2*n*K*x);式中,S为根据应用场景选取的安全系数。
PCT/CN2023/087978 2022-07-04 2023-04-13 光束扫描系统及其扫描方法 WO2024007664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210786004.1A CN117389030A (zh) 2022-07-04 2022-07-04 光束扫描系统及其扫描方法
CN202210786004.1 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024007664A1 true WO2024007664A1 (zh) 2024-01-11

Family

ID=89454320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087978 WO2024007664A1 (zh) 2022-07-04 2023-04-13 光束扫描系统及其扫描方法

Country Status (2)

Country Link
CN (1) CN117389030A (zh)
WO (1) WO2024007664A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007691A (en) * 1989-08-28 1991-04-16 Spectra-Physics, Inc. Method and apparatus for beam sweeping in a laser scanner
WO1996032662A2 (en) * 1995-04-11 1996-10-17 Imperial Chemical Industries Plc Apparatus and method for scanning a laser beam
US6330095B1 (en) * 1999-01-19 2001-12-11 Kabushiki Kaisha Sankyo Seiki Seisakusho Beam scanning apparatus
US6522441B1 (en) * 2000-11-28 2003-02-18 Psc Scanning, Inc. Micro-optical system for an auto-focus scanner having an improved depth of field
US20040036760A1 (en) * 2002-08-23 2004-02-26 Samsung Electronics Co., Ltd. Sub-scanning interval adjusting apparatus for multi-beam scanning unit
US20080252873A1 (en) * 2007-04-10 2008-10-16 Sanyo Electric Co., Ltd. Laser Radar Driving Apparatus
US20090080046A1 (en) * 2007-09-20 2009-03-26 Fujifilm Corporation Optical scanning element, driving method for same, and optical scanning probe employing optical scanning element
CN111796382A (zh) * 2020-07-21 2020-10-20 中国科学院长春光学精密机械与物理研究所 一种光学系统切换机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007691A (en) * 1989-08-28 1991-04-16 Spectra-Physics, Inc. Method and apparatus for beam sweeping in a laser scanner
WO1996032662A2 (en) * 1995-04-11 1996-10-17 Imperial Chemical Industries Plc Apparatus and method for scanning a laser beam
US6330095B1 (en) * 1999-01-19 2001-12-11 Kabushiki Kaisha Sankyo Seiki Seisakusho Beam scanning apparatus
US6522441B1 (en) * 2000-11-28 2003-02-18 Psc Scanning, Inc. Micro-optical system for an auto-focus scanner having an improved depth of field
US20040036760A1 (en) * 2002-08-23 2004-02-26 Samsung Electronics Co., Ltd. Sub-scanning interval adjusting apparatus for multi-beam scanning unit
US20080252873A1 (en) * 2007-04-10 2008-10-16 Sanyo Electric Co., Ltd. Laser Radar Driving Apparatus
US20090080046A1 (en) * 2007-09-20 2009-03-26 Fujifilm Corporation Optical scanning element, driving method for same, and optical scanning probe employing optical scanning element
CN111796382A (zh) * 2020-07-21 2020-10-20 中国科学院长春光学精密机械与物理研究所 一种光学系统切换机构

Also Published As

Publication number Publication date
CN117389030A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
US9660556B2 (en) Linear ultrasonic motor and optical apparatus including the same
US7199506B2 (en) Piezoelectric actuator for driving lens
US11835703B2 (en) Periscope lens module and prism device applied to periscope lens module
EP0427872B1 (en) Lever having a fulcrum freely movable along a translation axis and mechanical apparatus using the same
US20130147978A1 (en) Oscillatory wave drive unit and image stabilization device
JP2014212682A (ja) リニア超音波モータ及びそれを用いた光学装置
US10574156B2 (en) Vibration type actuator, lens driving device, and ultrasonic motor
WO2024007664A1 (zh) 光束扫描系统及其扫描方法
US7365914B2 (en) Actuator
KR20230127302A (ko) 전자기기 및 이의 카메라 모듈
US10439518B2 (en) Vibration-type actuator, driving method for vibration-type actuator, and electronic apparatus equipped with vibration-type actuator
JP2005354829A (ja) アクチュエータ及びその制御方法
CN215040311U (zh) 一种3d打印机
JP6188446B2 (ja) 光学部材駆動装置及びそれを有するレンズ装置
CN209419711U (zh) 一种镜头模组及具有该镜头模组的手机
CN107622913A (zh) 一种用于继电器簧片的调整机构
JPH0287108A (ja) 自動焦点調整用対物レンズ駆動装置
KR20110028080A (ko) 빔 프로젝터의 초점 조절 장치
CN113306144A (zh) 一种3d打印机
CN108002692B (zh) 一种基于双臂结构的压弯装置
CN220399720U (zh) 调焦设备及光线调节系统
CN218630352U (zh) 一种光学延迟装置
CN103021475B (zh) 一种面向回转运动的顶拉式直线微驱动机构
JP2878810B2 (ja) 板バネのバネ圧制御方法および装置
CN209979911U (zh) 一种光学系统间隙调整结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834446

Country of ref document: EP

Kind code of ref document: A1